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Abstract

This paper presents a model of memory for
multidimensional stimuli. The model captures the
independence of features in memory, their recovery using
spatial location and temporal cues, and the role of verbal
recoding in building integrative feature memories. The model
fits data showing that object features may be retrieved
independently when given a location cue, but that correct
retrieval of missing features given a feature cue depends on
the correct retrieval of location. The model also suggests that
positional codes implicated in many memory models may be
the result of the initial positional encoding of stimuli by
perception.

Introduction
Although perception appears to integrate multidimensional
stimuli, mounting evidence suggests that object features,
including color, form, motion, orientation, texture and
location are independently processed by our visual system
and can even remain independent in memory (e.g.,
Healthcote, Walker, & Hitch, 1994). This paper reviews the
evidence for the independence and re-integration of features
in memory and proposes a model of the spatio-temporal
coding of memory for multidimensional stimuli. The model
is implemented as a modification of the ACT-R cognitive
architecture (Anderson & Lebiere, 1998) and shown to fit
the results of a representative experiment.

Feature Independence in Memory
Evidence for the independent encoding of features in
memory typically involves conjunction errors in recall or
recognition tests (Reinitz, Lammers, & Cochran, 1992). In a
recognition test, a conjunction error occurs when a subject
reports previously seeing a new stimulus that consists of a
conjunction of features from old stimuli. In a recall test, a
conjunction error occurs when subjects recall a stimulus that
erroneously conjoins features of previously seen stimuli.
Conjunction errors have been demonstrated for a variety of
stimuli, including faces (Reinitz et al., 1992; Treisman,
Sykes, & Galade, 1977), two syllable nonsense words
(Reinitz et al., 1992), colored forms (Stefurak & Boynton,
1986), and colored bars at different orientations (Isenberg,
Nissen, & Marchak, 1990). Presentation times for study
stimuli in these experiments range from 100 ms to several
minutes, hence the results show that features are
independently stored in both short- and long-term memory.

Nissen (1985) reported an experiment that suggested that
visual features of objects (in this case color and shape) are
stored separately, but are indexed or bound by their spatial
location. Subjects were presented with four different shapes,
each of a different color, and each in one of four positions,
followed by either a location or color cue. When given a
location or color cue, subjects were told to report the other
two values indexed by that cue (color and shape, and shape
and location, respectively). Subjects were tested in separate
location-cue and color-cue conditions with 64 unique trials
in each condition. Color, shape, location and cue were
systematically randomized so as to ensure statistical
independence among the stimuli and cues.

Nissen found that when the cue was a location, correct
recall of color and shape were statistically independent;
however, when the cue was a color, correct recall of shape
depended on correct recall of location. These results suggest
that object features are represented independently, with each
feature associated with the object’s spatial location. Thus,
retrieving the shape of an object given its color as a cue
requires one to first retrieve the location containing an
object with that color, followed by retrieving the shape at
that location.

Nissen’s results showing independence in the location-cue
condition were questioned by Monheit and Johnston (1994)
who argued that because of the effects of guessing, very
little deviation from independence was possible. By
increasing the number of colors and forms (using letters
instead of shapes) they reduced the effects of guessing and
increased the expected deviation from independence. They
also increased the number of trials to increase the chance of
detecting a smaller deviation from independence. In a series
of experiments that were similar to Nissen’s location-cue
condition, they found consistent evidence for the
dependence of color and shape given a location cue. They
explained their results by arguing that selective attention to
an object tightly binds all features, but that in the Nissen
experiment subjects have only enough time to selectively
attend to a subset of the objects. Features of attended objects
tend to be reported correctly, whereas features of unattended
objects must be guessed. The combination of correct
conjunction trials and those involving guessing produced
the amount of dependence observed in their experiments.

Despite Monheit and Johnston’s results, Nissen’s
experiment still supports a special role for location in
binding object features. Monheit and Johnston’s critique of



Nissen’s experiment should apply equally well to the color-
cue condition, meaning that it would have been just as
difficult to detect dependence. However, Nissen found
dependence in both the aggregate data and 8 of the 9
individual subjects. The fact that Nissen’s experiment was
sufficient to detect dependency in the color-cue condition
suggests that location still plays an important role in binding
object features. However, it is possible that selective
attention may increase the association among object
features, making location less important in the recovery of
feature conjunctions. Indeed, Wolfe and Cave (Wolfe &
Cave, 1999) suggested that pre-attentive features are loosely
bound, whereas features of attended objects are more tightly
bound.

