
UC Irvine
ICS Technical Reports

Title
Communication synthesis for reuse

Permalink
https://escholarship.org/uc/item/9w30z73n

Authors
Kleinsmith, Jon D.
Gajski, Daniel D.

Publication Date
1998
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9w30z73n
https://escholarship.org
http://www.cdlib.org/


Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Communication Synthesis for Reuse

Jon D. Kleinsmith

Daniel D. Gajski

Technical Report ICS 98-06

February 1998

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92692-3425, USA

(714) 824-8059

jon@ics.uci.edu

gajski@ics.uci.edu

Abstract - In this report we discuss a set of techniques needed to generate and synthesize communication interfaces in a System
Design context. Given a behavioral specification,we present the transformations necessary for generating a communication model
coqtaining channelsand protocol. This work is heingconducted in conjunction withcodesign toolsbeingdeveloped in the CADLAB
at the University of California, Irvine.



I. INTRODUCTION

The increasing complexity of mixed hardware/software
systems and short time-to-market demands requires that
tools and methodologies be developed to support this co-
design at higher levels of abstraction in order to allow the
designer to rapidly specify, explore and refine a given prod
uct. In a system design methodology, a given design can be
described as a set of interacting behaviors each communicat
ing with the others [1]. The communication between these
behaviors can take on many forms, from global memory
accesses to complex protocol over common buses. At the
system level, communication can be seen as auxiliary behav
ior which may be synthesized into hardware or translated
into software within the system.

The designer may spend a great deal of time defining and
specifying protocols and communication interfaces between
system components. It is our intent to shorten this task and
relieve the designer of some of the tedium of communication
synthesis including protocol generation, communication
channel insertion and interface specification. Ideally, a
designer should be able to specify the mode and method of
communication as part of the system being designed. How
ever, this assumes that the final partitioning of the system has
been completed in the designer's mind and will not change
during synthesis.

More realistically, though, a system partitioning will
evolve through allocation, scheduling and estimation, until a
viable partition is reached. At this point, shared variables
across partitions can then be examined. These variables may
then be mapped to the local memories of individual process
ing units (PEs) and, once an architecture has been estab
lished, a message-passing scheme may be imposed allowing
variable sharing through allocated buses. References to
shared variables must be replaced by protocol-specific func
tionality that will allow transfer of these variables across a
communication channel between the components.

In order to achieve a high level of reuse, change to the sys
tem must be compartmentalized or limited in scope such that
change remains local. The model and methodology pre
sented in this paper ensure that system functionality is sepa
rated from communication in such a way that system
components may be easily replaced. Communication
between components is then generated in accordance with
their individual protocols.

In this paper, we introduce a communication synthesis
methodology and describe the steps involved to take a sys
tem-level description and refine it into a model that contains
the behavior necessary to describe detailed communication
between components including complex protocol genera
tion. An example of the channel insertion and refinement
process will be presented in order to illustrate the details of
the methodology.

In the first section, we present the communication synthe
sis methodology and give a brief overview of each step in the
process. Next, we discuss communication refinement.

wherein shared variables are replaced by abstract channels
and remote procedure calls enact communication between
components. The Channel Insertion algorithm is developed
and discussed. We then describe the two remaining steps in
communication synthesis, inlining and interface generation.
Algorithms and examples of both are introduced and
detailed.

II. COMMUNICATION SYNTHESIS

Communication synthesis is an integral step in a system
design methodology. As proposed in [1] and [3], communi
cation synthesis is performed after the greater portion of the
system has been specified and behavior mapped to compo
nents in a selected architecture. In this methodolgy, the
designer specifies the behavior or functionality of the system
using a specification language, in particular SpecC. Follow
ing specification, a target architecture is generated through
the allocation of processing elements from a library of such
components. The specification must then be mapped or par
titioned onto these processing elements. Allocation and par
titioning may be repeated until a feasible architecture is
achieved. At this point, one or more distinct behavioral tasks
may have been mapped to a single processing element. If this
is the case, an ordering or scheduling of these tasks must be
performed while maintaining correct functionality and satis
faction of system constraints.

