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Cirrhosis Using Electronic Health Records in 
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Background: Biopsy remains the gold standard for determining fibrosis stage in patients 
with primary biliary cholangitis (PBC), but it is unavailable for most patients. We used data 
from the 11 US health systems in the FibrOtic Liver Disease Consortium to explore 
a combination of biochemical markers and electronic health record (EHR)-based diagnosis/ 
procedure codes (DPCs) to identify the presence of cirrhosis in PBC patients.
Methods: Histological fibrosis staging data were obtained from liver biopsies. Variables 
considered for the model included demographics (age, gender, race, ethnicity), total bilirubin, 
alkaline phosphatase, albumin, aspartate aminotransferase (AST) to platelet ratio index 
(APRI), Fibrosis 4 (FIB4) index, AST to alanine aminotransferase (ALT) ratio, and >100 
DPCs associated with cirrhosis/decompensated cirrhosis, categorized into ten clusters. Using 
least absolute shrinkage and selection operator regression (LASSO), we derived and vali
dated cutoffs for identifying cirrhosis.
Results: Among 4328 PBC patients, 1350 (32%) had biopsy data; 121 (9%) were staged F4 
(cirrhosis). DPC clusters (including codes related to cirrhosis and hepatocellular carcinoma 
diagnoses/procedures), Hispanic ethnicity, ALP, AST/ALT ratio, and total bilirubin were 
retained in the final model (AUROC=0.86 and 0.83 on learning and testing data, respec
tively); this model with two cutoffs divided patients into three categories (no cirrhosis, 
indeterminate, and cirrhosis) with specificities of 81.8% (for no cirrhosis) and 80.3% (for 
cirrhosis). A model excluding DPCs retained ALP, AST/ALT ratio, total bilirubin, Hispanic 
ethnicity, and gender (AUROC=0.81 and 0.78 on learning and testing data, respectively).
Conclusion: An algorithm using laboratory results and DPCs can categorize a majority of 
PBC patients as cirrhotic or noncirrhotic with high accuracy (with a small remaining group 
of patients’ cirrhosis status indeterminate). In the absence of biopsy data, this EHR-based 
model can be used to identify cirrhosis in cohorts of PBC patients for research and/or clinical 
follow-up.
Keywords: primary biliary cirrhosis, cholangitis, race/gender/ethnicity, gender, ethnicity, 
decompensated cirrhosis, ursodeoxycholic acid, UCDA

Introduction
Although biopsy remains the gold standard for determining liver damage, fibrosis, 
and cirrhosis in patients with primary biliary cholangitis (PBC), it is invasive and 
performed on a relatively small subset of patients. Transient elastography has 
shown promise for use in PBC patients1,2 but has not been universally implemented 
in health care systems that are not supported by specialty gastroenterology and 
hepatology clinics. An efficient system to identify cirrhosis in PBC patients using 
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data from electronic health records (EHR)—such as diag
nosis and procedure codes (DPCs), and laboratory results 
—may inform epidemiologic research and clinical trials, 
as well as the identification of subgroups of PBC patients 
who could benefit from earlier intervention.

Biomarkers for liver fibrosis calculated from results of 
laboratory tests, such as the Aspartate Aminotransferase to 
Platelet Ratio Index (APRI) and Fibrosis-4 (FIB4), have 
been well described and validated among patients with 
viral hepatitis. However, the distinct etiology and natural 
history of PBC mean that the ability of these biomarkers to 
identify cirrhosis cannot be assumed, and there are cur
rently no studies developing or validating PBC-specific 
cutoffs for cirrhosis. Likewise, elevated alkaline phospha
tase (ALP), total bilirubin, and the ratio of aspartate ami
notransferase to alanine aminotransferase (AST/ALT) are 
known to be important prognostic markers for PBC pro
gression and response to treatment with ursodeoxycholic 
acid (UDCA).3,4 It is likely that the inclusion of these 
variables could increase the utility of any marker for 
cirrhosis among patients with PBC.

