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ABSTRACT

Background and aims: Video games are a common form of entertainment in adolescents, which may
result in gaming habits characterized by impairment to reward-related decision-making. The aim of the
current study was to investigate the relationship between reward processing and symptoms of gaming
addiction in adolescents. Methods: Data from three consecutive follow-up years (years 2, 3 and 4) of
the Adolescent Brain Cognitive Development (ABCD) Study were analyzed (n = 6,143, total
observations = 12,745, mean age at year-2 = 12 years). Participants completed the Video Game
Addiction Questionnaire (VGAQ) at each visit. Discrete stages of reward processing were measured at
the year-2 visit using the Monetary Incentive Delay task while the participant completed a functional
magnetic resonance imaging (fMRI) scan. Bayesian hierarchical linear models were employed to
examine the longitudinal association between reward processing in regions of interest at year-2 and
VGAQ scores over time. Results: Lower activation in the bilateral caudate during the anticipation of a
large reward (f = —0.87, 95% CI: —1.68, —0.07) was associated with greater VGAQ scores over time.
This implies that for each one-unit increase in brain activity in the caudate, there was an associated
0.87-point decrease in symptoms of gaming addiction as measured by the VGAQ. No association was
found between reward feedback and VGAQ scores. Discussion and Conclusions: The findings suggest
that abnormal reward processing in the caudate nucleus is associated with symptoms of gaming
addiction in adolescents. These results provide a clearer understanding of the brain mechanisms
involved in gaming addiction, which could inform future preventive and therapeutic strategies.
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INTRODUCTION

Background

Video game use is a common form of entertainment that can sometimes develop into a
problematic condition. According to recent surveys, an estimated 71% of Americans under
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18 play video games, typically about 13 h per week (Enter-
tainment Software Association, 2022). While video games
can offer small cognitive performance benefits in adolescents
(Bader Chaarani et al., 2022), for some individuals, gaming
can become problematic.

Problematic gaming behaviors are characterized by
adverse effects on social and functional well-being, often
referred to as gaming addiction (Petry & O’Brien, 2013).
These negative consequences are particularly pronounced in
children and adolescents, and include social isolation, poor
academic outcomes, and emotional and behavioral issues
(Gentile et al., 2011; Jeong & Kim, 2011; Lemmens, Val-
kenburg, & Peter, 2011). Notably, studies have found sig-
nificant correlations between gaming and higher levels of
depression and ADHD symptomatology (Bader Chaarani
etal., 2022). The condition has garnered increasing attention
in recent years. In 2013, the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) included Internet
Gaming Disorder as a condition requiring further research
(American Psychiatric Association & American Psychiatric
Association, 2013). Subsequently, in 2018, the International
Classification of Diseases (ICD-11) included Gaming Dis-
order as a recognized disorder characterized by impaired
control over gaming, prioritization of gaming over other
activities, and continuation or escalation of gaming despite
negative consequences (World Health Organization, 2019/
2021). Recent studies estimate that around 3% of the global
population has gaming disorder, with higher prevalence
rates in males and adolescents (Stevens, Dorstyn, Delfabbro,
& King, 2020).

To date, neural research into gaming addiction has
focused almost entirely on adult populations (Weinstein &
Lejoyeux, 2020). However, adolescents may be particularly
vulnerable to addiction due to greater reward-seeking and
risk-taking behaviors, which can persist into adulthood
(Bava & Tapert, 2010; Nora D Volkow & Wargo, 2022).
Whether abnormal reward processing is associated with
gaming problems in adolescents is less clear.

Neuroimaging studies implicate several brain regions
involved in gaming addiction and different aspects of reward
processing. The striatum is at the center of the brain
network involved in reward evaluation, and is comprised of
the nucleus accumbens (NAcc), the caudate nucleus, and the
putamen (Cai et al., 2016; Haber, 2011). The NAcc is
essential for the processing of rewards and influences the
emotional and motivational aspects of reward processing
(Haber & Knutson, 2010). The caudate nucleus is heavily
involved in higher cognitive functions related to decision-
making, reward-related learning, and neural activity related
to reward anticipation (Grahn, Parkinson, & Owen, 2008;
Haber & Knutson, 2010; Watanabe & Hikosaka, 2005). The
pallidum is involved in reward encoding, motivational
signaling, and proper valuation of reward outcomes (Haber,
2011; Ottenheimer, Richard, & Janak, 2018; Richard,
Ambroggi, Janak, & Fields, 2016; Smith, Tindell, Aldridge, &
Berridge, 2009).

Functional magnetic resonance imaging (fMRI) studies
report abnormal brain activity in the striatum of adolescents

and young adults with gaming addiction. For example, a
study examining the correlates of gaming frequency and
brain activity in adolescents reported significant neural dif-
ferences between frequent and infrequent gamers (Kiithn
et al., 2011). Frequent gamers showed enhanced striatal
activity during loss feedback in the Monetary Incentive
Delay (MID) task, paralleling dopamine increases seen in
pathological gamblers during losses (Kithn et al, 2011).
Another study found that frequent online gamers had
significantly less activation in the ventral striatum during the
anticipation of large rewards when compared to non-
gamers, suggesting a deficiency in the reward network
(Hahn et al., 2014).