Additional evidence suggests that features may also be
bound by temporal cues (Treisman, 1977). In one
experiment a series of several letters, a number, and several
more letters were rapidly presented either at the same
location or were alternated above and below the fixation
point (Keele, Cohen, Ivry, Liotti, & Yee, 1988). Subjects
were told to report the color of the background surrounding
the digit. When the items were presented at the same
location, more errors came from reporting the color of
letters at the –1 and +1 temporal positions, items that
appeared just before and just after the target. However,
when the items were alternated among two locations, more
errors came from the –2 and +2 temporal positions, items
that occurred at the same spatial location as the target, but
that were temporally more distant than the –1 and +1 items.
Based on the results of several similar experiments, the
authors argued that spatial contiguity is the dominant
requirement for binding features and that temporal
contiguity is of use only when features appear in the same
location. However, the dominance of location may be an
artifact of the task. Other researchers have argued that
subjects may use multiple strategies to recover feature
conjunctions, depending on the available cues at study and
test (Heathcote, Walker, & Hitch, 1994).

There is also evidence that conjunction errors are affected
by the distance and similarity among stimuli. Several
experiments have found that subjects are more likely to
erroneously conjoin features of adjacent or similar stimuli
(for a review see Ashby, Prinzmetal, Ivry, & Maddox,
1996).

Other lines of research have shown that verbalization can
result in an integrated stimulus memory. In a recognition
task using colored animal shapes and long presentation
times, Stefurak and Boynton (1986) demonstrated that
subjects had memory for feature conjunctions unless they
were prevented from naming study stimuli by engaging in a
secondary verbal task, in which case they appeared to have
absolutely no memory of feature conjunctions. In addition to
suppressing verbalization, their experimental task provided
neither temporal nor location cues, because the study stimuli
were presented simultaneously, and the test stimulus was
not presented in its study location. As a result, the
suppressed verbalization condition did not provide any of

the cues (verbal, temporal, or spatial) that are thought to
mediate feature integration.

Because verbalization appears to result in an integrated
feature memory, it appears that verbal codes act in a
different manner than spatial and temporal codes. Instead of
acting as a tag for separate perceptual memories, it seems
likely that the perceptual features are simply recoded as
verbal cues. For example, the features “red” and “triangle”
may be recoded as a verbal chunk “red triangle” that may be
retrieved as a whole. Likewise, a display containing
multiple stimuli may be recoded as a verbal list, such as
“red triangle,” “blue square” where each item is given a
temporal position code.

To summarize, features of multidimensional stimuli
appear to be represented independently in memory, but
bound by temporal and spatial cues. Integrated feature
representations are possible, but only if verbalization is
possible.

ACT-R 5.0
Our model of feature integration in memory is embedded in
the ACT-R 5 cognitive architecture (Bothell, 2002), where it
adopts ACT-R’s theory of memory and cognition (as
described below), but slightly modifies ACT-R’s perceptual
system. This section describes ACT-R 5. Modifications
needed to support the model are described in the next
section.

 Unlike previous versions of ACT-R, ACT-R 5 (hereafter
called ACT-R) consists of several interacting, asynchronous
modules for perception, cognition, memory, and action. The
cognitive module consists of a procedural (production rule)
long-term memory and a goal buffer that holds the current
goal and goal-relevant information. The declarative memory
module consists of declarative memory chunks and a
retrieval buffer that holds the last item retrieved. Each
declarative chunk has a unique identifier, a type, and zero or
more attributes and values, such as:

    Obj1 isa shape-map feature triangle location loc1

where “Obj1” is the identifier of the memory chunk, “shape-
map” is the chunk type, “feature” and “location” are
attributes, and “triangle” and “loc1” are their respective
values.

The perceptual-motor module has subsystems for vision,
hearing, speech production, and motor commands. The
visual module has a buffer that holds the currently attended
visual location and the visual stimulus at that location. It
accepts commands from cognition (via production rules) to
conduct visual search and shift visual attention. The motor
module accepts commands from cognition to do simple
computer-based physical tasks, such as moving the mouse
to a certain location, pressing a mouse button, and typing
commands.