The FibrOtic Liver Disease Consortium (FOLD) com
prises a cohort of more than 4000 PBC patients drawn 
from 11 US health systems. We applied machine learning 
techniques to develop and validate an automated algorithm 
combining EHR-based data—including DPCs and routine 
laboratory results—for the identification of cirrhosis 
among patients with PBC.

Methods
The FOLD Consortium has been previously described.3,5 

Briefly, FOLD comprises 11 geographically diverse health 
systems, representing four US Census Bureau-defined 
regions of the US (Northeast, Midwest, Northwest, and 
South). FOLD follows the guidelines of the US 
Department of Health and Human Services for the protec
tion of human subjects. The study protocol was approved 
by the Institutional Review Board of each participating site 
(see Supplementary Table 1). All authors had access to the 
study results and reviewed and approved the final 
manuscript.

Cirrhosis Cohort Identification
FOLD PBC patient identification methods have been pre
viously described.5 All cases were confirmed with chart 
abstraction performed by trained medical abstractors. We 
used EHR data to identify FOLD PBC patients who had 
undergone liver biopsy. Fibrosis staging from biopsy 

results was collected by abstraction from pathology 
reports, and mapped to an F0–F4 equivalency scale:6 F0, 
no fibrosis; F1, portal fibrosis without septa; F2, portal 
fibrosis with few septa; F3, numerous septa without cir
rhosis; and F4, cirrhosis. FOLD hepatologists provided 
adjudication of indeterminate cases. If the patient had 
more than one biopsy, the biopsy with the highest fibrosis 
stage was considered. The outcome of interest was 
a biopsy with F4/cirrhosis biopsy staging.

Possible Covariates/Classifiers
Table 1 details covariates considered for the model, 
including patient demographics (age, gender, race, 
Hispanic ethnicity); total bilirubin; ALP and albumin 
(classified in relation to “normal” as defined by the assay 
used at each site); APRI; FIB4 index; and AST/ALT ratio. 
We collected laboratory data, liver-related diagnosis and 
procedure codes (International Classification of Diseases 
Ninth and Tenth editions [ICD9/10] and Current 
Procedural Terminology [CPT] codes), all measured 
within six months before/after biopsy. In cases where 
more than one laboratory result was available, the one 

Table 1 Laboratory Data

Test Collection Criteria/ 
Additional Information

Serum alkaline phosphatase 

(ALP)

Four categories (normal, 1-<2 

times ULN, 2-<3 times ULN, or 
≥3 times ULN), as defined by the 

assay used at each FOLD site

Ratio of aspartate 

aminotransferase (AST) to 

alanine aminotransferase (ALT)

Four categories (unknown; <1.1; 

1.1-<2.2; ≥2.2) when tests were 

available within 7 days of one 
another

Albumin Normal or abnormal, as defined 
by the assay used at each FOLD 

site

Total bilirubin Seven categories (≤0.4, >0.4–0.5, 

>0.5–0.7, >0.7–1.0, >1.0–1.5, 
>1.5–2.0, >2.0 mg/dL)

AST to Platelet Ratio Index 
(APRI)

Numerical value, when tests 
were available within 7 days of 

one another

Fibrosis 4 Index (FIB4) Numerical value, when tests 

were available within 7 days of 

one another

Platelet count Numerical value
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closest to the date of biopsy was used. ICD9/10 and CPT 
codes were grouped into ten clusters (C1 to C10, detailed 
in Table 2); these were used as dichotomized (presence/ 
absence) variables in the classification analysis. An 
“unknown” category was used for all variables that had 
missing data.

Statistical Analysis
Data were randomly divided into two sets at a 2:1 ratio; 
learning data (2/3) were used to build the classification 
model and testing data (1/3) were used for model valida
tion. We performed analysis using machine learning 
approaches to build the model, including SPM (Salford 
Predictive Modeler, version 8.0) Least Absolute Shrinkage 
and Selection Operator (LASSO)7 and several machine- 
leaning R packages,8 including Classification and 
Regression Tree (CART), K-Nearest-Neighbor (KNN), 
polynomial support vector machines (SVMs), neural net
works, random forest models, and eXtreme Gradient 
Boosting (xgb)Trees.8–10

