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ABSTRACT OF THE DISSERTATION

Enabling Rich Applications and Reliable Data Collection in Embedded Wireless

Networks with Low-Footprint Devices

by

Shoubhik Mukhopadhyay

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California San Diego, 2009

Professor Sujit Dey, Co-Chair

Professor Curt Schurgers, Co-Chair

Following the remarkable developments in computing and wireless commu-

nication technologies, there has been a rapid proliferation of mobile and embedded

computing systems and applications that are becoming ubiquitous in all aspects of

modern life, including the enterprise world, the entertainment world as well as in

common household appliances. However, designers of new generations of these sys-

tems have to address a twofold demand for increasing application functionality as well

as a reduction in device footprints.

This dissertation proposes a design principle that can allow mobile computing

applications to transcend the limitations on the end-devices, by splitting up the func-

tionality of the application end points between the low-footprint wireless end-nodes

and shared fixed nodes inside the network. It presents two instantiations of this idea

in different types of wireless networks, identifying and solving some of the key chal-

lenges faced when applying the proposed principle. In the first part, the focus is on

wireless access networks, where shared processing resources within the network can

be used to support high-end applications on thin handheld clients. A major challenge

here is to determine how to schedule the wireless communication and computing re-

sources together to support a large set of clients. The second part of the dissertation

demonstrates how the same design principle can be applied to wireless sensor net-
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works to enable the use of simple, ultra-low-power sensor nodes. The resource limi-

tations on the sensor nodes make it challenging to ensure the reliability of the sensor

data, and a novel solution is proposed that leverages the correlation properties of the

data to do so.

The experimental results presented demonstrate the viability of the proposed

architectural principle in systems that vary markedly in terms of application goals and

device capabilities. It is shown that the technique proposed in the first part can achieve

very efficient scheduling performance with minimal processing overheads. This en-

ables the expansion of the application functionality without increasing the footprint

of the end-devices. Similarly, in sensor networks, the error correction method demon-

strated the feasibility of achieving the primary functionality, i.e., reliable data collec-

tion even when the footprints of the sensor nodes are reduced too far to implement

traditional reliability measures. The techniques described will facilitate the adoption

of infrastructure-based approach to system design, leading to high-end applications

using low-footprint devices.
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Chapter 1

Introduction

In the recent decades, remarkable and steady developments in the fields of

computing and communication technologies have ushered in an age of information

technology, which has drastically altered the way we live, work, conduct business and

communicate with each other. Many of the devices and applications that have made

this change possible are results of a convergence between data processing and wire-

less communication capabilities. Examples of such emerging wireless applications

and systems are abundant in both enterprise and consumer worlds, covering such di-

verse areas as personal communication, consumer electronics, medical technologies,

navigation systems.

However, while it is the technological changes of the past that have enabled

the present developments, it becomes increasingly hard for each successive genera-

tion of technology to continue the existing rates of growth, because the requirements

for such growth impose conflicting requirements on the underlying systems. We be-

lieve that many of the future improvements will depend on innovations in the system

architectures and application designs that make use of the technological achievements

in new ways. In our work, we look at one such architectural idea and its potential to

improve the capabilities of different types of wireless data processing and communi-

cation systems.

In this chapter, we first discuss the history of technological growth and conver-

gence of computation and communication systems, and present a background on how

1
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technology trends and application requirements have shaped the present generation of

wireless computing systems. Next, we describe how an architectural approach based

on modifying the design of the end-nodes and the applications can lead to substantial

improvements in capabilities. Finally, we outline the contributions made by this the-

sis, in applying this proposed architectural approach to two types of wireless systems.

We conclude with an overview of the remaining chapters.

1.1 Convergence of computing and communication tech-

nologies

The embedded wireless computing systems of the present day are a result of a

convergence of computing and communication systems, which developed separately

for much of their existence. We note that the convergence comes at the end of a long

history of remarkable developments for both types of systems over the recent decades.

Fig. 1.1 shows some of the milestones along this path of growth, and illustrates how

they have gotten closer over time, leading to the close overlap of the present day.

Figure 1.1: Convergence of data-processing and communication systems over time
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Computing or data processing systems started off as centralized mainframes

of early years, which were followed by desktop personal computers and workstations,

and eventually by laptop computers that constitute the primary computing systems

for most present day users. Along these stages of development, advancements in

hardware design and fabrication technologies have enabled concentrating more and

more computational power in smaller packages. This has produced an exponential

growth in the density of computational power, as described famously by Moore’s

Law. Since the hardware was able to compress computing and storage into smaller

spaces, the computing systems, i.e., the data processing devices have also become

progressively smaller and portable , even while they became more and more powerful.

This is evident in the way that portable laptop computers have become capable of

handling most common computing tasks over the last decade. Moreover, laptops have

been followed by even smaller and lighter devices like Blackberry and PDAs, which

are capable of many common computing tasks like email and basic web browsing.

Over the same period of time, there has been a parallel development in telecom-

munication systems and applications, starting from wired telephony, followed by ana-

log cellular phones, and by three generations of digital cellphone technologies there-

after. During this development, the function of the communication system has evolved

from basic setup and routing of voice calls, to narrowband data communication, and

eventually to rich multimedia applications like video streaming over mobile broad-

band technologies. Along with the increasingly complex functionality and expanding

bandwidth, the devices used to access these systems have also grown more and more

complex and capable. For example, the computational capabilities of the CPUs in

Smartphones of the present day have become comparable with the processors from

the earlier generations of desktop computers. In summary, just as the computing de-

vices became more portable with the development of computing systems, the end

devices in communication systems have grown more complex.

As illustrated in Figure 1.1, both these trends have eventually led to an over-

lapping of roles between computational and communication devices in contemporary

data processing and communication systems. The lines between these types of sys-

tems are getting blurred, e.g., by the widespread use of computing devices for commu-
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nication tasks (e.g. IM, VoIP and video chat), or by cellular phones and Smartphones

that are used for data processing tasks like email or web browsing. This merging

of roles is most conspicuous in the proliferation of multi-purpose portable devices

that are equipped with both computing and communication capabilities to varying de-

grees. These types of crossover devices are now being used for functions as diverse as

personal communication, media playback, navigational aids, as well as common data

processing tasks.

The ubiquitous presence of these devices have also led to a corresponding

growth in supporting network infrastructure, leading to higher availability and capac-

ity of network connectivity. In the case of data processing systems, this has been in

the form of widely available Wi-Fi hotspots, while for communication systems this

has been in the wide and increasingly affordable support for cellular data services like

EDGE,EVDO,etc. The availability of the network infrastructure has, in turn, encour-

aged the proliferation of such devices, resulting in a self-sustaining cycle of growth.