Much of the coordination between perception and action
is done by production rules. The condition side of a rule is
limited to testing the buffers (including whether a particular



module is busy), whereas the action side can only initiate a
limited set of actions that modify buffers or send commands
to one of the other modules. When a rule fires, its action
side initiates commands to the other modules, such as
shifting visual attention or retrieving a red object from
memory, after which the rule system is free to fire additional
rules. The other modules in ACT-R handle these actions
asynchronously, usually resulting (after some delay) in
changes to the buffers. Rules can then detect these changes
and take appropriate actions. Although more than one rule
can match at a given time, ACT-R only fires one rule in
each cycle. A psychologically realistic conflict-resolution
mechanism, based on cost and probability of success,
determines which of several matching rules will fire.

To understand how this works, suppose that ACT-R is
given a cued recall task, where it must report a remembered
shape with a cued color. Furthermore, assume that ACT-R is
attending to a fixation point that changes to the cue word
“red.” When the visual system detects the change, it updates
the visual buffer to indicate that the word “red” is now
attended. A production rule that is conditioned on seeing a
word in the visual buffer fires and initiates a memory recall
request for a red shape, plus notes on the goal that such a
request was initiated. As the declarative memory module
begins to process this request, the rule system continues to
check for and fire any matching rules. This allows ACT-R
to engage in additional cognitive processing, including
initiating commands to the perceptual-motor system, while
the memory system processes the retrieval request. When
the retrieval request is complete, the retrieval buffer is filled
with either the newly retrieved chunk or an indication of a
retrieval failure. Two separate rules, both sensitive to the
goal annotation indicating the retrieval request, handle these
possibilities. One rule tests for a shape in the retrieval buffer
and initiates a speech command to say the name of the
shape, the other rule tests for a retrieval failure and initiates
a second retrieval to guess a shape.

To understand the model presented below, it is also
necessary to understand how ACT-R processes retrieval
requests. Retrieval requests specify a chunk type and one or
more attribute-value pairs. The memory module returns the
chunk of the specified type with the highest activation
value, where activation of chunk i is determined by

† 

Ai = Bi + Wj Sji +  Pk Mki
k
Â

j
Â (EQ 1)

Bi is the base level activation of the chunk, reflecting how
recently and frequently it has been retrieved. The first
summation reflects associative priming of the chunk by
chunks in the goal buffer, where W j is the available
activation and Sji is the strength of association from chunk j
to chunk i. Wj is typically set to 1/n, where n is the total
number of chunks in the goal buffer. Sji is initially set to S-
ln(n), where S is a constant and n is the number of chunks
that have chunk j as an attribute value. This setting produces
the classic fan effect (Anderson, 1974).

The second summation in EQ 1 reflects similarity of the
chunk i to the retrieval cue. Mki is the similarity between the

value of the kth attribute in the retrieval cue and the value in
the corresponding attribute of chunk i. Pk (which defaults to
1) reflects the weighting given to the similarity of attribute
k. By default, Mki is 1 if the kth attribute value in the cue is
identical to the corresponding value in chunk i, otherwise it
is –10.

To model the random fluctuations of human memory,
activations vary with time by adding noise as a logistic
function of the parameter s, where s is related to the
variance of the noise by

† 

s 2 =
p 2

3
s (EQ 2)

Finally, the activation threshold t specifies the minimum
activation value for retrieving a chunk. If all chunks
matching the cue fall below this value, the retrieval request
fails. As with chunks, the retrieval threshold varies from
time to time according to the noise parameter s.

The approximate probability of retrieving a chunk i given
k competitors (including the threshold and chunk i) is given
by

† 

P(i) =
e
A
i
/ s 2

e
A
k
/ s 2

k

Â (EQ 3)

where An is the mean activation of chunk n.

A Model of Memory for Multidimensional
Stimuli

The model assumes that attending to a multidimensional
stimulus results in a set of feature chunks in memory, where
each chunk encodes one feature along with one or more
temporal and spatial tags. While attention is fixed on the
stimulus these chunks also appear in the corresponding
perceptual buffer. If a stimulus is recognized (either
identified or classified or both), perception may also deliver
a separate chunk encoding the identity (or class) of the
stimulus along with spatial and temporal tags.