The model building process started with variable selec
tion for the initial multivariable model. Highly correlated 
variables (eg, AST/ALT ratio, APRI, and FIB4) were fit into 
the model one at a time with other covariates to determine 
which would be selected. The same modeling approach was 
repeated using laboratory data without DPCs, given that 
FIB4 (a commonly used laboratory data-based biomarker) 
has been used to identify cirrhosis among patients with 
chronic hepatitis.6 The final modeling approach and multi
variable model were selected for optimal classification 
accuracy (defined by the highest area under the receiver 
operating characteristic curve [AUROC]). Final model 
selection was based on classification accuracy in the valida
tion set, with estimation of model goodness-of-fit measured 
by AUROC. Models are considered to have “reasonable” 
and “good” accuracy when the AUROC is 70–80% and 
80–90%, respectively. We also identified an optimal cut- 
off point to provide clinical utility to correctly classify 
patients as either cirrhotic or non-cirrhotic.

Results
Among 4328 confirmed PBC patients observed from 2006 
to 2016, 1350 (32%) had biopsy data with F0–F4 staging; 
121 (9%) were histologically staged F4 (cirrhosis). The 
median number of biopsies per patient was 1; 25th and 
75th percentiles were 1 and 1 with a range of 1 to 7. Table 
3 presents the two-group comparison for all covariates of 
interest.

The LASSO approach—using three laboratory variables 
(ALP, total bilirubin, AST/ALT), gender, and ethnicity— 
had “good” model classification accuracy; AUROC was 
0.81 (learning data) and 0.78 (testing data). The model 
equation is expressed as: Lscore = −2.10444 - 0.0380115 [if 
ALP normal] - 0.10366 [if ALP 1-<2*ULN] + 0.0703424 

Table 2 ICD-9/10 and CPT Codes Comprising the Ten Cluster 
Variables (C1–C10)

Conditions Associated ICD-9/10 and CPT 
Codes

C1: Liver transplant V42.7, 996.82, 50.5, 50.51, 50.59, 

47135, 47136, T86.40, T86.41, 

T86.42, 0FY00Z0,0FY00Z1, 
0FY00Z2

C2: Liver cancer 155.0, 155.1, 155.2, C22.0, C22.2, 
C22.7, C22.8, C22.1, C22.9

C3: Hepatorenal syndrome 572.4, K76.7

C4: Hepatic encephalopathy 572.2, K72.09, K72.91

C5: Portal hypertension/portal 

decompression procedures

572.3, 37140, 37160, 37180, 

37181, 37182, 37183, K76.6

C6: Esophageal varices 

complications (bleeding) and 

procedures

456.0, 456.20, 42.91, 44.91, 96.06, 

43204, 43205, 43243, 43244, 

43400, 43401, I85.01, I85.11, 
06L30CZ, 06L30DZ, 06L30ZZ, 

06L33CZ, 06L33DZ, 06L33ZZ, 

06L34CZ, 06L34DZ, 06L34ZZ, 
06L20ZZ, 06L23ZZ, 06L24ZZ, 

0DL57DZ, 0DL58DZ

C7: Other gastrointestinal 

hemorrhage

530.7, 530.82, 578.0, 578.1, 578.9, 

K22.6, K22.8, K92.0, K92.1, K92.2

C8: Ascites/paracentesis 

procedures

789.5, 789.59, 54.91, 49080, 

49081, 49082, 49083, R18.8, 

0D9S30Z, 0D9S3ZZ, 0D9S40Z, 
0D9S4ZZ, 0D9T30Z, 0D9T3ZZ, 

0D9T40Z, 0D9T4ZZ, 0D9V30Z, 

0D9V3ZZ, 0D9V40Z, 0D9V4ZZ, 
0D9W30Z, 0D9W3ZZ, 

0D9W40Z, 0D9W4ZZ, 

0W9F30Z, 0W9F3ZZ, 0W9F40Z, 
0W9F4ZZ, 0W9G30Z, 

0W9G3ZZ, 0W9G40Z, 

0W9G4ZZ, 0W9J30Z, 0W9J3ZZ

C9: Other sequelae of chronic 

liver disease

572.8, K72.10, K72.90

C10: Cirrhosis 571.2, 571.5, K70.30, K74.0, 

K74.60, K74.69
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Table 3 Two-Group Comparison for Covariates of Interest

