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ABSTRACT OF THE THESIS 
 

Towards Efficient Knowledge Transfer and Enhanced Reasoning for Foundation Models 
 

 
by 

 

Yunhao Fang 

 

Master of Science in Computer Science and Engineering 
 

University of California San Diego, 2024 
 

Professor Hao Su, Chair 
 

 

ABSTRACTION 

Large language models (LLMs) and vision language models (VLMs) are changing the 

world and gradually presenting human-level intelligence in various real-world scenarios, 

including knowledge-based question answering, mathematics, and programming. During the 

master period, my research focuses on understanding and improving current large language 

models’ reasoning capacity towards general problems solving, and efficient methods to enable 

the knowledge transfer for vision-language models: distill knowledge from large vision-language 

models. 
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INTRODUCTION 

The central problem of this thesis is how we can empower intelligent computer agents 

complex reasoning capacity and develop efficient approaches to edit their generalized features 

spaces with limited computation and data. Though current language models have shown strong 

potential in reasoning, mathematical examinations and code generation tasks, they are still 

uncapable to solve tasks requires complex reasoning, for example mathematical proof and 

designing creative methods for open-ended problems. As an overview of the thesis, we take an 

artificial intelligence perspective to boost language models’ reasoning ability with deductive 

verification, a logistic method which helps reasoners recover from knowledge hallucinations and 

unstrict reasoning process and pick out the final answers[1]. At the same time, we are among the 

pioneers who argue the importance of language models’ unbiased exploration for reasoning, 

even though they are trained with biased data distribution[2]. 

Alongside pursuing the limitation of large language models’ reasoning capacity, we take 

another step towards designing efficient algorithms for knowledge transfer through low-cost 

adaptation. This includes distilling vision-language model’s generalizable feature space into 

smaller models for the purpose of facilitating downstream tasks[3], and instilling human 

common sense like 3D spatial awareness which is seldom annotated into large vision-language 

models.  

Artificial general intelligence is no longer an unbelievable word and deserve more 

attention for everyone. I hope my thoughts and effort in pushing the edge of understanding and 

improving foundation models during my master period will pave the road of my further research 

career, and finally contribute to this pure will towards the super-human machine intelligence. 
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Chapter 1 Deductive Verification of Chain-of-Thought Reasoning 
 

Large Language Models (LLMs) significantly benefit from Chain-of-Thought (CoT) 

prompting in performing various reasoning tasks. While CoT allows models to produce more 

comprehensive reasoning processes, its emphasis on intermediate reasoning steps can 

inadvertently introduce hallucinations and accumulated errors, thereby limiting models’ ability to 

solve complex reasoning tasks. Inspired by how humans engage in careful and meticulous 

deductive logical reasoning processes to solve tasks, we seek to enable language models to 

perform explicit and rigorous deductive reasoning, and also ensure the trustworthiness of their 

reasoning process through self-verification. However, directly verifying the validity of an entire 

deductive reasoning process is challenging, even with advanced models like ChatGPT. In light of 

this, we propose to decompose a reasoning verification process into a series of step-by-step 

subprocesses, each only receiving their necessary context and premises. To facilitate this 

procedure, we propose Natural Program, a natural language-based deductive reasoning format. 

Our approach enables models to generate precise reasoning steps where subsequent steps are 

more rigorously grounded on prior steps. It also empowers language models to carry out 

reasoning self-verification in a step-by-step manner. By integrating this verification process into 

each deductive reasoning stage, we significantly enhance the rigor and trustfulness of generated 

reasoning steps. Along this process, we also improve the answer correctness on complex 

reasoning tasks. 

The transformative power of large language models, enhanced by Chain-of-Thought 

(CoT) prompting[4][5][6]Error! Reference source not found., has significantly reshaped the 

landscape of information processing[7][9][10][11][12], fostering enhanced abilities across a 

myriad of disciplines and sectors. While CoT allows models to produce more comprehensive 
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reasoning processes, its emphasis on intermediate reasoning steps can inadvertently introduce 

hallucinations[13][14][15][16] and accumulated errors[17][18], thereby limiting models’ ability 

to produce cogent reasoning processes. 

In fact, the pursuit of reliable reasoning is not a contemporary novelty; indeed, it is an 

intellectual endeavor that traces its roots back to the time of Aristotle’s ancient Greece. 

Motivated by the desire to establish a rigorous reasoning process, in his “Organon,” Aristotle 

introduced principles of logic, in particular, syllogism, a form of logical argument that applies 

deductive reasoning to arrive at a conclusion based on two or more propositions assumed to be 

true. In disciplines that rigorous reasoning is critical, such as judicial reasoning and mathematical 

problem solving, documents must be written in a formal language with a logical structure to 

ensure the validity of the reasoning process. 

 

Figure 1: An overview of our proposed deductive reasoning and verification process. In response 
to an input question, LLMs generate deductive reasoning chains using the Natural Program 
format (bottom 3 boxes), a natural language-based deductive reasoning approach.  
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Figure 2: Through our Natural Program-based deductive reasoning verification approach, we 
identify and eliminate reasoning chains that contain errors in reasoning and grounding (we define 
grounding error as utilizing information that is not present in cited premises).  

