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ABSTRACT OF THE DISSERTATION

Collaborative and Efficient Indoor Localization

for Mobile Systems

by

Paul Daniel Martin

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2016

Professor Mani B. Srivastava, Chair

The introduction of GPS-enabled mobile devices created in its wake a torrent of location-based

applications and services. These devices are increasingly equipped with rich sensors for position

and orientation, hearing, and vision, and by using their radios they can sense proximity to nearby

people and devices. Considerable research over the past decades has demonstrated that these

rich sensing platforms can also be used to provide reasonable location estimates in both indoor

and outdoor environments.

Research into the growing field of mobile (and indoor) localization has traditionally been

concerned with providing scalable, cost-effective solutions for improving position estimation

accuracy. Towards this end, researchers have explored RF-based ranging techniques, sensor

fingerprinting methods, vision- and optics-based approaches, and inertial dead reckoning as

potential mobile positioning technologies. Each of these methods presents a unique set of

challenges—e.g., nonlinear and multipath RF propagation, training and infrastructure deploy-

ments, and sensor drift. Accompanying each of these challenges are overheads in the form

of energy expenditure, increased computation, or increased wireless channel congestion. Re-

ducing these overheads is a necessary step towards enabling indoor localization techniques to

permeate the mobile market.

This work focuses on methods for reducing the various overheads associated with localiza-
ii



tion by fusing position estimates with various low power sensing modalities, such as pressure,

odometry, and even time. To do so, we distill localization routines into a spatial and temporal

sequence of estimates and corresponding uncertainties. These estimates may be absolute, as is

the case with GPS or fixed anchor nodes, or relative as with odometry and range. Each mea-

surement is then treated as an edge in a graph whose nodes represent position estimates across

time, allowing for joint optimization of multiple device locations across multiple sensor mea-

surements and providing a method for easily integrating additional constraints into pre-existing

positioning techniques.

We divide this work into three thrusts as follows: (i) We present an architecture and formal-

ization of collaborative indoor localization techniques as a single cohesive estimation routine.

We leverage graph realization techniques as well as sensor fusion results from the sensor net-

work literature to jointly optimize otherwise disjoint measurements, fusing absolute and rela-

tive measurements in a single optimizing routine; (ii) We explore wideband RF time-of-flight

measurements as a method of providing accurate non-line-of-sight distance measurements and

channel estimations between smartphones and other mobile devices, integrating these mea-

surements to provide accurate, real-time error corrections for mobile positioning; and (iii) We

construct a generic, open-source testbed upon which to analyze the algorithms and measure-

ments employed, facilitating easier comparison and development of state-of-the-art positioning

techniques and reducing the cost of obtaining measurements with corresponding ground truth

observations.
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CHAPTER 1

Introduction

The introduction of GPS-enabled mobile devices created in its wake a torrent of location-based

applications and services. Now, after widespread adoption, these mobile phones have become

an affordable commodity—one that more than 90% of US adults possess [Res]. These mobile

phones are increasingly equipped with rich sensors of position and orientation, hearing, vision,

and by using their radios they can sense proximity to nearby people and to nearby devices.

Despite growing excitement about the potential impact of mobile sensing, our phones today

are still largely incapable of indoor localization on a large, ubiquitous scale. The availability

of indoor localization would mean more than just enabling indoor navigation capabilities in

commercial complexes like malls and airports. Rather, indoor localization is poised to enable

fundamentally new applications, catalyzing the development of smarter buildings and contribut-

ing to the creation of reactive indoor spaces. The simple availability of building occupancy,

for instance, allows for indoor lighting and temperature control that can target and adapt to

the individuals inside, both maximizing comfort and minimizing energy expenditure [ABG10].

Moreover, indoor localization is poised to profoundly change human experience by enabling

location-aware augmented reality and location-based social networks, fostering a new genera-

tion of rich, interactive indoor spaces.

Research into the growing field of indoor localization has traditionally been concerned with

providing scalable, cost-effective solutions for improving position estimation accuracy. In this

vein, researchers have explored infrastructure-free solutions such as inertial dead reckoning

and ambient signal fingerprinting [AY12, Ind, Fox05, TDD11, HBS14], infrastructure retrofit

solutions, such as WiFi fingerprinting and simultaneous localization and mapping (SLAM) us-
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ing pre-existing WiFi access points [FFL07, DT08], and infrastructure-based solutions such

as visible light [KPH14, RLR14], vision [GGS04, ZN04, OTD04], acoustics [PCB00, LR12],

RF ranging-based trilateration and triangulation [MHG14,ZLL14,XFM13,LDB07], capacitive

touch flooring [BHW12,STS13], and many more including the vast literature on sensor network

localization (see, e.g., [BT05]). Each of these methods presents a unique set of challenges, ben-

efits, and detriments. These come in the form of RF interference and multipath effects, sensor

drift, non-stationary ambient signals, etc. Overcoming these challenges often requires con-

siderable overheads in the form of increased computational energy (e.g. GPS in the outdoor

setting), cost (when dense sensor deployments or expensive sensing hardware are required), or

even channel congestion when multiple wireless messages must be exchanged to adequately

constrain position estimates.

Many of these overheads prove prohibitively expensive when transitioning a given position-

ing scheme to wide-scale adoption. On the other hand, today’s smart, connected devices are

equipped with a host of inexpensive and energy efficient sensors, many of which can be used

to indirectly infer device position. These sensors, when combined with pre-existing and poten-

tially more energy hungry or otherwise costly positioning schemes (such as GPS, time-of-flight

range measurement, etc.) can be used to improve estimation accuracy or decrease the overheads

associated with current estimation techniques. This work describes methods to enable collab-

oration and cooperation between multiple mobile devices and across heterogeneous sensing

and estimation subsystems such that the resulting position estimate benefits from joint opti-

mization over multiple observations, measurements, and methods. Intuitively, we distill mobile

positioning mechanics into a time series of position estimates and corresponding uncertainties.

These estimates may be absolute, as with GPS, fingerprinting, or measurements to known an-

chor positions, or relative as with odometry or range estimation. We then treat this series of

estimates and constraints as a Graph Realization Problem (GRP), leveraging results from the

rich literature on sensor network localization to constrain the position of unknown nodes given

observation “edges.” In doing so, we provide a number of services for real-time sensor fusion

given both past and current observations.
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1.1 Core Contributions

The core contribution of this work is a formulation of indoor localization problems as a graph

realization tailored for real-time localization optimization. Though graph realization itself has

been thoroughly studied in the context of static network topography estimation, its adoption to

dynamic indoor environments is not straightforward, and we explore many of the challenges

associated with its use in mobile sensor networks of connected smart devices. The work pre-

sented herein is divided into three components, all aimed at constructing and demonstrating a

particular GRP solver to fuse two or more sensors or estimation systems. In summary, these

contributes are:

• Graph Realization Solvers for Indoor Localization: We present a method for re-

imagining localization estimation as a graph realization problem. We then demonstrate

a number of GRP solvers that illustrate the benefits of jointly optimizing across hetero-

geneous measurements, spanning implementations using least squares in C and C++ to

nonlinear state estimation routines in MATLAB.

• Demonstrations of Jointly Optimized Localization: To demonstrate the benefit of fus-

ing additional information with existing localization techniques, we present four bodies of

work: (i) we present Social Spring, a method for constraining indoor navigation systems

using pairwise distance measurements between mobile users; (ii) we present a method

for using relative motion constraints to aid in fingerprint construction and training us-

ing Gaussian Process (GP) maps; (iii) we demonstrate how pressure collected from mo-

bile barometer sensors can aid in path reconstruction; and (iv) we demonstrate how time

and location may be optimized jointly in SLATS—simultaneous localization and time

synchronization—an architecture for improving ultra-wideband positioning schemes by

integrating models for clock errors and time asynchrony.

• An Open-Source Localization Testbed: Accurately evaluating a given indoor localiza-

tion technology can be difficult, due in large part to the difficulty involved with collecting
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ground truth positions from multiple mobile devices, deploying new sensors, measuring

sensor power to perform lifetime analysis, and even providing power and communication

to multiple, networked sensors. To combat these difficulties, we present an open-source

testbed for providing accurate position estimates for mobile devices as well as power

measurements and debugging interfaces for developing new localization infrastructures.

1.2 Related Work in Graph Realization

The field of graph realization and the application of GRP solvers to sensor networks is a well-

researched one. Traditionally, GRP has seen use as a tool for reconstructing the topology of a

wireless sensor network given (potentially sparse or noisy) pairwise distance measurements or

angular measurements between a subset of nodes in the network or between nodes and a few an-

chor points. These methods can roughly be divided into (i) multidimensional scaling methods

(MDS), (ii) simultaneous localization and mapping (SLAM), (iii) semidefinite programming

(SDP), and (iv) graph decomposition methods. Research into MDS-based graph realization

includes distributed topology reconstruction using connectivity matrices [SR04], eigenspace

tracking of multiple mobile nodes [MA07], and trajectory estimation based on dynamically

weighted MDS with sparse connectivity graphs [CTS07a]. SLAM methods and other coopera-

tive range-based methods include leveraging ultra-wideband for accurate ranging in multipath

environments [WLW09], offline methods for graphical methods of reducing graph dimension-

ality [TM06], and SLAM based on relative pose graphs for multi-robot systems [KKF10]. SDP

methods include reducing positioning error for noisy measurements and sparse anchor deploy-

ments [BY04], and graph decomposition methods include spectral graph decomposition (SGD)

for node-node distance measurements or distance measurements to spatial events [BLP06] as

well as eigen vector approaches for optimal visual / drawing layouts with applications to graph-

ical optimizations [Kor03]. In addition, Patwari et al. give an overview of time-of-arrival,

angle-of-arrival, received signal strength, and ultra-wideband methods and theoretical bounds

on their estimation accuracy via derivation of a Cramér-Rao bound [PAK05]. Symington et. al
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demonstrates how various methods described above may be used to constrain estimated pedes-

trian trajectories in real-time localization systems (RTLS) based on mobile-to-mobile distance

measurements [ST12], and [CBA10] presents an ‘electronic escort service’ based on pedestrian

paths estimated from spatio-temporal encounters between people.

The work presented herein describes a graph realization approach for constraining location

and trajectory estimates provided by potentially multiple localization routines and additional

measurements. This approach is built on top of rather than in lieu of the approaches described

above with extensions for real-time localization. It extends these approaches to allow for ef-

ficient solution-finding in the face of multiple mobile nodes, distance estimation errors, and

variable uncertainties. More specifically, the work presented demonstrates how several of the

above approaches can be extended to not only improve location estimation accuracy but also to

reduce the overhead of the estimation routine itself.
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CHAPTER 2

An Indoor Localization Primer

Indoor localization (or indoor positioning, indoor navigation, or simply mobile positioning) de-

scribes the process of estimating the position(s) pi(t) = [xi, yi, zi]
T of one or more unknown

mobile nodes ni (devices, people, etc.) based on a time-sequence of measurements. These es-

timates can be constrained to R2 or can exist in R3 for multi-level indoor environments or for

precise positioning requirements within single-story complexes. Measurements often used for

localization include RF time-of-flight (TOF), angle-of-arrival (AOA), time-difference-of-arrival

(TDOA), received signal strength (RSS/RSSI), inertial/pedestrian dead reckoning (PDR), sig-

nal fingerprinting (e.g., magnetic, acoustic, RF), and many more. Furthermore, these solutions

may be infrastructure-free, may require additional infrastructure, or may leverage pre-existing

infrastructure such as WiFi access points.

Providing an accurate, low cost estimate of sub-room indoor positioning remains an ac-

tive area of research with applications including reactive indoor spaces, dynamic temperature

control, wireless health, and augmented reality, to name a few. Recently proposed indoor local-

ization solutions have required anywhere from zero additional infrastructure to customized RF

hardware and have provided room-level to centimeter-level accuracy, typically in that respective

order. One example technology that has proven a pragmatic solution for scalable indoor local-

ization is that of Bluetooth Low Energy beaconing, spearheaded by Apple’s recently introduced

iBeacon protocol. In what follows, we use localization tools developed around the iBeacon

protocol as an introduction into indoor and mobile positioning methods, providing an in-depth

look at Bluetooth Low Energy’s viability as an indoor positioning technology and motivating

the need for more accurate estimates in some scenarios. This particular system demonstrates an
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average position estimation error as low as 0.53 meters with sufficient deployment density, and

it serves to illustrate one of two major localization techniques—those based on wireless signal

strength—with a followup discussing another major category, those based on precise timing of

signal propagation. Both of these techniques have important drawbacks, motivating the need for

tertiary information in order to either improve their accuracy (as is the case with signal-strength

methods) or reduce their power consumption (for time-of-flight ranging).

2.1 Localization by Signal Strength

Wireless signal strength may be used in order to estimate the range of a receiver with respect

to a transmitter, given that the transmit power itself is known. This is often done using a re-

ceived signal strength indicator, or RSSI. One popular technology for RSSI-based localization is

Bluetooth low-energy (BLE or BTLE). BLE peripheral devices announce themselves to nearby

devices through advertisement packets, typically sent at fixed intervals for a short duration.

These packets are broadcasted and thus do not require a paired connection. Because of this,

advertisement packets can be used to send low energy, low throughput data from transmit-only

“beacons.” These beacons typically contain unique identifying information as well as calibrated

signal strengths at a 1 meter distance, allowing receiving devices to estimate distances to trans-

mitters and to obtain beacon positions via externally maintained databases.

As an example, we have created a system that treats mobile devices as naı̈ve sensors, re-

laying overheard Bluetooth LE beacons to a server for subsequent processing. The server uses

additional knowledge about each beacon’s spatial mapping to generate an estimate of the mo-

bile user’s location. More specifically, our system follows the flow depicted in Figure 2.1 and

described below.

A mobile phone listens to Bluetooth LE advertisements in a background service, estimating

and relaying aggregated beacon distance estimates and corresponding beacon identifying infor-

mation to a central server at fixed intervals. These distance values are estimated from received

signal strengths denoted by PRX and calibrated signal strengths at a 1 meter distance, denoted
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for simplicity by PTX , by the equation

d̂ = exp[a · (PRX − PTX)] (2.1)

where d̂ is the estimated distance between the phone and the transmitter and a is a pre-calibrated

exponential decay term. In the case of Apple iOS devices, this conversion is done internally

for iBeacon devices. For other devices like the Android tablets used in this work, it must

be calculated explicitly for each received packet. The server receives these estimated beacon

distances and assigns a certain weight w(d̂) to each such that larger distance estimates (which

are inherently more noise-prone) have less bearing on the final position estimate; in practice,

we have found that using an exponentially decaying weighting function w(d̂) = 1/d̂ε with ε

between 1 and 1.5 performs the best. The optimal weighting exponent depends largely on,

among other things, PTX . The server searches for an instantaneous position estimate x̂ ∈ R2

by solving the equation below

x̂ = arg min
x

∑
b∈B

w(d̂b)‖db − d̂b‖2 (2.2)

where db = ‖x − xb‖ and B is the set of overheard beacons. Using Equation 2.2 in an ex-

periment in a 9×10 m2 laboratory with proper post-processing filtering, we obtain an average

error of 0.53 meters. This system was demonstrated at the Proceedings of the 1st ACM Confer-

ence on Embedded Systems for Energy-Efficient Buildings [MHG14] in a 30 m2 area, where

participants walked around with multiple mobile devices located in real time by four Bluetooth

beacons.

Though signal strength based localization methods like the one described above using BTLE

beaconing can be quite practical and accurate given a high enough deployment density, they suf-

fer greatly from nonlinear RF propagation dynamics, multi-path, and fading effects. Because of

this, it can be quite challenging to map a given received signal strength to an accurate distance

estimate, and it can be even more challenging to map a set of received signal strengths (received

from multiple beacons) to a position in 2D space. Figure 2.4 demonstrates that, among other
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things, this estimation accuracy depends greatly on the transmit power of the beacons them-

selves. To overcome these downsides, many more accurate ranging and localization methods

for indoor spaces leverage RF packet timing, like below. This, however, comes at the cost of

dramatically increased power consumption. While BLE beaconing devices may last for years on

small coin cell batteries, those performing time-of-flight ranging with comparable frequencies

might last for days or less.

2.2 Localization by Time of Flight

One method of obtaining more accurate distance measurements is through measuring signal

time-of-flight (TOF), also called signal propagation time, propagation delay, or (equivalently)

one-half round trip time (RTT). To perform time-of-flight measurement, two nodes must com-

municate with each other in a bi-directional manner1. One node, A, begins by sending a message

m0 to node B at time t0. node B receives m0 at t1 and replies at time t2. The reply message, m1,

1Alternatively, communication can be unidirectional if the nodes are tightly time synchronized—this is called
time-of-arrival and will be discussed in detail in later chapters.
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is received at node A at time t3. Round trip time can be estimated by node A as t3−t0, including

2x propagation delay as well as processing delay at node B. If this processing delay is deter-

ministic and calibrated as, say, tB, then propagation delay can be calculated as Tp = t3−t0−tB
2

.

Given the propagation velocity v of the signal in question (e.g. v = c, the speed of light, for RF

signals), the distance can be estimated as d̂ = v · Tp. Armed with pairwise distance estimates,

we can again use a number of optimization routines, graph realization methods, topology esti-

mation, etc. to obtain a position estimate for an unknown node, say B. In its most basic form,

we can again use trilateration based on distance measurements from 3 or more known anchor

nodes to estimate the position of B. Though distance measurements based on time-of-flight are

considerably more reliable than those based on signal strength, they still suffer from multi-path

and fading effects and therefore benefit from modeling as we will see in future sections. Ad-

ditionally, performing accurate RF time stamping typically requires more expensive and more

power-hungry hardware, limiting its use in commodity and battery powered devices.

2.3 A Case for Joint Optimization in RTLS

Signal strength based methods are appropriate when cheap, quick deployments are required

and high accuracy is not of utmost concern. Time-of-flight can offer a greatly improved posi-

tion estimates, but in many cases these methods prove infeasible due to additional infrastruc-

ture requirements and increased power overheads. Considerable work like that demonstrated

in [ST12] demonstrates methods for fusing one or more measurements (in [ST12], the mea-

surements are inertial dead reckoning and pairwise distance measurements). Additionally, a
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large subset of dynamic bayesian networks (DBN) such as particle filters and Kalman filters

are designed explicitly to accommodate heterogeneous measurements with variable certainty

and noise models. Though these filters and models are often used with great success in fusing

measurements to improve the accuracy of a given positioning scheme, the goal of sensor fusion

in this regard has traditionally been that of increasing position estimation accuracy. This work

attempts to demonstrate ways in which many of these fusion techniques—e.g. graph realization

and Kalman filters in particular—can be used not only to increase accuracy but also to decrease

power consumption, decrease RF congestion, and decrease deployment overheads. In the fol-

lowing chapter, we will describe a structured way of using graph realization to augment a given

positioning scheme with additional measurements and constraints, and we will bolster this idea

with concrete implementations in the remaining chapters.
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CHAPTER 3

Localization as a Graph Realization Problem

Classically, graph realization problems (or GRP for short) take as input (noisy, possibly cor-

rupted) pairwise distances between nodes, δij , and the goal of GRP is to recover the positions

of each node pi ∈ Rk such that the distances (||pi−pj|| u δij) are satisfied, and if so the graph

is said to be realizable in Rk. This problem is known to be NP-hard, in general. Additional

assumptions such as restricting to Euclidean distance measures, limiting recovery to R2, and

allowing for some small tolerable error ε improves the situation, allowing for polynomial time

algorithms [Hen92]. Moreover, tractable solutions to the GRP are known when given bearing,

θij , between nodes instead of distances. Contemporary methods have proven quite robust in the

face of noisy inputs, permitting tolerable recovery even in cases where 90% of edges consist

of corrupted measurements [Sin11, CLS12]. The work in this dissertation is motivated by the

fact that GRP methods are principled, benefit from extensive theoretical analysis, and promise

to enable robust recovery of indoor position estimates.

In sensor networks, RF or acoustic ranging is typically employed to provide pairwise dis-

tances; similarly RF-based angle-of-arrival or acoustic time-difference-of-arrival can provide

bearings. In the context of indoor mapping, though, we have much more information than what

is assumed by GRP formulations for sensor network localization (SNL). For example, by treat-

ing location fingerprints or unknown mobile positions as nodes, we can use dead-reckoning to

estimate both pairwise distances and bearings between pairs of nodes. Using many such traces

via crowdsourced or participatory sensing, one direct method is to average the distances and

bearings ascertained from each trace to populate edges of a single aggregate graph. This can

then be formulated as a GRP to recover positions of each node, i.e. to localize each fingerprint.
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Figure 3.1: Graph realization of multiple path estimates from multiple users.

Simply aggregating traces in this manner is a rather naive approach, but useful to establish that

indoor mapping can be realized as a GRP.

There are sources of noise and error particular to indoor localization that invalidate the as-

sumptions of many existing GRP methods. GRP usually assumes that the set of nodes is given

and fixed, and this assumption works in SNL since in that context sensor nodes have a unique

and well-defined identity. For indoor positioning, each “node” may represent only a probable

location—it might be spurious and it may not uniquely correspond to a location. Moreover,

bearing and distance estimates between location estimates (nodes) are often not completely

corrupted, but rather incur predictable errors due to dead-reckoning etc. Together, these uncer-

tainties can be modeled as a GRP with weighted nodes and edges. It seems then that GRP gives

a principled way of reasoning about the problem of optimizing indoor localization systems (and

indoor mapping, for that matter). In this work we formulate GRP methods specifically tailored

for the problem of mobile positioning, accounting for the nuances and nuisances present in the

collected data and measurements from multiple systems and devices.

Inspiration for this work is rooted in part in the rich literature on simultaneous localization

and mapping (SLAM), a concept developed to localize robots moving through unknown spaces.