The growing infrastructure has also encouraged many new applications of technology

that take advantage of this convergence by embedding computation and communi-

cation capabilities in new applications and appliances, and inventing new models of

usage. For example, digital cameras now often support wireless LAN connectivity,

so that the user can share photos with anyone in the world immediately after taking

them. Similarly, it is becoming feasible to supplant printed magazines with portable

electronic book readers that can automatically synchronize with current newspaper

and magazine issues over cellular data connections.

Even though phenomenal advancements have been made in embedded wire-

less networks, the cycle of growth is predicted to continue, as new applications get

integrated into this types of devices, and the economy of scale continues to make

them cheaper. To use an analogy with automobiles, the development of cars did not

come to a standstill once they became capable of the basic functionality of transporta-

tion, and commoditized to the point where most people could own one. Instead, even

after everyone had one, the demand for new functionalities and features, like safety,

power and energy efficiency, has continued to grow. Similarly, as portable devices

with wireless communication and computational capabilities become common, we
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expect to see a demand for new features from these devices that continue to stretch

their capabilities.

1.2 Directions of Development of Mobile Devices

The wireless computing and communication systems described above have

emerged from the convergence of two different paths of technological development.

In order to support and continue the phenomenal rates of growth as projected, succes-

sive generations of these systems will have to make progress along the design goals

that were a characteristic of both types of systems in the past. One of these goals is

the lowering of the footprint of the end devices, which consists of reducing their form

factor and energy consumptions. The other is for more complex application features,

which need higher computing power or high data rates in communication. However,

these goals place contradictory requirements on the system, since the higher func-

tionality also typically requires higher processing power on the end nodes. The only

way to achieve both at the same time is through significant technological changes.

For example, a change in a circuit design or semiconductor technology that can dra-

matically reduce the energy needed to perform a certain type of video compression

could potentially enable real time video compression in our wristwatches. However,

with each successive generation such technological changes become harder and more

expensive achieve. Instead, the typical development of these applications and devices

must explore the trade-off between requirements, the final choice depending on the

relative importance of each goal.

The effect of this course of development is illustrated in Fig. 1.2, which shows

how some examples of these devices compare in terms complexity and footprints, and

are affected by improvements in technology. Each curve marked on the figure denotes

each successive generation of technology, and different points on each curve represent

the continuum of possible trade-offs in two dimensions. Typically, a new generation

of technology or a new design enables more capabilities within the same footprint

(e.g., more powerful laptops) or a similar functionality within a reduced footprint

(e.g., sensor Motes [XBO] becoming smaller in each generation). To sustain the phe-
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Figure 1.2: Development of mobile devices vs application demands

nomenal levels of growth promised by the convergence, it will be necessary for future

systems to push the boundaries along both axes, for which it is not enough to depend

solely on technological changes. Instead, we believe that it is possible to transcend

the range of this trade-off through fundamental changes in network architecture and

application design. Below, we look at this architectural idea in more detail.

1.3 Proposed Application Design Principle : Splitting

End Nodes

In this dissertation, we propose an approach to effect such change through a

revision of application design and network architecture. In broad terms, it consists

of a redesign of the way the end nodes in a distributed wireless networked system

implement the functionality of the user-related parts of the application. Before de-
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scribing our approach, we first look at the corresponding approach used in traditional

computing systems and communication systems.

Historically, applications for wireless networks have broadly conformed to

the architecture depicted in Fig.1.3(a). The central characteristic of this architecture is

that the functionality specific to the client, or the user, is concentrated at the end nodes,

which can take the form of various types of devices. This architecture has been univer-

sally used in data processing systems as well as communication networks, differing

only in types of devices used for the end nodes. For data processing applications, the

end node typically consists of a laptop computer connecting to the network over some

type of 802.11 wireless link. In this case, the applications would be identical to those

designed for desktop computers connected to wired networks, with the end nodes be-

ing completely responsible for handling all the user-specific and application-specific

processing. The role of the network is only to provide connectivity for data transfers

with relatively simple semantics. Even communication functionalities specific to the

user instance, like ensuring reliability, maintaining sessions or controlling data flows,

are left to the end points. On the other hand, in wireless telecommunication systems,

the end nodes are simpler devices, and the connection and application states are main-

tained by the network itself (Fig. 1.3(b)). Even with technological evolutions that have

affected the processing capabilities as well as the communication bandwidths, the ar-

chitectures for such systems have essentially remained same. For example as laptops

became more and more portable, approaches like mobile IP were used to handle the

connectivity issues within the network, changing nothing in the client architecture.

Similarly, while the cellular data connections now support high bandwidth commu-

nication capable of handling many desktop applications, the application architecture

has largely remained the same as before. So networked applications created for desk-

top computers have to be scaled down to match the reduced capabilities of the clients,

which include CPU, battery as well as display size limitations.

The existing architecture has worked well, and will continue to do so even

with the changing characteristics of network applications. However, the architecture

also offers only a limited scope of a trade-off between the client functionality and

the device capabilities of the end node. In this work, we present a modification of
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Figure 1.3: Proposed application architecture

this architecture as an way to handle new applications that helps us keep pushing the

envelopes of higher functionality and lower device footprints. Our approach for han-

dling both these demands together consists of restructuring the part of the applications

that reside on the end node. As shown in Fig.1.3(b), the responsibilities of the end

node are split among two different devices, marked here as the fixed node and mobile

node. Now, the fixed node is decoupled from the footprint restrictions on the end

node, and can support higher functionality. Similarly, the footprint of the mobile node

can be further reduced, because the part of the application requiring higher processing

at the client can be performed at the fixed node. While these two devices can remain

tightly coupled, with a pair of such devices exclusively representing an end node,

their physical location can be adapted to the network architecture and system require-

ments. For example, the mobile part can often benefit from being moved away from

the network, only retaining a point-to-point link with the fixed node. Depending upon

the application, it can be placed in close association with an user (in mobile access

networks), or with a physical environment (for a sensor network). Another possible

extension of this architecture is to push the fixed node deeper into the network, having

it connect to multiple mobile nodes. Since the fixed node is relatively free from foot-

print restrictions, in some cases this may allow merging a few of the fixed nodes and

having a number of mobile nodes share them. This approach is shown in Fig.1.3(c).
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Since it ensures that the number of fixed nodes are not tied very closely to the number

of mobile nodes, it enables a greater flexibility in the system design. We also note that

sometimes there some such shared infrastructure is already present in a network, play-

ing similar roles as the fixed node. This infrastructure may be extended to implement

the fixed node, e.g., in a Wireless LAN environment, it would be a simple solution to

integrate the fixed node into the access points by co-locating general-purpose comput-

ers with them. Similarly, in a hierarchical sensor network, the fixed nodes can be be

an extension of a clusterhead node that acts as a network gateway for multiple sensor

nodes.