 

We yearn for this sequence of reliable knowledge when answering questions. Our goal is 

to develop language models that can propose potential solutions through reasoning in logical 

structures. Simultaneously, we aim to establish a verifier capable of accurately assessing the 

validity of these reasoning processes. Despite recent significant explorations in the field, such as 

[19]’s emphasis on self-consistency and [20][21]’s innovative use of codes to represent the 

reasoning process, these approaches still exhibit considerable limitations. For example, 

consistency and reliability are not inherently correlated; as for program codes, they are not 

powerful enough to represent many kinds of reasoning process, e.g., in the presence of 

quantifiers (“for all”, “if there exists”) or nuances of natural language (moral reasoning, “likely”, 

. . . ). 
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We propose leveraging the power of natural language to achieve the deductive reasoning 

emphasized in ancient Greek logic, introducing a “natural program”. This involves retaining 

natural language for its inherent power and avoiding the need for extensive retraining with large 

data sets. A natural program represents a rigorous reasoning sequence, akin to a computer 

program. We expect implementations of the idea to have two properties: 1) that natural programs 

are generated with minimal effort from an existing language model capable of CoT reasoning, 

preferably through in-context learning; 2) that the natural program can be easily verified for 

reliability in the reasoning process. 

Through a step-by-step investigation, we discovered that large language models have the 

potential to meet our expectation. Naïve CoT prompts like "Let us think step by step." has many 

flaws, and entrusting the entire verification process to a large model like ChatGPT can still lead 

to significant error rates. However, we found that, if the reasoning process is very short, and only 

based on necessary premises and contexts, the verification of existing large language models is 

already quite reliable. Therefore, our approach is to design prompts that induce CoT processes 

comprised of rigorous premises/conditions and conclusions with statement labels, and 

verification can be done by gradually isolating very few statements within the long thought 

chain. Experimentally, we found that most reasoning that passed the verification was rigorous, 

and many that did not pass had elements of imprecision in the reasoning process, even if they 

occasionally arrived at correct answers. It is worth emphasizing that, we are not looking for a 

method to just maximize the correctness rate of final answers; instead, we aspire to generate a 

cogent reasoning process, which is more aligned with the spirit of judicial reasoning. When 

combined with sampling-based methods, our method can identify low-probability but rigorous 

reasoning processes. When repeated sampling fails to yield a rigorous reasoning process, we can 
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output "unknown" to prevent hallucinations that mislead users. We demonstrate the efficacy of 

our natural program-based verification approach across a range of arithmetic and common sense 

datasets on publicly-available models like OpenAI’s GPT-3.5-turbo. Our key contributions are as 

follows: 

1. We propose a novel framework for rigorous deductive reasoning by introducing a 

“Natural Program” format, which is suitable for verification and can be generated by just in-

context learning. 

2. We show that reliable self-verification of long deductive reasoning processes written in 

our Natural Program format can be achieved through step-by-step subprocesses that only cover 

necessary context and premises. 

3. Experimentally, we demonstrate the superiority of our framework in improving the 

rigor, trustworthiness, and interpretability of LLM-generated reasoning steps and answers. 

 
Given a reasoning chain 𝑆 = (𝑠!, 𝑠", … , 𝑠#), a straightforward idea to verify its deductive 

validity is to ask LLMs to examine the entire reasoning chain at once. To assess the effectiveness 

of this approach, we conduct a preliminary experiment: for a dataset problem and its reasoning 

chain 𝑆 generatedby ChatGPT, we prompt ChatGPT with “Do you think the above reasoning 

process is correct? Let’s think step by step” such that its outputs whether there exists any mistake 

among any reasoning step in 𝑆. However, as demonstrated in Table 1, the verification accuracy is 

50% for most datasets, and ChatGPT struggles at finding out mistaken reasonings. Notably, it 

persistently outputs “Correct” for most reasoning chain queries, regardless of their actual 

validity. We conjecture that such phenomenon is caused by the abundance of irrelevant premises 

for each reasoning step. Recall that the premises pi for a reasoning step 𝑠$ consist of question 𝑄, 

the question context 𝐶, along with the prior reasoning steps 𝑠%& = >𝑠&: 𝑗 < 𝑖B. For 𝑄 
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and 𝐶, we can further extract and decompose 𝑄 ∪ 𝐶 into a set of “question-related premises” 

𝑄𝐶 = {𝑞𝑐!, 𝑞𝑐", … , 𝑞𝑐'}, where 𝑞𝑐$ is a premise or condition inferred from 𝑄 ∪ 𝐶. Then, it is 

often the case that most elements of 𝑝$ = 	𝑄𝐶 ∪ 𝑠%& 	are irrelevant to the validity of 𝑠$, leading 

to erroneous verifications from language models. A very recent work [41] also observes a similar 

phenomenon where LLMs are easily distracted by irrelevant context. 