Information from the NAcc and pallidum travels to the
dorsal anterior cingulate cortex (dACC) and parts of the
prefrontal cortex like the orbitofrontal cortex (OFC), which
are associated with evaluating reward value and outcomes
(Haber, 2011). The dACC plays a role in reward monitoring
and assessment of gains and losses (Heilbronner & Hayden,
2016). The OFC is important for valuing real and imaginary
future rewards, with the medial OFC responding to reward
outcomes and the lateral OFC coding for negative rein-
forcement (Bray, Shimojo, & O’Doherty, 2010; Noonan,
Mars, & Rushworth, 2011; Peters & Biichel, 2010).
Abnormal prefrontal cortex activity has been linked to
gaming addiction risk, indicating greater risk-taking ten-
dencies and reduced loss aversion in adolescents with
gaming addiction (Qi et al., 2016).

The amygdala is closely linked to emotional process-
ing and reward evaluation, and recent studies have found
that the amygdala is reliably activated by both primary
(e.g., food) and secondary (e.g., money) rewards irre-
spective of loss (Sescousse, Caldu, Segura, & Dreher, 2013;
Yacubian et al., 2006). Likewise, the insula appears to be
involved in the subjective affective experience of rewards,
and may also be strongly activated when an individual
is faced with a potential loss (Sescousse et al., 2013).
A systematic review of the neurobiology of impulsivity
found that abnormalities in the amygdala and insula in
individuals with Internet Gaming Disorder may indicate a
problematic regulation of negative emotions (Li, Turel, &
He, 2023). In addition, a study of young adults reported
significantly higher functional connectivity with the left
amygdala over the right insula and the right amygdala
with the left insula in those with Internet Gaming Dis-
order (Ko et al., 2015).

Overall, the brain regions involved in the reward
network are interrelated and perform overlapping functions,
making it crucial to examine multiple brain regions associ-
ated with reward processing to identify specific contribu-
tions to gaming addiction. By identifying the distinct roles
that different brain regions play in reward processing, future
studies can better target these areas to develop more precise
neurobiological models of gaming addiction and lead to
more accurate identification of individuals at risk for
developing a gaming problem. Moreover, this understanding
might also contribute to public health initiatives aimed at
promoting healthy gaming behaviors.
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Study aims

The generalizability of current research into gaming addic-
tion is limited by small sample sizes and a relative lack of
longitudinal studies, limiting our understanding of how this
may manifest into later life addictive behaviors. Most neu-
roimaging studies on gaming addiction focus on the reaction
to gains rather than losses, making it difficult to fully
characterize reward processing at different stages of deci-
sion-making (Y. W. Yao, Zhang, Fang, Liu, & Potenza,
2022). Furthermore, to comprehensively understand gaming
addiction, it is essential to consider various factors that may
influence gaming behaviors, such as age, sex, socioeconomic
status, and environmental influences. These factors can
impact the development and severity of gaming addiction
and must be accounted for in research to accurately assess
their relationships with gaming behaviors.

Here, we examined the relationship between neural
activity during the anticipation and feedback of monetary
rewards and monetary losses and longitudinal symptoms of
gaming addiction. We used task-fMRI data from the Mon-
etary Incentive Delay (MID) task at the year-2 visit of the
Adolescent Brain Cognitive DevelopmentSM (ABCD) Study.
Outcome measures included gaming addiction scores
collected using the Video Game Addiction Questionnaire
(VGAQ) at the year-2 (mean age = 12 years), year-3 (mean
age = 12.9 years), and year-4 (mean age = 14 years) study
visit. We hypothesize that decreased brain activity in key
reward processing regions during the anticipation phase of
the MID task will be strongly associated with greater VGAQ
scores over time. We further hypothesize that an increase in
brain activity in reward processing regions during the
feedback phase of the MID task will be strongly associated
with greater VGAQ scores. The current study was completed
using data from the ABCD Study© 5.1 data release (http://
dx.doi.org/10.15154/2563-zd24).

METHODS

Participants

The ABCD Study is a prospective cohort study that enrolled
11,878 children aged 9-10at 21 currently active research
sites in the United States (Nora D. Volkow et al., 2018). This
ongoing study will follow participants until they are
approximately 19-20 years old (Garavan et al., 2018). The
study aims to characterize the psychological and neurobio-
logical development of pre-adolescents into young adult-
hood (Garavan et al, 2018). The ABCD Study protocol
includes a biennial magnetic resonance imaging (MRI) scan
(Casey et al., 2018; Garavan et al., 2018). Adolescents, along
with a participating caregiver, also completed a series of
sociodemographic and other questionnaires at each study
visit (Barch et al., 2018).

The current longitudinal analysis included adolescents
that attended the year-2, year-3, or year-4 visit. Data used in
the analysis was collected between approximately July 2018

and January 2022 (age range 10-15). Previous study visits
were excluded due to absence of measures related to video
game addiction (i.e., the VGAQ was not collected prior to
the year-2 visit). Children that failed the task-fMRI quality
control or were missing the VGAQ measure were also
excluded from these analyses. The final analytic sample
included 12,745 observations from 6,143 children.