In our work, we show how the proposed architecture can allow diverse types of

wireless computing and communication systems to increase application functionality

and reduce device footprints at the same time. Various wireless applications, ranging

from sensor networks to desktop-like rich applications like multimedia, have used the

architecture of Figure 1.3(a). Since they put all the processing for the client on the

end nodes, the client functionality is limited by the amount of processing that can

be accommodated within the device constraints of the clients. Below, we show how

splitting the end node allows this limitation to be bypassed in two applications with

very different requirements and goals.

Consider the system of wireless LAN APs mentioned above, where the fixed

nodes consist of powerful processors co-located with wireless access points, while

the end nodes are low-footprint, mobile devices that act as network clients. In the tra-

ditional architecture of Figure 1.3(a), all the client-side processing in the application

will be performed by the mobile nodes, so that the processing power in the clients

would limit the richness and quality of the application. In the proposed architecture,

the ‘enhanced’ access points can perform as application-layer gateways that provide

processing support in addition to network access to the clients, opening up the scope

of the system to enable support for rich multimedia mobile services. For example, this

could allow the fixed nodes to render complex 3-dimensional graphics and forward the

result to thin mobile handsets as video streams. In general, this architectural modifi-

cation can allow a significant flexibility in balancing processing and communication

resources against application requirements when designing mobile applications. Even
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when the end nodes are capable of performing these tasks, this design allows the op-

tion of trading off bandwidth usage with battery life by allowing processor-intensive

tasks to be offloaded to the access points.

In another type of network, for example, in certain types of sensor networks,

this design would mean splitting up the functions of the sensor nodes into two parts.

Common tasks in sensor nodes include reading data from sensors, and storing, pro-

cessing and reporting the data, and many common architectures assign these diverse

tasks to one type of nodes. However, using the architecture shown in Fig. 1.3(b), the

sensing and data processing tasks can be partitioned among dedicated sensor nodes

and other network nodes designed for the specific type of data processing. This would

allow each of the sensor nodes to specialize in sensing certain types of data sources,

so that they can be designed very efficiently, with very little software content. On the

other hand, the fixed nodes can consist of complex devices with higher processing ca-

pabilities. These nodes can perform various data processing or routing tasks that can

be implemented in software, allowing these devices to be reconfigurable and reusable

across multiple applications.

In the following chapters, we look at both these types of applications and show

how they benefit from the proposed restructuring of end nodes. We also address ad-

ditional challenges that arise from adopting this architecture. In the case of enhanced

wireless access points, this is the problem of sharing the fixed nodes among the end

nodes, whereas in sensor networks, it is the problem of ensuring the reliability of

the data when the sensor nodes are too thin to support powerful protection measures

against errors. In both cases, we demonstrate how the result of addressing these chal-

lenges, can expand the boundaries of functionality and footprint. In the next section,

we describe these two problems and present an overview of the remaining chapters,

summarizing the contributions that this dissertation makes in addressing them.

1.4 Contributions and Overview

The main contributions made by this thesis are threefold. First, we present a

network architecture for wireless networks that enables the expansion of application
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functionality further than that permissible by end nodes. Second, for this architecture

we have solved the problem of scheduling two resources, computation and commu-

nication, with complex interdependencies. Third, for wireless sensor networks using

this architecture, we solve the problem of correcting non-linear errors in the data using

a data-dependent framework.

For the scheduling problem, the novelty of our work is to take into consider-

ation the complex effects of wireless links on the communication constraints when

scheduling computation resources in a network. Wireless links have certain unique

properties, e.g., location dependence and interference due to the use of shared chan-

nels. As a result, the effect of allocating one resource to a given user on other users

is dependent on the positions of this user, as well as others in its neighborhood. Thus

the scheduling problem we look at has unique spatio-temporal aspects, which have

not been taken into account by existing work on processor scheduling, as we discuss

later in related work.

In case of the reliability problem, there are two aspects to the novelty of

this work: it addresses non-linear errors and does so in an adaptive manner. Our

method performs error correction exclusively through post-processing, but it can han-

dle random-bit-flipping errors that have non-linear effects, which cannot be handled

by typical post-processing approaches (e.g. smoothing) that depend on linear filtering.

Moreover, our approach includes run-time model adaptation, which allows the error

correction system to keep up with variations in the data source by choosing different

AR models as appropriate to the current data properties.

The main impact of the work on scheduling is that it merges the power of desk-

top computing with the portability and location-awareness of handheld devices. By

decoupling the application functionality from the footprint limitations, it can enable

high-end social networking and enterprise applications for mobile users. Moreover,

by encouraging the development of applications that perform some of the processing

within the infrastructure, it also makes the case for development of more wireless

infrastructure side by side with the development of handsets.

For wireless sensor networks, the impact of this dissertation is to enable the

use of ultra-miniaturized, simple sensor nodes for designing reliable applications.
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This can in turn lead to many new applications that can be created from cheap off-the-

shelf components instead of waiting for custom design of sensor nodes. In addition,

the proposed architecture can use generic designs for the aggregator nodes irrespec-

tive of sensing applications, which would lead to a cost reduction through economy

of scale.

In the remainder of this dissertation, we take a detailed look at two instances

of the proposed architecture presented in Fig. 1.3 in two types of wireless networking

applications. In the first part, we consider mobile networks with thin clients, and show

that our architecture allows them to support rich applications that would otherwise

require more powerful clients like laptops. In the second part, we focus on wireless

sensor networks, where the primary application is reliable data collection. For such

systems, we show that our approach allows the footprints of the sensor nodes to be

substantially reduced without affecting the reliability of the data collection.

We present the first work in Chapter 2, where we focus on rich mobile appli-

cations that would normally require substantial data processing on the end nodes. We

apply the idea for redesigning the application end-points to this context by having thin

wireless handsets offload complex data processing tasks to fixed nodes. We propose

an architecture where the fixed processing nodes are shared among multiple clients

(as shown in Fig. 1.3(c)) in order to support a large and flexible number of clients.

This sharing leads to the main challenge of such a network: to allocate the comput-

ing and communication resources in such a system effectively among a large number

of heterogeneous clients. Our main contribution is to solve this problem of sharing,

which we represent as a joint scheduling problem. We present efficient techniques for

solving these problem with minimal system overheads.