Hence, we propose a decomposition of the reasoning chain verification process into a 

series of step-by-step processes, where each step only considers the premises that are necessary. 

The overall validity of the reasoning chain, denoted as 𝑉(𝑠) =∧$(!) 𝑉(𝑠$), can be naturally 

decomposed into individual step validity 𝑉(𝑠$). However, achieving such decomposition is 

highly challenging without imposing constraints on the format of reasoning chains. Additionally, 

for each 𝑠$ ∈ 𝑆, we aim to ensure that it explicitly lists the minimal subset of premises 𝑝$ ⊆ 𝑝$ 	 

required for deductive reasoning to avoid potential ambiguities during verification. This 

motivates us to introduce a natural-language-based deductive reasoning format. 

As previously mentioned, we desire LLMs to output deductive reasoning processes that 

can be easily verified by themselves, specifically by listing out the minimal set of necessary 

premises 𝑝$ at each reasoning step 𝑠$. To accomplish its goal, we propose to leverage the power 

of natural language, which is capable of rigorously representing a large variety of reasoning 

processes and can be generated with minimal effort. In particular, we introduce Natural Program, 

a novel deductive reasoning format for LLMs. More formally, Natural Program consists of the 

following components:  

• An instruction for models to extract question-related premises 𝑄𝐶. We use the 

following instruction: “First, let’s write down all the statements and relationships in the question 

with labels". 



8 
 

• A numbered-list of question-related premises, each prefixed with 

“#{premise_number}”. 

• An instruction for models to generate the reasoning chain 𝑆 based on the question-

related premises 𝑄𝐶. We use the following instruction: “Next, let’s answer the question step by 

step with reference to the question and reasoning process”. 

• A list of prefixed reasoning steps 𝑆$ . The prefix has the following format: #{number} 

(by {list_of_premises_used}). Here “number” equals |𝑄𝐶| + 𝑖, and “list_of_premises_used” 

consists of numbers from the smallest subset of premises among 𝑄𝐶 ∪ 𝑠%& that are used for the 

deductive reasoning of 𝑠$. In addition, for the last reasoning step sm, we ensure that it (1) 

includes a special tag Final Step; (2) refers to the premise number of the target question to be 

answered; (3) explicitly gives the final answer to a question. 

Given that LLM’s reasoning outputs follow the Natural Program format, we can then 

verify the deductive validity of a single reasoning step 𝑠$ through an instruction that consists of 

(1) the full descriptions of premises used for the reasoning of 𝑠$; (2) the full description of 𝑠$; (3) 

an instruction for validity verification, such as “Double-check the reasoning process, let’s 

analyze its correctness, and end with "yes" or "no".” Note that throughout this verification 

process, we only retain the minimal necessary premise and context for 𝑠$, thereby avoiding 

irrelevant context distraction and significantly improving the effectiveness of validation. 

Given that we can effectively verify a deductive reasoning process, we can naturally 

integrate verification with LLM’s sequence generation strategies to enhance the trustworthiness 

of both the intermediate reasoning steps and the final answers. In this work, we propose 

Unanimity-Plurality Voting, a 2-phase sequence generation strategy described as follows. Firstly, 

similar to prior work like [19], we sample 𝑘 reasoning chain candidates along with their final 
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answers. In the unanimity phase, we perform deductive validation on each reasoning chain. 

Recall that a chain 𝑆 is valid (i.e., 𝑉	(𝑆) = 	1) if and only if all of its intermediate reasoning steps 

are valid (i.e., ∀𝑖, 𝑉(𝑠$) = 	1). For each intermediate reasoning step 𝑠$, we perform majority 

voting over 𝑘* sampled single-step validity predictions to determine its final validity 𝑉(𝑠$). We 

then only retain the verified chain candidates {𝑆 ∶ 	𝑉(𝑆) = 	1}. In the plurality voting stage, we 

conduct a majority-based voting among the verified chain candidates to determine the final 

answer. This voting process ensures that the final answer is selected based on a consensus among 

the trustworthy reasoning chains. 

Table 1: Zero-shot and two-shot reasoning chain verification accuracy for GPT-3.5-turbo 
(ChatGPT), where an entire reasoning chain is verified at once. 

Prompting 
Reasoning 

Correctness 
GSM8K AQuA MATH AddSub Date 

Last 

Letters 

 

Zero-shot 

Correct 0.98 0.96 1.00 0.98 0.98 1.00 

Incorrect 0.04 0.06 0.04 0.02 0.04 0.04 

(Average) 0.51 0.51 0.52 0.50 0.51 0.52 

 

Two-shot 

Correct 0.98 0.96 1.00 0.92 1.00 0.96 

Incorrect 0.02 0.04 0.00 0.06 0.26 0.06 

(Average) 0.50 0.50 0.50 0.49 0.63 0.51 

 
 

Benchmarks. We evaluate the deductive verification accuracy and the answer correctness of 

reasoning chains over a diverse set of reasoning tasks: arithmetic reasoning, symbol 

manipulation, and date understanding. For arithmetic reasoning, we utilize the following 

benchmarks: 1) AddSub [22]; 2) GSM8K [23]; 3) MATH [24]; 4) AQuA [25]. Among these 

benchmarks, the AddSub and GSM8K datasets involve middle school-level multi-step 

calculations to arrive at a single number as the final answer. The MATH dataset presents more 
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challenging problems that require expressing the answer as a mathematical expression in LaTeX 

format. These problems involve concepts from linear algebra, algebra, geometry, calculus, 

statistics, and number theory. AQuA also features similarly challenging problems, except that 

questions are in a multiple-choice format. For symbol manipulation, we use Last Letter 

Concatenation, where the model is tasked with concatenate the last letters of all the words 

provided in the question. 