Measures

The Video Game Addiction Questionnaire. The VGAQ is a
6-item questionnaire on a 6-point Likert scale (0 = Never,
1 = Very Rarely, 2 = Rarely, 3 = Sometimes, 4 = Often,
5 = Very Often) (Fig. S1 in Supplementary Materials)
(Bagot et al., 2022). Psychometric findings support the val-
idity of the VGAQ in the measurement of video game
addiction in adolescents (Bagot et al., 2022). The VGAQ was
completed by participants that reported playing video games
(i.e., the VGAQ was skipped if a child reported not playing
any single-player or online multiplayer video games during a
typical week). There are no current recommendations on
what constitutes a cut-off for problematic gaming using the
VGAQ. For the current analyses, the VGAQ scores were
calculated for participants using the sum of all responses.
Creation of a summary score from Likert-type items is
recommended when there are five or more categorical
levels and there is strong internal consistency reliability
(VGAQ McDonald’s o at year-2 = 0.86, year-3 = 0.87, year-
4 = 0.87) (Bagot et al., 2022; Johnson & Creech, 1983;
Rickards, Magee, & Artino Jr, 2012; Sullivan & Artino,
2013). VGAQ scores ranged from 0 to 30, with higher scores
indicating greater symptoms of gaming addiction.

Imaging measures. The Monetary Incentive Delay (MID)
task measures neural activity related to the anticipation and
receipt (i.e., feedback) of rewards and losses (Casey et al.,
2018; Knutson, Westdorp, Kaiser, & Hommer, 2000). The
ABCD version of the MID task included 10 possible con-
trasts (Fig. S2 in Supplementary Materials) intended to
characterize general reward processing. As part of the task,
participants were presented with an incentive cue consisting
of five trial types: win money ($0.20 or $5), lose money
(—$0.20 or —$5), or no incentive ($0) (Fig. 1) (Knutson
et al, 2000). Task-related activity was localized by sub-
tracting the neutral condition from a positive or negative
condition (e.g., winning $5). Participants were shown a cue
(pink circle, yellow square, or blue triangle) at the beginning
of each trial that indicated the trial type (win, loss, no
incentive) and amount at stake (Casey et al., 2018). Partic-
ipants then had to press a button as soon as the target was
shown on screen. The trial was lost if the participant did not
press the button within a certain time limit. A feedback
message informed the participant of the trial outcome.
Importantly, the task motivated participants by providing
real monetary incentives related to performance (Casey
et al., 2018). Participants were paid an average of $21 for
their performance on the MID task (Casey et al., 2018). The
MID task was designed to ensure a success rate near 60% for
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Fig. 1. Each trial of the MID task begins with an incentive cue (2,000 ms) of five possible trial types (Win $.20, Win $5, lose $.20, Lose $5,

$0). The incentive cue represents the anticipation phase. This is followed by a jitter anticipation event (1,500-4,000 ms). Next, a variable

target (150-500 ms) appears prompting the participant to respond as quickly as possible to either win money or avoid losing money. The

target event is followed by a feedback message informing the participant of the trial outcome. Figure recreated from Casey, 2018; Casey et al.,
2018). Figure created using Biorender

all win money trials (Casey et al., 2018). A total of 2 runs
with 50 trials each (10 per trial type) were completed by
participants (B Chaarani et al., 2021). In total, there were 40
reward and loss trials and 20 neutral trials included in the
anticipation phase. The feedback phase included approxi-
mately 24 positive feedback and 16 negative feedback
trials per run (Casey et al., 2018). The MID task duration
was 5min and 42 s per run (Casey et al., 2018).

Image processing. Image processing and estimation of ac-
tivity in regions-of-interest (ROIs) was done by the ABCD
Data Analysis, Informatics & Resource Center (DAIRC).
Details of the processing and curation of imaging data have
been previously published (Hagler et al., 2019). Briefly,
cortical and subcortical surface-based values for ROIs were

generated using the FreeSurfer brain imaging software
package (Hagler et al., 2019). Individual subject level brain
activity related to the MID task (e.g., contrast of brain ac-
tivity in a ROI during a large reward anticipation trial versus
a no incentive trial) was calculated using a general linear
model (Hagler et al, 2019). The resulting output included
contrast beta weights that represent the weighted average
across two runs for each participant. In our analyses,
consistent with previous ABCD analyses of behavioral out-
comes, the contrast beta weights were the exposure of
interest used to examine reward processing (Hawes et al.,
2021). The current study focused on four separate contrasts:
anticipation of a large reward versus anticipation of no loss
or reward, anticipation of a large loss versus anticipation of
no loss or reward, large and small reward with positive
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feedback versus large and small reward with negative feed-
back, and large and small loss with positive feedback versus
large and small loss with negative feedback (Fig. S3 in
Supplementary Materials).