In Chapter 3, we present our second work which focuses on data collection

applications in wireless sensor networks. Here we look at an example of how the

functionality of the system can be preserved or improved, while drastically reducing

the footprint of the end nodes. Ensuring reliability of sensor data is one of the primary

functions of a sensor network, and we show that reliable data collection is possible

even with ultra-light, low-energy sensor nodes, by splitting some of the functionality

among dedicated devices that either perform sensing or data aggregation. We present
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a method that can ensure reliability by using the properties of sensor data, while per-

forming all the processing necessary for this on the fixed aggregator nodes.



Chapter 2

Enabling Rich Mobile Applications:

Joint Computation and

Communication Scheduling

In the previous chapter, we presented an overview of the architectural principle

of splitting the functionality of the end-nodes in wireless computing and communi-

cation systems. In this chapter, we demonstrate an application of this principle in

increasing the functionality of mobile applications without requiring an increase in

the footprint of the end nodes. We explore the joint resource scheduling problem that

results from this approach, and present methods for ensuring efficient utilization of

computing and communication resources in the system.

2.1 Introduction

The work presented in this chapter addresses the demand for increasing func-

tionality in mobile applications, which has been a result of their rising popularity and

widespread adoption. In today’s world, mobile applications are desired to provide

functionality that was previously possible only on fixed systems like desktop com-

puters, gaming consoles, etc. However, we also want the client devices to simultane-

ously get thinner and lighter and have higher battery life. As discussed in Chapter 1,

14
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these two goals are hard to pursue together, which leads to a gap between the desired

functionality and the capabilities of the mobile devices to support them as achievable

with the current technology. The result is a trade-off between these conflicting re-

quirements. The alternatives consist of using low-footprint devices like PDAs, which

would require scaling down the application functionality, or using laptops as clients,

which limits the flexibility of the user. We propose that splitting the functionality of

the end nodes, following the principle introduced in Chapter 1, presents an opportu-

nity to implement complex application functionality while retaining the advantages

of low-footprint end nodes. In other words, this attempts to effectively provide the

power of a laptop in a smaller device.

To implement our approach, we also take into account the growth of fixed

computing infrastructure, which has become more affordable and more widely avail-

able in the physical environment. We envision that the ubiquitous availability of this

computing infrastructure can be leveraged to support the heavy computational tasks

for the mobile applications, and use a thin-client design for the low-footprint part of

the end nodes. In our work, we consider one implementation for this architecture

where the computing support is built into the wireless access points, which could

provide both computation and communication support for mobile applications, as il-

lustrated in Figure 2.1.

This figure shows the use of this architecture for running rich mobile applica-

tions in various contexts. The physical environment is instrumented with 802.11-type

Wireless LAN access points (APs), each of which is enhanced by a powerful general-

purpose processor that may be physically integrated or co-located with the AP. Such

a system can enable flexible and powerful mobile services, e.g., video-conferencing

systems that support streaming high-definition video from handheld devices. Using

currently available architectures, this would require the terminals to support compu-

tationally intensive tasks like video compression and streaming. But in the proposed

architecture, the clients could be thin devices like cellphones, which transfer these

tasks to the enhanced access points over short range, high capacity wireless links.

Such an approach can also be useful in network gaming. Here, high definition 3-D

graphics could be brought to portable displays by performing certain rendering tasks
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Figure 2.1: Network of enhanced wireless LAN with additional processing elements

co-located with the access points.

at the access points.

Implementing the fixed part of the end node inside the network also enables it

to be shared across multiple users. While this provides obvious advantages in terms

of cost and scalability, it also introduces the complexity of managing the sharing of

this resource among the users. Consider the network in Figure 2.1, where each mobile

client may be in the coverage area of multiple access points and have multiple choices

available for scheduling the application tasks. The processing capacity at each access

point is a system resource that has to be shared among the client tasks. Similarly, the

communication channels between the clients and the access points are also shared.

When a client has a task with certain computational and communication resource

requirements, the choice of which access point to use will have to be made taking into

account both these resource requirements. This gives rise to a joint computation and

communication scheduling problem, which forms the focus of this chapter.
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Joint Scheduling Problem

The objective of our joint scheduling problem is to find the best way of shar-

ing the computation and communication resources in the network. This translates to

finding the best choice of access point (AP) for each client. For the overall system, the

best choice can be defined as that which minimizes fragmentation of the resources,

and allows usage of the system resources by the maximum number of clients. So

the best assignment for each client will depend on the positions of the other APs and

clients, and their choice of assignments as well. For example, consider a handheld

client C that needs to off-load a processing task to a nearby AP. Suppose it sends

out a broadcast query and finds two APs, A and B, that offer adequate data rates and

processing capacity for this task, with A being nearer and supporting a higher data

rate. Now, from the point of view of C, the best choice of AP for C could be A due

to the higher data rate. But from the system’s point of view, B might turn out to be a

better choice if there are more clients contending for the process resources at A. On

the other hand, if C has to communicate with B at a lower data rate, it will end up

holding the communication channel longer to transmit the same amount of data. So

depending on the presence and requirements of other clients, the best choice for the

system could differ.

In a real application network, when the scheduler is computing the best set of

assignments for the system, the clients will be waiting to begin executing the tasks.

So a practical requirement of the scheduling is that it has to be completed within a

very short time, on the order of milliseconds. Moreover, since the scheduler shares

the processing resources on the APs, its computation requirements also need to be

limited. On the other hand, finding the best overall assignment is a complex problem,

as will be discussed in Section 2.5. There could be multiple feasible assignments,

which have to be evaluated and compared to pick the best one. But finding the optimal

solution by evaluating all options can be very slow. This is illustrated in Fig. 2.2 for

a simplified version of the problem that ignores interference constraints. The figure

shows how the running time of the optimal scheduler varies with the number of clients

for three different sizes of the system that have 6, 8 and 10 access points respectively.
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Figure 2.2: Running times for Optimal scheduler

It can be observed that the optimal scheduler can take hours to run even on relatively

small loads of 10-12 clients on a network of 6 APs. This plot will be discussed in

more detail with comparisons to our proposed scheduler in Section 2.7.4.

Our goal is to find a practical solution that satisfies the running time require-

ments as well as schedule the most number of clients possible. There are two main

contributions to our work presented in in this paper: identifying the joint computation

and communication scheduling problem, and developing a heuristic-based solution

that is practical and efficient. In the rest of the paper, we present the problem of

scheduling a set of tasks with specific resource requirements in the context of the sys-

tem shown in Figure 2.1. Using simple per-node schedulability tests, we formulate

the task allocation problem in an optimization framework, and develop a polynomial-

time heuristic for an approximate solution. We analyze the performance of our ap-
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proach and demonstrate through computational models that our approximate solution

performs better than two other approaches. We then validate our models through

packet-level simulation, and also show that the scheduling performance approaches

the optimal, while managing to execute three or more orders of magnitude faster.