Deductive verification evaluation setup. For each of the above benchmarks, we select 100 

reasoning chains, where 50 of them are deductively valid and 50 of them exhibit reasoning 

mistakes. The ground-truth deductive validity of each reasoning chain is determined by human 

annotators. 

Answer extraction. To extract answers from reasoning solutions, we first perform text splitting 

based on answer prefix patterns such as “answer is” or “option is”. Then, using problem type-

specific regular expressions, we extract the final answer. To extract the validity results from 

deductive verification processes, we only keep the last sentence of model response. We then 

extract the validity answer with regular expressions to obtain attitude words, e.g., “yes” or “no”, 

to determine the validity answer. Sometimes, language models may not provide a direct answer 

and instead output phrases like “not applicable” at the end of the response. In such cases, we 

consider the answer from the model as "yes". 

Model and Hyperparameters. We conduct our main experiments with GPT-3.5-turbo 

(ChatGPT) [27]. For ChatGPT, we use a generation temperature of T = 0.7. For Unanimity-

Plurality Voting, we set k = 10 and k ′ = 3 by default. We use 1-shot prompting for both 

reasoning chain generation and deductive verification (except reasoning chain generation for the 

date understanding task where we use 2-shot). 



11 
 

 

Table 2: Comparison of deductive verification accuracy of reasoning chains for GPT-3.5-turbo 
(ChatGPT). We compare two approaches: (1) verifying entire reasoning chains generated by 
Chain-of-Thought prompting; (2) verifying reasoning chains generated in the Natural Program 
format with step-by-step decomposition. 

 

We compare the verification accuracy of reasoning chains using two methods: (1) 

verifying the entire reasoning chain at once without utilizing the Natural Program, and (2) our 

Natural Program-based verification approach with step-by-step decomposition. The results, 

presented in Table 2, indicate that our approach achieves significantly higher reasoning 

verification accuracy across most datasets. It effectively identifies erroneous reasoning in faulty 

chains while maintaining a low rate of false positives for valid chains. However, we observe that 

our approach’s effectiveness is limited on the “Last Letters” task. We hypothesize that this is due 

to the task’s nature, where each subsequent reasoning step is conditioned on all previous steps, 

presenting greater challenges for reasoning verification due to the increased dependency among 

premises. 

In this paper, we aim to enable Large Language Models (LLMs) to perform explicit and 

rigorous deductive reasoning while ensuring the trustworthiness of their reasoning processes 

through self-verification. To this end, we have proposed a novel framework based on “Natural 

Verification 

Method 

Reasoning 

Correctness 
GSM8K AQuA MATH AddSub Date 

Last 

Letters 
Overall 

 

CoT 

Two-shot 

Correct 98% 96% 100% 92% 100% 96% 97% 

Incorrect 2% 4% 0% 6% 26% 6% 7% 

(Average) 50% 50% 50% 49% 63% 51% 52% 

 

Natural Program 

One-shot 

Correct 84% 72% 70% 95% 90% 96% 85% 

Incorrect 84% 62% 76% 40% 56% 6% 54% 

(Average) 84% 67% 73% 68% 73% 51% 69% 
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Program”, a natural language-based deductive reasoning format that facilitates reasoning 

verification and can be easily generated through in-context learning. Within this framework, we 

decompose the verification process of complex reasoning chains into step-by-step subprocesses 

that focus solely on necessary context and premises, allowing us to significantly enhance the 

accuracy of verification. Additionally, we introduce an Unanimity-Plurality Voting strategy to 

further improve verification accuracy. Experimentally, we demonstrate the superiority of our 

framework in improving the rigor, trustworthiness, and interpretability of reasoning steps and 

answers. 
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Chapter 2 Distilling Large Vision-Language Model with Out-of-distribution Generalizability 
 

Large vision-language models have achieved outstanding performance, but their size and 

computational requirements make their deployment on resource-constrained devices and time-

sensitive tasks impractical. Model distillation, the process of creating smaller, faster models that 

maintain the performance of larger models, is a promising direction towards the solution. This 

paper investigates the distillation of visual representations in large teacher vision-language 

models into lightweight student models using a small- or mid-scale dataset. Notably, this study 

focuses on open-vocabulary out-of-distribution (OOD) generalization, a challenging problem 

that has been overlooked in previous model distillation literature. We propose two principles 

from vision and language modality perspectives to enhance student’s OOD generalization: (1) by 

better imitating teacher’s visual representation space, and carefully promoting better coherence 

in vision-language alignment with the teacher; (2) by enriching the teacher’s language 

representations with informative and fine-grained semantic attributes to effectively distinguish 

between different labels.  