Neuroimaging data exclusion. The DAIRC excluded imag-
ing data that failed the quality control (QC) process at the
year 2 visit (Fig. S4 in Supplementary Materials) (Hagler
et al, 2019). In addition, we excluded participant imaging
data if they were not recommended for inclusion due to task-
specific quality control issues (imgincl mid_include = 0)
(Hagler et al, 2019). The task-specific exclusion criteria
included the following recommendations: 1) fewer than 1
MID series that passed QC (iqc_mid_ok_ser = 0), 2)
unacceptable performance for feedback analyses (tfmri_-
mid_beh_performflag = 0), and 3) fewer than 200 degrees of
freedom (tfmri_mid_all_b_dof < 200). More information on
the variables can be obtained on the ABCD Wiki (https://
wiki.abcdstudy.org/) and ABCD Data Dictionary (https://
data-dict.abcdstudy.org/).

Covariates. The main effects of the following variables were
considered as covariates: age of the child, sex at birth,
parent-reported race/ethnicity of the child, household in-
come, youth-reported neighborhood safety, youth-reported
parental monitoring scores, parent-reported ADHD Kiddie
Schedule for Affective Disorders and Schizophrenia for
DSM-5 (KSADS-COMP) diagnosis, and symptoms of anx-
iety or depression. Sex at birth was included due to the
increased risk of problematic gaming habits in males (Chen,
Oliffe, & Kelly, 2018). Parent-reported race/ethnicity of the
child was included due to greater frequency of media use in
minority children (Carson, B, Chen, & Alegria, 2012).
Household demographics (e.g., household income, parent
educational attainment) were considered potential con-
founders due to their strong correlation with problematic
gaming habits in the gaming literature (Nagata, Singh, et al.,
2022). Household income was coded as a categorical variable
with the following levels: <$50,000, $50,000 to <$100,000,
>$100,000, Do Not Know, Refuse to Answer. ADHD diag-
nosis was considered for adjustment due to the link with
excessive and problematic gaming (Weiss, Baer, Allan,
Saran, & Schibuk, 2011). Presence of ADHD (1 = Yes, 0 =
No) was measured using the parent-report on the KSADS-
COMP (Townsend et al., 2020). Parental monitoring and
neighborhood safety were included as potential confounders
due to their strong correlation with gaming problems (i.e.,
greater parental monitoring and neighborhood safety is
associated with decreased problematic gaming habits) (Ding,
Li, Zhou, Dong, & Luo, 2017; Nagata, Singh, et al., 2022).
Symptoms of anxiety or depression were not included in the
final model due to possibly being on the causal pathway
between ROIs and gaming outcomes (Mannikko, Ruotsa-
lainen, Miettunen, Pontes, & Kiiridinen, 2017). Covariates
that were plausible confounders and improved the model fit
were considered for adjustment. Models were compared
using leave-one-out (LOO) cross-validation information
criterion. Model comparison using LOO values is considered

a robust Bayesian alternative to comparable fit criterion (e.g.,
Akaike information criterion) (Vehtari, Gelman, &
Gabry, 2017).

Statistical analysis

Bayesian hierarchical linear models were used to examine
the association between beta-weights extracted from ROIs
during the MID task at the year-2 visit and VGAQ scores
over time. The primary outcome measure was the child’s
total VGAQ score at the year-2, year-3, and year-4 visits (i.e.,
a time-variant measure). The bilateral ROIs included the
caudate nucleus, dorsal anterior cingulate cortex (DACC),
insula, lateral orbitofrontal cortex (LOFC), medial orbito-
frontal cortex (MOFC), nucleus accumbens (NAcc), pal-
lidum, putamen, and amygdala. Results of the Bayesian
hierarchical linear models were expressed as beta coefficients
and 95% Bayesian posterior credible intervals (CI). Evidence
of an association was defined as any CI that did not include
the null value (i.e., excluded a beta coefficient = 0). The
models included a nested random effects structure that
accounted for clustering of participants within family units
(Dick et al.,, 2020). A centered time variable (interview age)
was included as a fixed and random slope term to account
for correlated and heteroscedastic residuals over time within
person (Singer & Willett, 2003). We utilized four separate
hierarchical linear models to investigate the relationship
between brain activity and symptoms of gaming addiction.
Each model represented a different experimental condition:
anticipation of a large reward ($5) versus neutral ($0),
anticipation of a large loss ($5) versus neutral ($0), reward
positive versus negative feedback, and loss positive versus
negative feedback. Each model included only the beta
weights representing the average ROI activity during that
specific condition (e.g., all beta weights related to ROI ac-
tivity during large reward anticipation). This approach
allowed us to isolate the effects of brain activity during each
condition on the trajectory of gaming addiction symptoms
over time.