Variables* Response** F0–3 F4 p-value

(N= 1229) (N= 121)

Age in years 56.4 ± 11.6 58.7 ± 10.2 0.041

Gender Women 1066 (87%) 99 (82%) 0.133
Men 163 (13%) 22 (18%)

Race Asian/ Native American/ Pacific Islander 98 (8%) 6 (5%) 0.054
Black/ African American 109 (9%) 15 (12%)
White 804 (65%) 88 (73%)

Unknown 218 (18%) 12 (10%)

Hispanic ethnicity Yes 366 (30%) 10 (8%) <0.001
No 780 (63%) 99 (82%)
Unknown 83 (7%) 12 (10%)

Alkaline phosphatase (x ULN) Normal 267 (22%) 28 (23%) 0.385
[1, 2)*ULN 482 (39%) 40 (33%)

[2, 3)*ULN 206 (17%) 28 (23%)

≥3*ULN 259 (21%) 23 (19%)
Unknown 15 (1%) 2 (2%)

Alanine aminotransferase (x ULN) Normal 561 (46%) 38 (31%) 0.013
[1, 2)*ULN 370 (30%) 45 (37%)

[2, 3)*ULN 149 (12%) 14 (12%)
≥3*ULN 146 (12%) 24 (20%)

Unknown 3 (0%) 0 (0%)

Aspartate aminotransferase (x ULN) Normal 429 (35%) 22 (18%) <0.001
[1, 2)*ULN 401 (33%) 33 (27%)
[2, 3)*ULN 162 (13%) 23 (19%)

≥3*ULN 184 (15%) 42 (35%)

Unknown 53 (4%) 1 (1%)

Platelet count (x LLN) Normal 923 (75%) 68 (56%) <0.001
(0.5, 1.0)*LLN 99 (8%) 34 (28%)
(0.33, 0.5]*LLN 11 (1%) 6 (5%)

(0, 0.33]*LLN 143 (12%) 11 (9%)

Unknown 53 (4%) 2 (2%)

AST/ALT Ratio <1.1 839 (68%) 36 (30%) <0.001
1.1>2.2 287 (23%) 68 (56%)

≥2.2 37 (3%) 16 (13%)

Unknown 66 (5%) 1 (1%)

Total Bilirubin (IU/L) (0, 0.4) 324 (26%) 10 (8%) <0.001
(0.4, 0.5) 139 (11%) 7 (6%)

(0.5, 0.7) 204 (17%) 17 (14%)

(0.7, 1.0) 208 (17%) 16 (13%)
(1.0, 1.5) 118 (10%) 17 (14%)

(1.5, 2.0) 39 (3%) 12 (10%)

>2.0 99 (8%) 41 (34%)
Unknown 98 (8%) 1 (1%)

Albumin (xLLN) <LLN 268 (22%) 51 (42%) <0.001
Normal 720 (59%) 40 (33%)

Unknown 241 (20%) 30 (25%)

(Continued)
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[if ALP 2-<3*ULN] - 0.0859862 [if ALP≥3*ULN] - 
0.0961179 [if male] + 0.0552183 [if non-Hispanic ethni
city] - 0.0557998 [if Hispanic ethnicity] - 0.0553804 [if 
bilirubin ≤0.4] - 0.0701528 [if bilirubin 0.5>0.4] - 
0.0239056 [if bilirubin 0.7>0.5] - 0.0881663 [if bilirubin 
1.0>0.7] + 0.0658567 [if bilirubin 1.5>1.0] + 0.115739 [if 
bilirubin 2.0>1.5] + 0.136269 [if bilirubin >2.0] - 
0.0865529 [if AST/ALT<1.1] + 0.0898492 [if AST/ALT 
1.1-<2.2] + 0.144404 [if AST/ALT ≥2.2]. At the optimal 
cutoff of 0.1 in this model, sensitivity was 70% and speci
ficity was 72% based on validation results.