We distill a large vision-language teacher model 𝑇 (e.g., CLIP ViT-L/14 [28]) to a small 

student image model 𝑆 (e.g., ResNet18 [29]) by focusing on out-of-distribution (OOD) 

generalization for open-vocabulary object classification. We choose small- or mid-scale datasets 

to achieve the distillation so that the distillation process is flexible for fast research cycle and has 

less resource dependency. The teacher consists of an image encoder 𝑇$'+(·) and a text encoder 

𝑇,-,(·). During distillation, we keep the flexibility of the existing teacher text encoder for the 

open-set setting, and we let the student model 𝑆 be vision-only, i.e., 𝑆	 = 	 𝑆$'+. Through this 

process, we hope that 𝑆 not only achieves high prediction accuracy on seen labels 𝑌$., but also 

attains strong generalization ability on out-of-distribution labels 𝑌//.. In addition, we train 
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students from scratch to avoid label contamination, allowing us to more carefully assess and 

understand their OOD generalization ability. 

Table 3: Comparison between student models trained without teacher-student visual 
representation space alignment (𝐿!"# only), with direct teacher visual feature fitting +𝐿$#%), with 
improved teacher-student visual space alignment (+𝐿&$'!#(), and with improved preservation of 
teacher’s vision-language alignment structure +𝐿)"*+,-). 

 CaltechBirds StanfordCars Flower102 Food101 SUN397 tiered-ImageNet 

CLIP ViT-L/14 70.0 / 70.5 79.3 / 78.3 74.4 / 84.1 90.5 / 91.2 72.8 / 74.4 71.1 / 76.3 

CLIP RN50 57.1 / 56.4 53.2 / 56.3 59.3 / 65.3 76.5 / 78.3 65.0 / 66.3 55.7 / 62.0 

Closed-Set 

Classification 
48.1 / NA / 18.1 27.9 / NA / 10.1 77.1 / NA / 45.0 71.7 / NA / 30.3 57.8 / NA / 31.1 63.4 / NA / 31.2 

𝐿!"# 61.0 / 14.2 / 34.9 56.3 / 14.7 / 20.0 81.2 / 4.5 / 46.2 72.2 / 16.1 / 24.5 57.5 / 13.6 / 28.6 64.4 / 13.9 / 27.5 

𝐿$#% 27.0 / 12.0 / 14.3 5.5 / 3.8 / 4.0 48.1 / 7.3 / 15.0 45.0 / 17.0 / 19.3 24.3 / 11.0 / 14.5 49.3 / 14.8 / 23.2 

𝐿!"# + 𝐿$#% 63.7 / 17.4 / 36.2 62.2 / 18.8 / 35.1 82.6 / 6.3 / 46.0 72.3 / 19.0 / 35.5 57.1 / 15.3 / 29.4 66.2 / 14.9 / 28.5 

𝐿&$'!#( 42.1 / 21.3 / 29.1 33.2 / 13.7 / 20.0 54.8 / 13.3 / 27.3 70.0 / 34.9 / 36.8 45.2 / 22.8 / 27.2 46.3 / 22.8 / 30.8 

𝐿!"# + 𝐿&$'!#( 60.9 / 20.4 / 37.6 59.6 / 18.3 / 31.2 82.4 / 12.7 / 52.5 74.0 / 30.5 / 42.0 62.5 / 18.8 / 35.2 64.4 / 18.0 / 33.5 

𝐿!"# + 𝐿&$'!#(

+ 𝐿$#% 
62.5 / 20.8 / 39.0 59.6 / 19.0 / 33.1 82.6 / 12.0 / 48.7 75.0 / 31.2 / 42.0 60.0 / 19.8 / 35.2 67.0 / 19.4 / 34.6 

𝐿!"# + 𝐿&$'!#(

+ 𝐿)"*+,- 
62.3 / 21.6 / 39.0 63.9 / 19.8 / 38.5 82.7 / 14.6 / 52.0 74.3 / 32.0 / 43.2 61.7 / 21.5 / 34.7 67.5 / 20.5 / 35.3 

𝐿&$'!#(

+ 𝐿)"*+,- 
45.3 / 21.9 / 30.4 46.5 / 17.8 / 26.9 66.9 / 13.5 / 35.4 71.4 / 35.2 / 40.0 52.0 / 23.1 / 28.8 57.5 / 23.0 / 33.2 

 

We adopt a diverse collection of recognition tasks using small to medium-scale datasets, 

including CaltechBirds [30], StanfordCars [31], Flower102 [32], Food101 [33], SUN397 [34], 
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and tiered-ImageNet [35]Error! Reference source not found.. We split the dataset labels such 

that |𝑌$.| = |𝑌//.|, except tiered-ImageNet, which comes with an existing split. 