Olobai Menu r>
Model

Communica
Model

SpecC ftoiocol
Description

Synthesize ASICs

Generate Protocol

Timing Oiegcam
(annotat^)

Generate Protocol

Fig. 1. Communication Synthesis Flow

Communication synthesis then begins with a partitioned
specification, wherein various components or behaviors enti
ties interact and communicate via shared variables left over

from the original, unpartitioned specification. It is assumed



that scheduling has already been performed on the parti
tioned model. This specification is referred to as the Global
Memory Model in Figure } and can be seen graphically in
Figure 3.

The goal of communication synthesis should be to pro
duce a complete specification, describing the structure and
functionality of the system. Hardware objects in the specifi
cation should be synthesizable and ready for hand-off to
available synthesis tools. Software elements should be com
piler ready.

Communication synthesis consists of five main tasks:

A. Generate protocol.

The first task in communication synthesis is the genera
tion of protocols, that is, communication protocols must be
described in a form usable by high-level synthesis tools and
yet suitable for simulation. This process starts with an anno
tated timing diagram describing the given protocol. This dia
gram would not only include the temporal state of signals but
the causal relationships between them with associated delay
as seen in Figure 2. Using the causal relationships, the vari
ous events (signal changes) can be grouped and scheduled
according to direction, concurrency and dependencies. This
schedule can then be translated into a behavioral specifica
tion, using an FSM model to delineate the various states in
the schedule in order to ensure synthesizability.

data XXX Y ivalid I
?-T

ydl* d2 \d3i

valid y XXX

Fig. 2. Annotated Timing Diagram

B. Channel Refinement.

Starting from a partitioned behavioral specification with
components communicating through shared global variables,
the specification will undergo a series of transformations that
result in a model in which each shared variable is encapsu
lated by an abstract communication channel. The channel
controls access to the variables and captures the functionality
of a specified protocol. In addition, the component is modi
fied to reflect this design decision. We use a remote-proce
dure-call (RFC) scheme to facilitate the passage of data from
one component to another. The channel object maintains the
definition of the remote functions which describe the channel

protocol. The process of incorporating channel objects into
the specification is discussed in the next section. This pro
cess is referred to as channel refinement.

The designer must select one or more channel objects

from a library of channels. These channels can either be
generic, containing the description for a simple bus and
handshake protocol, or they may describe complex commu
nication via PCI, VME or some such standard protocol.
Additionally, the designer may have a custom scheme in
mind which too, may be part of the library. In any case,
channel(s) must be allocated for the system. Next, shared
variables between components must be partitioned to one or
more instances of an allocated channel, meaning one or more
channels will exist between communicating components.
Once variables have been encapsulated by channels, chan
nels may be examined for compatibility, throughputand per
formance. The designer may wish to group or merge
channels based on width, variable lifetime, access frequency
or some other metric. Channels merged in this fashion
become superchannels and may require resolution or arbitra
tion between multiplecomponents. Details of channel merg
ing and related design issues are not discussed in this paper
and are the subject of future work.

C. Interface Generation

In the case of previously designed components, those hav
ing their own established communication protocols, inter
faces to the remaining components in the system must be
generated and can take the form of yansducers [2] between
components. The transducer object may be viewed abstractly
as a set of dual, ordered relations between opposing signal
groups. That is, a particular "view" of the protocol, either on
the sender side or receiver side, is captured and reversed. As
such, the transducer generates the signals necessary to sat
isfy the protocols of either component it is linking. This
object can then be realized as a FSM and may be synthesized
as another hardware component, merged with another syn
thesizable component or be translated to software running on
an associated processor [4].

D. Inline Channel.

Behavior that has been partitioned and allocated to an
undefined component may have its communication function
ality inlined. Namely, the behavior or logic necessary to ini
tiate a communication transaction, formerly located in the
channel object is placed inside the partition that utilizes that
functionality. This communication behavior can the be
handed-off to be synthesized with the rest of the compo
nent's functional behavior.

E. Synthesize ASICs.

Finally, after protocols have been inlined and transducers
have been generated, synthesis of the undefined behavioral
components, including interface components, may be com
pleted using current high-level synthesis techniques.