Bayesian hierarchical modeling reduces the risk of a false
“statistically significant” finding by incorporating partial
pooling of information across groups (e.g., family units) and
conditions (e.g., large reward anticipation) (Gelman, Hill, &
Yajima, 2012). The partial pooling, along with the inclusion
of random effects in the model, results in estimates that are
more regularized compared to traditional frequentist ap-
proaches (Gelman et al,, 2012). Additionally, Bayesian hi-
erarchical modeling accounts for multiplicity by integrating
prior information and uncertainty into the analysis,
providing a robust framework for inference. Weakly infor-
mative priors were specified for the fixed and random effects
to allow the results to be primarily driven by the data, while
still benefiting from the regularizing influence of the priors.
All analyses were conducted using Bayesian inference
methods with the brms package in R (Biirkner, 2017;
R. Team, 2019; R. C. Team, 2013). Tables were created using
the tableone package in R (Yoshida, Bohn, & Yoshida, 2020).
Data wrangling was conducted using the tidyverse package
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in R (Wickham et al.,, 2019). Statistical analyses were per-
formed using R version 4.2.2 and R Studio version 2023.06.1
(R. Team, 2019; R. C. Team, 2013). Code for the replication
of current study results can be obtained on GitHub: https://
github.com/Daniel-Adan-Lopez/ABCD_Gaming.

Ethics

This work has been conducted in accordance with the tenets
of the Declaration of Helsinki and with approval from the
ethics review board at the University of Rochester School of
Medicine and Dentistry. Parental consent and child assent
were obtained at each ABCD Study visit (Garavan et al,
2018). Caregiver consent and child assent were approved by
the Institutional Review Board at each ABCD study site.

RESULTS

Demographic characteristics of the sample

The analytic sample included 6,143 adolescents (12,745
observations) that attended the year-2, year-3, or year-4 visit
and did not have missing data (Table 1). Missing data was
minimal for non-imaging predictor variables (64 observa-
tions or 0.5% of the sample). The mean age of children
included in the sample ranged from 12 to 14 across the three
timepoints. Most children were male, White, and had a
parent with a college degree. Around 5-6% of children had a
present diagnosis of ADHD at each study visit.

Participants excluded due to poor data quality during the
MID task at the year-2 visit were more likely to be older,
from a minority group, and from a household with less than
some college educational attainment (Table S1 in
Supplementary Materials). There was no significant differ-
ence in the year-2 VGAQ score of included and excluded
participants (p = 0.07). Participants excluded due to missing
VGAQ data (ie., reported not playing any video games)
were more likely to be female, White, from households with
a postgraduate degree, and from households with incomes >
$100,000 (Table S2 in Supplementary Materials).

Video Game Addiction Questionnaire

The mean VGAQ score at the three timepoints was 6.3, 7.0,
and 6.8, respectively (range = 0-30). Approximately 19.3%
of the analytic sample had a VGAQ score of 0. A histogram
of the distribution at each study visit is included in the
supplementary materials (Fig. S5 in Supplementary Mate-
rials). The distribution of responses for individual items
found that a substantial portion of participants reported
low-frequency  gaming  behaviors (Table S3 in
Supplementary Materials). The most endorsed items were
I spend a lot of time thinking about playing video games’
and ‘I play video games so I can forget about my problems,’
but even these items had a considerable number of ‘never,’
‘very rarely, and ‘rarely’ responses. VGAQ scores were
greater in males, non-White children, and children from
lower income households (Table 2). Children with and

Table 1. Analytic sample demographics at each ABCD study visit

Year-2 Year-3 Year-4
(n = 4818) (n=5245) (n = 2,682)
Age of child 143.6 (7.9) 1545 (7.7) 1684 (8.1)
(months(SD))
Child sex at birth
Male 2,959 (61.4) 3,213 (61.3) 1,664 (62.0)
Female 1,859 (38.6) 2,032 (38.7) 1,018 (38.0)
Race/ethnicity of child
Asian 78 (1.6) 88 (1.7) 49 (1.8)
Black 657 (13.6) 626 (11.9) 296 (11.0)
Hispanic 916 (19.0) 990 (18.9) 570 (21.3)
White 2,671 (55.4) 2,999 (57.2) 1,510 (56.3)
Other 496 (10.3) 542 (10.3) 257 (9.6)
Household Income ($)
<50,000 1,254 (26.0) 1,283 (24.5) 694 (25.9)
50,000 to <100,000 1,364 (28.3) 1,483 (28.3) 773 (28.8)
>100,000 1,831 (38.0) 2,102 (40.1) 1,016 (37.9)
Do not know 190 (3.9) 189 (3.6) 102 (3.8)
Refuse to answer 179 (3.7) 188 (3.6) 97 (3.6)
Household Educational Attainment
< HS Diploma 294 (6.1) 291 (5.5) 152 (5.7)
HS Diploma/GED 470 (9.8) 456 (8.7) 242 (9.0)
Some College 1,467 (30.4) 1,562 (29.8) 816 (30.4)
Bachelor 1,405 (29.2) 1,568 (29.9) 799 (29.8)
Post Graduate 1,176 (24.4) 1,360 (25.9) 668 (24.9)
Degree
Neighborhood Safety
Strongly Disagree 115 (2.4) 118 (2.2) 58 (2.2)
Disagree 239 (5.0) 249 (4.7) 117 (4.4)
Neutral 915 (19.0) 967 (18.4) 513 (19.1)
Agree 1,581 (32.8) 1,707 (32.5) 875 (32.6)
Strongly Agree 1,968 (40.8) 2,204 (42.0) 1,119 (41.7)
KSADS ADHD Diagnosis (Present)
Yes 284 (5.9) 289 (5.5) 142 (5.3)
No 4,534 (94.1) 4,956 (94.5) 2,540 (94.7)
Parental Monitoring 4.46 (0.47) 4.36 (0.50) 4.39 (0.48)
(mean(SD))
VGAQ score 6.33 (6.19)  7.02 (639)  6.77 (6.24)

Note: Distributions are presented as n (%), except where noted.
SD = Standard Deviation.