We note that teacher’s visual representation space is well-aligned with language across 

diverse datasets, and such alignment demonstrates strong generalization across many domains. 

By imitating teacher’s visual space structure, we hope to enhance the ability for student’s visual 

space to generalize and extrapolate towards unseen concepts, thereby implicitly enhancing the 

generalizability of student’s vision-language alignment and improving its OOD generalization. 

A direct approach to achieve this is to align the teacher and student visual representations 

through the Mean Squared Error (MSE) loss: 

𝐿'01 = ST𝑆(𝑥) − 𝑇$'+(𝑥)TS
"

"
 

 In Table 3, we show that adding 𝐿'01 on top of 𝐿230 improves student OOD 

generalization. However, upon further examination, we find that students face significant 

challenges in precisely reproducing teacher’s visual representations. Such errors persist even 

when the student and teacher networks possess the same representation power (e.g., both 

ResNet50 networks). This phenomenon highlights that achieving precise matching between 

teacher and student’s high-dimensional visual feature spaces is inherently challenging, which can 

be attributed to differences in weight initialization, training data, and the presence of local 

minima in the loss landscape. Moreover, we later find that when students struggle to precisely 

match teacher’s visual features, they also struggle to preserve teacher’s local visual space 

structure and relative visual feature relationship between different images, hindering their OOD 

generalization ability. 
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Since precisely matching teacher’s visual features is inherently challenging, we propose 

to augment the training objective with the following contrastive loss, which “softly” matches 

teacher’s visual features: 

𝐿$'420,(𝑥) =
exp X− ST𝑆(𝑥) − 𝑇$'+(𝑥)TS

"

"
/𝜏Z

∑ exp	(− ST𝑆(𝑥) − 𝑇$'+(𝑥*)TS
"

"
/	𝜏)-*

 

By combining 𝐿$'420, with 𝐿230, we observe in Table 3 that the student exhibits significantly 

better zero-shot and few-shot OOD generalization ability across different datasets. In the 

following paragraphs, we will develop several metrics to better assess the teacher-student visual 

space consistency. These metrics provide us with valuable insights into how 𝐿$'420, facilitates 

students to achieve closer visual space proximity to the teacher while yielding a deeper 

understanding of the teacher’s visual representation space. 

 Previously, we focused on improving the student’s OOD generalization ability by better 

aligning student-teacher visual spaces. Since teacher’s visual space is well-aligned with language 

across diverse concepts and domains, a better student coherence with teacher’s visual space 

implicitly leads to better vision-language (V-L) alignments. Naturally, an alternative perspective 

to improve student’s OOD generalization becomes to enhance its explicit V-L alignments and 

improve their coherence with the teacher’s, where we previously only used a simple contrastive 

V-L matching loss 𝐿230. Another motivation to focus on explicit V-L alignments arises from our 

finding that they play an essential role to ensure precise and accurate V-L alignments, especially 

when training on seen concepts or performing few-shot learning on novel concepts. Relying 

solely on implicit V-L alignments is inadequate in these scenarios. This is evident in Table 

3,where solely utilizing the visual space alignment loss 𝐿$'420, yields better performance on 0-

shot 𝑋//. (where classes are unseen) but worse performance on 𝑋$. and 5-shot 𝑋//. (where 
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classes are seen). On the other hand, by combining both implicit and explicit V-L alignment 

losses (𝐿$'420, + 𝐿230), students excel in all of  𝑋$., 0-shot 𝑋//., and 5-shot 𝑋//. scenarios. 

Therefore, by improving explicit V-L alignments, we not only hope to further enhance student’s 

0-shot OOD generalization ability, but also improve their performance on familiar concepts and 

their ability to few-shot adapt to novel concepts. 

We note that while 𝐿230 performs explicit V-L alignments, it has the limitation of 

indiscriminately pushing an image away from all non ground-truth language features, therefore 

disregarding teacher’s relative alignment relationship between the same image and different 

language features. Furthermore, we find that even though preserving teacher’s relative V-L 

alignment structure is desirable, it may not always be perfect due to potential misalignments 

between teacher image features and their corresponding language labels. These misalignments 

can introduce inconsistent noise during distillation, ultimately harming student performance. 

Motivated by these observations, we propose to augment our training objective with 

𝐿5367/-, which effectively and carefully preserves the teacher’s vision-language alignment 

structure while accounting for potential misalignments: 

𝐿5367/-(𝑥, 𝑘) = 𝐼(𝑥) · 𝐷89(𝑃:,,/6<(· |𝑥)||𝑃=,,/6<(· |𝑥)) 

𝐼(𝑥) = 1[𝑎𝑟𝑔𝑚𝑎𝑥>𝑃:(𝑦|𝑥) = 𝑙𝑎𝑏𝑒𝑙(𝑥)] 