In the next section, the refinement process is more fully
explained and an example is given, illustrating the steps
involved.



ni. COMMUNICATION REFINEMENT

Communication refinement begins with a partitioned
specification which is assumed to share data through com
mon, global memory objects as shown in Figure 3, and a
behavioral description of the protocols to be used. Transfor
mations are then performed on the specification in order to
remove global variable references and replace them with the
appropriate behavior to realize the given protocol.

Global Memory

X= y + 2;

Fig. 3. Global Memory Model

We begin with the partitioned behavioral specification of a
system containing two components, ASICl and ASIC2.
These components are communicating through the global
variable Gdata which is an array of bytes and can been spec
ified as follows:

Entity System is concurrent subbehaviors
ASICl;

ASIC2;

end System;

type byte is bit_vector(7 downto 0);
variable Gdata is array(l to n) of byte;

ASICl : process
variable local_byte byte;

begin
for i in 1 to n loop

- generates byte of data;
Gdala[i] <= locaJ_byte;

end loop;
for i in 1 to n loop

Gdatali] <= Gdatafi] XOR MASK 1;
end loop;

end ASICl;

ASIC2 : process
variable x byte;

begin
while (idone) loop

X:= Gdata[i] AND MASK2;

i := i+1;

if (condition 1) then
done ;= 1;

end if;

end loop;
end ASIC2;

The protocol specification would have been generated
firom a timing diagram that has been annotated to indicate
signal direction as well as causal relationships between sig
nals. The designer may generate a protocol specification by
dividing the timing digram into a set of events in which inde
pendent signal assignments may occur. Causal dependencies
between signals result in wait statements and act as bound
aries between events. For example, a protocol similar to the
one presented in Figure 2 may be decomposed and would
result in the following procedures to send and receive data
across the signal port. This protocol is a simple asynchro
nous scheme where the sending process raises a signal snd
and applies the data to the data port. These signals will be
maintained until the data is received and an acknowledgment
signal ack is raised indicating that data is no longer needed.
At this point snd and data are lowered or are no longer valid.
Conversely, the receiving process waits for a valid data
which is recognized through a raised snd signal. After latch
ing the data, the receiver will raise an acknowledgment sig
nal ack to complete the handshake.

send_byte(byte data, byte port) is

begin

snd <= '1';

port <= data;

wait on ack;

snd <= '0';

end send_byte;

receive_byte(byte data, byte port) is

begin

ack <= '0'

wait on snd;

data <= port;

ack<= T';

wait on !snd;

ack <= '0';

end receive_byte;

A. Channel Insertion

The operations necessary to transform the global memory
model begin with the replacement of each global variable
reference within each component of the system. A compo
nent containing such a reference must have a local variable
instantiated representing the global variable. Structurally,
this has the effect of placing the variable in a memory local
to the functional unit. Next, each occurrence of the global
variable as referenced in the functional description is
replaced with a reference to the local variable.



FTJl portl
vat x_f1;

x_fl = y + 2;

portl<= x_fl;

Global Memory

FU2 port2^
var x_f2;

x_f2 = port2:

z=^x_f2+l;

Fig. 4. Local Memory Model

Next, each component is examined for instances of global
variable references. If found, a local variable is inserted and
each global reference is replaced by a reference to the local
variable. This is illustrated in Figure 4, and can be seen tex-
tually in the code segment below.

signal byte_port is byte;
—variable Gdata is array(l to n) of byte;
ASICl : process

variable local_byte byte;
variable ASICI_Gdata is array(l to n) of byte;

begin
for i in 1 to n loop

- generates byte of data;
- Gdata[i] <= local_byle;
ASICl_Gdata[i] <= local_byte;

end loop;
for i in 1 to n loop

- Gdata[i] <= Gdata[i] XOR MASK!;

ASICl_Gdata[i] <= ASICI_Gdata[i] XORMASKl;
end loop;
for i in 1 ton loop

send_byte(ASICl_Gdata[i], port);
end loop;

end ASICl;

Fill portl
varx_fl;

x_f1 = y + 2;

send(x_fl,
portl);

FU2 port2
var x_f2;

receive(x_f2,
port2);

z=xJ2 +1;

Fig. 5. Channel Placement

Next, send and receive calls must be inserted in the parti
tions for each global variable. Send and receive represent
remote procedure calls to the behavioral specification of the
protocol. In partitions acting as producers, a send call in
appended, whereas, consumers require a prepended receive
call. This can be seen in Figure 5.