2.2 Related Work

In this chapter, we present a solution for the problem of scheduling computa-

tion tasks on a set of processing devices connected through wireless communication

links. Previous work in scheduling of computation tasks on multiple processor sys-

tems has primarily been focused only on the computation resource constraint. While

these works have taken into account communication overheads due to inter-processor

communication, they have primarily used wired interconnects. On the other hand,

wireless communication scheduling has been an area of extensive research, which has

focused on the efficient sharing of communication resources among multiple users

under various constraints and objectives like throughput and energy requirements.

The communication scheduling techniques cannot be applied to scheduling of com-

putation tasks. Below, we first present a comparison with the existing research on

processor scheduling, followed by that on wireless communication scheduling.

The problem of scheduling a set of processing tasks over multiple resources

has been studied in detail in the context of multi-processor scheduling in distributed

systems, grid computing as well as in computer architecture [RSZ89][CM01][LS98].

In these problems, the primary focus is on minimizing the average delay and develop-

ing approximate algorithms that approach the optimal solutions with bounded error.

However, these formulations are different from our problem because they use simpli-

fied models for the communication links that do not account for their variable quality

or location dependence. On the other hand, the problem examined in this disserta-

tion makes use of more realistic communication resource models that considers the

variability of wireless links, taking into account location-dependence and interference

effects. One related group of work in processor scheduling is on designing schedu-

lability tests, where it has been shown that complexity of the test depends on the
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homogeneity of the tasks [MB05][Bak05]. We refer to some of these tests as in our

scheduling model to check schedulability locally on each processing node.

Similarly, managing shared access of nodes to the communication channel

is one of the primary problems in wireless networks. Therefore, communication

scheduling has been one of the main areas of research, particularly in the design of

MAC protocols. Various wireless schedulers have been designed to optimize for dif-

ferent goals like capacity, fairness and stability under various channel models [VDGB05]

[LK03][TS02] [JCOB02]. Moreover, various types of joint scheduling problems have

been studied in wireless networks [EE02][CS03], which have included joint optimiza-

tion of different resources and criteria, like power, congestion control as well as rout-

ing. However, this set of solutions is orthogonal to our problem, since none of them

include processor scheduling among the primary goal.

Finally, there is one work that has studied the problem of processor schedul-

ing in an ad-hoc network with wireless communication links and mobile client nodes

[ACG+06]. Here, the authors consider the effect of node positions on the connectivity

between the nodes. However, they model the communication links using a simple

binary model based on the transmission range. This model does not fully capture the

location-dependence characteristics of real wireless links, which adapt their modula-

tion schemes and transmission data rates with signal strength, leading to a complex

dependence of link throughput with distance. The throughput is also affected by in-

terference from other nodes transmitting on same channels within a particular range.

These properties have complex effects on how the allocation of a particular resource to

a node affects the remaining resources. In our work, we take into account these realis-

tic properties of wireless links by using throughput vs. distance measurements made

in 802.11 networks and modeling the channel-access time as a first order constraint.

In summary, the novelty of our work lies in the ability to account for the

properties of wireless communication links in a realistic joint-scheduling formulation,

which also considers the interdependencies resulting from the interaction of process-

ing constraints with communication resource constraints.
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2.3 Problem Formulation

In this section, we develop a formal definition of the joint computation and

communication scheduling problem. We first present our system model and assump-

tions, and then present a formal definition of the problem based on this model.

2.3.1 System Model

Our system consists of a network of enhanced wireless access points (APs),

which provide connectivity and computational support to a set of mobile clients for

running networked applications. The APs are stationary, identical in processing ca-

pacities, each operating on a fixed single frequency channel. High capacity wired

links like Ethernet connect the APs to a backbone and the Internet. This network of

APs needs to support a set of clients attempting to run application tasks that require

network connectivity as well as computational support from the APs. The clients

are mobile and can enter or leave the network at random times, which results in a

changing set of task requirements.

Upon entering the network, each client sends requests for resources to all ac-

cess points in its vicinity. Each request includes a processing capacity requirement,

which represents the processing resources necessary to run the task on the chosen AP.

Every request also includes a communication requirement, which is the bandwidth

needed for this task between the client and the AP. The resource requests from all the

clients are collected by a scheduler program that computes a new schedule, attempt-

ing to assign each client task to one of the APs. For each of the tasks that can be

scheduled, both the client and AP are notified. The remaining tasks are either added

to a list to be processed later, or discarded if their maximum waiting periods are ex-

ceeded. The scheduler is run periodically, to account for the changes in the load due

to mobile clients entering and leaving the system. The frequency of repeated runs

depends on the scheduling time for each run, as we will see later. For simplicity, we

only consider clients trying to schedule one task each. However, multiple independent

tasks per client can be easily handled by replacing ‘client’ with ‘task’ in the following

discussion.
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We also assume that it is not possible to split the offloaded processing for a

task among multiple APs. Certain applications may contain function blocks which can

be executed in parallel. While it may be feasible to split such applications, allowing

it does not reduce the complexity of the problem unless an arbitrarily large number

of splits were possible, as we show later. Therefore this assumption can be included

without sacrificing generality.

The overall goal of the scheduler is to maximize the total number of clients

supported by the system under two main constraints: (a) processing resources at each

AP and (b) shared communication channel for the clients connected to each AP. In

our model, the processing resources on all the APs are identical, and the processing

tasks are periodic with identical time periods. In this case, simple additive schedu-

lability tests [Bak05] can be used to test the processing resource constraint for each

AP. However, equivalent tests exist for loads with unequal periods, and can be easily

included.

On the other hand, the communication resource constraint depends on the link

quality, which is different for each wireless link between a client and an AP node. The

link quality for each pair of nodes depends not only on the distance between them, but

is also affected by interference from other transmitting sources on the same channel

that are located close enough. Therefore, evaluating this constraint is more complex

due to the interdependence among APs. In our system, a large number of APs operate

on a limited number of orthogonal channels, so for any AP, there are likely to be others

transmitting on the same channel who are in a position to interfere.