The typical goal is to establish a map as quickly as possible using high-resolution, expensive
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sensors like cameras, LIDARs, and high-grade inertial sensors (IMUs) so that localization can

be performed immediately from the start. Cooperative SLAM or decentralized SLAM, and

SLAM with inexpensive IMUs on humanoid robots are active areas of research in the robotics

community that seek to incorporate data available from many robots or data from humanoid

robots, respectively. WiFiSLAM [FFL07] and FootSLAM [AR12] are two such methods pro-

posed specifically for indoor localization. A key requirement of any successful positioning

technology is that it scale to many participants (with many more contributed traces), requiring

fundamentally scalable techniques for mapping and positioning from the beginning. We be-

lieve that a GRP formulation, given its deployment in large-scale SNL settings, provides that

much-needed scalability.

Finally, with multiple users contributing potentially sensitive location information it is im-

portant to consider user privacy. Although the data collected form users and their mobile devices

can itself be anonymized, certain sensing modalities used for location fingerprinting carry the

risk of inadvertently sharing other sensitive information. For instance, audio spectrum data

has been proven as a useful marker of location, but collecting too much of the audio spec-

trum at a high sampling rate or at low granularity can leak things like speech episodes or even

the contents of private conversations. Additionally, long-term sharing of movement patterns

opens up the possibility of behavioral modeling. Although ideally we would never deliber-

ately try to make such sensitive inferences, we still believe that privacy-aware system design

can significantly ameliorate privacy concerns. For example, we can create systems that upload

data in batch so that a user can randomize the ordering of events thereby reducing our ability

to perform behavioral inferencing. These and other precautions lead to information-efficient

system designs that ensure some level of user privacy and increase transparency about what

exactly is collected, ensuring that users do not abandon our sensing campaigns due to privacy

concerns [Shi09, RES10]. While the work described in this dissertation does not directly deal

with these issues of privacy, they remain nonetheless important when considering wide-scale

localization technologies like those described in subsequent chapters.

What follows are several bodies of work that demonstrate GRP-based methods for and re-
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sults from joint optimization over multiple measurement types on mobile devices. Each work

demonstrates that the fusion of low-overhead, low-power sensing modalities into more tradi-

tional (and potentially higher power) positioning technologies serves to reduce power, reduce

RF overheads, or decrease the burden of deploying and calibrating existing positioning tech-

niques.
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CHAPTER 4

Graph Realization from Spring Potentials

Graph realization allows for network topology reconstruction based on a number of edgewise

constraints. One natural source of these constraints is that of relative distances between multiple

users—that is, encounters between two or more people at given points in time. Recent work

has explored these more social aspects of localization. Oftentimes these encounters take the

form of relative distance estimates between nearby people via acoustics, peer-to-peer radios, or

other emerging mobile technologies. Of particular note are Social-Loc [JGC13] and Encounter

Based Tracking [ST12]. Social-Loc operates by strategically pruning particle filter estimates,

reducing the errors of current and future positional estimates in real time. Encounter Based

Tracking treats encounters as constraints in a graph realization problem, minimizing positional

estimates in an offline manner. This chapter describes Social Spring, a generalizable system that

sits on top of an underlying indoor positioning system in an attempt to refine position estimates

by incorporating pairwise distance measurements between multiple users. The main idea behind

(a) Absolute spring potentials.
(b) Path distance and angle spring poten-
tials.

(c) Encounter spring potentials.
Figure 4.1: Absolute, relative (path distance and angle), and encounter spring constraints acting
on nodes along a path (red).
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Social Spring is that pairwise distance measurements are treated as a network of springs, and

positional estimates are treated as nodes with local potential functions that drive them to a

lower energy (and lower error) state. The result of this formulation and the core contribution of

Social Spring is a distributed position refinement algorithm that can incorporate both physical

constraints (e.g. walls) and relative constraints (e.g. path shape) in an accurate and efficient

manner. This can be thought of as an extension to traditional GRP solvers that allows path

reconstruction to consider both inertial estimates as well as building structures. We provide both

simulations and preliminary tests on real indoor localization datasets in order to lend credence

to Social Spring’s effectiveness over a range of environmental factors, demonstrating between

10% and 30% error reduction compared to de-facto inertial path estimation strategies.

4.1 Social Spring

Social Spring uses relative distance measurements between people (such as those provided by

acoustics, RSSI ranging, or time-of-flight) to reduce the estimation errors of an underlying

localization scheme. The underlying scheme is assumed to provide initial (potentially erro-

neous) path estimates as a set of vertices with coordinates {x0
1, . . . , x

0
max}. Together, these

vertices and the edges that connect them make up a graph, denoted by G = (V,D), where

V = {n1, . . . nmax} is the set of vertices, or nodes, and D is a symmetric matrix of pairwise

distances between nodes in V such that element (i, j) of D, denoted by dij = dji, represents the

distance between nodes ni and nj . For each node ni we associate the position vector xi ∈ R2.

Given the information embedded in D, the goal is to assign a position for each node xi∈|V | so

as to minimize the following [ST12]:

arg min
x

∑
(i,d)∈D

(d̂ij − d∗ij)2 =
∑

(i,d)∈D

(||xi − xj|| − d∗ij)2 (4.1)

where d̂ij is the distance between variables xi and xj and d∗ij is the measured distance between

ni and nj . A number of traditional methods such as least squares and multidimensional scal-
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ing can be used to solve Problem 4.1 [ST12], but these generic solvers are sub-optimal in the

context of indoor positioning; more specifically, these traditional methods lack three important

components for indoor positioning solutions:

• An ability to cope with walls and other physical constraints imposed by the environment

• An ability to preserve some of the initial path shapes and initial location estimates

• A distributed, scalable solution

Inspired by these requirements, we turn to a simple mechanical structure that can be reasoned

about in a distributed sense and whose dynamics allow for path and position preservation with

varying weights—the spring. Hooke’s Law states that the reactive force caused by a spring is

linearly dependent on the spring’s displacement from a set point. This is reminiscent of the

stress term sij
4
= d̂ij − d∗ij in Problem 4.1. In fact, instead of solving (4.1) directly, we can

replace each edge (i, j) ∈ D with a virtual spring of length d∗ij and spring constant kij such

that positional estimates are pulled or pushed towards a lower energy, lower error state. Esti-

mated paths are augmented with absolute positioning springs (Figure 4.1a), inter-node distance

springs, and node angle springs (Figure 4.1b), with the former preserving the initial location

estimate and the latter two preserving the initial path shape with some (variable) certainty. In

the absence of encounters, the net force from the springs depicted in Figures 4.1a and 4.1b is

zero. With encounters between users, additional springs constrain the distances between nodes

across paths (Figure 4.1c), resulting in a non-zero net force on the nodes.

4.1.1 Local Vertex Potentials

IfK users traverse a shared space independently, each generates an isolated graphGk∈{1,...,K} =

(Vk, Dk) consisting of a single simple path denoted by pk = {nk1, . . . , nkmax} with coordinates

{xk1, . . . , xkmax} representing that user’s estimated trajectory. Here the superscript k specifies

that a node belongs to path pk. For each node nki (abbreviated below as ni for notational clarity),

Social Spring calculates the forces depicted in Figure 4.1 as follows. The initial estimates of

some nodes from the underlying localization scheme may have higher confidence than others in
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Figure 4.2: Simulated user trajectories, refined estimates, and corresponding error reduction
using Social Spring.

an absolute sense. In order to preserve the initial position estimate for node ni (denoted by x0
i ),

the absolute (or World) spring forces are given by

FW
i = −(kworld)i(xi − x0

i ) (4.2)

where kworld is the spring constant whose value is proportional to the confidence with which

the initial estimate x0
i is made. Similarly, the initial “shape” of the estimated path in terms of

relative angles and distances should be preserved with some confidence. If the initial estimate

for distance along path pk from node nki to nkj is d0
ij , then the Relative distance spring force from

ni to nj is given as

FR
ij = (kdist)ij(d̂ij − d0

ij)vij (4.3)

where vij =
xj−xi
||xj−xi|| is a normalized vector from xi to xj and kdist is the relative distance spring

constant. Finally, if the initial angle incident on ni is denoted by θ0
i , the Angular spring force is

given by

FA
i = −(kangle)(θ̂i − θ0

i )v
θ
i (4.4)

where vθi is a vector originating at ni and orthogonal to xi+1 − xi−1. Without encounter con-

straints between users, FW
i = FR

ij = FA
i = 0 ∀ i ∈ Vk, (i, j) ∈ Dk, and all nodes are in
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equilibrium.

If users can encounter each other, we have additional information in the form of inter-path

pairwise distance measurements Denc, where the element (i, j) of Denc is denoted by dij = dji

for ni ∈ pk, nj ∈ pl, k 6= l. Each graph Gk no longer exists in isolation but rather is part of

an aggregate graph G = (V,D), where V = ∪Kk=1Vk and D =
(
∪Kk=1Dk

)
∪ (Denc). The new

encounter distance measurements contained in Denc are used to form Encounter spring forces,

denoted by

FE
ij = (kenc)ij(d̂ij − d0

ij)vij (4.5)

for (i, j) ∈ Denc, where d0
ij and vij are defined as in Equation 4.3.

At each node ni, the aggregate of these four forces, Fi = FW
i + FR

ij + FA
i + FE

ij , acts

as a local vertex potential driving the coordinate xi into a lower error state. Social Spring

operates by iterating in small time steps until the forces acting on each node have reached an

equilibrium, after which the coordinates xi∈V represent the refined position estimates. This

allows the minimization routine to incorporate physical constraints, such as walls, at each time

step, resulting in a more feasible solution. Inspiration for this method is drawn in part from

distributed solutions to the “node coverage” problem [HMS02], where local potential functions

are used to optimize sensor network topology.

4.1.2 Results

In order to evaluate the effects of spring constants, measurement errors, and encounters on

the performance of the Social Spring refinement architecture, we developed an inertial dead

reckoning simulator. This simulator mimics a number of independent users walking around a

confined space by selecting random waypoints at random intervals. Each simulated user has a

corresponding positional estimate arrived at by integrating a simulated, noisy acceleration signal

x =
∫∫

t
ẍ(t) + n(t)dt, x ∈ R2, n(t) ∼ N (0, σn). Additionally, nodes within a distance less

than an encounter radius re at a given time will encounter each other with a certain probability

Pr(enc). Finally, walls can be added to simulate a more realistic indoor space, where certain
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paths are infeasible.

A snapshot of the true, estimated, and refined positions of an example 10-user simulation is

shown in Figure 4.2a by the circles, squares, and triangles, respectively, along with encounters

represented by dashed red lines. The corresponding estimated and refined paths are shown

in full in Figures 4.2b and 4.2c with the resulting error reduction shown in Figure 4.2d—an

average of 56% for this example. Note in particular how paths in Figure 4.2c do not cross walls

while those in Figure 4.2b do. This results in more feasible, lower error final estimates.

The percentage error reduction offered by the proposed strategy is heavily dependent on

such factors as spring constants, initial estimate errors, encounter radius, and encounter prob-

ability. We explore Social Spring’s sensitivity to a number of these parameters below by av-

eraging the estimation error reduction over a number of random simulations and a range of

parameter values. It is important to note that distance estimates are assumed ideal in these

simulations, decoupling the errors of Social Spring from those of the underlying distance mea-

surement mechanisms.

Study: Estimation Noise

As estimation noise increases, the information provided by encounters between individuals be-

comes increasingly valuable. Figure 4.3a reinforces this fact—when the error is low (and the

initial estimate is good) there is little to be gained from incorporating encounters, but as the

error increases the percentage error reduction increases monotonically as well.

Study: Encounter Probability & Radius

Until now we have assumed that if two users are within a distance re of each other, they will

“encounter” each other. In reality, this encounter may occur with probability Pr(enc) ∈ [0, 1]

and without perfect accuracy. As shown in Figures 4.3b and 4.3c, the performance of Social

Spring depends almost linearly on both the encounter probability and the encounter radius.

Study: Relative and Absolute Certainties

The proposed path refinement scheme attempts to keep distances between nodes in a path close

to their original estimates, assuming that these initial distances can be measured with moderate

accuracy if the nodes are closely spaced. Additionally, certain nodes have higher absolute cer-
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Figure 4.3: Initial estimation error reduction as a function of various system parameters and
variables

tainties than others (e.g. those closer to doors where GPS is available). The results of a number

of random simulations indicate that relative distance constraints kdist have little effect on the

overall improvement as long as they are adequately large, as shown in Figure 4.3d. Contrarily,

Figure 4.3e shows that large values of kworld begin to degrade performance. Intuitively this is

due to a “stubbornness” in the initial estimate, where nodes remain unwilling to move even with

additional information provided by encounters. Finally, Figure 4.3f shows that giving additional

weight to encounter information by increasing kenc improves accuracy to a certain extent, but

excessively high values begin to greatly degrade performance due to a breakdown in the initial

graph topology and an overdependance on encounter information.
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Figure 4.4: Results from preliminary deployment and simulated encounters.

4.1.3 Preliminary Deployment

We implemented a dead reckoning algorithm on a Nexus 7 tablet as well as the spring-based

path refinement algorithm on a server with Matlab in order to evaluate Social Spring on a real

dataset. A single user walked around a laboratory environment for 5 minutes, after which

the 5 minutes were divided into 5 random, non-overlapping segments to simulate a multi-user

scenario. The ground truth locations of the user (shown in Figure 4.4a) were manually recorded

using video surveillance. Figure 4.4b shows an example of 5 randomly selected paths and

their corresponding estimates via dead reckoning. Encounters were simulated offline for both

re = 3 m and re = 5 m. The resulting error reductions (shown in Figures 4.4c and 4.4d) for 5

randomly selected paths averaged 15.7% and 36.0%, respectively. Over multiple iterations of

random samples, Social Spring reduced errors by 10% when simulating encounters of radius 3

m and 30% when simulating encounters of radius 5 m. Note, of course, that these results will

vary for both different environments and different underlying localization schemes.

Social Spring is capable of reducing indoor path estimation errors for a given, underlying

localization scheme by incorporating real-time, relative distance encounters between users. Re-

sults from simulated user trajectories and dead reckoning as well as real data collected from a

preliminary study indicate that the proposed architecture can dramatically reduce the average

estimation error, with increased effectiveness for localization schemes suffering from poor ac-

curacy. This work demonstrates that GRP methods can be used to greatly improve pre-existing

indoor localization schemes, though it does not go so far as to suggest or analyze a method for

the pairwise distance measurements. We will expand upon this work through the introduction of

23



ultra-wideband ranging systems, requiring the development of more intricate models of range

errors. This is discussed in Chapter 8
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CHAPTER 5

Graph Realization for Fingerprint Modeling

Inertial indoor tracking techniques like those examined in the previous chapter suffer from drift

over time and must be combined with absolute positioning information to provide an initial posi-

tion and angle estimate. On the other hand, in many scenarios analytical range- and angle-based

methods are impractical due to the complexities and nonlinearities of RF propagation [RM09].

Because of this, many of the more accurate indoor positioning techniques rely on training mod-

els of signal propagation over large spaces and using the distinct patterns and variations captured

by those models to predict, often in a probabilistic manner, a user’s position across time.

Though inertial-based tracking techniques suffer from drift and provide only relative po-

sition and angle information, they can provide accurate trajectory estimates over short time

periods. This section describes a method by which pedestrian dead-reckoning (PDR) may be

used to build a model for Gaussian-distributed RF signal propagation with minimal user effort.

Specifically, we model the spatial variation of an RF signal originating from a stationary anchor

node as a Gaussian process (GP) whose spatial distribution is estimated by noisy samples pro-

vided by a pedestrian dead-reckoning filter based on a foot-mounted inertial measurement unit

(IMU) [Fox05]. This is illustrated in Fig. 5.1. Additionally, the PDR filter, having no notion

of absolute position or angle, must be periodically corrected as the user walks through known,

fixed positions called landmarks. The periodic correction of the PDR estimates is achieved

through a graph realization using a nonlinear least squares solver, demonstrating improved re-

sults over previous drift correction techniques.

By fitting a Gaussian process to these sparse, noisy samples, the training time and effort

normally required to provide accurate fingerprinting models can be reduced. In addition, this
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Figure 5.1: Fixed anchor nodes transmit RF signals sampled by a receiver p whose position is
estimated by IMU-based dead reckoning.

approach is complementary to those used in the literature of simultaneous localization and map-

ping (SLAM), as in [AR12, FFL07], in that it can be used to improve the inertial estimation

accuracy and thereby reduce the mapping convergence time. We evaluate the proposed training

process for a 2500 m2 multi-room indoor venue and analyze the effect of drift and position

correction frequency for several test cases. In short, the contributions of this section are as

follows:

• We introduce a lightweight, low-overhead training mechanism for generating Gaussian

process maps for subsequent use in indoor positioning systems.

• We evaluate our generated Gaussian process fingerprint maps over a 2500 m2 multi-room

indoor venue for a given localization scheme.

• We further analyze the effect of inertial drift and manual positional correction frequency

on the proposed Gaussian process training scheme.

5.1 Methodology

Consider a user carrying a mobile device with an unknown position p(t) = [x(t) y(t) z(t)]

traversing an indoor space containing k fixed anchor nodes with known locations ai ∈ R3 for

i = {1, . . . , k}. As the user moves about, the RF signals observed at p(t) originating from
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ai will evolve as a function of the distance ‖p(t) − ai‖2 as well as multipath, fading, and

other nonlinear propagation effects. If we assume that the height z(t) of the mobile device is

relatively constant, the RF measurements sampled by the mobile receiver (e.g. signal strength

or time-of-flight) at a given point originating from ai can be accurately modeled as a Gaussian

random variable Ni(µx,y, σ2
x,y). Additionally, the parameters µx,y and variance σ2

x,y themselves

evolve as multivariate Gaussian random variables over the R2 plane, described by the Gaussian

process GP i whose hyperparameters serve as an estimate of the underlying Gaussian random

variable at each point [x, y] [YW13]. Each process GP i=1,...,k for each anchor node ai and each

signal of interest can be trained using Maximum Likelihood Estimation given adequate samples

spread over the region of interest (ROI).

Gathering the RF measurements and corresponding true positions required to train each GP

can be quite time-consuming and burdensome—this is oftentimes cited as the main drawback to

fingerprint-based positioning schemes. However if the user carries with her an inertial measure-

ment unit (IMU) in addition to the wireless receiver, annotating collected measurements with

position data can be largely automated by intelligently integrating PDR estimates with periodic

position corrections from landmarks with known positions.

5.1.1 Inertial Drift Correction

Pedestrian dead reckoning provides an estimated trajectory P0 ∈ Rn×3 = [p0(t0),p0(t1), . . . ,p0(tn)]T

with accurate relative distances and angles over short time periods, but suffering from consider-

able inertial drift over large periods of time. In order to leverage PDR estimates to automatically

annotate the RF measurements collected during GP training, we must first perform drift cor-

rection on P0 through periodic position corrections as the user walks over a landmark of known

position. As a user passes through known landmarks at given times described by time set

Tlm ⊆ {t0, . . . , tn} and position matrix Plm = [plm(tlm ∈ Tlm)], the PDR trajectory estimation

is segmented into paths beginning and ending with known positions. These known positions

can then be used to retroactively correct the initial estimates P0 provided by dead-reckoning.

Prior methods of performing this correction include linear drift correction [CTS07b], where the
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Figure 5.2: Drift correction residuals, including relative motion constraints mi, angle bias con-
straints bi, and landmark constraints.

difference in the predicted and corrected end positions is distributed evenly over all interme-

diate points, and radial drift correction [ST12], where drift is modeled as both a rotation and

a scaling. These methods treat the inertial drift at each time segment independently, yielding

computationally efficient algorithms at the cost of a sub-optimal drift compensation scheme.

We propose a nonlinear least-squares (NLLS) method that estimates the time-evolving drift of

the entire inertial estimate jointly given the set of landmark encounters Plm. Specifically, we

propose a drift correction scheme that seeks a solution to the problem

P̂ = arg min
p̂i=1,...,n

n∑
i=2

wm‖m(pi−1,pi)‖2 + wb‖b(pi−1,pi)‖2

+
∑
t∈Tlm

wlm‖plm(t)− p0(t)‖2 (5.1)

Where the function m(pi−1,pi) describes the relative motion from pi−1 to pi, preserving the

original PDR-estimated path structure with weight wm, and the function b(pi−1,pi) describes

the relative angle bias (offset) from pi−1 to pi, allowing for angular gyroscopic drift with penalty

weight wb. Finally, wlm is set high enough to force point p̂(t) to coincide with landmark po-

sition plm(t). By selecting wm to be the reciprocal of motion estimation variance over short

intervals and wb the reciprocal of variance due to long-term inertial drift (due to drift in gyro-

scope integration), Eq. (5.1) provides an accurate reconstruction P̂ of the true path, say P ∗.

These residual functions are illustrated in Fig. 5.2, where the initial path estimate is shown by

blue dots connected by black arrows and the drift-corrected path is yellow connected by green,

block-terminated arrows.
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5.1.2 Generating Gaussian Process Maps

Measurements gathered at each position p(t) are denoted zi(t) corresponding to time t and an-

chor ai. Each measurement can be modeled as a perturbation on top of an analytical model

fi(ai,p(t)) describing the expected measurement of that signal at p(t). The measurement can

then be written as zi(t) = fi(ai,p(t)) + εix,y, where εix,y ∼ N (µix,y, σ
2
x,y) is the Gaussian-

distributed perturbation. Estimating the Gaussian process describing the evolution of each εix,y

across space requires estimating the covariance matrix across all function values fi parameter-

ized by {x, y} ∈ ROI [MST15]. In order to estimate this covariance matrix accurately and thus

generate an accurate GP , the positions pi ∈ P ∗ must provide an adequate cover of ROI, and

similarly P̂ must accurately approximate P ∗.