A LASSO model with three laboratory variables (ALP, 
total bilirubin, AST/ALT), two DPC clusters for diagnosis of 
hepatocellular carcinoma and cirrhosis, and ethnicity 

(Hispanic yes/no) demonstrated the best performance; this 
model reached “excellent” classification accuracy, with 
AUROCs of 0.86 on learning data and 0.83 on testing data. 
This model combining laboratory and DPC data had signifi
cantly better predictive ability (AUROC) compared to the 
model using laboratory data without DPCs (p=0.001). The 
equation for this final LASSO model is expressed as : Lscore = 
−2.80400 + 0.303777 [if ALP 2-<3*ULN] - 1.11856 [if 
Hispanic ethnicity] - 0.325175 [if bilirubin ≤0.4] + 0.28772 
[if bilirubin >0.5-0.7 mg/dL] + 0.512881 [if bilirubin 
>1.0-1.5 mg/dL] + 0.9406 [if bilirubin >1.5-2.0 mg/dL] + 
0.756801 [if bilirubin >2.0 mg/dL] - 0.652222 [if AST/ 
ALT<1.1] + 0.645455 [if AST/ALT 1.1-<2.2] + 0.681193 
[if AST/ALT ≥2.2] + 0.707349 [if diagnosis of hepatocellular 

Table 3 (Continued). 

Variables* Response** F0–3 F4 p-value

(N= 1229) (N= 121)

C1 No 1199 (98%) 97 (80%) <0.001
Yes 30 (2%) 24 (20%)

C2 No 1211 (99%) 119 (98%) 0.87
Yes 18 (1%) 2 (2%)

C3 No 1222 (99%) 116 (96%) <0.001
Yes 7 (1%) 5 (4%)

C4 No 1206 (98%) 108 (89%) <0.001
Yes 23 (2%) 13 (11%)

C5 No 1180 (96%) 100 (83%) <0.001
Yes 49 (4%) 21 (17%)

C6 No 1211 (99%) 112 (93%) <0.001
Yes 18 (1%) 9 (7%)

C7 No 1182 (96%) 109 (90%) 0.002
Yes 47 (4%) 12 (10%)

C8 No 1162 (95%) 88 (73%) <0.001
Yes 67 (5%) 33 (27%)

C9 No 1193 (97%) 100 (83%) <0.001
Yes 36 (3%) 21 (17%)

C10 (≥2 records) No 1066 (87%) 53 (44%) <0.001
Yes 163 (13%) 68 (56%)

APRI 2.0 ± 4.6 4.6 ± 12.6 0.033
Aspartate aminotransferase (mean ±SD) 82.7 ± 180.3 220.0 ± 423.8 <0.001

Alkaline phosphatase (mean ±SD) 278.6 ± 232.6 304.7 ± 359.0 0.438

Platelet count (mean ±SD) 211.6 ± 111.6 158.4 ± 80.0 <0.001
AST/ALT Ratio (mean ±SD) 1.1 ± 1.0 1.4 ± 0.7 <0.001

Fibrosis-4 Index (mean ± SD) 10.8 ± 33.9 12.4 ± 29.6 0.634

Notes: *all data were collected within six months of the biopsy assessment. **determined based on the highest fibrosis stage biopsy results if multiple assessments were involved.
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carcinoma] + 1.3713 [if two diagnoses of cirrhosis]. A single 
cut-off of 0.08 (derived from the formula Prob = 1.0/(1.0 + 
exp(-score)) yielded sensitivity of 76% and specificity of 
75% based on validation results. Two optimal cut-offs (0.07 
and 0.10) divided patients into three groups—non-cirrhotic 
(≤0.07); indeterminate 0.7≤0.10); and cirrhotic (>0.10)—and 
yielded improved specificities of 81.8% for absence of cir
rhosis and 80.3% for presence of cirrhosis.

Other modelling approaches using the same covariates 
reached similar or lower model classification accuracy 
(Supplementary Table 2); performance of the xgbTree model 
was similar to the LASSO model (AUROC=0.82 on testing 
data) but required ten variables (age, gender, ethnicity, albu
min, ALP, AST/ALT ratio, total bilirubin, platelet count, and 
DPCs related to hepatocellular carcinoma and cirrhosis), mak
ing this model less useful in the “real world” setting.