ASIC2: process
variable ASIC2_Gdata is array(1 to n) of byte;
variable x byte;

begin

for i in 1 to n loop
receive_byte(ASIC2_Gdata[i], port);

end loop;
while (Idone) loop

- X := Gdata[i] AND MASK2;

X:= ASIC2_Gdata[i] AND MASK2;
i:=i+l;

if (condition!) then
done := 1;

end if

end loop;
end AS1C2;

Finally, ports are added as described in the protocol speci
fication and width differences between the transferred

objects and the ports are resolved, inserting loops or padding
of the data as necessary.

B. Channel Insertion Algorithm

Based upon the previous description, the channel insertion
process may be encapsulated in an algorithm, which will be
the basis for a tool to automatically perform the necessary
transformations on a given specification. The channel inser
tion algorithm takes as input a protocol specification contain
ing send and receive procedures and a partitioned system
description communicating through global variables and
returns a communication model wherein components com
municate across channels via send and receive procedures.

Algorithm; Channel Insertion
Build(Global_Var_List);

foreach Component in Specification loop
foreach GIobal_Var in Global_Var_List loop

if Find_Reference(Global_Var, Component) then
Declare_LocaI_Var(Global_Var, Component);
Replace_GIobaI_References(Global_Var, Component);
if Is_Producer(Globa!_Var, Component) then

Append(Prolocol.send. Component);
else

Prepend(Protocol.receive, Component);
end if;

Resolve_VariabIe_Width(Global_Var, Port);

end if;

end loop;
end loop;
Insert(Channel_Specification, Specification);
return Specification;

IV. CHANNEL INLINING

Following channel replacement the model, as shown in
Fig. 5, contains remote procedure calls that facilitate com
munication across channels between components. Before we
can pass this model on for further synthesis, the channel



must be resolved to a bus architecture and the remote proce
dure calls must either be inlined in the calling componentor
encapsulated in a transducer object that will in turn become
the basis for a component's interface.

In the current model, components can be divided into two
classes, fixed or synthesizable. Fixed components are those
that will later be realized by Intellectual Properties (IPs),
physical objects that have previously been synthesized and
have an internal protocol that must be followed. This
includes processor elements wherein the behavior will be
mapped to software. In this case, the channel protocol will
need to be resolved against the component's protocol and a
transducer or interface will be generated.

On the other hand, synthesizable components are those
objects in the partition that have not already been realized in
silicon and are still malleable in that we may define the com
ponent's protocol in terms of the channel's protocol. Thus,
we will inline the channel protocol functionality into the
behavior of the component.

Initially, the each behavior in the specification must be
identified as either synthesizable or fixed. In the case of the
later, interfaces will need to be developed to match the proto
col as discussed in the next section. If a behavior is synthe
sizable, then the interface functional definition, either send
or receive is placed inside of the component description.
Next, ports are generated to accommodate the signals within
the communication function. In the previous example,
should we inline the send function, ports would need to be
declared for snd, ack, and data. Connectivity to the rest of
the system would then be resolved through these ports.
Finally, the original function call within the behavior must be
updated to match the local function name. This procedure
can be expressed in an algorithm.

Algorithm: Channel Inline

foreach Component in Specification loop

if ls_Synthesizable(Component) then

ifls_Producer(Component) then

InlinefProtocoI.send, Component);

Add_ports(Protocol.send. Component);

Inline(ProtocoI.receive. Component);

Add_ports(Protocol.receive, Component);

end if;

Resolve_function_calls(Component);

Update_connectivity;

end if;

end loop;

return Specification;

The resulting specification would appear graphically as
shown in Figure 6.