5.1.3 GP-Based Indoor Positioning

The Gaussian process maps discussed above describe the stochastic nature of an RF signal

across space. This allows for subsequent position estimation given a time-series of measure-

ments zi(t). Specifically, given a single measurement zi(t), the likelihood L that the mea-

surement was taken at position p = [x, y] is given by the normal density function: L =

1
2πσ2

x,y
e−(zi(t)−µx,y)/2σ2

x,y . Similarly, the error residual r given a candidate position p̂ = [x̂, ŷ]

can be thought of as r = [zi(t)−GPµ(x̂, ŷ)]/GPσ2(x̂, ŷ), where GPµ(x, y) and GPσ2(x, y) are

the Gaussian process mean and variance respectively at position [x, y]. The position can then

be estimated by finding the position that maximizes the likelihood L as in Dynamic Bayesian

Network variants like particle filters [GM13] or by finding a position that minimizes the square

residual r2 as in a least squares solver. The accuracy of either technique depends largely on the

accuracy of the underlying GP maps and consequently on the ability to estimate inertial drift

correction in the GP training phase. In Section 5.2 we present results describing a nonlinear

least-squares position estimation algorithm adopted from [MST15] that fuses inertial informa-

tion with r2 minimization.

29



2 3 4 5 6 7 8 9 10 11

x 10
−3

0

5

10

15

20

25

Landmark density (lm/m2)

P
a
th

 M
S

E
 (

m
)

 

 

Linear

Radial

NLLS

Figure 5.3: Drift correction accuracy vs. landmark density
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Figure 5.4: Drift correction accuracy vs. landmark distances.

5.2 Evaluation

We evaluated our inertial drift correction scheme, GP training, and GP-based position estima-

tion algorithm in a large, 2500 m2 multi-room venue using 9 anchor nodes for both time-of-

flight and signal strength measurements. In addition, we generated a GP map of magnetic field

strength to further improve estimation accuracy and demonstrate how the proposed methods can

be generalized to arbitrary signals, provided that they are normally distributed across space.

5.2.1 Landmark Drift Correction

Manual landmark correction increases drift correction accuracy at the burden and cost of more

laborious training. We seek to minimize the number of landmarks and thus training overhead

through the joint inertial drift compensation scheme discussed in Section 5.1.1. We performed
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Figure 5.5: Example GP map for time-of-flight from one anchor node (a) and the estimated
patths from one 15 minute walking period and various landmark numbers (b).

this compensation using linear, radial, and the proposed NLLS scheme discussed above over

several 15 minute periods of inertial data. The resulting path accuracies are shown in Figs.

5.3 and 5.4, where drift correction improves both with increased landmark density and reduced

travel distance between landmarks. The proposed NLLS drift correction provides better accu-

racy than both linear and radial drift correction and can do so with fewer landmarks and with

greater distances between landmarks, greatly reducing training overhead. Specifically, with

fewer than one landmark per 100 m2, we can achieve accurate path estimation with less than 1

m MSE. In other words, if we manually annotate a single point in a 100 m2 region, we can treat

PDR estimates as ground truth measurements to within 1 m error.

5.2.2 Convergence of GP Maps

Accurate GP maps are required to capture the complexities of signal propagation in a given

space. Fig. 5.5a shows one example of a GP map for time-of-flight measurements from a

single anchor, exhibiting highly nonlinear deviations from the ideal analytical model depicted

by lighter coloring. The increasing accuracy of drift compensation due to additional landmarks
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Figure 5.6: GP mean squared error convergence for a 2500 m2 room vs. landmark density.
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Figure 5.7: GP-based NLLS Localization errors with 95% confidence intervals for a 2500 m2

room as a function of training landmark density.

causes a corresponding increase in the accuracy of the generated GP maps to a point, after

which a more accurate GP map will yield only marginal improvements for position estimation

results. For two Gaussian process maps GP i and GPj , we define the distance between the

two maps as the average squared distance at each position [x, y] in the region of interest—

that is, 1
|ROI|

∑
(x,y)∈ROI ‖GP i(x, y) − GPj(x, y)‖2. This distance can be calculated for all

hyperparameters describing the GP—namely mean and variance in this case. The evolution

of these errors as a function of landmark density is shown in Fig. 5.6. This figure shows that

the GP maps converge at a steady rate, reaching low average errors around a density of 0.005

landmarks per m2, or roughly 1 landmark for every 200 m2.

32



5.2.3 Position Estimation

To give more intuition into the accuracy of the GP maps discussed above, we performed position

estimation tests across a range of landmark densities. For each result, we generated GP maps

based on RF time-of-flight, signal strength, and magnetic field strength. Each GP is generated

using inertial estimates corrected with only the number of landmarks specified. The result of

one 15 minute test is shown in Fig. 5.5b, where the estimation results from a range of landmarks

are overlaid such that more transparent colors represent fewer landmarks. Fig. 5.7 shows that

for the 2500 m2 venue very few landmarks (3 in the entire venue) are required to achieve a

localization accuracy of around 2 m. Additionally, position estimation accuracy improves to

below 1.5 m around a density of 0.005 landmarks per m2, or around 1 landmark per 200 m2.

This corresponds to the point at which the median error in the GP maps has begun to converge,

as shown in Fig. 5.6.

5.3 Discussion

We have presented an improved method of inertial dead reckoning drift compensation as well as

Gaussian-process based RF signal training methods with the goal of reducing training overhead

for fingerprint-based indoor positioning and navigation systems. Our evaluations on a 2500

m2 multi-room venue demonstrate improved drift correction over several other techniques and

accurate position estimation even while reducing drift correction landmarks to a density of 1 per

each 200 m2 area. We believe this approach can aid in reducing training time and overhead for

a number of localization schemes in addition to those addressed in this work. In particular, the

results presented herein demonstrate that fingerprint-based indoor positioning approaches need

not necessarily be overlooked due to the effort required in training the required models—for

small to medium-sized spaces, these models can be generated with very little effort if done so

carefully. Finally, fusion of absolute (landmark) and relative (inertial) constraints using a graph

realization solver serves to improve path reconstruction accuracy when compared to traditional

drift correction approaches, once more underscoring the efficacy of GRP approaches in mobile
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device localization.
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CHAPTER 6

Pathfinding by Joint Optimization over Pressure Data

In the previous chapters we looked at using relative distance and relative motion constraints as

added edges in a graph realization problem. In this chapter, we look at a third source of relative

constraints—pressure collected from mobile barometer sensors. Interestingly, these sensors are

found on an increasing number of smart devices. Though seemingly innocuous, these sensors

can be combined and analyzed to make surprising inferences. In this work, we demonstrate

how a mobile application can use pressure data collected from a device’s barometer in order to

detect with high accuracy likely paths along which the user has recently traveled. We further

analyze the ability to predict unknown mobile trajectories in terms of the variance in barometer

pressure and geographical elevation, demonstrating cases in which more than 70% of paths can

be accurately predicted. In doing so, we do not use a graph realization solver in the traditional

sense, though the problem of predicting a driving path is enabled in large part by structuring

potential road segments and intersections as edges and nodes in a graph, respectively. We then

make use of dynamic programming approaches and intelligent pruning heuristics to detect a

realistic sub-graph within a larger graph that best represents the measured data.

6.1 Background

In the torrent of new and ever-improving mobile computing devices that has become the tech-

nical and social norm of newer generations, developers are continually searching for methods,

whether through hardware or software, to provide their users with new and exciting capabili-

ties. These new capabilities often include new sensing modalities or intelligent ways of fusing

pre-existing sensors to sense or infer some physical phenomenon or stimulus.
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Figure 6.1: Elevation estimation from pressure with corresponding error, using simple linear
model.

Recent mobile devices have introduced yet another sensing modality in the form of baro-

metric pressure sensors. These sensors can already be seen on mobile devices such as the Apple

iPhone 6, Google Nexus 5, and Nexus 6. In addition, both Apple’s iOS and Google’s Android

OS treat the barometer as a non-private sensor such as an accelerometer, or gyroscope. In other

words, an application that wishes to read a mobile device’s barometer can do so without alert-

ing the device user. In addition, the barometer introduces a level of geographical dependency

unseen in previously available ‘public’ sensors, including the magnetometer. While a magnetic

compass might behave differently in different geographical locations, a barometric sensor is

designed to differentiate between different pressures and thus, to a large degree, different eleva-

tions. In this chapter, we show that the high correlation between pressure sensors and elevation

introduce the potential for estimating driving paths for a given user, on the one hand demonstrat-

ing a privacy and security concern but on the other motivating the need for methods of fusing

multiple sensory data to pre-existing localization methods.

More specifically, this chapter demonstrates that pressure data collected while a user is driv-

ing can be used to determine with high probability the paths along which that user has driven.

To begin, a user’s coarse-grained location estimate is obtained by associating the device’s IP

Address with an ISP’s geolocation—a procedure that can be done by a remote server with-

out device permission. From there, the user’s time-series pressure data is compared against a

database of possible road segments and their corresponding elevation signatures. Under certain

conditions regarding the uniqueness of the observed pressure data with respect to the elevation

of the underlying map, this allows us to obtain a series of ‘ranked’ paths, ordered by descending

likelihood.
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Though many factors affect the pressure reported by barometer sensors (not the least of

which are weather, air movement, and sensor drift), mobile barometric sensors can still be

correlated with elevation changes with surprising precision. Using a simple linear model (the

details of which are discussed in Section 6.2), height can be predicted to within an error of

several meters. An example of this correlation is shown for 30 minutes of driving data in Figure

6.1, where the error rarely exceeds ±2 m.

6.1.1 Contributions

As a result of the high sensitivity of mobile barometric pressure sensors, it is feasible to correlate

a user’s motion over a varying landscape to her corresponding pressure data. This correlation,

however, is made difficult due to several important factors: first, the conversion from pressure

to elevation is time-varying and unknown a priori. Second, the user’s vehicle is traveling at

an unknown speed, essentially ‘sampling’ elevation points at variable and unknown rates. This

makes it difficult to directly correlate pressure data to the elevation of a given road segment.

Third and most importantly, the search space of possible paths against which to compare the

user’s collected pressure data is immense, even given coarse grained location estimates such as

those obtained from IP Address geolocation.

In order to elucidate the degree to which pressure can be used to determine a user’s traveled

path in the face of the difficulties mentioned above, we make the following contributions:

• We describe and develop two algorithms for estimating driving paths given pressure data.

The first uses greedy heuristics along with dynamic time warping to iteratively estimate

and prune likely paths through independent explorations of road graphs. The second uses

dynamic programming and dynamic time warping to find a jointly minimal cost path

through a graph of road segments. We further evaluate both algorithms in terms of their

computational complexities and estimation accuracies.

• We evaluate the performance of our path estimation algorithms over a number of real test

cases totaling 150 km and 4.6 hours of driving data.
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• By modeling errors in barometer sensors and elevation estimation, we simulate path es-

timation results for random driving paths selected across a large number of cities with

varying geographical landscapes.

• We evaluate the accuracy of our path prediction algorithms in terms of the distinctness

of the pressure data with respect to the surrounding landscape, offering insights into the

conditions under which driving paths can be accurately predicted.

Related work in this area can roughly be divided into three categories: demonstrations of

nefarious or otherwise malicious inferences made from mobile sensory data (excluding location

inferences), location- or transportation- specific inference mechanisms using non-private sensor

data, and characterizing and mitigating mobile privacy leaks in general

Malicious Mobile Inferences: The body of research demonstrating malicious inferences is

ever-growing. Below we provide an abbreviated snapshot of the state-of-the-art. Among the

more infamous inferences made from mobile sensory data are those that infer user typing be-

havior from accelerometer data, such as those described in [MVB12,OHD12,MVC11,ASB12].

The accelerometer has also been demonstrated to leak private information in the form of activity

recognition [BI04]. Additional work has demonstrated scenarios when seemingly harmless mo-

bile audio recordings can also leak sensitive, private information. For example, just as mobile

touch-typing can be detected from accelerometers, [AA04] demonstrates that touch-typing can

also be inferred through audio channels. Further work demonstrates that mobile audio data can

even be used to extract RSA keys [GST13] or infer human stress levels [LFR12,CC11,PRH11].

Inferring Location and Transportation: In the realm of location discovery techniques, re-

cent work has demonstrated trajectory identification through inertial navigation (dead-reckoning)

for both pedestrians [PPC12] and vehicles [GPL10]. Han et al. further demonstrate in [HON12]

that accelerometer time-series data can be used to constrain a user’s driving path to a subset of

possible candidate paths within a given map. Hemminki et al. [HNT13] demonstrate methods

for inferring transportation modes using mobile accelerometer data, and Sankaran et al. demon-
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strates methods for inferring transportation modes using barometer data [SZG14]. Finally, Zhou

et al. demonstrate in [ZDH13] that app usage statistics, network address-resolution, and speak-

ing detection can be used to infer user identity, coarse geo-location, and even whether or not a

person has a certain disease. The methods presented in this chapter demonstrate how pressure

data collected from mobile barometers can be used to predict driving paths. Unlike methods

like those presented in [GPL10] and [HON12], the proposed methods allow for accurate abso-

lute path predictions, benefiting from the high correlation between barometer and elevation, as

detailed in [MKM14].

Privacy Preservation: Inspired by recent work like those described in the paragraphs

above, considerable research effort has focused on providing mechanisms by which to track

or mitigate privacy leakage in mobile applications. These efforts include crowdsourcing tech-

niques [AH13], policy-based approaches [BKO10, JMV11, NKZ10], sandboxing approaches

[LWG13, BRS11], information tracking approaches [EGC10], and information theoretic analy-

ses [ips]. Given the magnitude of research efforts concerning privatizing and securing mobile

sensory data, it is clear that this is an important and pressing matter. The work presented here

serves to further underscore the urgency of mobile privacy research, reinforcing the need for

privacy-centric design paradigms in future mobile technologies.

6.2 Estimating Elevation

Though barometric sensors are strong indicators of geographic elevation, they are sensitive to a

host of other pressure changes as well, making the path from pressure to elevation a non-trivial

conversion.

As elevation changes, changes in air density due to Earth’s gravitational pull and many

other factors cause a pressure gradient dictated by the barometric formula. Ignoring the effects

of temperature change as a function of altitude, this formula is given in [usa76] as

P = Pb · exp

[
−gM(h− hb)

RTb

]
(6.1)
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Figure 6.2: Barometer readings from a Nexus 5 at varying height offsets.

where P is the pressure in hecto-pascals (hPa) at height h meters above sea level. g is the

acceleration due to gravity, M is the molar mass of Earth’s air, and R is the universal gas

constant for air. Pb is the pressure measured at the baseline point at height hb meters above sea

level with reference temperature Tb, which all can be measured beforehand. Given variables P

and h, we can derive the general equation h = α+ β log(γP ). Over small changes in elevation

(hundreds of meters), the corresponding change in h can be estimated by pressure using a linear

model as in

h ≈ α(t) + βP (6.2)

for some scalar β and time-varying offset α(t). Over short periods of time (less than 1 hour),

this prediction can be quite accurate. In fact, though the Bosch BMP280 pressure sensor used

in both the iPhone 6 and Nexus 5 specifies a vertical pressure resolution of about 1 m [bmp],

we have experimentally validated relative pressure sensitivity closer to 10s of centimeters, as

shown in Figure 6.2. Despite this strong correlation, determining the parameters α(t) and β can

be challenging, especially given the time-varying aspect of the offset α(t) due to, among other

things, weather.

6.2.1 Elevation Model Estimation

The model parameters α(t) and β in (6.2) dictate the accuracy of absolute elevation prediction.

Thankfully, the scaling term β can be considered constant over very large ranges in elevation,
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Figure 6.4: Pressure spectra from 2,309 U.S. cities provided by NOAA.

due to the relative flatness of earth’s surface with respect to its diameter. The offset α(t), on

the other hand, varies wildly with time and coarse location. This can be seen in Figure 6.3,

where pressure collected at a static location over a 70-hour period exhibits pressure changes

nearing 7 hPa (about 50 m estimation error!). Muralidharan et al. describe this problem in

detail in [MKM14]. Note, however, that the frequency of this variation is quite low. If we

look at the pressure change over 1 hour periods, the change rarely exceeds ±1 hPa (or roughly

8.3 m). Furthermore, a survey of hourly pressure data from 2,309 cities in the U.S. provided

by the National Oceanic and Atmospheric Administration (NOAA) Climatic Data Center [noa]

shows that, over a 1 hour period, the average change in pressure for a given weather station is

0.0016 hPa while the 99th percentile of changes is below 1 hPa. Additionally, analyzing these
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Figure 6.6: Pressure changes for various driving events

changes in the frequency domain indicates that the vast majority of pressure changes happen at

the scale of 1 or more days, rather than hourly. This is shown in Figure 6.4. Finally, given the

slow dynamics of weather, the very pressure data provided by weather stations can be used to

calibrate the offset term α(t) to within 1 hPa error—the typical resolution of pressure reported

by weather stations. If such a station does not exist in close proximity to a user’s coarse location,

in some scenarios relative elevation can still be used to estimate a user’s driving path with some

reduction in estimation accuracy. This is discussed in more detail in Section 6.3.

6.2.2 Pressure Events & Noise Sources

In addition to model dynamics caused by weather, mobile barometers experience ‘noise’ from

a number of sources including those caused by dynamics of air flow. While driving, events

that cause notable pressure noise include closing doors, changing the air conditioning (AC),

and opening/closing windows. The effects these events have on pressure are shown in Figure
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6.6, where events occur at time t = 0 and pressure prior to an event is normalized to 0 hPa.

The largest magnitude pressure change occurs when air conditioning is fully turned on or off,

resulting in a 0.5 hPa change (roughly 4 m estimation error). While for the most part a user

will not change AC from fully on to fully off or vice-versa, Figure 6.6 underscores the need for

path detection algorithms that remain robust to slight perturbations in errors, including constant

offsets.

Finally, barometer sensors themselves are not perfect and typically exhibit (small) drift over

time. This error is in general non-gaussian, exhibiting temporary drifts from the true pressure

while periodically returning to accurate estimates. We propose modeling this error using an

Ohnstein-Uhlenbeck diffusion process, which is similar in flavor to a low-pass-filtered white

noise process [Enr08]. This error model will be used to generate realistic barometric pressure

traces for simulations, as outlined in Section 6.4.2.

6.3 System Overview

Our path prediction system is composed of two main components: (1) a malicious mobile app

that continually monitors barometer data (and optionally accelerometer and gyroscope data)

without user consent, periodically sending the data back to the second component: (2) a cen-

tralized server that maintains road maps and elevation data and uses the collected sensory data

together with the map and elevation database to estimate likely paths. This is shown in more

detail in Figure 6.5.

Upon contact with a remote app, the server downloads the corresponding road maps and

elevation data from publicly available online databases based on the rough location from the

communicating app’s IP Address. Specifically, the server downloads and manipulates data

from (i) Open Street Map (OSM) [Ope15], providing road topology including segments and

intersections, and (ii) the Google Elevation API [Goo15], which provides a database from which

to query the elevation of individual latitude and longitude points. Upon receiving the barometer

data from the mobile app, the elevation conversion module converts the pressure readings to an
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estimate of absolute elevation values. If the sensor data is collected in a region close to a weather

station, the pressure from that station can be used to train the offset term α(t) in (6.2) (the β

term here remains more or less constant across time and location). If a nearby weather station is

not available, a less accurate estimation can be made and the system can (a) iterate over possible

values of α or (b) reduce to comparing relative changes in elevation instead of absolute pressure.

These options will be discussed in more detail in subsequent sections. Finally, we perform a

number of pattern recognition routines including dynamic time warping (DTW) to perform path

matching. These estimation routines, encompassed in two path estimation engines, is the main

contribution of this work and the subject of Sections 6.3.3.1 and 6.3.3.2.

6.3.1 Elevation Map Generation

In order to estimate the path along which a user has driven, the server must first generate a

database of possible road segments and their corresponding elevations. To do this, we com-

bine the OSM road topologies with Google’s publicly available Elevation API. Road maps are

downloaded from OSM in an XML format composed of 64-bit unique node identifiers and their

corresponding latitude and longitude values. These ‘nodes’ are connected by elements termed

ways—ordered lists of connected road nodes. In general, either endpoint of a way aligns with

road intersections. Ways composed of more than 2 nodes are often used to better represent road

curvatures between intersections.

From the OSM road nodes and ways, we construct a graph G = (V,E) where V is the set

of road nodes and E is the corresponding edge set described by the OSM way elements. OSM

also uses ‘ways’ to represent landmarks, building countours, etc. As a consequence, G may be

composed of several disconnected sub-graphs. To cope with this, the map is preprocessed in

order to filter out any connected component in G smaller than a predefined size. In addition, we

add extra internal nodes in each way at intervals of roughly 10 meters, extending the original

graph to G′ = (V,E,N), where ni ∈ N are all intermediate nodes and V represents only

intersection nodes. Each edge ea,b ∈ E is defined by the end-point intersection nodes 〈va, vb〉

and their corresponding way of intermediate nodes, [na, n1, n2, . . . , nb]. Additionally, all nodes
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Figure 6.7: An illustration of path elevation matching using dynamic time warping.

n ∈ N are augmented with latitude, longitude, and elevation attributes.

6.3.2 Path Matching

Armed with a database of road segments and corresponding elevations, the goal of the server

is to determine which path p̂ = [v0, v1, . . . , vk] through graph G′ is most probable given the

observed pressure time series sb. This is made particularly difficult given the large number of

possible paths through G′ (which is infinite, if loops are allowed), and the unknown speed of

the user. Because of the unknown user speed, the sampled pressure data behaves as a noisy

sampling of elevation through the true path p∗ with variable sampling rate. To combat this, we

adopt a dynamic time warping approach as described below.