KSADS = Kiddie Schedule for Affective Disorders and
Schizophrenia.

VGAQ = Video Game Addiction Questionnaire.

without a present diagnosis of ADHD had a mean VGAQ
score of 8.5 and 6.3 at the year-2 visit, respectively. Children
that strongly disagreed or disagreed that their neighborhood
was safe from crime had a mean VGAQ score of 9.6 and 8.5
at the year-2 visit.

Associations between large reward anticipation and
VGAQ scores

The fully adjusted models found an inverse association be-
tween large reward anticipation and VGAQ score in the
bilateral caudate (Table 3). Holding other variables constant,
a one-unit increase in the anticipation of a large
reward versus neutral condition in the bilateral caudate
was associated with a 0.87-point decrease in VGAQ score
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Table 2. Distribution of covariates and VGAQ score in the ABCD Study

Video Game Addict

ion Score at

year-2 (n = 4,818)

Video Game Addiction Score at

year-3 (n = 5,245)

Video Game Addiction Score at
year-4 (n = 2,682)

Child sex at birth

Male 8.2 (6.5)
Female 3.8 (5.1)
Race/ethnicity of child
Asian 6.4 (6.1)
Black 8.0 (7.4)
Hispanic 7.1 (6.6)
White 5.7 (5.7)
Other 6.8 (6.6)
Household Income ($)
<50,000 7.8 (7.2)
50,000 to <100,000 6.4 (6.2)
>100,000 5.4 (5.5)
Do not know 7.4 (6.8)
Refuse to answer 6.9 (6.6)
Household Educational Attainment
< HS Diploma 7.8 (7.1)
HS Diploma/GED 7.8 (7.0)
Some College 7.1 (6.8)
Bachelor 5.8 (5.9)
Post Graduate 5.5 (5.6)
Degree
Neighborhood Safety
Strongly Disagree 9.6 (8.0)
Disagree 8.5 (7.6)
Neutral 7.4 (6.6)
Agree 6.3 (6.0)
Strongly Agree 5.8 (6.0)
KSADS ADHD Diagnosis (Present)
Yes 8.5 (6.9)
No 6.2 (6.1)

8.8 (6.4)
4.6 (5.6)

7.4 (6.1)
8.3 (7.5)
8.1 (6.8)
6.4 (5.9)
7.2 (6.5)

8.3 (7.2)
7.1 (6.3)
6.3 (5.8)
8.2 (7.0)
7.2 (6.4)

7.9 (7.3)
82 (7.2)
7.8 (6.8)
6.5 (6.0)
6.4 (5.8)

9.3 (7.5)
8.1 (7.2)
7.9 (6.7)
72 (6.3)
6.4 (6.3)

9.0 (6.7)
6.9 (6.4)

8.2 (6.2)
48 (5.8)

8.1 (6.0)
7.1 (7.1)
7.6 (6.7)
6.4 (5.8)
74 (6.7)

7.8 (6.9)
6.7 (6.2)
6.3 (5.8)
7.3 (6.1)
72 (6.4)

6.8 (6.3)
7.8 (6.8)
7.3 (6.5)
6.6 (6.1)
6.3 (5.8)

8.8 (7.4)
7.4 (6.4)
7.6 (6.4)
6.9 (6.4)
6.3 (5.8)

9.7 (6.9)
6.6 (6.2)

Table 3. Association between reward anticipation and VGAQ score

Note: Distributions are represented as mean (SD) unless otherwise noted.

Anticipation of Large Reward vs.

VGAQ Score (n = 6,143)

Neutral

B (95% CI)

B (95% CI)

Anticipation of Large Loss vs. Neutral
VGAQ Score (n = 6,143)

Bilateral

Amygdala
Caudate
Dorsal ACC
Insula
LOFC
MOFC
NACC
Pallidum
Putamen

—0.5 (—1.05, 0.6)

—0.12 (—1.03, 0.81)

0.13 (—0.94, 1.19)
0.34 (—0.25, 0.94)
0.03 (—0.32, 0.39)
0.42 (—0.01, 0.86)
0.1 (—0.69, 0.9)

0.09 (—0.98, 1.12)

0.87 (—1.68, —0.07)

—0.49 (—1.08, 0.1)
—0.64 (—1.47, 0.21)
0.34 (—0.6, 1.29)
—0.0 (—1.13, 1.11)

0.48 (—0.13, 1.09)
—0.03 (—0.38, 0.32)
0.04 (—0.43, 0.5)
0.06 (—0.77, 0.9)
—0.3 (—1.35,0.73)

Note: ACC = Anterior Cingulate Cortex, LOFC = Lateral Orbitofrontal Cortex, NACC
Orbitofrontal Cortex, VGAQ = Video Game Addiction Questionnaire.
Note: All models are adjusted for age, sex, race/ethnicity, household education, household income, neighborhood safety, parental

monitoring, KSAD ADHD diagnosis, and study site.
Bold = Credible interval excludes the null value of 0.