While estimating the effect of interference is a complex problem requiring de-

tailed knowledge of the signal strengths, our scheduler uses a simplified model based

on interference range to identify potentially interfering sets of nodes. For each group

of interfering nodes, the scheduler attempts to ensure that enough time is available on

the communication channel to accommodate all potentially interfering sources, if the

MAC can avoid them transmitting simultaneously. Whether or not collisions actually

occur depends on the collision avoidance mechanism of the MAC, and in Section 2.7,

we will use simulations to verify how well our scheduler can work with the non-

ideal collision-avoidance mechanism in 802.11. Our computation of the interference
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range (I) is based on the common model I = 2R, where R represents the maximum

transmission range. In our system, while the locations of the APs are known by the

scheduler, we assume that it does not have any information about the positions of the

clients. So, the scheduler uses a worst-case estimate, assuming that the set of inter-

fering sources within the interference range includes all nodes connected to APs that

share the same channel.

To account for the effect of multiple users sharing the resources, we model

the communication resource constraint as the channel occupancy time for each AP.

This is a fairly common model that takes into account path-loss, channel sharing and

interference effects. Among the total channel occupancy time of 100 %, each client

consumes a time proportional to the ratio of its bandwidth requirement to its link

capacity. By capacity, we mean maximum throughput for the purposes of this section.

2.3.2 Formal Definition

Based on the model of the user requirements and system resources described

above, we now present a formal definition of the joint scheduling problem. We con-

sider a set of independent application tasks that need to be scheduled on a given

network of stationary enhanced access points. The network includes m APs and n

clients, which are organized into ordered sets M and N respectively. The available

processing capacities of the APs are represented as a m-dimensional vector c, and the

position and operating channel for each are known. A matrix F is used to represent

an interference graph computed on the basis of the positions and channel assignment

information for the APs. The graph contains one node for each AP, and includes edge

(i, k), i.e. fik = 1, if and only if APs i and k are within interfering distance of each

other (i, k ∈M) and are on the same channel.

The processing and communication requirements for the tasks are known at

the time of placing the scheduling requests, and are represented as n-dimensional

vectors p and r. The path-loss bound link capacities are represented by a vector l of

size mn such that li+m(j−1) represents the capacity (i.e., maximum throughput) of the

link from client i to AP j, ∀i ∈M, j ∈ N . We define an mn× 1 assignment vector x
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and related assignment function xi(j) ≡ xi+m(j−1)), such that xi(j) is 1 when client j

is assigned to AP i and 0 otherwise. We represent the channel access time of the link

between client j and AP i as τ i
j = rj/li+m(j−1). The various constraints can then be

formalized as follows:

1.
∑n

j=1 xi(j)pj 6 ci, ∀i ∈ M , denotes the CPU capacity constraint for each

of the APs.

2.
∑n

j=1 xi(j)τ i
j +

∑
k 6=i fik

∑n
j=1 xk(j)τ k

j 6 1, ∀i ∈ M , represents the con-

straint on the channel access capacity of each AP in presence of interference.

3.
∑m

i=1 xi(j) 6 1, ∀j ∈ N , denotes that each client can be assigned to a

maximum of one AP.

4. xi(j) ∈ {0, 1}mn, (∀i, j) denotes that a task cannot be split across different

APs, and can be either assigned to one or refused access.

The first three sets consist of 2m + n individual constraints, all in the ‘less

than’ form, so they can be summarized into a single matrix inequality Ax 6 b,

where the dimensions of A are (2m + n) × mn. Under these constraints, the ob-

jective of the scheduler is to find an assignment that is closest to the total scheduling

request for the complete set of clients. This is represented in the objective function:

maxx
∑n

j=1 (wj

∑m
i=1 xi(j)).

This function also defines the criteria for choosing a solution that satisfies only

a partial set of requests. When all the clients are identical, the goal is to maximize

the number of clients in the total. There is also a weight assigned to each client,

w ∈ <n representing the total weight vector. The weights can be used to represent

some system-specific satisfaction score, in order to separate clients based on service

classes.

2.4 Optimal Solutions

In Section 2.3.2, we presented the joint scheduling problem as an optimiza-

tion problem with four sets of constraints. While the first three sets of constraints

are linear, the assumption that tasks cannot be split across multiple APs gives rise

to the integer constraints x ∈ {0, 1}mn. This results in the well known 0-1 Integer



25

Programming form, which is known to be NP-hard in the general case [Ber99]. Al-

ternately, the problem of finding the optimal schedule can be cast as a K-constraint

Multiple-Knapsack problem with K=2 (2-MKP) which is NP-hard in the strong sense

[AC05]. It can be demonstrated that the stated problem is NP-hard as well, and can-

not be efficiently solved or approximated. The approach most common in literature

is of combinatorial optimization algorithms that make systematic searches throughout

the whole solution space [Ber99]. In this problem, since each of the n clients can be

assigned to one or none of the m APs, the number of possible solutions is (m + 1)n.

An optimal solution is one that either includes all clients, or failing that, maximizes

the objective function over a subset of them. Even for moderate sized systems, the

solution space can thus grow to huge sizes that can take hours to search, e.g. with

20 clients and 6 APs the number of solutions is on the order of 1017. If each test

takes 3 instructions on a 3GHz CPU, this can take up to eleven days even with 100

searches running in parallel. For example, in the measurements shown earlier in Fig.

2.2, it took more than two hours to schedule 12 clients on 6 APs using a 3GHz CPU.

However, in order to be useful in handling incoming clients, the scheduler will need to

execute frequently, and find a quick solution within a few seconds. Therefore, optimal

combinatorial algorithms cannot be applied here.

One possible approach could be based upon relaxation of the unsplittable tasks

requirement. In some instances, it may be possible to split an application into inde-

pendent tasks and run them in parallel. For such cases, the problem may be reduced to

a simple linear programming(LP) form, which can be solved optimally using standard

methods like Simplex [Ber99]. However, infinitely splittable tasks are an unrealistic

assumption for most applications of interest. For example, in real-time applications,

if the communication links from a client to different APs differ significantly, a large

part of the available processing time for each unit of data will be consumed in the

overheads of buffering and coordinating the splitting and merging of data. Moreover,

in order for this approach to be successful, it is necessary to be able to split the ap-

plication into arbitrary parts for allocation. Even for applications containing sections

that can be executed in parallel, this is not feasible. With a limited number of separa-

ble parts, the relaxed problem still remains a combinatorial optimization problem of
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similar difficulty as the original problem.

2.5 Approaches for Solution

As we discussed in the last section, it is infeasible to solve the joint scheduling

problem optimally under the time constraints typical to our system. In this section, we

propose a heuristic for a scheduler (FJRS) that efficiently generates an approximate

solution under tight time constraints. Before describing our heuristic, we first look at

another common approach for such problems, which is to relax the integer constraints,

solve the resulting LP problem, and project the solution back to the original variable

space. For this part, we used a simplified version of the problem that assumed the

availability of enough non-overlapping communication channels to assign an unique

channel to each AP. This assumption simplifies the communication constraint because

interference can be ignored. However, as we show later in Section 2.7, this approach

performs poorly compared to our heuristic even for the simplified case, so we did not

extend it further for the complete problem.