6.3.2.1 Dynamic Time Warping

Because the user is traveling at an unknown and variable speed, the corresponding pressure

data behaves as a sampled version of the true elevation but with variable sampling rate. In other

words, the collected pressure may be of a short duration, long duration, or it may contain pauses

(when the vehicle is not in motion) or increased speeds. Because of this, we leverage dynamic

time warping (DTW) algorithms like those developed for speech recognition (where the same

word may be spoken with variable durations) [Vin68]. In DTW, two time-series signals are
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compared against each other by means of a cost matrix. If the two series are denoted by column

vectors sp = {spi } ∈ RNp , representing the elevation corresponding to a candidate path in G′,

and sb = {sbj} ∈ RNb , corresponding to the barometer-based elevation estimate, the cost matrix

C contains Np × Nb elements where element ci,j = f(spi , s
b
j). The function f(·) serves as a

distance function to represent the difference between the two signals at given indices and is

typically defined by an `2-norm. The goal of DTW is to find the minimum-cost path through

cost matrix C starting at c0,0 and ending at cNp,Nb
and constrained to a set of possible transitions

defined in T . A transition is defined as a 2-tuple (∆p,∆b), meaning that an element ci,j can

be reached by ci−∆p,j−∆b
. A typical transition set is defined as {(0, 1), (1, 1), (1, 0)}. Since

the transition set is finite and backward transitions are disallowed, the optimal path can be

determined using a dynamic programming (DP) approach. The details of the DTW algorithm

are given in Algorithm 1. For each element di,j in a DP matrix D, we store the minimum cost

of all possible paths from c0,0 to ci,j . Each element ψi,j in a traceback matrix Ψ records the last

transition which lead to the minimum cost of di,j . Thus, the final similarity between sp and sb is

embedded in dNp,Nb
. If sp and sb are similar, their corresponding DTW score will be low, and

if they are dissimilar their cost will be high, regardless of variable lengths or sampling rates.

An example of the DTW procedure is illustrated for example map path- and barometer-based

elevation data in Figure 6.7(a), with the corresponding DP matrixD in Figure 6.7(b). Following

Algorithm 1, the complexity of the DTW algorithm is O(Np ·Nb).

6.3.3 Candidate Path Generation

Given a method of matching candidate elevation data to observed pressure data (using DTW),

the server must now compare the estimated elevation against a set of possible candidate el-

evations and their corresponding paths. In other words, the server must search for a path p̂

through G′ such that the elevation along p̂, denoted by sp̂, and and the elevation converted from

barometer data, denoted by sb, are similar, i.e.,

p̂ = arg min
p
DTW (sp, sb)
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Data: Signals sp ∈ RNp , sb ∈ RNb

Result: similarity score Rscore and traceback vectors vp ∈ ZNp

+ and vb ∈ ZNb
+

Cost matrix: C = {ci,j} = |spi − sbj|2;
DP matrix: D = {di,j} = 0;
d0,j =∞, ∀j = 1 . . . Nb;
di,0 =∞, ∀i = 1 . . . Np;
Traceback matrix: Ψ = {ψi,j} = φ;
for r in 1 . . . Np do

for c in 1 . . . Nb do
dr,c ← min

t=(∆r,∆c)
(dr−∆r,c−∆c) + cr,c;

ψr,c ← arg min
t=(∆r,∆c)

(dr−∆r,c−∆c);

end
end
Rscore ← dNp,Nb

;
traceback: r = Np, c = Nb;
while r > 1 or c > 1 do

vpr ← c;
vbc ← r;
(∆r,∆c)← ψr,c;
r ← r −∆r;
c← c−∆c;

end
Algorithm 1: Dynamic Time Warping via Dynamic Programming with traceback.

Given the size of the map in which the user is assumed to be located (estimated by IP address

geolocation), this search space can be quite large. In fact, if we allow for loops in paths, the

search space itself can be infinite—i.e., there are infinite combinations of paths in G′. Because

of the massive search space of possible paths, we have developed two path-finding algorithms.

The first is a greedy, agent-based approach, where agents are created at each node and continue

to traverse the graph in a breadth-first manner. The second approach uses a jointly-optimal

dynamic programming approach. While the former scales well to larger map sizes, the latter

provides dramatically increased accuracy. We describe both approaches in detail in the follow-

ing sections.
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Figure 6.8: Snapshots of an agent from greedy pathfinding, exploring 4 possible paths.

6.3.3.1 Greedy Path Finding

In order to determine which of all possible candidate paths would most likely generate the

pressure data collected by a mobile app, we can use an agent-based approach in which each

agent is traversing one possible path. Specifically, we consider |V | possible agent starting

locations, where each agent is responsible for exploring possible paths whose starting point

is vi ∈ V . To do this, each agent Ai (of which there are |V | initially) performs a breadth-first

traversal over V . Because G′ is not necessarily (and in general is not) free of cycles, a breadth-

first traversal will quickly escalate into an exponential problem. To combat this, each agent

ensures that no path it explores creates a loop of length less than a threshold Γloop. If Γloop is

large enough, this allows for reasonable driving trajectories while greatly limiting the search

space.

At each iteration, agents will explore new paths from each of their leaf nodes. After each

exploration, pruning occurs in order to limit the computational complexity of the algorithm

and thereby improve runtime. Pruning occurs in three stages: (1) after all agents have finished

exploring new nodes, the solver calculates all candidate path scores using a modified, greedy

version of Algorithm 1 in which the similarity score Rscore represents the normalized minimum

cost between the partial map path p′ and any index in the barometer-estimated elevation, i.e.,

mini

(
d|p′|,i|p′|

i

)
, rather than the entire barometer trace. These scores are sorted and a threshold

Tscore is computed such that Tscore is the Rth percentile of the sorted scores; (2) All agents
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are instructed to prune any of their paths whose DTW score exceeds Tscore; and finally (3)

all agents are instructed to prune their worst paths until they contain no more than Γmaxpath

paths. This allows for diversity in possible path starting locations and reduces the complexity

of the search algorithm to polynomial time. The percentile R of paths to keep serves as a

knob to trade off runtime and accuracy. A high R removes paths based on a stricter threshold,

while a low value of R prunes paths more slowly, preventing premature pruning of paths that

may otherwise have performed well in future iterations. Finally, if an agent has pruned all

possible paths and no paths are left to explore, the entire agent is removed. At a certain point,

paths have been pruned to the point where only the minimum Γminpath paths exist between all

agents. At this point, any new paths explored are still subjected to the pruning rate R, but paths

are not pruned if doing so would result in fewer than Γminpath paths. The solver terminates

if the minimum cost of all candidate paths does not change more than 1% across a period

of 10 iterations. Upon terminating, the greedy solver returns the top ranked paths and their

corresponding scores. A series of snapshots from the operation of a single agent in the greedy

solver is shown in Figure 6.8. Here we have set Γmaxpath to 4, so that at each iteration only 4

paths are being considered (labeled by green squares). For each iteration, the minimum cost

path is displayed by a string of magenta triangles, while other candidate paths are displayed

with a dashed blue line. At each iteration, there are at most |V | · Γmaxpath · dmaxout paths, where

dmaxout is the maximum out-degree of any node in V . As a result, the time complexity can be

bounded by O(|V |) · O(DTW ) = O(|V | ·Np ·Nb). In practice, we truncate the map elevation

segment to at most length Nb, giving a final complexity of O(|V | ·Nb
2). These calculations are

performed over a number of iterations, but by setting a maximum number of iterations (30 in

our experiments), the computational complexity remains unchanged.

6.3.3.2 DP-based Path Finding

The greedy search algorithm explained in the previous section is intuitive and, when the prun-

ing ratio is properly set, can search efficiently over large maps. However, there are several

drawbacks to this approach: First, since the pruning removes a certain amount of candidate
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paths from future exploration, there is a potential for converging to a local minimum cost path.

Second, the greedy search heuristics do not consider path timing information, thus making it

impossible to reuse intermediate results for later searches. To overcome these drawbacks, we

can instead consider an approach inspired by Dijkstra’s shortest path search algorithm, whose

underlying algorithm is again solved via dynamic programming. We call this the DP-based

path finding algorithm.

To improve on the greedy path estimation algorithm, we introduce a notion of time—a

path is not just a series of locations, but also a series of corresponding timestamps. Thus, we

redefine path p to encompass a series of states [q0, q1, . . . , qk] where each state qi is a 2-tuple

(vi, ti) indicating that the user has reached intersection vi at time ti. Rather than define cost

in terms of the DTW score between two entire paths, we can now define the marginal cost in

transitioning from state qi to qj . Specifically, if we have already discovered a portion of the true

path, say q′ = [(v0, t0), (v1, t1), . . . , (vi, ti)] whose matching cost thus far is δqi , then the cost of

transitioning to qj = (vj, tj) is defined as cost(qi, qi+1), so that δqi+1
= δqi + cost(qi, qi+1).

Thus, for each state q = (v, t), the optimal δq is defined as a partial path ending at vertex v

at time t and can be determined by the following recursive function:

δq = min
t-<t,〈v-,v〉∈E

(δq- +DTW (sp, sb)) (6.3)

δq=(v,0) = 0,∀ v ∈ V (6.4)

where t- and v- specify the time and node corresponding to the previous state q-, sp = Elev(〈v-, v〉)

is the elevation along the edge 〈v-, v〉, and sb = [sbt- , . . . , s
b
t ] is the barometer-based elevation

estimate from time t- to t. This recursive definition successfully reduces the exponential number

of candidate paths to a polynomial time search algorithm: the complexity is decided by (1) the

table size of δ, (2) the number of state transitions, and (3) the complexity of DTW, leading to

the final complexity of O(|N |2 · Nb
3). This does not scale to large maps as well as the greedy

approach discussed in Section 6.3.3.1, but the jointly minimal solution provided by dynamic
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Figure 6.9: Path prediction errors for real driving data

programming provides increased accuracy in path prediction.

6.3.3.3 Improving DP-based Search Complexity

The DP-based path finding algorithm suffers from high complexity due to many redundant

calculations, both across time and location (i.e., vertex). For example, δq=(v,t) is updated by any

state q- with 〈v-, v〉 ∈ E. As described in (6.3), DTW is performed for each possible transition

to q. It is possible to amortize this DTW cost by flattening out this recursive relation.

The root cause of this redundancy is that traveling from vertex va to vb requires enumerating

possible arrival times tb. If, however, we assume that it takes at least one time unit to travel to

any adjacent intermediate node n ∈ N (which implies that the last transition in T described in

Sec 6.3.2.1, is removed), the number of possible state transitions reduce to

δq = δq- + min
〈n,n-〉
|spn − sbt |2 (6.5)

which is bounded by the constant O(dmaxout ), yielding a final complexity of O(|N |2 ·Nb).

6.3.3.4 Additional Pruning Metrics

In addition to pressure data, a number of other ‘public’ sensors can be used to further improve

path prediction accuracy and prune improbable paths to increase runtime efficiency. Most no-

tably, mobile accelerometers, gyroscopes, and magnetomers can be combined to give accurate
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turn estimation as described in [HON12]. These additional metrics can be easily integrated into

both the greedy and DP-based path discovery algorithms.

6.3.3.5 Elevation estimation robustness

As described in Section 6.2.1, it is not always possible to achieve a high accuracy absolute

elevation estimate. Our path search routines remain robust to errors in elevation estimation

in two ways: first, the greedy-based can be operated in relative elevation mode, in which each

agent is assumed to start with zero elevation error and only deviations from the starting elevation

are considered. Additionally, the DP-based search routine can be instructed to search over a

range of possible elevation offset values, α(t). In doing so, the minimum score of all paths from

all offset values is reported. This inevitably reduces the accuracy of the prediction algorithms,

but it allows for some error margin in model (6.2).

6.4 Evaluation

In order to evaluate the performance of our path prediction algorithms, we collected real driving

data and performed extensive simulations over a wide range of geographical landscapes.

6.4.1 Tests on Real Driving Data

We collected real driving data across 150 km, totaling 4.6 hours of driving time and covering

a range of different map topologies. Data was collected using a Nexus 5 with a maximum

sampling rate for the barometer (30 Hz) and GPS (1 Hz) for ground truth.

The results of the two path prediction algorithms over all driving data are shown in Figure

6.9. For each, we plot the CDF of prediction root-mean-square errors (RMSE) for a number of

ranked paths versus the average error induced by a random walk. More specifically, for each

point on the predicted path, we calculate the squared distance to the closest point on the true

path. We calculate the same squared error between points on the true path and those on the
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Figure 6.10: Path prediction errors for simulated driving data
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Figure 6.11: Path length v.s. DTW Uniqueness

estimated path, averaging the errors for both and giving us our final RMSE value. The result

from ‘5 paths’ represents the best result from the top-ranked 5 paths as estimated by the solver.

The random results are fixed to the minimum error of 5 random walks. Figure 6.9(a) shows

that the Greedy solver demonstrates a median of around 800 m error, versus the random walk’s

error of 1600 m on average. More importantly, about 30% of the cases can be solved to within

an error of 400 m. These results can be vastly improved by switching to the jointly optimal,

DP-based solver, shown in Figure 6.9(b). These results show that, for the driving data collected,

more than 50% of the cases can be estimated to within less than 100 m RMSE with around 90%

of cases falling below 200 m error.

6.4.2 Simulation

In lieu of collecting driving data across multiple cities for many hours, we conducted a series

of simulated test cases. To begin, we download 92 km2 regions of road data and correspond-

ing elevation data for 26 high-population cities in the U.S. For each city, we conduct a series

of random walks of variable lengths and speeds and with barometer noise modeled using an
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Figure 6.12: Path prediction errors vs. map size.

Ohnstein-Uhlenbeck diffusion process as discussed in Section 6.2.2. These simulated barometer

pressures and map/elevation databases were passed to our estimation algorithms in an identical

manner to solving the real driving cases. The results of path estimations over these simulated

data are summarized in Figure 6.10. Here, the greedy solver shows an improvement over the

real driving data, but the DP-based algorithms show a reduced estimation performance. On

average over more than 500 simulated test cases, the greedy solver can predict paths to within

about 200 m with 50% probability while the DP-based algorithm can predict paths to within

100 m with 50% probability and to within 300 m with around 80% probability.

6.4.3 Analysis of Parameters

The results from real and simulated experiments demonstrated in the previous section indicate

that under certain circumstances, driving paths can be quite accurately predicted. In this section,

we provide some intuition into factors that affect this prediction accuracy.

6.4.3.1 Path Length

As more barometer data is collected, the probability of distinguishing the correct path from the

set of all candidate paths increases. In other words, increased path length typically (though not

always) leads to increased path uniqueness. This can be seen in Figure 6.11 for a city with low

elevation variation (a particular 9.5 km× 9.5 km block in Chicago) to one with high variation

(a 9.5 km× 9.5 km block in Seattle). For each iteration, we generate two random paths pa and
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pb with the same length. Path pn is generated by adding modeled barometer noise over pa, and

a confusion error is defined when DTW fails to distinguish the correct, noisy path pn from the

incorrect path pb. Over multiple iterations of simulation, we observe that an increase in length

decreases this confusion error.

6.4.3.2 Map Size

Surprisingly, there does not seem to be a high correlation between map size and path error, as

shown in Figure 6.12. This is most likely due to variations in the underlying map’s elevation—if

absolute elevation estimates can be accurately made, increasing the map size is unlikely to add

potential paths whose starting points are of a similar elevation and who exhibit similar relative

elevation signatures.

6.4.3.3 Geographical Landscape

In addition to variation in the barometer data caused by increased barometer sample sizes, the

variation of the elevation in the underlying map also plays a significant role in the ability to

accurately predict paths based on pressure. The variations in elevation for the 26 city maps

tested in this work are shown sorted in Figure 6.13. Revisiting Figure 6.11, we see that high

variation cities like Seattle have a much lower % Error than low variation cities like Chicago.

This trend was also observed in general over the 26 cities studied in this work. For example,

Figure 6.14 shows the probability of confusing a given random path with any other path in a

particular map. As the elevation variation of the underlying map increases (cross-listing again

with Figure 6.13), there is an increased chance for path confusion, i.e. an increased probability

that any given path may exhibit non-unique elevation signatures.
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Figure 6.14: CDF of path confusion factors for cities of varying elevation variation.

6.5 Discussion

We have shown through extensive tests in real driving experiments and simulated test-cases that

it is often possible to predict a user’s driving path with high accuracy from a time-series of

barometer data. This prediction, however, is not without its limitations, as discussed below.
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6.5.1 Prediction Robustness

As discussed in Section 6.2, the process of converting pressure to elevation depends largely on

determining the pressure offset α(t). When this cannot be determined by nearby weather sta-

tions, the accuracy will be greatly decreased. This can be counteracted by including additional

sensor data such as turn-detection using accelerometers, gyroscopes, and magnetometers. For

example, the greedy path estimation algorithm can operate on relative elevation rather than ab-

solute, obviating the need for α(t) entirely. If in addition to using relative elevation estimates

we introduce an additional cost in terms of turn similarity, calculated from mobile inertial sen-

sors, the solver is still able to predict 50% of paths to within 500 m RMSE. This may be further

improved by considering metrics such as driving speed estimation, driving mobility models,

high traffic/highly probable routes, etc.

6.5.2 Privacy Implications

This work demonstrates real driving data in which 90% of tested paths can be predicted to

within 200 m RMSE using barometer data alone. Additionally, this accuracy considers only

single prediction instances—by combining data across multiple days it is likely that commonly

traveled routes can be predicted with a much higher accuracy. With increasingly tight integra-

tion of social media applications in mobile devices, the potential privacy risks escalate from

associating an anonymous user with an estimated driving path to associating a specific, person-

ally identified user with a given driving path. When user anonymity, location, and behavior are

compromised, the potential for breaches in security and privacy are all-the-more impressive.

Additionally, mitigating privacy leaks through innocuous sensors like barometers may not

be as simple as implementing stricter access controls—balancing usability with utility is a non-

trivial task, both technically and philosophically. This in essence is the inspiration for efforts

like those mentioned in Section 8.1.2.
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6.5.3 Future Work

This work demonstrates a privacy leak in the form of barometer pressure backchannels through

malicious apps. However, the high correlation between pressure and elevation and the inclusion

of these sensors on modern mobile devices raises a number of additional research questions.

For example, can barometer pressure be leveraged to improve location-services in real-time to

aid in spotty GPS coverage or to further reduce power consumption of location services, as

in A-GPS? In addition, can similar methods to those discussed in this work be used to predict

pedestrian paths in an unconstrained environment, such as for hikers? Finally, leveraging results

describing pressure changes as a function of vertical motion indoors (i.e. elevators, escalators,

and stairs) [MKM14], is it possible to infer which building or subset of buildings a user may be

walking through based on unique patterns of floor changes, enhancing path detection algorithms

and further compromising privacy?

In future work, we plan to explore these questions in an attempt to further evaluate the

magnitude of privacy leaks in this regard and to explore the potential for leveraging these results

for improved location services.

6.6 Conclusion

We have demonstrated methods by which barometric pressure data collected on mobile phones

can be used to infer driving paths with surprisingly high accuracy. Specifically, we described

both a greedy graph traversal approach and a dynamic-programming approach to estimating

likely driving paths given pressure-based elevation estimates and a map of potential road seg-

ments. These methods leverage results from dynamic time warping literature to calculate a

rate-independent similarity score between estimated and candidate path elevation signatures.

Pressure data collected over a total of 4.6 hours and 150 km demonstrates that these algorithms

can predict upwards of 90% of paths with less than 100 m error. Additionally, we illustrated the

accuracy of these prediction methods for more than 500 simulated test cases across 26 cities.

The results of these simulations show that across all cities more than 70% of paths can be pre-
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dicted to within an error of 200 m. We further evaluated the ability to estimate a user’s driving

path as a function of several variables, including length of barometer data, map size, and the

elevation variance of the underlying map.

The results of the methods described in this chapter serve to emphasize the degree to which

relative measurements taken on mobile devices can help provide localization estimates with

reduced overheads—in this case, with greatly reduced power consumption. In this particular

work, this comes at the cost of decreased localization accuracy, but the benefit is several orders

of magnitude in power reduction—microwatts rather than milliwatts. In subsequent chapters,

we will see that joint optimization need not always decrease accuracy in order to decrease

position estimation overheads.

59



CHAPTER 7

An Open Source Testbed for Indoor Positioning

One challenge in designing and evaluating indoor and mobile positioning systems is that of de-

ploying and providing power to a network of devices, collecting information and measurements

from those devices, and obtaining ground truth positions against which to compare any given

estimate. In order to obtain ground truth position and orientation estimates, most research in-

stitutes use a motion capture such as Vicon [vic] or OptiTrack [opt]. Deploying a network of

custom hardware devices, however, is often time-consuming and difficult.

Additionally, deployment overheads and prototyping times are often cited as hurdles to any

real-world sensor node deployment [BIS08]. Many indoor positioning systems (and internet of

things (IoT) devices as well) benefit from distributed deployments and real-time power measure-

ments, allowing for the developer to evaluate the battery life of their device under test (DUT)

quickly and painlessly. To address these problems and to aid in the development of indoor po-

sitioning technologies as well as additional projects at UCLA and elsewhere, we have designed

an open-source test plaform–the Networked Test Bed, or NTB. This test bed is designed to be a

general purpose, distributed deployment and debugging system with the following features:

• Ethernet power and control: Each NTB board is powered by a 12W ethernet backbone

(using power-over-ethernet, or PoE). The ethernet also provides internet connectivity for

an on-board custom TCP/IP server that runs on each device. This server allows for up to

4 clients to connect. Commands include power control, power measurement streaming,

ranging measurements, LED control, etc.

• Independent power measurement on all voltage levels: Each NTB board can measure

power on the 3.3V and 5.0V DUT rails and is capable of streaming these power mea-
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surements (voltage, current, and power) to each of four possible clients, using the custom

TCP/IP protocol.

• DUT Control: Each power rail may be turned off completely or power cycled using the

TCP/IP protocol. Additionally, there is a dedicated reset pin for any DUT, and there are

a number of other general purpose outputs that can be used to control a DUT in a variety

of ways.