Suppose that ACT-R attends to a red square at location
Loc22 on a computer screen at time t1. ACT-R’s visual
buffer is then filled with chunks encoding red at Loc22 t1,
square(shape) at Loc22 t1, and square(class) at Loc22 t1.
These same chunks are also added to ACT-R’s declarative
memory. This is shown graphically in Figure 1, where
squares represent chunks and arrows indicate chunk
attributes. Locations (e.g., loc22) are chunks that correspond
to unique locations using the computer-screen as the frame
of reference.

A spatial tag encodes where the feature occurs and may
be given in any number of frames of reference (e.g., Wang,
Johnson, Zhang, 2001). For instance, one spatial tag might
give object heading and distance in egocentric (body-
centered) coordinates, whereas another spatial tag might
indicate the exocentric heading and bearing of the object
from another object. Because ACT-R’s perceptual-motor



system is designed to work with two-dimensional computer
displays, the model provides a spatial tag relative to the
frame of the display. Evidence for frame-relative location
encoding has been found in both monkeys and humans.
Rolls (1999) found that some neurons in the monkey
hippocampus responded to where the monkey looked on a
screen independent of the position of the monkey relative to
the location of the screen. Hock, et al. (1989) showed that
subjects unintentionally retained frame-relative locations of
circles forming patterns in a frame, such that they could
estimate the frequency with which circles appeared at a
particular location within the frame.

Given enough time, rules may recode the features. For
instance, a set of rules may verbalize the visual features
“red” and “triangle” resulting in a redundant verbal code
with appropriate temporal tags. Rules may also recode the
features into an integrated representation, such as a single
chunk that binds “red” and “triangle.” Whether or not a
stimulus is recoded, and the nature of the recoding, is
dependent on the production rules, which in turn depend on
the current goal and the strategy being used to achieve it.

Figure 1. Representation of color, shape and location
in the ACT-R model. Temporal cues are not shown.

The model assumes that the similarity (M in EQ 1) of
temporal and spatial tags is inversely proportional to their
temporal and spatial distance; however, the exact nature of
this relationship is left to the model builder. As a result, the
model will tend to confuse spatially adjacent features.

Applying the Model to the Nissen Task
As a partial test of the model, we applied it to the Nissen
(1985) experiment described earlier. The critical phenomena
in this experiment is that recall of color and shape is
independent given a location cue, but when given a color
cue, recall of shape is dependent on correct recall of
location.

The ACT-R model contains production rules for attending
to the four colored objects, attending to the cue, retrieving
the answers, and pressing keys to record its responses.
When presented with the 4 objects, the model visually
attends to each object, resulting in automatic encoding of a
color-map and shape-map chunk for each object. It then
waits for the cue to appear, at which point it attends to the
cue and begins the retrieval and response process.

The critical production rules for modeling the
experimental results are those for retrieving location given a
color, and those for retrieving color and shape given a
location. When given a location cue the model first attempts
to retrieve a chunk encoding the color at that location (such
as obj1c in Figure 1), and then attempts to retrieve a chunk
encoding the shape at the given location (such as obj1s).
When given a color cue, the model attempts to retrieve a
color-map chunk containing that color (e.g., obj1c). It then
uses the location in this chunk to retrieve a chunk encoding
the shape at that location.

If a rule fails to retrieve a chunk, the model will guess an
appropriate value. For example, if the model fails in
retrieving a color-map chunk with color red, it will simply
guess a location, and then use that location when it attempts
to retrieve the shape.

Fitting the Nissen data requires estimating the parameters
in EQ 1, as well as the activation threshold, and the noise
parameter. The activation threshold and the base level
activation Bi for all stimulus chunks were set at 0—the
default value. The amount of activation available for
associative priming was also set at 0, because chunks in the
goal buffer are redundant with attribute values in the
retrieval cue. Similarity among matching attribute values,
including locations, was set to 1 with mismatching values
set to 0. The noise parameter s was the only parameter tuned
to fit the data. We used EQ 3 and the results from the Nissen
experiment to determine an initial value of s, then iteratively
refined it over several model runs to produce the fit reported
below (where s = 0.39).