2.5.1 LP Reduction

This approach is a heuristic based on the LP relaxation discussed in the last

section. The solution of the relaxation is used as a starting point to guess an approx-

imate solution, as illustrated in Figure 2.3. Beginning from the original formulation,

the three linear constraints are collected into a (2n + m) ×mn constraint matrix A,

and the integrality constraint on x is relaxed to generate the LP problem. This is

solved using a standard method, and the resulting solution x̂ is analyzed and con-

verted to an integer solution xint in the following way: The assignment vector x̂ is

mn-dimensional, consisting of n consecutive blocks of m elements each. Each such

block denotes the assignment of a particular client. We consider each m-element

block in the LP solution x̂, find the maximum non-zero element in it and set it to 1,

while setting the other m − 1 elements to 0. The resulting xint satisfies constraints

3 and 4 described in the formulation and is then tested for the other constraints. If it
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fails any of the first two, the size of the solution is decremented by setting one element

in xint to 0. This element is selected by looking at which constraints were violated,

and to which APs they relate. Among the clients assigned to this subset of APs, we

find the one whose corresponding element was the minimum in the LP solution x̂.

The resulting solution is tested again, and this process iterated until either a solution

is found to satisfy the constraint, or until xint reaches zero.

Given original joint scheduling problem

Convert to LP problem and solve for x

( )
[ ]mn

n

j

m

i kj jmi, kxw

1,0  subject to

)1(max
1 1

∈≤

−+=∑ ∑= =

xb,Ax

x

Compute integer solution xint from    :
For each client, set max. element to 1 and rest to 0

Test

Axint < b ?

Reduce size of solution by 
removing minimum element 
from xint to produce new xint

N

Y

( )
{ }mn

n

j

m

i kj jmi, kxw

1,0 , subject to

)1(max
1 1

∈≤

−+=∑ ∑= =

xbAx
x

xint

Select assignment xint

x̂

x̂

Figure 2.3: Flowchart for LP-based heuristic

The LP-based heuristic is fast because we avoid any backtracking, so the num-

ber of iterations is limited to n. Also, the steps that are repeated in the loop only
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consist of testing the solution, which is a multiplication of two sparse matrices and

can be executed quickly. The main step is solving the LP problem, which contains

2m + n linear constraints and can be solved efficiently through the Simplex method.

On the other hand, the starting solution obtained from the LP may be distant from the

optimal integer solution, and if there are very few feasible solutions it is possible to

miss them all because the search path is limited to n steps.

2.6 FJRS Heuristic

Here, we present our approach, called Fast Joint Resource Scheduler (FJRS),

which can achieve high scheduling performance while running at high speeds. To

construct our solution, we first develop the approach to solve a special case of the

problem, generated with an additional assumption. We then construct the heuristic for

the more general case based on this solution. We begin with the special case where

the resource demands from all clients are identical, and normalize the corresponding

levels of available resources with respect to them, i.e. rj = 1 and pj = 1, ∀j ∈
1, . . . , n. The sequence of steps followed from here is shown in Fig. 2.4.

The algorithm is based on a greedy selection of up to n links from the set of

all links. We begin by composing a list Edgelist of all the client-AP edges with non-

zero link capacity (lij) values, so that for any edge e ≡ (i, j), Edgelist[e].lcap← lij .

We then annotate each entry in the list with a field minlcap that keeps track of the

client with minimum link capacity that can connect to the same AP, i.e. for any edge

e ≡ (i, j), Edgelist(e).minlcap← min
ĵ 6=j

liĵ . Now, Edgelist is sorted in a descending

order, using the rules shown in Algorithm 2.
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Figure 2.4: Flowchart for FJRS heuristic
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Algorithm 1 Determining Priorities Among Precedence Rules for Sorting Edgelist
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Algorithm 2 Precedence Rules for Sorting Edgelist in FJRS Heuristic
Let Example Sorting Order = (lcap, minlcap, ProcCap)

if Edgelist[e1].lcap 6= Edgelist[e2].lcap then

Edgelist[e1].lcap > Edgelist[e2].lcap⇒ e1 ≺ e2

Edgelist[e1].lcap < Edgelist[e2].lcap⇒ e1 � e2

else

if Edgelist[e1].minlcap 6= Edgelist.minlcap then

Edgelist[e1].minlcap > Edgelist[e2].minlcap⇒ e1 ≺ e2

Edgelist[e1].minlcap < Edgelist[e2].minlcap⇒ e1 � e2

else

ProcCap[c1.i] ≤ ProcCap[c2.i]⇒ e1 � e2

ProcCap[c1.i] > ProcCap[c2.i]⇒ e1 � e2

end if

end if

Once Edgelist is sorted, the scheduler removes the top edge, including it in

the solution set if it satisfies the remaining capacity constraints, or just discarding it
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otherwise. If including the edge, the scheduler also removes all the other edges with

the same client from the remaining Edgelist, and updates a set of state variables that

keep track of the remaining resource constraints.

The main idea behind FJRS is that in general, given all rj-s being constant, the

links with higher link capacities have the least impact on the channel access capacity

of its corresponding AP. Among two edges with the same link capacity, the client with

the least number of alternative options should be assigned first. The processing ca-

pacity affects other nodes the least, so it is only used as a final check. However, if the

difference between the processing requirements is exceedingly high, the remaining

processing capacity in the two APs take a higher precedence. Apart from this general

case, there are special cases when the links to be compared can potentially interfere

with each other, or are connected to the same access point. In these cases, the require-

ments and available capacities for processing resources have a bigger role. For links

going to the same AP, either the processing requirements or the link capacities may

take higher precedence, depending on which of these parameters differs more between

the two links. Similarly, when the two links are on different APs that can potentially

interfere, instead of the processing requirements, the remaining processing capacities

are considered. Here, Algorithm 1 shows how the relative resource requirements are

used to determine the priorities among the sorting rules. Algorithm 2 illustrates how

a particular ordering of these priorities is translated to precedence rules for the sorting

engine.

The running time is the total time needed over three steps: annotation of Edge-

list with minlcap values, sorting the list, and the final pass through the list where the

remaining list is scanned at each step. The annotation makes one pass through the full

list to find the minimum edge for each AP (O(mn)), the actual setting of the minlcap

field being done when each edge is accessed. For the sorting, we used Quicksort

which has an complexity of O(mnlog(mn)) in the average case, but other sorting

methods can be used for better worst-case performance. In the final step, as the size

of the remaining list gets reduced by either n or one after each step depending on

whether the top entry is selected or not, the complexity can be shown to be O(m2n).