• Expandable daughter-board slots: Each NTB board has an expansion slot for a “daugh-

ter board,” providing power and communication with the main processor. This can be

used for wireless expansion modules, among other things, and is also made available to

the DUT.

• On-board ARM Cortex M4: The main processor on each device is an ARM Cortex-M4.

This processor manages the on-board ethernet switch and hosts the TCP/IP server. All

power measurement, power control, and communication with the daughter-boards is also

handled by the main processor.

• Network Switch: Each device has an on-board 3-port fast ethernet switch to relay the

internet connection to the DUT. Additionally, these network switches are compliant with

the latest precision time protocol (PTP) standard, providing support for DUTs that rely

on precise time synchronization over the network.

These features are summarized in the block diagram shown in Figure 7.1. Here, GPIO,

digital communication, ethernet, power, and reset lines are exposed to the DUT along with a

unique 5-bit address programmable via DIP switches on the NTB motherboard. These voltage

levels, power measurements, debugging backbone, and ethernet switch management are all

managed by the on-board Cortex ARM M4 processor.

Additionally, the NTB motherboard, two revisions of which are shown in Figure 7.4, con-

tains a standard-pitch expansion header for future sensors, communication, etc. This expansion
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Figure 7.1: Networked Test Bed (NTB) block diagram.

Figure 7.2: NTB Version 1.0 – power over
ethernet and DUT hardware support.

Figure 7.3: NTB Version 2.0 – reduced
size and PTP-compliant ethernet switch.

Figure 7.4: UCLA NTB revisions 1.0 and 2.0
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Figure 7.5: Decawave DW1000 UWB Ex-
pansion board for NTB

Figure 7.6: A version 2 NTB device
mounted to a lab ceiling and powered via
ethernet (PoE).

port will initially be used as a port for an ultra-wideband (UWB) radio used for high accu-

racy time-of-flight distance estimates. This daughter board, shown in Figure 7.5, contains a

Decawave DW1000 2.4 GHz radio and is designed to be interoperable with modules designed

for small UAV (CrazyFlie 2.0 Quadrotor) platforms. By combining accurate distance estimates

from multiple motherboards each equipped with UWB radios, the NTB devices will be capable

of accurate indoor positioning, providing decimeter accuracy at a reasonably high frequency

update rate. This will enable accurate position estimation alongside power and lifetime analysis

for a wide array of indoor localization and positioning-enabling technologies. By making these

devices open-source both in hardware and software, we intend to aid additional projects where

quick deployment and prototyping stages alongside power measurement are difficult obstacles

to overcome. A network of eight of these devices have been affixed to our lab at UCLA (as

shown in Figure 8.9) and are used for evaluating the architecture proposed in the following

chapters.

7.1 Remote Test Bed Control

In order to facilitate deployment, measurement, and testing of a variety of new devices and

infrastructures (particular to but not limited to indoor localization), we have developed a remote

control protocol over TCP/IP. This protocol takes a simple 3-byte command of the form
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SYSTEM COMMAND OPTION

Table 7.1: NTB remote control commands.
Command Description

System Control
Cr0 System reset
Ir0 Read unique ID (uid)

Network Switch
Er0 Reset ethernet switch
El1 Turn on ethernet LED
El0 Turn off ethernet LED
E1<byte> Set the PTPCFG1 LOW register on the on-board KSZ8463 ethernet switch to <byte>.
E2<byte> Set the PTPCFG2 LOW register on the on-board KSZ8463 ethernet switch to <byte>.
E3<byte> Set the PTPCFG2 HIGH register on the on-board KSZ8463 ethernet switch to <byte>.
Ec<byte> Set the PTPCLK register on the on-board KSZ8463 ethernet switch to <byte>.

Power Rails
P0<rail> Turn off voltage rail, where <rail> is 5 (5v) or 3 (3.3v).
P1<rail> Turn on voltage rail, where <rail> is 5 (5v) or 3 (3.3v).
Ms0 start 100Hz streaming of voltage(mV), current(mA), and power(mW) on the 3v3 and 5v0

lines.
Me0 stop 100Hz streaming of voltage(mV), current(mA), and power(mW) on the 3v3 and 5v0

lines.
Ranging

Rs0 start streaming of all incoming range measurements.
Re0 end streaming of all incoming range measurements.
Rb<period> start transmitting beacons with a period of <period> x 100 milliseconds and a dither of 10ms.
Rt<period> start transmitting two-way-ranging (TWR) from this node. The results will appear on the

other nodes when streaming (i.e. after reception of the command Rs0.
LEDs

L1<led> turn on led, where led can be the small ARM LEDs: r:red, b:blue, or g:green or the high
power, bright LEDs: R:red, G:green, B:blue, O:orange.

L0<led> turn off led.
Lt<led> toggle led.

where SYSTEM specifies the NTB subsystem to be controlled (e.g. power, LEDs, ranging)

by a given COMMAND, and OPTION is an argument passed to a given COMMAND. In some

cases, no option is required and the third byte can be any value. For the sake of completeness, we

list several of the more useful commands in Table 7.1. Those commands under the ”Ranging”

subsystem are particular to an UWB expansion (daughter) board discussed in the following

chapter.
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CHAPTER 8

Time and Space

Previous chapters have explored graph realization approaches that incorporate relative range

measurements, relative pressure measurements, and relative inertial measurements. In this

chapter, we show that even relative time can be considered a measurement constraint that can

be used to reduce the overhead associated with high accuracy UWB ranging techniques.

Recent advances in ultra-wideband RF communication have enabled accurate packet times-

tamping, which can be used to precisely synchronize time. Location may be further estimated by

timing signal propagation, but this requires additional communication overhead to mitigate the

effect of relative clock drift. The additional communication lowers overall channel efficiency

and increases energy consumption. This chapter describes a novel approach to simultaneously

localizing and time synchronizing networked mobile devices. An Extended Kalman Filter is

used to estimate all devices’ positions and clock errors, and packet timestamps are measure-

ments that constrain time and overall network geometry. By inspection of the uncertainty in

our state estimate, we can adapt the number of messages sent in each communication round

to balance accuracy with communication cost. This reduces communication overhead, which

decreases channel congestion and power consumption compared to traditional time-of-arrival

and time-difference-of-arrival localization techniques. We demonstrate the performance and

scalability of our approach using a real network of custom RF devices and mobile quadrotors.
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8.1 Introduction

Localization and time synchronization have long been key enabling technologies for wireless

sensing, actuation, and communication. With the growing prevalence of wireless devices like

those in robotics, home automation, wearables, and mobile smartphones, it is important to

coordinate timing among networked devices and to provide contextual information, such as

location. Recent advances in ultra-wideband communication (UWB) have enabled decimeter-

level localization, but these techniques typically require additional communication to eliminate

the effects of timing errors. This introduces a considerable communication and energy overhead

for networked devices that are oftentimes resource-constrained.

Time synchronization leverages message exchanges to communicate a global sense of time

among multiple nodes in a network—a process where message propagation uncertainties can

cause large errors. While localization techniques attempt to mitigate the effect of timing inac-

curacies and time synchronization techniques seek to minimize errors due to uncertain device

locations, the two are traditionally carried out in a disjoint fashion. This work demonstrates

that, by performing localization and time synchronization concurrently, communication over-

head can be minimized, increasing the lifetime of battery-powered devices that make up what

is increasingly referred to as the internet of things.

One challenge in performing time synchronization is that of propagation delay—commun-

ication time between two devices is affected by processing delay on the transmitting and receiv-

ing devices as well as signal propagation through some medium—e.g. air in wireless systems.

For many applications this delay is small enough to be neglected, as is done in several widely

used time synchronization protocols such as Reference Broadcast Synchronization [EGE02]

and Flooding Time Synchronization Protocol [MKS04]. However, in scenarios where the sig-

nal propagation delay is much larger (e.g. acoustic communication, as addressed in [SH06]) or

where tighter synchronization is required, signal propagation delay becomes important. Sep-

arating the effects of processing delay, propagation delay, and local timing offsets typically

requires a bi-directional handshake between the devices in question, adding additional timing
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constraints that allow errors from propagation delay to be reduced at the cost of increased power

consumption and increased channel utilization (e.g., the Timing-sync Protocol for Sensor Net-

works [GKS03]). In general, time synchronization typically treats this propagation delay as an

error term to be minimized.

On the other hand, many state-of-the-art location estimation techniques (and the range es-

timation methods that underlie them such as ultra-wideband RF time-of-flight) rely on pre-

cise measurements of propagation delay in order to estimate the distance over which a given

signal has traveled [PAK05]. Whereas time synchronization techniques often treat propaga-

tion delay as an error, timing-based ranging techniques commonly treat clock offsets and bi-

ases as error terms or “nuisance parameters” [GGS13], attempting to minimize the effects

of variations in clock hardware. These variations are particularly detrimental to high fidelity

timing-based localization schemes such as time-of-arrival (TOA) and time-difference-of-arrival

(TDOA) [STK05, MFA07].

Clearly both time synchronization and localization are closely related, and solving for one

necessarily yields information about the other. This motivates the scheme proposed in this

chapter, where clock models and device locations are solved for concurrently. This joint op-

timization provides a principled way of extracting range estimates from time synchronization

messages and of using range measurements to refine the time synchronization process based on

precise process and measurement models relating timing variations, channel propagation delays,

and both motion and clock dynamics. We refer to this technique as Simultaneous Localization

and Time Synchronization, or SLATS. SLATS is implemented as an Extended Kalman Filter

(EKF), where the state of each device in a network models time-varying 3D positions, clock

offsets, and clock drifts. We evaluate SLATS on custom ultra-wideband wireless devices for

networks of both static and mobile nodes, analyzing the convergence time and accuracy of lo-

cation estimates as well as RF channel congestion and power consumption. Additionally, we

demonstrate how SLATS can be used for adaptive messaging schemes, allowing users to spec-

ify a desired estimation accuracy (position or time synchronization) at a high level, minimizing

communication costs for wireless devices while ensuring that a particular constraint is satisfied.
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8.1.1 Contributions

In short, the contributions of this chapter are as follows:

• We propose a method for performing Simultaneous 3D positioning and time synchroniza-

tion (SLATS) for mobile devices, implemented as a real-time nonlinear state estimator.

• We demonstrate the benefit of SLATS using custom ultra-wideband wireless devices for

both static and dynamic networks.

• We further substantiate SLATS using a real-time ultra-wideband quadrotor positioning

system compared against motion capture ground truth.

• Finally, we analyze the proposed position and time synchronization estimators in terms of

convergence, messaging overhead, and power consumption with respect to state-of-the-

art methods.

8.1.2 Related Work

The literature on both mobile device localization and time synchronization is vast. In this sec-

tion we present only efforts at concurrent synchronization and localization or ranging techniques

as they pertain to this work. For more complete treatments of localization and synchronization

methods, we refer the reader to [PAK05] and [SY04], respectively.

Recent advances in accurate RF time-stamping, spearheaded by impulse-radio ultra-wideband

(IR-UWB) devices [DCF09], has spurred research on low error ranging techniques and their im-

plications on time (and clock) synchronization. One popular application of this has been quadro-

tor localization (and localization in robotics in general), as demonstrated in [TSW15], [KPD15],

and [LHD15] and based on the popular DecaWave DW1000 radio [dw1]. In particular, [LHD15]

demonstrates how periodic clock bias measurements can be used to allow for simpler range

measurements using one-way TOA/TDOA messages compared to the more expensive two-way

protocols used in [TSW15] and [KPD15].
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Prior research surrounding jointly optimal localization and time synchronization includes

distributed maximum likelihood estimators, theoretical Cramér Rao Lower Bounds (CRLB),

batch estimation techniques such as least squares regression, and experimental heuristics. No-

table research in the first category includes work by Denis et al. in [DPA06] deriving a dis-

tributed maximum log likelihood estimator (and corresponding CRLB) that fuses clock offset,

bias, and range estimates. Additional work in [ZW10] provides theoretical maximum likelihood

and least squares solutions in the case of fixed and time synchronized anchor nodes, and simi-

larly [GGS13] presents simulated results for a maximum likelihood estimator for a single target

and multiple, synchronized anchor nodes. While these approaches outline theoretical estima-

tors, they make several limiting assumptions of the underlying network (such as synchronization

among anchor nodes) and do not evaluate their methods on actual hardware.

Additional methods of integrating range or location estimates with time synchronization in-

clude batch (offline) least squares methods [CLV12], master-slave clock synchronization to

improve round-trip time estimates [DAZ15], and frequency-tuning crystal oscillators based

on estimated frequency errors to improve propagation delay measurements [DTM13]. More

application-specific solutions include using unmanned aerial vehicles to relay GPS information

to a network of energy constrained nodes who then localize and synchronize themselves to the

mobile GPS receiver, saving energy [VGM15], and leveraging clock bias estimation to improve

RF time-of-flight estimates for non-UWB transceivers [EMW14].

This work describes a centralized approach to achieving network time synchrony and ac-

curate localization estimates based on concurrent estimation using an Extended Kalman Filter.

This can be seen as a centralized version of the work in [DPA06], providing results from real

hardware to bolster several ideas presented by by Denis et al.. While distributed estimators

benefit from improved scalability, the joint estimator presented lends itself more naturally to

sensor networks requiring high fidelity, high frequency synchronization and localization, e.g.

autonomous robotics and pedestrian indoor tracking. Additionally, tracking the entire network

state at a central entity allows for adaptive messaging schemes based on state and covariance val-

ues that dynamically constrain the system when estimates begin to diverge or accuracy require-
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Figure 8.1: Clock offset as a function of
time.
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Figure 8.2: Clock bias as a function of time.
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Figure 8.3: Allan deviation of clock bias.
Figure 8.4: Clock errors manifested as time offsets and frequency drifts (biases).

ments change. This work leverages ultra-wideband RF communication in order to make precise

timing measurements. While UWB has improved non-line-of-sight performance in comparison

to signal strength methods like those based on RSSI, it should be noted that UWB timing ac-

curacy can deteriorate with increased environmental clutter and signal attenuation, as described

in [MST15]. While the methods described in this work make no strict assumptions about en-

vironmental clutter or line-of-sight, excessive signal attenuation that violates the noise models

presented subsequently will undoubtedly affect the state estimates negatively. These models as

well as the system dynamics in general are discussed in the following section.

8.2 System Model

We consider a network ofN mobile devices (nodes) indexed by i ∈ {0, . . . , N−1}. The state of

device ni ∈ N at discrete time step k is denoted si(k) = [pi(k), oi(k), bi(k)]T and is composed
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of a three dimensional position vector pi(k) as well as a timing offset oi(k) and frequency bias

bi(k). Here and for the remainder of the chapter we use boldface font to denote a vector-valued

quantity. We adopt a convention where both oi(k) and bi(k) are described with respect to device

0, which we define as the master time reference1. For relative time synchronization, we can set

b0(k) := 0 and o0(k) := 0 ∀k. However, if projection into some external time reference, such

as UTC or TAI, is needed then these values must be synchronized with a secondary source.

8.2.1 Timing State Parameters

Time synchronization and timing-based range estimation rely on accurate hardware time mea-

surement, enabled by high accuracy crystal oscillators, atomic clocks, etc. Each device’s clock

oscillates close to some nominal frequency f0. The true signal of every free-running oscillator is

perturbed by some frequency bias bi(k), which varies with time and environmental conditions,

such as temperature or supply voltage. This error is often referred to as the frequency stability

of the oscillator, and quoted in parts per million, or ppm = (fe/f0) · 106, where fe is the worst

case upper-bound on bi(k).

A consequence of frequency instability is that two free-running hardware oscillators will

drift with respect to each other unless one of them is periodically disciplined. To illustrate

this fact we have performed several experiments using the DecaWave DW1000 ultra-wideband

radio. This radio is equipped with a temperature-compensated crystal oscillator with f0 =

38.4 MHz and a stated frequency stability of ±2 ppm. Figure 8.4 summarizes the results from

an experiment carried out to characterize the stability of 6 different receiver clocks with respect

to a transmitter clock. Plot (a) shows the relative time offset oi(k) of each clock with respect

to the master time reference, depending on when each device powered up and on cumulative

drift over time. Plot (b) shows that, over short periods, each receiver’s clock walks randomly

around a frequency bias of no greater than ±2 ppm. The accuracy with which this drift can

be modeled (and consequently mitigated) is dictated by how much variation exists in bi(k)—in

1The selection of device 0 as master is an arbitrary choice that anchors the clock offsets and biases to a fixed
point.
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other words, how noisy the bias terms in Figure 8.4 (b) are. The Allan Deviation plot in Fig.

8.4 (c) demonstrates the variation present in this bias for a number of estimation periods (tau)

and for a given oscillator. The minimum bias variation occurs around a period of 1 second, with

variations on the order of 1.0 to 3.0 ppb, or a 1.0 to 3.0 ns hardware clock error over a one

second period. Although for many applications this drift is trivial, in the context of RF time-of-

flight ranging techniques a deviation of 3 ns is equivalent to a range estimate error of roughly 90

cm. These errors can be largely alleviated through the use of more accurate oscillators such as

atomic clocks, but this comes at the cost of prohibitively high power and monetary overheads.

8.2.2 Location State Parameters

Each device state also includes a position estimate pi(k) ∈ R3. The device’s true position,

p∗i (k), dictates the propagation delay of any wireless communication between device i and any

other node j. More specifically, the propagation delay Tp of RF communication between i

and j depends linearly on the distance ‖p∗i (k) − p∗j(k)‖2. Additionally, any estimate of this

range based on Tp is naturally dependent on the non-idealities of device clocks discussed in the

previous section. For example, a very basic time of flight ranging technique involves a message

sent from i to j, a reply time of Tj measured locally at device j, and then a response sent from

j to i. Ideally, the round trip time as perceived by device i would be Tround = 2Tp + Tj . Due

to frequency bias differences between i and j, however, the measured time would be closer to

Tround = 2Tp + Tj(bi(k)− bj(k)) as perceived by device i’s local clock. This will be discussed

more completely in Section 8.5.2. Here and for what follows we have adopted the notation that

tx denotes an absolute time measurement while Tx denotes a time duration. Finally, networks

requiring full 6 degree rigid body estimates can extend pi(k) to represent the pose of device i

along with its derivatives.
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Figure 8.5: A graphical model depicting how the individual device states are evolved over time
and periodically corrected by pairwise measurements.

8.2.3 Simultaneous Localization &

Time Synchronization

We define the full network state s(k) at master time tM(k) as the concatenation of all states

from the N participating devices at time step k:

s(k) = [s0(k), s1(k), . . . , sN−1(k)]T (8.1)

Given this, we design an Extended Kalman Filter (EKF) in order to evolve s(k) over time,

periodically applying corrections when new timing and range measurements are received. Fig-

ure 8.5 provides an overview of the filter, where each column represents the evolution of one

device’s state. Each time index k corresponds to the arrival of a single measurement. Although

the measurement at k1 (row 2) represents messages exchanged between devices 0 and 1, it is

necessary that all N device states be updated in order to evolve the network synchronously.

This filter only updates upon arrival of a new measurement (message) exchanged between

two or more devices. Section 8.2.3.1 shows how the various measurements are transformed into

an observation vector, but for all measurement types the sequence of the filter is as follows:
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1. Receive measurement - A measurement obtained at filter step k is generated by a mes-

sage exchange between devices i and j. By convention, communication is always defined

so as to terminate at device j.

2. Calculate tM(k) - The server maintains an estimate of master time tM(k) as well as time

offset and frequency bias estimates for each device. This allows us to calculate the time

elapsed between measurements in the master time reference.

3. Process update - Using δt = tM(k + 1)− tM(k), move the state from s(k) to s(k + 1).

4. Measurement update - Convert the measurement to an observation of ranges, frequency

biases, and clock offsets, and correct the state.

In the following sections we describe the process and measurement updates required to

advance the state estimate based on the message(s) received in step 1.

8.2.3.1 Process update

The filter’s process update is responsible for evolving the state estimates for all N devices—

clock offsets, frequency biases, and device position or pose. In this work we model clock offsets

by a first-order affine approximation of the form

oi(k) = oi(k − 1) + bi(k − 1) · δt (8.2)

where bi(k) evolves according to a Gaussian random walk. At each iteration, the uncertainty

in frequency bias and therefore clock offset for devices without measurements must increase

proportional to δt to represent short term frequency instability.

The position or pose estimate of each device must also be advanced according to the prior
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state estimate. For a network with static device positions, the process update is given as

s(k + 1) =


s0(k + 1)

...

sN−1(k + 1)

 =


g0(s0(k))

...

gN−1(sN−1(k))



gi(si(k)) =


pi(k)

oi(k) + bi(k)δt

bi(k)

 (8.3)

such that each device’s position is predicted to be in the same position at each subsequent time

step. The covariance matrix corresponding to s(k) is given as

P =


P0

. . .

PN−1

 (8.4)

Pi = diag

{[
σ2

pi
σ2
oi

σ2
bi

]T}

where σ2
pi

= [σ2
xi

σ2
yi

σ2
zi

]T when pi = [xi yi zi]
T . Note that this simple process model

can still be used to capture dynamic node positions if σ2
pi

is set adequately high to account

for device mobility. For added robustness in networks with highly dynamic nodes, the process

update can also evolve pi(k) using estimates of velocity, acceleration, and orientation which

would also be embedded in device state si(k). We leave this extension as future work.