A. Location-Cue Condition

Shape
Correct Incorrect
0.485 0.212 0.697Correct
(0.450) (0.219) (0.669)
0.213 0.090 0.303Incorrect
(0.175) (0.156) (0.331)
0.698 0.302

Color

(0.625) (0.375)

B. Color-Cue Condition

Shape
Correct Incorrect
0.477 0.221 0.698Correct
(0.494) (0.234) (0.728)
0.032 0.271 0.303Incorrect
(0.051) (0.221) (0.272)
0.509 0.492

Location

(0.545) (0.455)

Figure 2: Results of simulating 50 subjects for each
condition. Values in parentheses are the experimental
results from Nissen.



The results of running the model for 50 subjects in each
of the two conditions are shown in Figure 2 along with the
Nissen data. As expected, shape and color recall are
statistically independent in the location-cue condition (c2 =
0.131, p = 0.72), whereas location and shape are dependent
in the color-cue condition (c2 = 901.23, p < 0.01). The
proportions of correct and incorrect recall across both
conditions produce a good fit to the Nissen data: R2= 0.95.

Conclusion
The model described in this paper can account for the basic
phenomena of memory-based feature integration. The
special role of location was demonstrated by applying the
model to the Nissen task. The use of temporal cues, such as
that reported by Keele, et al. and discussed earlier, is
supported by the model’s use of temporal tags for each
feature. If location is given a stronger association to the
features than is the temporal tag, this would produce Keele’s
results showing a role of temporal contiguity only for items
that appear in the same spatial location. The tendency to
erroneously conjoin spatially adjacent features and features
of similar stimuli is captured in the model using ACT-R’s
theory of memory retrieval which tends to confuse similar
stimuli (see the discussion of EQ 1). This means that
features of spatially proximal objects will be confused more
often than those of spatially distant objects. It also means
that if the model is trying to recall the color of an oval, it
would be more likely to confuse its color with that of a
circle than with a square.

The effects of recoding, including verbalization, are
captured in the model by assuming that the names of
individual features or the name or semantic identity of an
object may be memorized instead of the individual visual
features. If there is enough time for object identification, the
subject need only remember an object’s identity and
location during study. At test, the object’s identification
provides a cue for reporting essential object features. Such
recoding will produce integrated memories, because the
individual features are already well-learned and “bound” to
the object identity. If a subject remembers seeing a banana,
conceptual knowledge of bananas is sufficient to recall that
it was yellow and crescent shaped—there is no need to
encode the specific perceptual features in a new memory
trace.
Such a strategy will not work, however, if the task presents
bananas in unnatural colors. In this case, verbal rehearsal
and the resulting verbal memory may be of use. For
instance, given enough time a subject might remember
objects in the Nissen task by verbally rehearsing “red
triangle, blue square…” and so on. Recall of these items
would then be subject to serial recall effects, such as the
serial position curve and positional errors. It seems likely
that such a strategy would result in fewer conjunction errors,
which would explain why verbalization results in integrated
feature memory.

The model provides a possible explanation for the need to
use positional codes (instead of integrated codes or
associative chaining) in cognitive models of memory tasks.

Positional codes were used to account for chunk position
effects in alphabetic retrieval response times (Klahr, Chase,
& Lovelace, 1983) and positional errors in serial recall
(Anderson, Bothell, Lebiere, & Matessa, 1998). It is
possible that these codes may be the direct result of the
positional (temporal or spatial) encoding of stimuli by
perceptual processes.

One limitation of the model is that it treats all errors as
memory retrieval errors. However, the model could be
extended to include probabilities for correctly perceiving
features, or a theory of feature perception. However, since
our emphasis is on the representation of features in memory
and their later reintegration, we saw no need to introduce
additional theory.

Monheit and Johnston’s demonstration of dependence of
color and shape given a location cue provides a challenge to
the model presented here. To account for the dependence
our model must be modified to provide for some strength of
association between features of attended objects. In the
present model, knowing the color of an object does not
activate the object’s shape (e.g., the strength of association
between color and shape, Sji in EQ 1, is 0). In the revised
model, the color of a previously attended object would
activate its shape, allowing for some dependence among
features of objects. This would make our model consistent
with Wolfe and Cave’s view that preattentive features are
loosely bound, whereas features of objects that have been
attended are more tightly bound.

Finally, the model is meant to provide a foundation for a
comprehensive theory of spatial cognition embedded in
ACT-R. By embedding the model in ACT-R other
researchers can use it in their models, where it may provide
additional constraints and enable more realistic memory
representations and behavioral predictions.
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