FUi port(s)

varx_fl;

send(d.p)
(protocol)

*_fl = y + 2;

seiid(x_fl.
portl);

FU2 port(s)

var *_f2;

rec«lve(d,p)
(protocol)

receive(*_f2,
portZ):

2= x_f2 + 1;

Fig. 6. Inlined Communication Behavior

V. INTERFACE GENERATION

The interface generation process is intended to develop
interface transducers between fixed components with differ
ing protocols. We will illustrate the process of transduction
through an example and later develop an algorithm that
encapsulates this process.

The process begins with the existence of two differing
protocols between fixed components. Since we will not be
able to incorporate the protocol of one component into the
other as was the case between sythesizable objects, a trans
ducer will be generated tying the two protocol together.

In order to perform transduction, the protocols in question
must be annotated or otherwise specified to indicate causal
relationships between signals. From such an annotated dia
gram as seen in Figure 7, a protocol specification may be
derived as limed or scheduled signal assignments. An exam
ple of such a protocol specification can be seen below.

Fig. 7. Disjoint Protocols

Protocol 1

ports(RDYp out bit;
DATApout bit_vector(31 downto 0);
ADDRp out bit_vector(7 downto 0);
ACKp in bit);

begin
RDYp <='1';
DATAIp <= Data_varl;
ADDRp <= Addr_varl;
wait until (ACKp = ' 1');
RDYp <= '0';
wait until (ACKp = '0');

end;



Protocol 2

ports(RQSTp out bit;
ACKp in bit;
DATA2p in bit_vector(7 downto 0));

begin
RQSTp <= T;
wait until (STARTp = M*);
Data_var2 <= DATA2p;
RQSTp <= '0' ;

end;

From this specification, we must derive an interface pro
cess that acts as the dual of each protocol thus acting as an
intermediary between the two communicating processes. To
accomplish this, ordered relationships between signals must
be obtained. An ordered relation in the specification can be
defined as one or more statements having a common causal
action. In other words, we will impose an ordering on the
protocol specification that groups statements according to a
common event.

In our example, timing or wait statements act as natural
borders between relation blocks. Thus we could have a

grouping as seen in Figure 8.

Protocol 1

I RDYp<= T';
I DATA1p <= Data_varI;

I wait until (ACKp =']');
' RDYp<= '0';

1 wait until (ACKp = '0');

end;

Protocol 2

Block I

Block 2

Block 3

iRQSTp<=T'; Block 1 i

\ wait untif(ST^RT^ = 1
I Data_var2 <= DATA2p; ni/vir *5 •
[^RQSTp_<=y; BiocKz ,

end;

Fig. 8. Relationship Groupings

In Block 1, from the figure, we see that each assignment
executes upon entry to this block and are dependent only
upon entry to that block. The statements in Block 2, follow
ing the wait statement are dependent upon the signal on
ACKp.

To form the interface to these blocks, we take the dual

operation of each statement and place it in the new interface
behavior. The dual of a given statement can be viewed as a

complementary operation that take one of several forms.
Specifically, operations can be divided into three main cate
gories: control assignment, data assignment and fixed delay.
A control assignment is identified as assignment of a con
stant value to a port or signal. Data assignment occurs when
a local variable is assigned to or written from a port. Finally,
fixed delay takes the form of any wait statement that contains
unconditional delay, in that the wait is independent of signal
events. The dual of any of these operations can be found by
obtaining the inverse relation between assignment and wait
ing for events. Namely, for a control assignment, the dual is
obtained by waiting for the assigned event to occur on that
signal. For instance, in our example, the dual of the first
statement in Protocol 1, "RQSTp <= '1';", would be con
structed as: "wait until (RQSTp = '1');". Additionally, the
reverse also holds true, and conditional wait statements can

be dualed to obtain control assignments. Variableassignment
from a port translates as a dual statement where the variable
in question is written to the port. Again, the reverse holds
true as well. In such a case, each variable in the original spec
must be replaced by a temporary variable in the interface.

The interface is formed when dual statements are found
for each statement in the original protocol specifications and
are used to form the new interface behavior, first for the
sending protocol then for the receiving protocol. In this way
we allowthe captureof data from one component, temporary
storage of transmitted data and then the transmission to the
other component.