8.2.3.2 Measurement update

The measurement update step relates the state variables s(k) to a measurement vector z(k)

between two or more devices. For simplicity of notation, these measurements are described

with regard to just two devices, i and j, and denoted zij(k). Each measurement is derived from

a message type defined by the number of messages sent between devices i and j, as shown

in Figure 8.6. Each of these measurements is then calculated directly from the timestamps

75



Tp Tp Tp

j

i

t₁ (k+3) t₂ (k+3) t₅ (k+3)

t₃ (k+3) t₄ (k+3)t₀ (k+3)

ABC

Tp

t₅ (k-2)

t₄ (k-2)

A

j

i

Tp Tp

j

i

AB

k+3
TYPE 3

k+1
TYPE 3

k+2
TYPE 1

k-1
TYPE 2

j
i

h

TRSP1  (k)

t₂ (k) t₅ (k)

t₃ (k) t₄ (k)

TRND1 (k)

TRSP1  (k+3)

TRND1 (k+3)

TRND0  (k+3)

TRSP0 (k+3)

k-2
TYPE 1

k
TYPE 2

Figure 8.6: The top of this diagram shows six synchronization events between three devices,
labeled h, i, and j. Each event is classified as TYPE 1, TYPE 2 or TYPE 3 depending on the
number of transmissions sent.

(captured both at the time of transmission and at reception) belonging to these three message

types and as described below.

• The counter difference dij is an observation of the difference between the local counters

at device i and device j. This measurement includes the effects of propagation delay Tp

when sending device i’s local counter to device j.

• The single-sided two-way range rij is an observation of the distance between two de-

vices based on a pair of messages between i and j, with error proportional to the response

turnaround time TRSP1. This is a noisy range estimate due to frequency bias discrepancies

between i and j.

• The double-sided two-way range Rij is an observation of the distance between device

i and j based on a trio of messages between i and j. The error is proportional to the

relative frequency bias between the two devices integrated over the period. This is a more

accurate estimate than rij due to mitigation of frequency bias errors from the additional

message.

These exchanges may be of three types: TYPE 1, where a single transmission is sent from

i to j, yielding two timestamps from a single transmission (TX) and reception (RX); TYPE

2, where a TYPE 1 message is followed by a reply message, allowing for round-trip timing
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calculations; and TYPE 3, where a final transmission completes a handshake trio, allowing for

a more precise round-trip timing calculation. These are shown in detail in Figure 8.6, where

timestamps t0(k) through t5(k) denote the locally measured TX and RX times from the three

possible transmissions and TRSPi(k) and TRNDi(k) define response and round-trip durations

between the appropriate pair of these timestamps.

It is important to note that a subset of these measurements may be used rather than the full

set—in the following sections, we will commonly refer to experiments involving just rij ,Rij , or

dij . Unless otherwise noted, all values are expressed in SI units, with the propagation velocity

of radio taken to be the speed of light in a vacuum, denoted c.

The measurement vector, zij(k), is defined as the following quantity containing all mea-

surement types derived from the three message types above:

zij(k) =
[
dij(k) rij(k) Rij(k)

]T
(8.5)

Note that, although we derive the measurements in zij(k) in a specific manner from the times-

tamps depicted in Figure 8.6, any measurement of these quantities may be substituted into the

SLATS architecture so long as the measurement equations below and the corresponding covari-

ance terms are adjusted accordingly. We define the measurement covariance matrix associated

with zij(k) as the following diagonal matrix

R = diag

{[
σ2
d σ2

r σ2
R

]T}
(8.6)

The measurement vector zij(k) is constructed as follows:

zij(k) =


t5(k)− t4(k)

c
2

(TRND1(k)− TRSP1(k))

c
TRND0(k)TRND1(k)− TRSP0(k)TRSP1(k)

TRND0(k) + TRND1(k) + TRSP0(k) + TRSP1(k)

 (8.7)
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For the derivations of rij and Rij , see Appendix A. Note that the equation describing Rij(k)

can be reduced toRij(k) = c
4

(TRND0(k)− TRSP1(k) + TRND1(k)− TRSP0(k)) if the response

times are symmetric.

In order to advance the state of the EKF, these measurements must be compared against pre-

dicted values given the current state estimate s(k). This is done by means of the measurement

model h(s(k)):

h(s(k)) =
[
h0(s0(k)) h1(s1(k)) · · · hN−1(sN−1(k))

]T
(8.8)

Each of these measurements depends on the communication of local clock values between two

devices, and thus their derivations naturally depend on both the estimated positions of each

device involved as well as their estimated clock parameters. For any given node i in the network,

the node-specific measurement model with respect to a second node j is given as (omitting time

index k for simplicity):

hi(si(k)) =


(oj − oi) + ‖pj − pi‖2 /c

‖pj − pi‖2 + c
2

(bj − bi)TRSP1

‖pj − pi‖2 + c · R̃ij

 (8.9)

R̃ij =
(bi − bj)(TRND0TRND1 − TRSP0TRSP1)

(1 + bi − bj)TRND0 + TRND1 + TRSP0 + (1 + bi − bj)TRPS1

Key:
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capture server
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= UWB Mobile node
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Figure 8.7: Experimental setup overview, including (i) UWB Anchor nodes, (ii) motion capture
cameras, (iii) mobile quadrotor UWB nodes, and (iv) an ethernet backbone with centralized
server.
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Figure 8.8: Custom anchor
node with ARM Cortex M4
processor and UWB expan-
sion.

Figure 8.9: Ceiling-
mounted anchor with
DW1000 UWB radio in
3D-printed enclosure.

Figure 8.10: CrazyFlie 2.0
quadrotor helicopter with
DW1000 UWB expansion.

Note that Equation (8.9) ignores the effects of clock drift during signal transmission—a

sub-picosecond quantity for distances below 100 m. Interestingly, because TYPE2 and TYPE3

messages are nothing more than multiple TYPE1 messages, range estimates rij and Rij can

be thought of as instantaneous range measurements with a particular covariance, while dij will

constrain range estimates over a larger time span, dictated by σ2
d. In the following section,

we will demonstrate how dij measurements alone suffice to converge on position, clock offset,

and frequency bias estimates for the entire network, provided sufficient connectivity and given

constraints on node mobility.

8.3 Experimental Setup

In order to evaluate the performance of the SLATS estimation filter, we developed a custom

ultra-wideband RF test bed based on the DecaWave DW1000 IR-UWB radio [dw1] and shown

in Figure 8.7. This test bed consists of four main components: (i) fixed anchor nodes powered

by an ARM Cortex M4 processor with Power over Ethernet (PoE) and an expansion slot for a

custom daughter board containing the DW1000, as shown in Figure 8.8; (ii) battery-powered

mobile nodes also with ARM Cortex M4 processors based on the CrazyFlie 2.0 helicopter [cra]

and equipped with the very same DW1000 radio; (iii) A motion capture system capable of 3D

rigid body pose estimation with less than 0.5 mm error; and finally (iv) a centralized server for
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aggregation and processing of UWB timing measurements and ground truth position estimates

from the motion capture camera.

UWB Anchor Nodes: We deployed 8 UWB anchor nodes in various positions in a 10×9

m lab. Of these 8 anchor nodes, 6 were placed on the ceiling (roughly 2.5 m high) and 2 were

placed at waist height (about 1 m) in order to better disambiguate positions in the vertical axis.

Each anchor node is connected to an Ethernet backbone both for power and for communication

to the central server, and each is capable of sending messages of type 1, 2, and 3, and is fully

controllable over a TCP/IP command structure from the central server. These nodes are placed

so as to remain mostly free from obstructions, maximizing line-of-sight barring pedestrian in-

terference.

Mobile UWB Nodes: Mobile nodes consist of a CrazyFlie 2.0 quadrotor helicopter platform

[cra] with a custom DW1000 expansion board as shown in Figure 8.10. These platforms can be

carried around by a pedestrian to enable pedestrian tracking, flown by a user to enable quadrotor

helicopter tracking, or flown autonomously by the estimation server if provided with sufficiently

accurate position estimates.

Motion Capture Cameras: In order to provide accurate ground truth position measure-

ments, we deployed an 8 camera motion capture system placed along the perimeter of the ex-

perimental area. Each camera relays information to the central server, which then computes a

rigid body pose estimate. The results presented in this chapter treat this estimate as a “true”

position, though we qualify here that all results are accurate to within ±0.5 mm.

Estimation Server: The SLATS state estimation (EKF) is performed on a centralized server.

Aggregation of the UWB timing information and ground truth pose measurements is performed

using the Robot Operating System (ROS) [QCG09] with custom packages for the UWB hard-

ware used in these experiments.

Coordinate System: Note that, as is typical with camera-based coordinate frames and in

order to remain compatible with the motion capture system used, we adopt a right-handed co-

ordinate system where y is the vertical axis and x and z make up the horizontal plane.
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8.4 Case Study: Localizing Static Networks

In this section we demonstrate a preliminary case study of the proposed simultaneous local-

ization and time synchronization joint estimator. Specifically, we will examine the case of a

network of N static devices—i.e. nodes with fixed positions. This will provide intuition into

the various challenges and advantages associated with SLATS, leading into the dynamic net-

works examined in Section 8.5.

To begin, nodes are placed in 8 distinct locations around the 10 × 9 m area, roughly in the

positions indicated by Figure 8.7. The goal of SLATS is to accurately estimate the positions

of all N network devices relative to one another as well as the relative clock offsets and fre-

quency biases. This relative localization, or graph realization as it is sometimes called, is a

well-researched field. It is well-known that graph realization of nodes in three dimensions is a

difficult problem due to local minima, high computational complexity, and restrictions on graph

rigidity [AGY04,BY04,JJ05]. SLATS is no exception to the requirements on graph rigidity, and

it can also suffer from local minima in certain network topologies. However, SLATS provides

a principled approach to estimating a 3D network topology in a manner that can use anywhere

from high overhead, high accuracy range measurements (such as Rij measurements) down to

low energy beaconing schemes (as in dij measurements).

8.4.1 Location Estimation

Because the measurement model described in Equation (8.9) relates only pairwise positions,

the positions embedded in s(k) at any point represent relative location estimates and cannot be

compared to any absolute coordinate system. In order to compare the location estimates of each

node, we first superimpose the estimated positions onto the true positions of each node by use

of a Procrustes transformation [ZW14]. Specifically, the network topology as a whole is rotated

and translated (but not scaled) until it most closely matches the true node positions. Once

transformed, the error of a given node’s position is defined as the `2 norm of the transformed

position minus the true position.
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Figure 8.11: SLATS location estimation errors for static nodes using double-sided two-way
ranging, Rij .

Table 8.1: Network topology estimation errors for static nodes.
Node 3D location error by ID (m)

Solver 0 1 2 3 4 5 6 7 Mean
SLATS: Rij 0.31 0.14 0.16 0.12 0.15 0.13 0.07 0.18 0.158
SLATS: dij 0.84 0.94 0.63 0.91 0.37 0.17 0.48 0.81 0.644
mdscale: Rij 0.37 0.18 0.33 0.06 0.27 0.16 0.15 0.33 0.231

As a baseline, we begin by demonstrating that double-sided two-way ranging (Rij) can be

used to accurately reconstruct (estimate) the topology of the network of 8 anchor nodes de-

picted in Figure 8.7. We begin with no knowledge of the network topology, naively assigning

each node’s position to pi(k) = [0, 0, 0]T∀i ∈ {0, . . . , N − 1}. Each of the 8 anchor nodes is

programmed to initiate a series of double-sided two-way ranging measurement at intervals of

500 ms, or 2 Hz. At each ranging interval, a node will attempt to perform ranging measurements

with each other anchor node. Because UWB communication has limited range in comparison

to narrow-band communication, nodes at distal corners of the room have sparse connectivity.

Results from several 60 second experiments in which all 8 nodes are communicating indicate

that the more expensive (higher energy and higher channel utilization) two-way range mea-

surements allow for network topology estimation with high accuracy. Figure 8.11 shows the

position error of all 8 nodes as a function of time as the filter evolves, converging after around

1 second. Table 8.1 summarizes the errors of each node after convergence, where node errors

range from 7 cm to 31 cm with a mean error of only 15.8 cm. This can be compared against
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multidimensional scaling—a commonly used method for solving for a set of coordinates that

minimizes some loss function, in this case squared range error based onRij measurements. The

resulting position errors after using 60 seconds of range estimates in a multidimensional scaling

solver are shown in Table 8.1. Note that the results achieved from SLATS using only Rij range

measurements are comparable to if not better than those using the traditional multidimensional

scaling, which has an average error of 23.1 cm.

As noted in Section 8.2, location can also be estimated using SLATS from TYPE 1 timing

information alone, due to the interplay between range-induced propagation delay and local tim-

ing offsets, oi(k). If the nodes continue to broadcast their local times at 2 Hz, we can expect to

see the effects of frequency bias variation (i.e. the variation depicted in Figure 8.4 (c)) manifest

themselves as positioning errors. Specifically, we should expect an error of [1.5ns, 3.0ns]/2

or roughly 0.75 to 1.5 ns drift over a 500 ms period. This equates to between 22.5 cm and 45

cm in added positional error when compared to the higher overhead Rij measurements, which

are much less prone to timing errors. Indeed, the convergence plot shown in Figure 8.12 and

the summarized errors in Table 8.1 indicate that SLATS based on 2 Hz dij measurements alone

gives a position estimation error of between 17 cm and 94 cm, with an average error of 64.4

cm, or roughly 48 cm more than SLATS based on high accuracy Rij range measurements. This

lends credence to the ability of SLATS to perform time synchronized (such as TOA or TDOA)

localization techniques, with a trade-off between communication overhead (and correspond-

ingly energy consumption) and accuracy.

8.4.1.1 A note on graph rigidity

Note that these anchor nodes compose a fully connected graph, albeit with some packet loss on

the more distal nodes. Though a fully connected graph is not required for position estimates, the

graph must be globally rigid as described in [ST12] in order to yield a unique solution. More

specifically, if we create a graph of the N devices where edges represent distance for connected

nodes, the graph must be realizable only under translational and rotational transformations—i.e.

the relative positions of each node must be uniquely embedded in R3.
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Figure 8.12: SLATS location estimation errors for static nodes using simple timing beacons,
dij .
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Figure 8.13: Frequency bias convergence for static nodes.

8.4.2 Time Synchronization

The local time synchronization parameters oi(k) and bi(k) must necessarily have been accu-

rately estimated to enable sub-meter position estimates from pairwise clock offset measure-

ments, dij , alone. Due to the precision of dij measurements, oi(k) converges within a few time

steps. Frequency bias estimated by the evolution of oi(k), however, takes longer to converge as

shown in Figure 8.13. Here, frequency bias estimates take between 1 and 2 seconds to converge,

causing the convergence delay in position estimates as seen in Figure 8.12. Note again that the

frequency error is bounded by±2ppm, reinforcing the results summarized in Table 8.1. Device

0 has both an offset and a bias of 0 by definition, as per Section 8.2
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Figure 8.14: Position errors in 3D for a single mobile node. Spatial errors (left) are shown with
corresponding per-axis errors by time (top right). Additionally, the error is plotted against the
mobile node’s distance from the network centroid (bottom right).

Note that, while dij can be used for both position estimates and time synchronization, Rij

is better suited for position estimates than it is for time synchronization, due to its minimal

dependency on timing parameters. This, indeed, is the reason Rij is often used in state-of-the-

art ranging estimates—it is affected only slightly by errors due to timing asynchrony. As we

will show in Section 8.5, one advantage of SLATS is that it allows for simpler ranging schemes

like single-sided ranging (rij) to have comparable performance to Rij with reduced overhead,

thanks to the integration of time and range estimates.

8.5 Case Study: Mobile Wireless Networks

Having shown that SLATS may be used to localize and synchronize a network of static, station-

ary nodes, we now move onto the case of a heterogeneous network of both static and mobile

nodes. We begin with the 8 anchor nodes with fixed positions used in Section 8.4, adding one

additional node in the form of a CrazyFlie quadrotor as shown in Figure 8.10. Again, we begin

by analyzing the results of running SLATS based onRij measurements. This will provide an up-

per bound2 on the accuracy that may be achieved with range-based localization methods using

the particular ultra-wideband chip-set used in these experiments, representing the state-of-the-

2We use this term loosely here, as this is the method used in state-of-the-art UWB ranging.
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art in UWB TOF ranging. We will then continue to demonstrate how SLATS may be used to

reduce the high overhead and energy consumption associated with these ranging measurements

by leveraging the time synchronization provided by SLATS. Finally, we will demonstrate how

SLATS can enable low-energy, scalable localization solutions such as TDOA and how SLATS

can be used to conditionally and adaptively drive message transmissions in a network based on

variable performance requirements.

8.5.1 High accuracy, high overhead positioning

We performed a number of experiments with both pedestrians and quadrotors traveling with

variable velocities. Again, each node sends messages at a rate of 2 Hz and SLATS is used to

estimate position and time synchronization.

Figure 8.14 shows the result from one particular 2 minute experiment with a single quadro-

tor whose position is estimated using SLATS based on only Rij measurements. The left plot

shows a 3D comparison of the true (as measured by the motion capture cameras) and estimated

positions. Here the position can be estimated quite accurately, with an RMSE of just 29.4 cm.

The top right plot in Figure 8.14 demonstrates this error per axis as a function of time. While

the horizontal axes (x and z) have an RMSE of just 15 and 14 cm, the vertical y axis has an error

of 35 cm, due to fewer wireless devices distributed in the vertical plane. Finally, the location

of the mobile node dictates to some extent the accuracy with which it can be localized relative

to other nodes in the network. More specifically, a device whose location is more central to the

network (i.e. closer to the centroid defined as the mean of all node positions) is more likely to

be fully constrained in terms of its relative position. This correlation can be loosely seen in the

bottom right of Figure 8.14, where several high error peaks (around 5 seconds and 70 seconds)

occur during times where the mobile node is far from the network’s centroid. Note, however,

that estimating a position that is distal from the network’s centroid does not necessarily yield a

poor estimate.
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8.5.2 Reducing range estimation overhead

WhileRij measurements provide precise range (and thus localization) estimates, they introduce

a high communication overhead. This section addresses methods of reducing both communi-

cation and power overheads by leveraging the SLATS architecture. For each experiment per-

formed, we record the raw timestamps associated with the transmission and reception of each

message. This allows us to fairly compare different messaging and estimation schemes on the

same dataset.

8.5.2.1 Bias-compensated single-sided ranging

Recall from Section 8.2 that rij requires fewer message exchanges (TYPE 2) between nodes i

and j—33% less to be precise—at the cost of increased range errors, εrij , due to timing errors as

illustrated in Figure 8.15. Two-way range measurements reduce these timing errors by adding

additional measurements, but this timing error can also be reduced by using dij measurements

to synchronize all nodes, after which the error induced by unknown frequency bias terms bi(k)

and bj(k) can be largely eliminated. This in fact adds no additional overhead, because rij

ranges are constructed from multiple timing measurements, and thus the time difference dij

can be extracted from rij . Interestingly, because rij itself depends on bi(k) and bj(k) as per

Equation (8.9), it can be used to estimate both the positions and frequency biases of each node.

Thus, rij itself becomes sufficiently free of timing errors when passed through the SLATS
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Figure 8.16: Range improvements with bias-compensation.

estimation filter, becoming comparable to double-sided two-way range measurements,Rij . This

is shown by the range error distributions in Figure 8.16, based on more than 10,000 pairwise

range measurements between 8 devices. Here, the RMSE of rij measurements drops from 33

cm to 22 cm, matching an RMSE of 22 cm for Rij measurements.

As before, each node communicates at a rate of 2 Hz, but we now restrict communication to

TYPE 2 messages. Without using SLATS (i.e. where Equation (8.9) has been changed so that

rij(k) is expected to exactly equal ‖pi(k)− pj(k)‖2), we observe a 3D positioning error of 65

cm across multiple experiments. On the other hand, SLATS recognizes that the additional error

when using rij(k) measurements is due to the discrepancies in frequency biases, bi(k)− bj(k),

estimates this difference, and thereby reduces the range estimation errors. This results in a

position estimate RMSE per axis of 17, 33, and 18 cm—a 27% error reduction on average and

resulting in an estimate that is only 1.3 cm per axis worse on average than the more expensive

two-way ranging. The final average 3D error across multiple experiments using the SLATS-

enabled rij measurements is 41 cm.

8.5.2.2 Time of Flight Positioning

As shown in Section 8.4, SLATS can converge on an accurate static network topology (relative

position) estimate provided with only simple messages containing the transmission timestamp
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and the corresponding reception timestamp, creating the time difference measurement dij(k)

for a message sent from node i to node j. In this section, we’ll demonstrate how these simple

measurements can also be used to provide a low overhead location estimate for mobile nodes in

a network.

Intuitively, the SLATS architecture allows for time-of-flight based positioning estimates

enabled by time synchronization and models relating time and space, as in Equation (8.9). Al-

gebraically, extracting range estimates from time-difference measurements is allowed by (i) the

polarity inherent in dij(k) measurements, (ii) accurate timing measurements, and (iii) accurate

clock drift models. To explain this, we can derive the singe-sided range measurement from dij

measurements and constants as follows:

rij(k) =
c

2
· (TRND1 − TRSP1) =

c

2
· (t5 − t2 − t4 + t3)

=
c

2
· (dij(t5) + dji(t3)) (8.10)

This disambiguation between clock offset and propagation delay is shown in Figure 8.17.

Single-sided range estimates have increased error due to clock drift at node i over the period

TRSP1. Because of this, TRSP1 is traditionally kept as small as possible. However, even with

a response time as low as a few hundred microseconds, 10s of centimeters error can be accu-

mulated. In the case of periodic dij(k) broadcasts, however, TRSP1 becomes the time between

messages and can measure anywhere from milliseconds to seconds apart. In this case, we

must rely on accurate bias estimates bi(k) and bj(k). Furthermore, in order to constrain pair-
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wise distances between any two nodes, we must ensure that the timing measurement and clock

offset noise are less than signal propagation uncertainty due to device mobility. Specifically,

estimations of the relative clock offset oj(k) − oi(k) are subject to measurement noise σ2
d and

nonlinear clock drift unaccounted for by the relative frequency bias estimate bj(k)− bi(k). The

latter is given by the Allan Deviation depicted in Figure 8.4 (c), or roughly 3-4 ns/s in the

worst case. If the delay between measurements dji(t3) and dij(t5) in Equation (8.10) is de-

noted Td, then the timing error εdij(t5) inherent in measurement dij(t5) is roughly bounded by

εdij(t5) < 4 · 10−9Td + σ2
dij

+ σ2
oi
≈ 4 · 10−9Td, where σ2

dij
+ σ2

oi
� 4 · 10−9Td in the case

of the UWB transceiver used in this work [dw1]. This places a lower bound on the time syn-

chronization required for a mobile node with a given velocity ṗi(k)—in order for the position

displacement due to ṗi(k) to be less than the error εdij(k), we have Tdṗi(k) < 4c · 10−9Td, or

ṗi(k) < 1.2 m/s. This is roughly the average walking velocity for a human, which is frequently

quoted as 1 to 1.5 m/s [KPN96].