Discussion
Using data drawn from the FOLD consortium, we applied 
machine learning methods to EHR-based laboratory results 
and DPCs to develop and validate a method for identifying 
cirrhosis among patients with PBC. Our previous work has 
shown that cirrhosis is an important prognostic marker for 
poor outcomes among patients with PBC.3–5 However, in 
these analyses, cirrhosis identification was based on 
a limited number of patients with biopsy data (32%). 
Transient elastography has gradually begun to replace 
biopsy, but has not yet been universally implemented, 
especially in health systems without specialty hepatology 
clinics; only 12% of patients in our real-world cohort had 
elastography data available. Our EHR-based model could 
help address that gap in the identification of PBC patients 
with cirrhosis. The classification accuracy of our model 
using both laboratory data and DPC codes was “good” 
(AUROC=0.83 on testing data) and was significantly bet
ter than an alternate model using laboratory results without 
DPCs. The combined model with two-optimal cuts (0.07 
and 0.10) divided patients into three groups (cirrhotic and 
non-cirrhotic, with a small group [<7%] as indeterminate); 
this model yielded 81.8% specificity for the absence of 
cirrhosis and 80.3% specificity for the presence of 
cirrhosis.

We believe this is the first validated model for use of 
EHR-based data for cirrhosis identification among PBC 
patients. Although previously developed markers for cir
rhosis, such as APRI (which combines AST, ALT, and 
platelet count) and FIB4 (which combines age, AST, 
ALT, and platelet count), have been validated in 

populations with viral hepatitis, it is not clear if they are 
optimized for use in patients with PBC. In a model repla
cing AST/ALT ratio with FIB4, classification accuracy 
was moderate (AUROC=0.75 on testing data). Our analy
sis found that a combination of total bilirubin, ALP, and 
AST/ALT ratio—rather than APRI, FIB4, or the individual 
components of those markers—provided better accuracy 
(AUROC=0.83 on testing data). In light of our recent 
study showing that total bilirubin, ALP, and AST/ALT 
ratio were independent risk factors for all-cause mortality 
in patients with PBC,4 our current findings suggest that 
these variables may be the most appropriate biomarkers 
for cirrhosis and poor outcomes.

One limitation of our analysis is that—although the overall 
model classification accuracy reached 83%—sensitivity and 
specificity remained only moderate (75–76%) with the use of 
a single cut-off (0.08). We addressed this issue with the use of 
two cutoffs (0.07 and 0.10), which improved specificity to 
>80% for determining the absence of cirrhosis and presence of 
cirrhosis, and left only 6.8% of patients classified as “indeter
minate.” While the use of more extreme cutoffs (eg, 0.05 and 
0.16) could yield specificity in the range of 85–88%, it would 
classify more patients (28%) as indeterminate. Limitations to 
this method can be further addressed by using a hierarchical 
approach for cirrhosis identification: 1) cirrhosis determination 
based on biopsy or transient elastography when available; 2) 
use of our model with two cutoffs. Analyses can categorize 
those patients who fall into the “indeterminate” group as 
“unknown.” We have successfully implemented a similar 
approach for cirrhosis identification in patients with viral 
hepatitis.11,12 An additional unavoidable limitation of classifi
cation models that they are most accurate when applied to 
a sample with patient characteristics similar to those used to 
build the model. Likewise, this model will need to be validated 
using external data from a similar patient population.

In conclusion, our study showed that a model using 
EHR-based data can be used to efficiently identify PBC 
patients with cirrhosis. Using a hierarchical approach that 
also takes into consideration cirrhosis determination via 
biopsy/transient elastography data, when such data are 
available, we expect that this model will be useful for 
research in patients with PBC, and could serve as 
a quality improvement tool to ensure the best available 
care for such patients. Our model may also be useful in the 
identification of risk factors for decompensation in large 
observational studies of patients with PBC. There are 
interventions that mitigate risk of cirrhotic patients' pro
gression from compensated to decompensated cirrhosis, 
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and poor outcomes of decompensation—this tool may help 
clinicians identify and monitor such patients.
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