Fig. 9. Interface Connectivity

Next, we place each port from the protocol specifications
into the interface. Since we have taken the dual of each of
their assignments, we must inverse their in/out status.
Finally, we must resolve data width conflicts betweenproto
cols. In the example, the transmitted data is 32-bit while the
receiver expects 8-bits of data. In order to send the data, the
receiver must be sent portions of the data until it is all
received. To accomplish this, a loop will enclose the
receiver's dual statements with loop control and data widths
resolved through modulo arithmetic. This process was per
formed for our example and the resulting interface process
can be seen in the following code segmentand graphically in
the Figure 10.



Interface Process

p.orts(RDYp in bit;
DATAp in bit_vector(31 downto 0);
ADDRp in bit_vector(7 downto 0);
ACKp out bit;

RQSTp in bit;
ACKp out bit;
DATA2p out bit_vector(7 downto 0));

variable Tempi bit_vector(31 downto 0);
variable Temp2 bit_vector(7 downto 0);
variable n integer;

begin
wait until (RDYp= *1');
Tempi <=DATAlp;
Temp2 <= ADDRp;

ACKp<=T;
wait until (RDYp = '0');
STARTp<='r;
DATA2p <= Temp2;
wait until (RQSTp = '0');
STARTp <= *0';
while n <= 24 loop

STARTp <='!';
DATA2p <= Tempi (7+n downto 0+n)
n := n+8;

wait until (RQSTp = *0');
STARTp <= '0';

end loop;
end;

DATAp'

AODRpj

RDYp

ACKp

Controllei

111
SSll
SSB^b

Fig. 10. Interface Diagram

DATAp

RQSTp

STARTp

The example shows the result of the interface generation
process. We can express this process in terms of the Interface
Generation Algorithm presented below. It should be noted,
however, the some amount of user interaction is currently
required to make this generation possible. It needs to be
determined which signals in the protocol specification are

actual data objects being passed. At this time, we do not have
a method that automates this recognition, however, if naming
conventions are adhered to, it may be possible to enable this
recognition by an automated tool.

Algorithm: Interface Generation

begin

Gsend = ID_Relation_Groups(Protocol.sender);

Grec = ID_Relation_Groups(ProtocoI.receiver);

Gsend' = Dual(Gsend);

Grec' = Dual(Grec);

if (IYotocol.sender.data > Protocol.recever.data) then

Add_loop(Grec'):

else

Add_Ioop(Gsend');

end if;

Interface = Gsend' + Grec';

Add_ports(Interface, Protocol.sender, Protocol.receiver);

end;

VI. CONCLUSION

In this paper we have presented a communication synthe
sis methodology that guides the refinement of a system spec
ification, transforming it into a communication model
containing the behavior necessary to capture complex com
munication protocols between the various system compo
nents. In this way, we can allow for more accurate simulation
using the channel mechanism presented in this paper. Specif
ically, protocols must be captured into the specification lan
guage, the system specification must be refined to include
the protocol and finally, transducers and refined components
must be generated for later synthesis and production. Future
work will include a more detailed analysis and experimenta
tion with protocol and transducer generation, namely optimi
zation techniques to allow for higher performance during
communication, leading towards final system synthesis.
Finally, this work is intended to be an integral part of a
larger, system design methodology under development at the
CADLAB of the University of California, Irvine.

References

[1] D.D. Gajski, J. Zhu, R Doemer. "Essential Issues in Codeslgn." Hard
ware/Software Codesign: Principles and Practices. Kluwer: Boston,
MA. 1997.

[2] S. Narayan, D.D. Gajski. "Interfacing System Components by Genera
tion of Interface Processes."Proceedings of the 32nd Design Automa
tion Conference. June 1995.

[3] D.D. Gajski,F. Vahid, S. Narayan, J. Gong.Specification and Design of
Embedded Systems. Prentice Hall; Princeton, NJ. 1994,

[4] G. Bofiiello, R.H. Katz. "Synthesis and Optimization of Interface
Transducer Logic." Proceedings of the International Conference on
Computer-Aided Design. 1987.