To evaluate this, we performed an experiment with eight static nodes and one mobile quadro-

tor, each transmitting TYPE 1 messages containing dij messages at 2 Hz. For this experiment,

as with those before, no prior node position or timing information is given—i.e. the node lo-

cations are not known a priori, even for the static nodes. The results from a single two minute

experiment with this setup is shown in Figure 8.18. For this experiment, the vertical y axis is not

adequately constrained given the network topology and lack of more accurate range measure-

ments such as rij andRij and so it has been omitted from the results, reducing the experiment to

one of 2D positioning and time synchronization. In this case, the horizontal x and z axes were

correctly estimated to an accuracy of 65 and 56 cm, respectively, with a combined 2D location

error of roughly 86 cm. Also shown in Figure 8.18 is the quadrotor velocity as measured by

the motion capture system. Note that, barring the initial convergence period, sharp peaks in

location estimate errors frequently correspond with velocities in excess of the required 1.2 m/s.

Recall that this accuracy is achieved with single transmission TYPE 1 messages sent at a rate of

2 Hz and containing only the transmission timestamp, to be compared against a local timestamp

upon reception. SLATS therefore can be used to provide sub-meter position estimates of mo-
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Figure 8.18: Example 2D positioning errors using only pairwise time measurements, dij(t).

bile wireless nodes, provided sufficient network rigidity and connectivity and where velocities

remain less than 1.2 m/s (or the equivalent velocity limit for a given clock source).

Finally, note that increasing communication rates beyond 2 Hz will serve to decrease esti-

mation errors at the cost of increased power consumption and wireless congestion. In order to

more easily compare the various methods presented, we limit each to a 2 Hz communication

rate.

8.5.2.3 TDOA & Emulating Indoor GPS

Section 8.5.2.2 demonstrated that the time synchronization provided by SLATS allows for time-

of-flight based positioning with modest accuracy, but SLATS also allows for time-difference-of-

arrival (TDOA) based techniques where the mobile device need not actively synchronize with

the remaining network–i.e., where communication with the mobile device is unidirectional.

This can take one of two forms: (i) periodic beaconing performed by the mobile node and

received at each anchor node, separated in time due to signal propagation delay, Tp, or (ii)

staggered beaconing by anchor nodes and received by one or more mobile nodes along with

anchor position and timing information. These are discussed in more detail below.

TDOA Beaconing: In this scenario we assume a static network of anchor nodes and one
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or more mobile nodes. A given mobile node i periodically broadcasts a message containing its

scheduled transmission time, ti. SLATS is used to provide both localization and time synchro-

nization of all anchor nodes, allowing them to timestamp each received beacon and convert this

reception time to the master time by subtracting their current estimated offset. This global time

is then used to constrain pairs of anchor nodes so as to estimate a position that best describes

the disparity in time observed by all anchors. More specifically, an estimate of node i’s position

p̂i(k) is obtained by solving the following problem, described in [GG03]:

p̂i(k) = arg min
pi

∑
`<m∈M

(
‖p` − pi‖2

c
− ‖pm − pi‖2

c
− TGp

)2

TGp = (ti` − o`(k))− (tim − om(k)) (8.11)

where ` and m are anchors in the set M of all anchors that received the beacon from node i, and

tij is the received timestamp at anchor j of the message sent by node i at time ti. This approach

requires minimal overhead for mobile nodes, though it is more advantageous for systems where

a central entity is trying to localize a mobile node, rather than a mobile node trying to self-

localize. Furthermore, this approach is susceptible to errors in anchor node offset estimates,

oi(k). For several experiments with 2 Hz broadcast rates and using a mobile quadrotor node,

this approach yields an RMSE error of 150 cm in the x axis and 123 cm in the z axis, while the

vertical y axis had an RMSE of 108 cm.

Indoor GPS Emulation: In a similar manner, we can emulate GPS for indoor environments—

here, a mobile node receives messages from a subset of anchor nodes. In order to avoid packet

collisions, these messages are staggered in time. Because of this staggering, we cannot simply

estimate the receiver’s instantaneous offset as in Equation (8.11). Instead, we must estimate

both the offset and bias terms for a window of received messages. The solution can be achieved
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Table 8.2: Comparison of SLATS-based estimation approaches.
Estimation Type # Msgs # TX,RX /mob. Err., (x, y, z) 3D Err., ṗmax Mob. Power @2Hz

Rij 3N 3N, 3N (16, 36, 15) (cm) 30 (cm) 2+ (m/s) 30.5 mW
rij 2N 2N, 2N (17, 33, 18) (cm) 41 (cm) 2+ (m/s) 20.3 mW
dij N N,N (92, 60, 68) (cm) 119 (cm) <1.2 (m/s) 9.1 mW

TDOATX 1 1, 0 (89, 108, 123) (cm) 190 (cm) 0.5-1 (m/s) 0.2 mW
TDOARX N 0, N (150, 144, 89) (cm) 212 (cm) < 0.5 (m/s) 8.9 mW

by solving the following problem:

[ôi(k) b̂i(k) p̂i(k)] = arg min
[oi bi pi]

∑
j∈M

(
‖pi − pj‖2

c
− TGp

)2

TGp = (tij − oj(k))− (ti − oi − δjbi) (8.12)

where M is the set of received beacons at mobile node i for a given time window, and δj is

the difference in timestamp between a given message and the start of window M . This is the

most scalable solution, as there is no limit placed on the number of mobile nodes that can self-

localize with the broadcasting anchor nodes. However, this solution also requires a non-linear

least squares solver running at each mobile node, and it requires accurate estimates of both

offset and bias for each anchor node. Note that this approach is not yet suitable for accurate

indoor positioning of highly mobile nodes, as the requirement of batching multiple, staggered

anchor messages introduces an inherent delay, and motion within that time window will make

it difficult to disambiguate propagation delay and time offset. For a slowly moving node (a

human target restricted to less than 0.50 m/s motion), we were able to estimate position using

this approach with an RMSE error of 150 cm in the x axis, 89 cm in the z axis, and 144 cm

in the vertical y axis. This may be compared to recent work by Vasisht et al. in [KJB15],

where sub-meter accuracy is achieved using TOF based on WiFi network cards at the cost of

comparatively greater power consumption.

Comparison of methods presented: A summary comparison of all mobile tracking method-

ologies using SLATS and based on multiple experiments tracking both pedestrians and quadro-

tors is summarized in Table 8.2. This includes number of messages, messaging overhead for

mobile nodes, per-axis error, 3D error, suggested mobile velocities, and estimated power con-
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Table 8.3: Comparison of SLATS with related work
Estimation Type Citation Error N/m3 Freq. Power Em ·mW

SLATS Rij this work 30 cm (3D) 0.029 2 Hz 30.5 mW 9.15
SLATS rij this work 41 cm (3D) 0.029 2 Hz 20.3 mW 8.32
SLATS dij this work 119 cm (3D) 0.029 2 Hz 9.1 mW 10.82
PolyPoint [KPD15] 56 cm (3D) 0.005 20 Hz 300 mW3 168

Robotics TDOA [LHD15] 28 cm (3D) 0.037 100 Hz 443 mW 124
UWB-based GPS [TSW15] 20 cm (3D) 0.054 10 Hz 152 mW 30.4

sumption by mobile nodes. Power consumption is based on 2 Hz communication power using

the DW1000 transceiver and reasonable assumptions on device idle and wakeup times based on

the datasheet. This estimate ignores processing power at the mobile node. Table 8.2 shows a

very clear trend of decreasing power consumption and decreasing location estimate accuracy.

One benefit of SLATS is enabling a developer or system administrator to select any of these

estimation types, governed by application-specific requirements. In Section 8.6, we will go

one step further and show that SLATS enables intelligent and dynamic adaptation across these

various positioning schemes in order to meet variable requirements at run time.

We also compare our experimental results with those presented in several notable related

works in Table 8.3. Here we omit those purely theoretical results specified in Section 8.1.2–

while these provide strong foundations for exploring versions of the methods demonstrated in

this work, they lack the empirical results necessary to make a fair comparison. We compare each

approach in terms of error, node density, communication frequency, and power consumption.

Note that for [TSW15] we have assumed a frequency of 10 Hz, as this is common for GPS

units, and this is a UWB-based GPS replacement. Additionally, we introduce the metric of

error times power—a good location scheme will have low error achieved at low power, giving

a low error-power, while more expensive or poorer localization schemes will have a higher

error-power. This is measured in meters times milliwatts.

While [TSW15] achieves the highest accuracy, this comes at the cost of very high deploy-

ment density–almost two-fold as much as the deployment used in SLATS with only 10 cm

improvement and higher power consumption. Additionally, [KPD15] achieves 56 cm error

3This value was calculated in the same manner as those presented in Table 8.2 making identical assumptions
but with increased N and a higher frequency.
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with a considerably smaller node density, but at the cost of ten-fold increase in communication

frequency and a corresponding increase in power compared to the results presented for SLATS.

Finally, [LHD15] demonstrates a very impressive localization accuracy for one-way TDOA–28

cm compared to the 212 cm results from SLATS. However, [LHD15] uses 100 Hz communica-

tion, a fifty-fold increase over the SLATS results. Because one-way TDOA is quite sensitive to

clock drift (and consequently communication frequency), we could reasonably expect SLATS

to achieve a similar accuracy with comparable communication frequencies as well. In essence,

while related approaches demonstrate a spectrum of power-vs.-accuracy tradeoffs, SLATS al-

lows for one atomic solution that spans the entire spectrum efficiently and adaptively. This is

explored more in the following section.

8.6 Conditional Messaging Schemes

One final advantage provided by the SLATS architecture is that of conditional messaging schemes.

Inherent in SLATS is a centralized state covariance matrix P maintained and evolved by the un-

derlying EKF. Inspection of the various elements in P yields information about which state

variables have uncertain estimates and need additional constraints. This in turn can be used

to adjust messaging rates in an adaptive manner, allowing a programmer or user to specify a

desired synchronization or localization confidence rather than message type and communica-

tion frequency—the effects of which are not always easily predicted. This in turn minimizes

communication overheads while guaranteeing that a specified constraint is satisfied.

In order to achieve a desired estimate covariance, we must understand the relationship be-

tween the various measurement types and each state variable. For example, if a node i has

a poor position estimate pi(k), the system must know which measurement would best con-

strain pi(k)—e.g. precise Rij(k) range measurements. Algebraically, for a given state variable

s`(k) ∈ s(k) we may specify a desired covariance term p∗` such that pi`(k) ∈ P (k) < p∗` ∀ i.

In order to achieve this covariance, we seek a measurement that will have the greatest effect

in reducing the true state covariance after another iteration of the EKF. To determine this, we
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can perform a dry-run of the SLATS algorithm in order to produce a hypothetical state esti-

mate sh(k + 1) with a corresponding covariance P h(k + 1) with column vector ph` (k + 1) =

[ph0` · · · ph(N−1)`]
T . The problem then reduces to choosing a measurement based on the follow-

ing:

z∗ = arg max
z
p`(k)− ph` (k + 1) (8.13)

where ph` (k+ 1) ∈ P h(k+ 1) is derived from the EKF state equations, omitted here for brevity.

In the linear case, we refer the reader to [Say11]. Because p`(k) and ph` (k+1) are vector-valued

quantities, we seek the maximum value of each element-wise subtraction in (8.13). For systems

where cross-covariance terms are negligible, p` can be considered as the scalar p``. In the more

general case, however, such as when a node’s position must be constrained in 3 axes, we must

seek to minimize all elements of the vector quantity p`.

As an example, we may want a 95% confidence interval of ±1 m position error. We can

specify p∗i = (1/2)2 = 0.25 for i being all position state variables—x, y, and z coordinates for

all nodes. Intuitively, we expect Equation (8.13) to drive system convergence using accurate

Rij(k) ranging measurements whenever the covariance exceeds 0.25 for any position estimate

axis. This is shown in Figure 8.19 for an example 2 minute experiment with a mobile quadrotor

node, where the error is bounded by±1 m (top), and where the quadrotor’s positional covariance

can be seen oscillating below p∗ = 0.25 due to Rij range measurements sent when pxyz > p∗.

At 20 seconds, the quadrotor has poor network connectivity, and pxyz temporarily exceeds the

desired covariance.

8.7 Discussion

SLATS is far from the first work to suggest the marriage of time and localization estimates–a

cursory read of Section 8.1.2 or any of the vast literature on GPS will say otherwise. Rather,

what SLATS introduces is a method by which time synchronization may be fused with timing-

based range estimates in order to provide accurate position estimates for commodity and con-
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Figure 8.19: Conditional range messaging with p∗xyz = 0.25.

sumer electronics at a decreased communication and power overhead with respect to the state-

of-the-art. Moreover, SLATS provides an elegant manner for specifying requirements in terms

of localization or time synchronization accuracy–inherently tuning a “knob” that trades power

for accuracy.

The SLATS architecture proposed in this work is not without several limitations and prac-

tical considerations, however. We discuss some of the key considerations in adopting SLATS

below.

8.7.1 Centralized and Decentralized Approaches

The SLATS architecture, as presented in this work, requires a centralized estimation entity.

This implies that the EKF algorithm must run on a single computational platform. For robotics

localization, high fidelity pedestrian tracking, or small-scale (e.g. smart home) deployments,

this is often a practical assumption. For large, multi-hop networks, however, a distributed ap-

proach would be more favorable. Future work will explore adapting the SLATS architecture to

a scheme that is more amenable to large distributed networks
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8.7.2 Antenna Orientation

UWB antenna orientation influences message timestamps and consequently range measure-

ment accuracy. We ignore this effect in this work, but the effect can introduce errors in the low

decimeters. This is difficult to account for without knowledge of device poses for the entire

network and without accurate models of 3D antenna orientation vs. signal attenuation. While

prior work has focused on characterizing these models (e.g. [TSW15]), it may also be feasible

to incorporate antenna attenuation as a state variable. Future work will explore fusing inertial

(particularly gyroscopic) measurements with ranging measurements to estimate antenna atten-

uation at run time.

8.7.3 Device Mobility and Timing Errors

The TOA- and TDOA-based SLATS solutions presented in this work are not well suited for high

mobility networks with the hardware and frequencies used in these experiments, as summarized

in Table 8.2. These methods will become increasingly viable as UWB hardware timestamping

continues to improve, and particularly as crystal stability (ppm) continues to improve, requiring

less frequent synchronization messages and allowing for tighter synchronization in general.

8.8 Conclusion

In summary, this chapter has described and evaluated SLATS–an architecture for simultaneous

time synchronization and positioning of mobile networks. Our results from numerous exper-

iments using real, custom ultra-wideband wireless anchor nodes and mobile quadrotor nodes

indicate that our architecture enables a number of localization strategies—from energy and

communication demanding position estimation techniques with 30 cm error, to more scalable,

time compensated single-sided range estimation with similar errors, and finally to highly scal-

able TOA and TDOA approaches with meter-level accuracy. Most notably, SLATS allows for

(i) mobile network graph realization, (ii) time synchronization with signal propagation compen-
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sation, and (iii) an emulation of GPS solutions in the indoor environment based on TDOA. This

research is made possible by state-of-the-art advances in commercial ultra-wideband radios,

and continued improvements to these devices will further underscore the importance of treating

temporal and spatial variables in a joint fashion.
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CHAPTER 9

Collaborative Localization and the Internet of Things

In Chapters 7 and 8 we demonstrated that advances in time measurement in (ultra-wideband)

packet radios have enabled accurate position estimation for commodity embedded devices. Be-

cause the system described in Chapter 7 is far more practical and affordable than high accuracy,

high fidelity motion capture technologies such as Vicon [vic], Optitrack [opt], we are motivated

to explore use-cases of this technology in more feasible sensor deployments—specifically, in

scenarios where one or more users has placed multiple smart and connected devices in an indoor

environment, such as a smart (automated) home or office. As connected smart devices—those

commonly referred to as devices making up the Internet of Things, or IoT—continue to grow in

number, enabling user interaction with these devices in an intuitive and scalable manner will be

a considerable challenge.

Consider a smart home with a family of four and several connected devices—controllable

lighting, locks, and the like. Current smart devices typically require an application to be in-

stalled on a mobile device in order to connect to and communicate with connected devices.

Additionally, users typically are burdened with providing semantic labels for each of their

devices–“living room light 2,” or “north east door,” for example. While such labels provide

intuitive control over a small number of devices, burdening a user with selecting a device label

amongst tens or hundreds of devices will prove cumbersome. This motivates the development of

a new technology to allow accurate and scalable control and communication with smart IoT de-

vices. Towards this, we focus on arguably the most intuitive and natural form of human-device

interaction—the “gesture.” We discuss recent efforts in this vein in the following section.
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9.1 Related Work

Considerable research in the past decade has considered gesture recognition in the smart home

setting. These efforts can largely be divided into three groups: (i) wireless-sensing based gesture

recognition using electromagnetic fluctuations such as doppler shifts in WiFi signals [AKK14,

AK13] and RFID signals [BBB14]; (ii) infrastructure-based gesture recognition such as those

employed by Microsoft Kinect [kin] and other depth sensors, and (iii) inertial measurement

based gesture recognitions like those detected by smart watches and other wearables [WRD16].

Wireless-sensing based gesture recognition such as the numerous efforts from MIT’s CSAIL

group (including [AK13]) provide coarse gesture recognition and pedestrian localization in an

area covered by WiFi MIMO technology. These efforts have demonstrated modest gesture

recognition accuracy, but these techniques do not apply easily to communication between mul-

tiple users and multiple devices. Specifically, these techniques are fundamentally limited in their

spatial resolution—that is, the ability to detect where and in what direction a gesture is made

relative to other distributed devices. Techniques based on depth sensors and cameras, although

potentially quite accurate, are typically limited to line-of-sight. Finally, while inertial based

gesture recognition on wearable devices can be very accurate and can perform “always-on”

sensing, due to continuous coverage of pedestrian motion, there is no inherent way of deter-

mining the “target” of a given gesture–that is, if a user would like to turn on a specific light,

how should she specify to which light she is referring? In fact, without augmenting the above

techniques with a position estimation technique coupled with the predetermined locations of

all smart devices, none of the above techniques can be used to directly control a specific device

based on human gestures, barring techniques that assign a special gesture to each unique device.

We propose a technique that allows specific device control, requiring no device configura-

tion or position estimation. We base this technique on ultra-wideband ranging using the hard-

ware and analysis methods developed over the previous chapters. For this chapter, we consider

a user wearing a smartwatch equipped with an inertial measurement unit (IMU) and a UWB ra-

dio, arguing for the adoption of UWB packet radios for wearable devices in the near future. The
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Figure 9.1: Gesture based IoT device selection using wearable devices

description of this IoT device selection technique is the the subject of the following sections.

9.2 IoT Device Selection

Consider a user with a wearable device such as a smartwatch in an indoor environment equipped

with a number of smart (and connected) devices. We will assume that the smartwatch and all IoT

devices are equipped with a UWB radio—perhaps a strict assumption, but given the success and

growing adoption of UWB packet radios, we anticipate that they will permeate the IoT scene in

the next few years. An illustration of this set up is given in Figure 9.1 for a few example IoT

devies.

We consider a network of N IoT devices and, for the sake of simplicity, a single user u

whose wearable device is mobile with (initially) unknown position. We denote the position of

a node ni, i ∈ {0, . . . , N − 1} by pi = [x, y, z]T . The location of the mobile user device

is correspondingly denoted pu. In order to “select” an IoT device ni∗ to control, a user must

“point” towards that device. Here i∗ is used to denote the desired IoT device the user wishes to

control or communicate with. The goal of this pointing gesture is to create a motion such that

the distance between ni∗ and nu decreases by a magnitude greater than the distance between nu
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Figure 9.2: NTB “watch” companion. This is an UWB-capable, battery-powered mobile tag
for users to carry or wear, allowing for range estimates in real time. The tag is also equipped
with Bluetooth LE, sending range and anchor information to supported mobile devices such as
smart phones.

and ni for i 6= i∗. If the IoT devices comprise a fully connected graph, communication between

all nodes might allow us to detect i∗ by solving the following idealistic problem:

i∗ = arg max
i
‖pi − pu(ts)‖2 − ‖pi − pu(tf )‖2 (9.1)

where ts is the time at which the user begins to point, and tf is the time the user stops pointing

(with arm fully extended). Problem 9.1 relies only on pairwise range estimates between a

user’s (wearable) device and various IoT devices. Unfortunately, range estimation errors even

in double-sided two-way ranging techniques disallow a simple selection algorithm like that

illustrated above due to a number of factors, namely range noise, pointing “length” and spatial

“diversity,” as discussed below.