𝑃·,,/6<(𝑦|𝑥) =
1>∈A!"#$𝑃·(𝑦|𝑥)
∑ 𝑃·(𝑦|𝑥)>∈A!"#$

; 𝑌,/6< = 𝑎𝑟𝑔𝑡𝑜𝑝𝑘>𝑃:(𝑦|𝑥) 

Here 𝑃: and 𝑃= denote teacher and student label probabilities; 𝐼(·)	filters out images 

misaligned with language labels; and 𝑘 controls the number of most-similar language features for 

each image. In our implementations, we find a larger 𝑘 beneficial for OOD generalization, and 

we choose 𝑘 = 256. 
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We demonstrate the effectiveness of 𝐿5367/- in Table 3.We find that by combining 

𝐿5367/-  with 𝐿230  and 𝐿$'420,, we further improve student’s ability to generalize towards OOD 

concepts. Interestingly, we also observe that while 𝐿230  and 𝐿5367/-  both explicitly perform V-L 

alignments, adding them together yields significantly better student performance on 𝑋$. and 5-

shot 𝑋//. than solely keeping 𝐿5367/-. This observation is distinct from those in the traditional 

model distillation literature [37], where distilling teacher logits alone from vision-only models 

typically produces good student performance. 

In the previous part, we focused on improving the imitation of teacher’s visual space and 

promoting better coherence with teacher’s vision-language alignment. Throughout this process, 

we kept the language representations fixed. However, the quality of language representations 

also plays a pivotal role in student learning and inference. Ideally, language representations 

should be capture precise, fine-grained, and meaningful semantic attributes, such that the student 

can effectively distinguish between different labels. We therefore ask the following question: can 

we leverage better and richer teacher language representations to further enhance student’s OOD 

generalization ability? We propose the following candidate strategies: 

Enriching semantic details of label descriptions by prompting LLMs. Previously, when we 

generate language representations 𝑙(𝑦) = prompt + description(𝑦) for student training, we 

adopted a simple strategy. In particular, for the description of a label y, we merely used its label 

name, e.g., “lotus”. However, these simplistic descriptions overlook many fine-grained 

properties of semantic categories, such as the shape, color, and texture of flowers, along with the 

description of their petals, leaves, and stems. In addition, we hope to automatically and 

efficiently generate enriched language descriptions for a wide range of labels, ensuring 

scalability for an arbitrary number of labels. Motivated by the recent progress on instruction-
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finetuned large language models (LLMs) [38][39][40], which have demonstrated impressive 

sequence generation abilities given user prompts, we find these models well-suited for our goal. 

Therefore, we propose to use ChatGPT to generate category descriptions. We prompt ChatGPT 

with the following instruction: “Use a single sentence to describe the appearance and shape of 

{cls}. Only describe the shape and appearance”. This allows ChatGPT to generate informative, 

fine-grained, and meaningful descriptions for target classes (e.g., “large, round, flat leaves; tall, 

slender stems; delicate petals in shades of pink, white, or yellow”), while keeping sequence 

lengths within CLIP text encoder’s limit. We then set description(𝑦) by concatenating “a photo 

of {cls}” with ChatGPT-generated class descriptions. We still keep the same vision-language 

alignment losses (𝐿230 and 𝐿5367/-) as before. 

Augmenting text through auxiliary captions. Currently, during student training, there is only 

one language description per category, i.e., |𝑙(𝑦) ∶ 	 (𝑥, 𝑦) ∈ 𝑋,7B$#| = |𝑌$.|. On the other hand, 

the number of training images significantly exceeds the number of labels, i.e., |𝑋,7B$#| 	≫ 	 |𝑌$.|. 

We therefore wish to generate language descriptions for each individual image, such that we can 

substantially enrich the number of language features during student training, which potentially 

benefits student performance. To achieve this, we propose using OFA [41] to generate captions 

for each image, resulting in a new dataset {(𝑥, 𝑐𝑎𝑝(𝑥), 𝑦) ∶ 	 (𝑥, 𝑦) 	∈ 	𝑋,7B$#} augmented with 

captions. During student training, besides using the same vision-language alignment losses 𝐿230 

and 𝐿5367/- as before, we also adopt the following auxiliary loss: 

𝐿2B6(𝑥) =
exp	(cos	(𝑆(𝑥), 𝑇,-,(𝑐𝑎𝑝(𝑥))/𝜏)

∑ exp	(cos	(𝑆(𝑥), 𝑇,-,(𝑐𝑎𝑝(𝑥′))/𝜏)-%,>%:>%D>
 

The loss pushes 𝑥 and its corresponding caption cap(𝑥) together while pulling away from 

captions belonging to different categories. Our preliminary experiments show that distinguishing 

captions belonging to the same category could degrade student performance as they are usually 
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similar. Note that we only incorporate captions for the auxiliary loss during student training. For 

student inference and label predictions, we continue to use the same 𝑙(𝑦) as before. 

Table 4: Comparison between different language representation enrichment strategies. The three 
numbers 𝑥1/𝑥2/𝑥3 in each entry denote the evaluation performance on 𝑋$., zero-shot 
performance on 𝑋//., and 5-shot performance on 𝑋//., respectively. 