= Nucleus Accumbens, MOFC = Medial
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(p = —0.87, 95% CI: —1.68, —0.07). There were no other
ROIs associated with VGAQ scores in the large reward
anticipation condition.

Associations between large loss anticipation and VGAQ
scores

The fully adjusted models did not find an association be-
tween ROIs during the large loss anticipation condition and
VGAQ scores over time.

Associations between reward feedback and VGAQ
scores

The models did not find evidence of an association between
reward positive feedback or loss positive feedback and
VGAQ scores over time (Table 4).

DISCUSSION AND CONCLUSIONS

The current study examined the longitudinal association
between anticipatory-feedback phase contrasts and symp-
toms of gaming addiction in a large sample of adolescents.
We found that an increased response in the bilateral caudate
during the anticipation of a large reward was associated with
decreased VGAQ scores over time. The feedback phase of
reward processing did not predict VGAQ scores in the an-
alytic sample. These findings highlight the role of the
caudate nucleus in gaming addiction.

The caudate and symptoms of gaming addiction

Our results indicate that blunted activity in the caudate
nucleus is associated with greater symptoms of gaming
addiction over time. This finding is consistent with literature
suggesting that abnormal striatal functioning during the
anticipation of rewards is linked to addiction risk (Balodis &
Potenza, 2015; Y.-W. Yao et al., 2020). For example, a study

measuring dopamine receptors in young adults with (n = 5)
and without (n = 7) Internet addiction found an inverse
association between Internet addiction severity and dopa-
mine receptors in the left dorsal caudate, and significantly
fewer dopamine receptors in the bilateral caudate of par-
ticipants with Internet addiction (Kim et al., 2011). Another
study found that the volume of the right caudate and right
nucleus accumbens was significantly greater in 27 persons
(mean age 17.9) with Internet Gaming Disorder
compared to 30 healthy controls (mean age 18.3)
(Cai et al., 2016). These results support our observation that
reduced caudate activation correlates with higher gaming
addiction symptoms, suggesting that a blunted reward
response in this region may contribute to problematic
gaming behaviors.

Conversely, some studies have reported increased
caudate activation in addicted gamers during reward pro-
cessing. For instance, a study with young adults found
exaggerated brain activity in the caudate during reward
anticipation in individuals with gaming addiction
(Wang et al., 2021). Another study found increased activity
in the caudate when young adult participants with a gaming
addiction viewed gaming-related pictures (Ko et al., 2009).
Differences from our findings may be attributed to the
specific tasks used in these studies, which could highlight the
diminished sensitivity to non-gaming related rewards in
participants with symptoms of gaming addiction.

Protective role of caudate activation

Higher activation in the caudate nucleus during the antici-
pation of a large reward may serve as a protective factor
against gaming addiction. The caudate is a fundamental
contributor to successful goal-directed action due to its con-
nectivity with higher level cognitive areas, such as the
dorsolateral prefrontal cortex (Grahn et al, 2008). Lower
activation may indicate that the brain’s reward system has
become less responsive to standard rewards in certain gamers.

Table 4. Association between reward feedback and VGAQ score

Reward Positive vs. Negative Feedback
VGAQ Score (n = 6,143)

B (95% CI)

Loss Positive vs. Negative Feedback
VGAQ Score (n = 6,143)
B (95% CI)

Bilateral

Amygdala 0.26 (—0.3, 0.8)
Caudate —0.04 (—0.85, 0.77)
Dorsal ACC 0.23 (—-0.67, 1.1)
Insula 0.71 (—0.34, 1.78)
LOFC 0.02 (—0.54, 0.56)
MOFC 0.06 (—0.28, 0.4)
NACC 0.12 (—0.28, 0.53)
Pallidum 0.26 (—0.5, 1.0)
Putamen —0.87 (—1.85,0.14)

—0.03 (—0.53, 0.46)
—0.42 (—1.2, 0.39)
—0.03 (—0.91, 0.85)
—0.01 (—1.03, 1.01)
0.2 (—0.35, 0.76)
0.24 (—0.09, 0.58)
0.11 (—0.3, 0.52)
0.33 (—0.45, 1.12)
—0.17 (~1.12, 0.78)

Note: ACC = Anterior Cingulate Cortex, LOFC = Lateral Orbitofrontal Cortex, NACC = Nucleus Accumbens, MOFC = Medial
Orbitofrontal Cortex, VGAQ = Video Game Addiction Questionnaire.
Note: All models are adjusted for age, sex, race/ethnicity, household education, household income, neighborhood safety, parental