9.2.1 Spatial Resolution & Gesture Length

When a user points (or makes any gesture towards) an IoT device, the length of that gesture

inherently defines a signal to noise ratio, or SNR. We denote this length `, and we assume

range errors to be non-zero mean Gaussian distributed by r ∼ N (µr, σ
2
r). This error is not
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Figure 9.3: Ranging errors and angular (spatial) resolution in gesture-based IoT device selec-
tion.

necessarily i.i.d, but for the sake of simplicity we will assume that range error is independent

in time. Additionally, when a user points “towards” an IoT device in order to select, control,

or communicate with it, the user may point with some angular error θ̃. Additionally, given the

user’s true position pu, there exists some minimum angular distance θmin between the desired

IoT device ni∗ and any other device nj . In the extreme, this angle could be θmin = 0 radians

if a second, unwanted device is co-linear with the user and the preferred device ni∗ . In such a

case, it is impossible to accurately detect which device a user wants to communicate with using

gestures alone. These various errors and parameters are illustrated in Figure 9.3. In the case

of high spatial diversity—i.e. when θmin is quite large—and when ` is large with respect to

σ2
r , it is reasonably easy to distinguish between the device a user is pointing at, ni∗ , and any

other device nj . An illustration of the range measurements between user and all IoT devices—

i.e. estimates of the quantity ‖pu − pi={0,1,...,N−1}‖2
2—during the duration of a single “pointing

event” with high spatial diversity is shown in Figure 9.4. In this illustration we distinguish

between “True Traces” in red—those corresponding to the distance estimates between user and

ni∗—and “False Traces” in blue—those corresponding to range estimates between the user and

any other device. Clearly the two traces are easily separable using the difference in range

estimates ∆R = ‖pi − pu(tf )‖2 − ‖pi − pu(ts)‖2. Inspection of ∆R shows that an average

point length ` ranges from about 30 cm to about 80 cm, depending on the length of the arm and

the gesture itself. From earlier chapters, we demonstrated range error magnitudes in the range

of σ2
r = 10− 30 cm using the specified UWB radios.
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Figure 9.4: Example range traces during one event of a user “pointing” at a device equipped
with UWB ranging technologies. This example is in an environment with high spatial diversity.

In the case of low spatial diversity in the face of non-ideal range measurements, the simple

metric ∆R no longer suffices as a reliable metric for disambiguating desired IoT devices and

other IoT devices. As an example, Figure 9.5 shows estimated range differences for a low spatial

diversity environment—in fact, the same environment depicted in Figure 8.7. In this case, the

true range measurement traces—those measuring the distance to the desired IoT device—follow

a reasonably predictable pattern. Those measuring distance to all other IoT devices, however,

have high variance, making it more difficult to distinguish between “true” and “false” range

traces.

In these cases, it is perhaps easier to look at the distance metric ∆R itself. This is depicted

in Figure 9.6, where the overlap between True and False range differences is readily obvious

in the range of -0.5 to -0.8 m. Clearly, in order to provide high accuracy device selection we

need to explore additional metrics. In the following section, we will explore a more principled

approach to the device selection problem, keeping device power and computational overheads

in mind.
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Figure 9.5: Example range traces during one event of a user “pointing” at a device equipped
with UWB ranging technologies. This example is in an environment with low spatial diversity.

9.3 Device Selection by Pattern Matching

We’ve demonstrated thus far that a single metric of estimated distance changes, ∆R, is insuf-

ficient in reliably detecting the device a user is pointing towards. This motivates the use of

additional metrics in distinguishing desired and undesired devices. Several of these are dis-

cussed below.

Linear Fit:

In the ideal case, a user will point directly towards the device that she wants to select, following

a nearly linear path. In figure 9.3 we have shown this path to be curved to illustrate that in

general this may not be true, but in most cases the pointing gesture can be thought of as a path

from pu(ts) to pu(tf ). Any divergence from this fit could indicate that the range estimate trace

could belong to an undesired device. More specifically, if we estimate a linear fit r̂ui(k) =

‖pu−pi‖2 + vk describing the range estimate between nu and ni for a given device i and noise

v, we describe the badness of fit as the mean squared residual—msr = 1
k

∑
k v

2
k. Intuitively, a

higher msr should indicate a poorer linear fit and consequently a less likely trace “candidate.”

Path Loss:

The accurate timing provided by UWB radios is enabled by measuring the energy in the radio’s
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accumulator corresponding to the communication along the first path. One consequence of this

accurate timing is that the same energy can be used to estimate the power of the communication

along the “first path” of communication—typically the line-of-sight path. Intuitively, a user is

likely to point to a device that is within line-of-sight, so the correct (desired) device is likely to

have low first path loss, which we denote fploss and measure in dBm.

Beginning Range:

Similarly to fploss, it is likely that, if a user is pointing towards to co-linear devices, the desired

device is the closer of the two. Because of this, we give some weight to selecting the closest

device.

Angular Divergence:

As a user points from pu(ts) to pu(tf ), he is attempting to point as closely towards a device as

possible. In an ideal case, the line between start and finish is perfectly co-linear with the coordi-

nates of the IoT device itself. In practice, however, there is some angular divergence θ̃ as shown

in Figure 9.3. In order to calculate this angle, however, we must know the device position pi

as well as the start and stop position of the user’s device. This requires a collaborative position

estimate among multiple IoT devices, which assumes a certain device density and additionally

consumes more power due to added communication costs. When possible, however, θ̃ can be

used to increase the accuracy of gesture-based IoT device selection.

9.3.1 Feature Vectors

We combine the previous “features” into an aggregate feature vector, defined as

f = [msr, fploss, r̂(ts), θ̃]
T (9.2)

Here we have included the expensive feature θ̃, but we will also demonstrate results that omit

this feature in order to provide more realistic results for sparse deployments and restricted en-

ergy reserves. For each pointing event, there will be N features constructed and correspond-

ingly N feature vectors, barring communication errors. Of these, 1 feature vector will belong
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Figure 9.6: Range difference, ∆R, for true and false (ni∗ and ni 6=i∗) as a probability density
function.
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Figure 9.7: Motion capture ground truth calculation for IoT gesture-based device selection.
Results shown use an OptiTrack motion capture system.

to a “True” device—ni∗—and N − 1 will belong to “False” devices. Thus, we label a feature

fi as 1 if it is estimated to be the True device and 0 otherwise.

9.4 Classification Methods

In order to evaluate the gesture-based IoT selection system, we perform a series of points us-

ing a prototype UWB “smartwatch,” with infrared reflectors for use with an OptiTrack motion

capture system. We use the motion capture data to detect pointing events, which we perform

in groups of 5 to ensure accurate ground truth detection. The motion capture provides sub-

millimeter position estimates at 60 Hz throughout the duration of each pointing event, allowing
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us to accurately tell when and to which device a user is pointing.

An example of these ground truth pointing events is shown in Figure 9.7, where red squares

indicate successfully detected pointing groups. Note that there are likely missed pointing

events—this occurs most often when the ground truth data is poor, and so pointing events are

ignored so as to not contaminate the testing results.

From each feature vector we can estimate whether a particular IoT device is selected or not,

but this approach ignores any potential communication or collaboration between connected IoT

devices. We introduce two potential classification modes, described below.

Non-collaborative Classification: In non-collaborative classification, each IoT device op-

erates independently, attempting to classify itself as selected or unselected. Other than the com-

munication with nu required for range estimates, no additional communication is performed.

This saves power, but it comes at the cost of very high selection errors.

Collaborative Classification: In collaborative classification, devices are allowed to com-

municate. Rather than sending entire feature vectors, however, each device will send only a

summary of their classification results indicating the certainty with which the classification was

made. This allows the network to arrive at a consensus of maximum certainty for which device

was selected, allowing for collaboration without prohibitively high communication overheads.

9.4.1 Results

We performed classification for non-collaborative and collaborative schemes using a support

vector machine (SVM) and random forest (RF). Note that both of these classifiers can be imple-

mented in embedded hardware quite easily, requiring additions and multiplications in the case

of linear SVM (or slightly more complex mathematical operators for alternate kernels) and a

series of conditionals in the case of RF. The results for both non-collaborative and collabora-

tive classifiers (as discussed above) are shown in Table 9.1 for SVM using linear, radial basis

functions (rbf), and polynomal kernels as well as random forest classifiers.

In non-collaborative classifiers, we attempt to independently classify each device as having
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Table 9.1: Classification results for gesture-based IoT device selection, using both non-
collaborative and collaborative techniques.

Non-collaborative Classifier Precision (%) Recall (%) F-Score (%)
Support Vector Machine (linear) 39.5 91.7 55

Support Vector Machine (rbf) 52.7 90.5 65
Support Vector Machine (poly) 64.7 85.8 71.2

Random Forest 59.4 93.2 68.6
Collaborative Classifier Accuracy (%)

Voting on SVM (poly) 88
Voting on RF 93

been ‘selected’ or not selected. In this case, classification accuracy is quite low, with polynomial

kernel-based SVM and random forest classifiers performing the best, with high recall percent-

ages (around 85-93%) but a very low precision, at around 60-65%. Note here that precision

and recall are defined with respect to true positives (tp), false positives (fp), and false negatives

(fn). Specifically, we have precision = tp/(tp + fp) and recall = tp/(tp + fn). Intuitively,

precision represents the percentage of events that are reported as positive events and are indeed

positive. Recall, on the other hand, represents the percentage of total positive events that are

correctly classified. F score is defined as F = 2 precision·recall
precision+recall

, so that F = 100% represents a

perfect classifier.

Collaborative classifiers, on the other hand, have a greatly improved accuracy. This is

due to the voting scheme between all N IoT devices done subsequently to non-collaborative

classification–we now communicate classification certainties between all devices, arriving at a

maximally certain positive label. In particular, in the case of SVM we communicate the margin

between a datapoint and its n-dimensional polytope. In the case of RF, we communicate the

numerical average of the ensemble prediction. In doing so, we achieve an accuracy of 88% for

collaborative polynomial SVM, and 93% for collaborative RF. Here we report only accuracy,

because at any given pointing event we know that only a single IoT device out of N possible is

selected. The accuracy is the percentage with which we will choose the correct device. Recall

that this 93% is in a 9×10 meter room with 8 devices deployed, or almost 1 device for every 12

m2 (or 3.5×3.5 m square), which is a very dense deployment.
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9.4.2 Comparison with Related Work

In order for the proposed architecture to be viable as a technology for selecting and controlling

IoT devices, we must demonstrate that it is scalable and accurate, particularly in comparison

with existing or recently proposed methods. Given the deployment density of wireless devices

in our lab, we can support a pointing resolution of roughly 1.5 m between devices. In other

words, if we had a dense deployment of controllable LED lighting in a smart home setting,

these fixtures would have to be spaced apart by 1.5m in order for our system to disambiguate

them from pointing gestures made 10m away.

As a point of comparison, WiFi-based 3D tracking and pointing recognition like the work

demonstrated by Fadel Adib et al. [AKK14] demonstrates 1 m positioning errors and a point-

ing direction accuracy of 10◦. While independently these two results are quite impressive,

this resolution implies that at a distance of 10 m, pointing-based device selection would incur

±1m± 10 tan(10◦), or a swing from -2.76 m to 2.76 m—much greater than our demonstrated

results in this chapter. On the other hand, a more accurate result can be achieved using depth

sensors like those used in the Microsoft Kinect and Leap Motion. For example, Jing et al.

demonstrate a device selection with a resolution of 0.6 m using the Kinect [JY]. This, how-

ever, requires the user to be within view of a Kinect unit (with a range of about 3.5 m), and

it requires multiple, expensive sensors deployed at various intervals throughout the home or

office–prohibitively expensive in most scenarios.

The work most closely related to the methods presented in this chapter is that of Mayton

et al. in developing “WristQue” [MZA13]. WristQue is a wearable watch-like device that

contains a magnetic field sensor in order to detect pointing directions based on pre-measured

and modeled magnetic field maps for specified indoor environments. Based on detected pointing

directions and installed UWB infrastructure that allows for full trilateration-based positioning,

[MZA13] provides a similar 1.5 m accuracy in device selection resolution. Note, however,

that this method requires painstaking modeling of each room’s magnetic field (which could

potentially vary over time) and depends on trilateration of ultra-wideband ranges–something

that necessitates three or more UWB devices. The method proposed in this chapter can work
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for as few as one device, and requires no modeling or pre-calibration prior to operation.

9.4.3 Power Analysis

This device selection technique targets IoT devices that are potentially battery powered. Be-

cause of this, care has to be taken to ensure that power consumption is minimized. Here we

briefly analyze power consumption for just the mobile (e.g. smartwatch) device that the user

carries. Note that in practice, some of the stationary (anchor) IoT devices may be battery pow-

ered as well, and in these cases a low power sniffing strategy should be employed for listening

to messages from the mobile device. For the mobile case, we will ignore the energy cost of

computation for classification, as this is dwarfed by the energy required to transmit and receive

using the DW1000 UWB transceivers.

In the idle case (when the smart watch is not ranging and is idle, listening for a gesture),

6µW of power are consumed. When transmitting or receiving, there is a 5ms wakeup period

during which 3mW of power are consumed, followed by a 260 mW for 200µs for TX and

370 mW for RX. We will ignore the sleep power consumption (6 µW ) for now, as it will be

overshadowed by the processing consumption and analog conversions for gesture detection on

the smart watch. These power numbers are derived from [dw1]. For N IoT devices, energy

consumption during each “pointing” session is calculated as follows:

E = K ·N∗(Ewake + 2 · (ETX + TRXPRX)) (9.3)

= K ·N∗(15µJ + 2 · (52µJ + 370µJ))

with a listen period of TRX = 1ms following each transmit (and expected response). Here

N∗ represents all nodes within communication range, rather than the full number of networked

devices, and K is the number of range measurements calculated per node—roughly 20, in

the above experiments. For N = 8, as is the case in the results shown here, we have E =

137.4mJ per point. For today’s smart wearables, a battery with between 750 and 1400 mWh is

common—this gives between 2.7kJ and 5kJ in each battery, meaning that if, for example, 100
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pointing gestures are made each day, there is a 0.27% to 0.5% overhead in battery life. This

is a very reasonable price to pay for the added convenience of high fidelity gesture-based IoT

device selection. With improvements in commodity UWB hardware, however, it is likely that

this overhead will decrease further.

9.5 Final thoughts

This chapter demonstrated a departure from the graph realization approaches of previous chap-

ters, though it built upon some of the results from Chapter 8. This chapter offers a final scenario

underscoring the importance of joint optimization in mobile localization networks. In this case,

joint classification allows for dramatic increases in IoT device selection based on user gestures

(or “pointing,” to be precise). This can be seen as a reduction in user overhead—that is, the

burden placed on users to control an increasing quantity of connected devices.

113



CHAPTER 10

Discussion

This work demonstrates various advantages to joint optimization over a variety of sensing and

estimation subsystems in mobile devices. More precisely, we made the claim that sensor fusion

and graph realization techniques offer an elegant framework for constraining localization prob-

lems with less expensive (in terms of power or cost) sensors, thereby decreasing the overheads

commonly associated with precise positioning schemes.

We began by demonstrating work in both RF (Bluetooth) signal strength based localization

and RF time-of-flight localization. This served to underscore the weaknesses present in both,

motivating the need for fusion techniques to unite the strengths of these techniques and mini-

mize their overheads. For example, while signal strength methods have poor ranging accuracy,

they are inexpensive and scalable. On the other hand, time-of-flight techniques have greatly

improved accuracy at the cost of increased cost and increased wireless congestion.

We then continued to discuss graph realization techniques (specifically nonlinear least squares

GRP solvers) as they pertain to (i) inertial-based path estimation refinement, and (ii) model-

training for RF fingerprint localization. The former demonstrated a method for constraining

error-prone inertial dead reckoning techniques by incorporating “encounters” between one or

more users at various points in time, refining historical position estimates for all users based on

GRP that acknowledged relative angles, distances, and positions of user estimates across time.

The latter demonstrated how, similarly, GRP formulations served to use inertial path estimates

as a means to constrain RF samples taken at various points in an indoor environment. This

allowed for decreased overheads (in terms of model training time) when constructing Gaussian

process maps for subsequent use in RF fingerprint-based localization. This particular work was
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demonstrated in a Microsoft indoor localization competition in Seattle, Washington.

Chapter 6 demonstrated an additional application of joint optimization with inexpensive

sensors in the outdoor localization setting. Here, when presented with very coarse geolocation

information—e.g. from IP mapping—we were able to use pressure sensors to predict driving

patterns with accuracy within one city block. This demonstrated an extreme point of “cooper-

ative” localization across the sensing stack—localization estimates may still be obtained even

when power consumption is cut by several orders of magnitude. For applications where very

rough estimates are adequate—city scale traffic analytics, providing contexts for social services,

etc.—this provides a much improved solution for low power positioning services.

Returning to the indoor setting, we discussed in Chapter 8 joint optimization of position and

time—a measurement that can be thought of as a sensor in an of itself, prone to measurement

errors such as offset, drift, and noise. We referred to this work as SLATS, or simultaneous

localization and time synchronization. The driving idea was that the intimate relationship be-

tween time and range measurements could be used to provide accurate position estimates at

decreased cost in terms of power and RF congestion. In particular, while time-of-flight range

measurements based on ultra-wideband RF commonly require 3-way messaging schemes, we

demonstrated that 2-way or even one-way messaging can be used to provide accurate indoor

positioning by fusing accurate clock models learned jointly with position estimates. We demon-

strated these results using custom RF expansion boards for commercial quadrotor drones as well

as for pedestrian tracking systems.

Finally, we demonstrated how ultra-wideband range measurements can be used to provide

an accurate, scalable, and low-power method of wireless IoT device selection based on users

“pointing” towards desired devices while wearing compatible devices on their wrist (e.g. a

smartwatch). We demonstrated 93% device selection accuracy even with high device deploy-

ment density.

In performing the research described above we realized the need for infrastructure that fa-

cilitates quick and easy deployment of custom wireless devices, including providing power,

wireless (and wired) connectivity, power measurement, and debugging. We developed a cus-
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tom hardware solution in an attempt to ease deployment burden. Our solution—NTB or the

Networked Test Bed—is intended as an open-source contribution for those requiring quick pro-

totype deployments as well as remotely controllable power, lighting, and measurements. This

test bed is currently in use with several additional projects at UCLA outside the scope of this

dissertation.

We believe this work demonstrates several valuable contributions to the community of in-

door localization, and it opens up opportunities for future work as well, as discussed below.

10.1 Future Work

We leave several potential extensions of the work presented in this dissertation as future work.

These include:

SLATS for Distributed Networks: The simultaneous localization and time synchroniza-

tion architecture presented in this work requires a centralized Kalman filter state estimator.

While this is quite practical for settings including small scale homes or offices or high fidelity

robotics localization systems, it does not scale well to large, multi-hop networks where commu-

nication to a centralized entity may be limited or resource-constrained. One extension to this

work would be that of exploring distributed approaches towards fusing time synchronization

and localization or ranging estimates.

Single-anchor UWB Localization: The mobile UWB tag (or watch, as we call it) demon-

strated in several chapters of this work allow for accurate indoor localization of mobile devices.

This watch also contains an inertial measurement unit, and a natural extension of this work

could include fusing inertial-measurement-based path estimates with sparsely available UWB

range estimates given only a single anchored device in an indoor setting. Such a system would

demonstrate an incredibly scalable and practical localization system for home and office envi-

ronments.

IoT Device Control: We have demonstrated how ultra-wideband can be combined with

pattern recognition classifiers to accurately identify a connected device that a user would like
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to communicate with. Future work could easily extend this work to create a fully fledged

architecture, allowing an “alphabet” of gestures that can be used for general devices upon a user

having selected a given device.
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APPENDIX A

Time-of-flight Ranging Equations

In deriving equations for single- and double-sided two way ranging, we reference variable

names in Figure 8.6 and omit time index k. We use the shorthand [tx]
i
j to denote time tx ini-

tially measured with respect to node ni’s local clock but converted to node nj’s local clock.

Additionally, [tx]
i is equivalent to [tx]

i
i and, when unspecified, tx is equivalent to [tx]

j
j .

Single-sided two-way ranging, rij:

TRND1 = t5 − t2

= (t2 + [TRSP1]ij + 2Tp)− t2

= 2Tp + [TRSP1]ij

Tp = (TRND1 − [TRSP1]ij)/2

‖p∗i − p∗j‖2 =
c

2
(TRND1 − [TRSP1]ij)

=
c

2
(TRND1 − [TRSP1]i(1 + bj − bi))

≈ c

2
(TRND1 − [TRSP1]i) = rij

rij =
c

2
(TRND1 − [TRSP1]i)

= ‖p∗i − p∗j‖2 +
c

2
[TRSP1]i(bj − bi)

Symmetric Double-sided two-way ranging, Rs
ij:
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TRND1 = 2Tp − [TRSP1]ij

[TRND0]i = 2Tp − [TRSP0]ji

4Tp = TRND1 + [TRND0]i + [TRSP1]ij + [TRSP0]ji

‖p∗i − p∗j‖2 =
c

4
(TRND1 + [TRND0]i + [TRSP1]ij + [TRSP0]ji )

≈ c

4
(TRND1 + [TRND0]i + [TRSP1]i + [TRSP0]) := Rs

ij

Asymmetric Double-sided two-way ranging, Rij:

Asymmetric double-sided two-way ranging can be derived by arithmetic manipulation of prop-

agation delay calculations shown below. This has added robustness when TRSP0 6= TRSP1 as

compared to the symmetric two-way ranging above.

‖p∗i − p∗j‖2 = cTp

= c
Tp · 2(Tp + [TRSP1]ij + TRSP0)

2(Tp + [TRSP1]ij + TRSP0)

= c
4T 2

P + 2Tp[TRSP1]ij + 2TPTRSP0

2TP + 2TRSP0 + 2[TRSP1]ij

= c
(2TP + TRSP0)(2TP + [TRSP1]ij)− TRSP0[TRSP1]ij

(2TP + TRSP0) + (2TP + [TRSP1]ij) + TRSP0 + [TRSP1]ij

≈ c
[TRND0]iTRND1 − TRSP0[TRSP1]]i

[TRND0]i + TRND1 + TRSP0 + [TRSP1]i
:= Rij
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