 CaltechBirds StanfordCars Flower102 Food101 SUN397 Tiered-ImageNet 

Tab. 1 best 62.3 / 21.6 / 39.0 63.9 / 19.8 / 38.5 82.7 / 14.6 / 52.0 74.3 / 32.0 / 43.2 61.7 / 20.5 / 34.7 67.5 / 20.5 / 35.3 

Semantic Details 62.0 / 23.2 / 40.4 63.6 / 20.0 / 37.5 82.4 / 17.6 / 52.7 74.8 / 33.9 / 43.7 60.8 / 23.3 / 36.8 69.8 / 23.5 / 36.2 

Auxiliary 

Captions 
62.5 / 21.4 / 41.0 65.5 / 19.0 / 38.1 81.9 / 14.3 / 52.5 75.4 / 33.3 / 44.0 61.6 / 22.1 / 36.9 68.7 / 21.0 / 34.4 

Semantics + 

Caption 
62.0 / 22.7 / 39.8 64.9 / 20.4 / 39.7 83.7 / 18.2 / 53.4 75.6 / 35.7 / 42.9 61.0 / 24.0 / 37.5 68.9 / 23.6 / 35.8 

 

We adopt the aforementioned language-enriching strategies for student learning, and we 

present the results in Table 4. We find that combining LLM-enriched label descriptions with 

auxiliary captions yields the best OOD generalization. However, upon analyzing their individual 

effectiveness, we find that LLM-enriched label descriptions provide significantly better zero-shot 

OOD benefit than auxiliary captions, and solely relying on auxiliary captions only marginally 

improves zero-shot OOD generalizability. Upon further analysis, we find that many generated 

captions only broadly describe objects and are much less informative than ChatGPT generated 

descriptions for distinguishing fine-grained categories. For instance, in the StanfordCars dataset, 

a generated caption for an “Acura Integra Type R 2001” image is “a white car is parked in a 

field”, and solely relying on the white color provides little information to distinguish different 

car categories. Consequently, captions have limited impact on enhancing the generalizability of 

student’s vision-language alignment structures. Given the significant benefits of LLM-enriched 

label descriptions, we are particularly interested in exploring different prompts to control how 

ChatGPT generates semantic details and their influence on OOD generalizability. We design the 
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following prompts: More Succinct: “Use a single sentence to broadly describe the appearance 

and shape of {cls}. Don’t give too many details. Only describe the shape and appearance.” More 

Detailed: “Use a single sentence and short, simple, descriptive phrases to describe the detailed 

appearance and detailed shape of {cls}.” More Distinct: “Use a single sentence to describe the 

unique, distinctive appearance and shape of {cls}. Only describe the unique, distinctive shape 

and appearance.” 

Table 5: Results on leveraging different prompts to control semantic details of label descriptions 
generated by ChatGPT. 

 StanfordCards tiered-ImageNet 

No language enrichment 63.9 / 19.8 / 38.5 67.5 / 20.5 / 35.3 

Prompt in Table 4 63.3 / 20.0 / 37.5 69.8 / 23.5 / 36.2 

More Succinct 63.0 / 18.9 / 37.6 68.8 / 23.1 / 36.8 

More Detailed 62.9 / 19.0 / 35.1 69.3 / 24.2 / 37.7 

More Distinct 63.9 / 19.7 / 37.1 69.2 / 23.3 / 37.0 

 
 

We compare these prompts in Table 5. Interestingly, we observe that generating more 

detailed semantic descriptions on labels does not always perform better. We conjecture that this 

is because (1) LLM-generated details are not grounded in specific images, causing some 

attributes to be invisible and confusing the students; (2) the teacher CLIP is trained on LAION 

[42], where most language descriptions do not contain many fine-grained appearance details, so 

CLIP’s text embeddings are not very sensitive to some of these details. Additionally, we find that 

explicitly prompting ChatGPT to generate more concise text descriptions could be still helpful. 

Upon further analysis, we find that the resulting generations remain highly descriptive, albeit 

with slightly fewer details (e.g., when describing a “trumbone”, the more concise description 

becomes “a brass instrument with a long cylindrical tube curved into an elongated S shape with a 
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flared bell at the end”, whereas under our original prompt, additional details like “a sliding U-

shaped section called the slide” are included. 

In this work, we studied distillation of large teacher vision-language models into 

lightweight student models by focusing on open-vocabulary out-of-distribution (OOD) 

generalization for object classification using small to medium-scale datasets. We investigated 

strengthening students’ OOD generalization ability from two key perspectives: first, by better 

imitating teacher’s visual representation space and carefully promoting better teacher-student 

vision-language alignment coherence; and second, by enhancing the teacher’s language 

representations with informative and meaningful semantic attributes to effectively differentiate 

between different labels. We analyzed the efficacy and impact of our techniques by introducing 

metrics and conducting a comprehensive experimental analysis. Along this process, we 

significantly improve student’s zero-shot and few-shot generalization performance on 

openvocabulary OOD classification tasks.  
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