monitoring, KSAD ADHD diagnosis, and study site.
Bold = Credible interval excludes the null value of 0.
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A study using the MID task to examine neural responses in
addicted (n = 22, mean age = 22.3) and non-addicted gamers
(n = 27, mean age = 22) reported blunted caudate activity in
the former (Y.-W. Yao et al,, 2020). Interestingly, the group
differences in reward processing were only noted during the
feedback stages of a loss condition, not during the anticipa-
tion of a reward. A study comparing World of Warcraft
gamers with non-gamers observed blunted striatal activity in
response to large monetary rewards in the former group
(Hahn et al., 2014). Additionally, a study with a community
sample of 1,510 adolescents (mean age = 14.5) reported
positive activation of the bilateral caudate during the reward
anticipation phase of the MID Task, indicating that greater
activation in response to rewards reflects typical functioning
in healthy adolescents (Cao et al., 2019). A meta-analysis of
neuroimaging studies using adolescent samples similarly
found positive activation of the caudate nucleus during
reward anticipation (Silverman, Jedd, & Luciana, 2015).
Collectively, the inverse relationship between reward antici-
pation and symptoms of gaming addiction may signal a
blunted reward response and a reduced sensitivity to everyday
rewards in certain gamers.

Strengths

The strengths of this study include a large, diverse sample of
adolescents with measurement of gaming addiction symp-
toms across multiple timepoints. Multivariable methods
reduced the influence of potential confounders (e.g., ADHD
diagnosis, parental monitoring) and strengthens the validity
of the associations observed. The use of Bayesian hierar-
chical models further improved the precision of our mea-
sures of association by accounting for the shared variance
within families in the ABCD Study. Instead of using arbi-
trary cut points, we opted for a total score for the VGAQ.
This approach minimized the risk of misclassification and
allowed for a more nuanced understanding of gaming
addiction that captures the full spectrum of gaming behav-
iors, from non-problematic to potentially problematic use.
Finally, the study included the feedback phase of the MID
task rather than solely focusing on anticipatory processing.
By doing so, we characterized the decision-making process
in children that play video games and detected differences in
discrete stages of reward processing.

Limitations

There were several limitations in this study. First, the ana-
Iytic sample was substantially reduced by the exclusion of
children with MID task data that did not meet QC stan-
dards. Previous research using the ABCD Study data has
noted that certain groups (e.g., minority children, children
from lower income households) were disproportionately
excluded due to poor imaging quality (Cosgrove et al., 2022;
Gard, Hyde, Heeringa, West, & Mitchell, 2023). The pattern
of missing task-fMRI data likely harmed the generalizability
of our findings, although we did not find a significant dif-
ference in the VGAQ scores of children with and without
missing MRI data. Second, exclusion of children that did not

complete the VGAQ measure meant that our sample
included only children that play video games. Recent na-
tional surveys estimate that 71% of Americans under 18 play
video games (Entertainment Software Association, 2022).
Approximately 73% of children reported playing video
games at the year-2 ABCD Study visit. Consequently, we
expect that the study findings will have broad applicability to
the general population despite exclusion criteria. The study
period coincided with the COVID-19 pandemic, which may
have influenced VGAQ scores. Although we did not observe
a significant difference in mean VGAQ score across the
three time points, there is evidence that screen time signif-
icantly increased among ABCD participants during the
pandemic (Nagata, Cortez, et al., 2022). Additional time
points will be necessary to fully understand the pandemic’s
impact and other factors (e.g., state policies) on trajectories
of gaming addiction symptoms. Finally, we only had partial
year-4 data, resulting in fewer than three timepoints for
some children. Future ABCD Study data releases will pro-
vide critical information on the trajectories of gaming
addiction and reward-processing.

Directions for future research

The findings of this study open several avenues for future
research. First, additional time points will help elucidate the
role of the caudate nucleus as adolescents transition into
adulthood and provide insight into whether this relationship
persists over time or changes with continued exposure to
gaming. Second, research should explore modifiable factors
that could help prevent the onset of gaming addiction symp-
toms, such as family dynamics or social support. Third, future
studies could explore intervention strategies that target caudate
nucleus activity to mitigate gaming addiction. For example,
neurofeedback training, a noninvasive technique used to
modulate brain activity in the dorsal striatum, could be
explored as a potential treatment approach (Zhao et al., 2021).

Implications of the study findings

The findings from our study, conducted with a generally
healthy population, provide valuable insights into the early
neural markers of gaming addiction. By identifying the
relationship between caudate activation and symptoms of
gaming addiction in a population that largely falls within the
range of typical gaming behavior, our study contributes to
understanding the potential boundary between healthy and
problematic gaming. This knowledge is critical for devel-
oping interventions aimed at promoting healthy gaming
habits before gaming behavior escalates into addiction.
Future work could build on these findings by exploring how
neural activity in reward-related regions could serve as early
indicators for potential targeted interventions.

CONCLUSIONS

Our findings suggest that the caudate nucleus plays a sig-
nificant role in gaming addiction, with greater activation
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potentially serving as a protective factor. These insights
contribute to our understanding of the neural mechanisms
underlying gaming addiction and highlight the importance
of the caudate in reward processing.
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Adolescent Brain Cognitive Development
Nucleus Accumbens

Dorsal Anterior Cingulate Cortex

mOFC Medial Orbitofrontal Cortex

IOFC  Lateral Orbitofrontal Cortex

CI Credible interval

ROI  Region of interest

CBCL  Child Behavior Checklist

MID  Monetary Incentive Delay
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