The overall time complexity is thus dominated by the last step, which has a polyno-
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mial time complexity of O(m2n). The space requirement is dominated by the list of

edges, which can be O(mn).

This heuristic can now be expanded to support the general case where clients

can have different p and r values. First, the primary factor used to sort Edgelist is

changed to lij/rj instead of lij . The minlcap field is redefined to keep track of the

client with the minimum lij/rj . Also, the checks for remaining processor and channel

access capacity are done through comparisons with pj and 1
lj/rij

respectively. Al-

though the objective function does not need to change, the weights w can be adjusted

to account for any additional preference for specific clients without loss of generality.

It is interesting to compare the design of this algorithm with the original prob-

lem, which was cast as a problem of selecting one out of m + 1 values for each of n

clients, and thus had (m + 1)n possible solutions. Here, we have redefined the prob-

lem in a less restricted form. The number of possible solutions are now
∑n

k=1

(
mn
k

)
,

since we are picking out a subset of up to n links from a set of size mn. However,

structuring the solution set this way allows us to order them according to the impact

on overall solution, and reach the solution in fewer steps.

2.7 Evaluation

We evaluate our approach in two ways. In the first part, we test the effec-

tiveness of our scheduler in utilizing the available computation and communication

capacity in the system. Given a particular set of scheduling problems, we look at

how many client tasks can be scheduled by our scheduler, in comparison to simpler

scheduling algorithms. Next, we wish to see, given a schedule or mapping of tasks

to APs, whether we actually meet the demands for the tasks. We do this using a

packet-level simulator that provides a close verification of the communication chan-

nel occupancy constraint.
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2.7.1 Simulation Setup

In the first set of experiments, we measured the number of clients that can be

scheduled by our scheduler under different network configurations and client loads.

We implemented our scheduler in C, and evaluated its performance over a network

scenario similar to the ones shown in Fig. 2.1. While our solution is general, for

evaluation we pick a specific realistic scenario that determines the type of processing

and communication resources in the network as well as the requirements of the client

tasks. We first present a set of results for a simplified version of the problem that ig-

nores the interference constraint, comparing the performance of FJRS with that of the

optimal scheduler and the LP heuristic. For the simulations on the complete problem

presented in the later part, it was not feasible to compare with the optimal sched-

uler due to extremely high running times for each run. Therefore, we implemented

two other scheduling approaches for comparison: one that allocates each client to the

nearest access point, and a second that chooses one access point at random among the

ones within the transmission range of each client. In both cases, the clients were con-

sidered in a random order, and a client was not scheduled if its resource requirements

exceeded the remaining processing and communication capacities. For each simula-

tion result presented below, the performance was averaged over a set of ten random

layouts of clients.

As an example application in our scenario, we chose real-time video com-

pression for streaming, where video data from networked cameras are compressed

in real time at the access points and streamed to the clients over a 802.11b Wireless

LAN. The computation and communication requirements for the application were

estimated from measurements made on MPEG-4 video encoding in ffmpeg. These

measurements, made at different frame rates on standard video sequences in QCIF-

format are summarized in Table 2.1 below. Each client was randomly assigned one of

the application configurations from the table.

For the communication links, we used a 802.11b MAC layer which has three

non-overlapping channels. The values used for the link capacities lij were the maxi-

mum data rates achievable for each client-AP pair in absence of interference, as listed
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Table 2.1: Video clips used and their resource requirements

Video Frame Rate Processing Req. Bandwidth Req.
Sequence (Frames/sec) (% Full capacity) (kbps)
AKIYO 15 2.76 125
AKIYO 20 2.86 180
AKIYO 25 4.14 183
FOREMAN 15 4.32 224
FOREMAN 20 5.40 232
FOREMAN 25 6.25 234
NEWS 15 3.25 234
NEWS 20 3.89 257
NEWS 25 5.17 259

Table 2.2: Typical Achievable bandwidth with 802.11b

Range (m) Basic Data Rate (Mbps) Baseline throughput (Mbps)
≤ 125 11 5.1

125-162 5.5 3.3
162-262 2 1.52
262-331 1 0.79

in Table 2.2. The numbers in the table are based on throughput vs. range characteris-

tics (See Fig. 2.5), as measured on CalRadio, a 802.11-based experimental platform

with a software-programmable MAC which was developed in our group [JSP07]. The

interference model that the scheduler operates on is I = 2R (I=interference range,

R=transmission range), as described in Section 2.3. This model is used to identify

potentially interfering sources which the scheduler avoids scheduling together. It is

noted that this is different from the RTS/CTS approach used in 802.11. The effect of

this difference will be discussed in Section 2.7.3.

The processing capacities of the enhanced access points were based on gen-

eral purpose computers with 2.6GHz Pentium 4 processors. To take into account the

processing overheads of running the scheduler on the access points, we first measured

the run-times of the scheduler for the specific loads, and then subtracted the equiva-
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lent processing times from the processing capacities in subsequent runs. The reported

numbers correspond to these overhead-adjusted simulations.

Our simulated network consisted of APs placed in a regular triangular grid

and clients randomly placed around them. Each AP was assigned one out of the

three non-overlapping channels. Fig. 2.6 shows the pattern of channel allocation in an

example grid, where the vertices represent the AP positions and the circled numbers

on each vertex represents the channel used by that AP. This allocation maximizes

the separation between interfering access points. The size of the grid is varied to

generate scenarios with different levels of overlap between the transmission ranges of

interfering APs. The client positions are distributed evenly among the coverage areas

of all the APs. This means that while the total number of clients per AP can differ due

to overlaps, there are still a minimum number of clients within the transmission range

of each AP. We also conducted the experiments with the clients uniformly distributed

over the whole region, but it was found to be less effective in simulating smaller

networks due to edge effects that often leave one or more APs unloaded. We only

present the results for the balanced client loads here, since the results in the other case

were very similar after accounting for the edge effects.

2.7.2 Simulation Results

We show the performance of our algorithm in terms of the average number of

clients scheduled. First, we present the simulation results for the simplified version

of the system model, comparing the performance of FJRS with the LP-heuristic and

optimal solution. Later, we present the results for the complete version of the problem,

accounting for the effect of interference.

Simplified Problem without Interference

In the following graphs, we compare the performance of the schedulers in

terms of number of clients scheduled, which are plotted against the total number of

clients presented to the scheduler. Figure 2.7 shows the results from a simple case with

a limited number of clients, where all the clients have identical resource requirements
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Figure 2.6: Allocation of channels to access points
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(corresponding to the FOREMAN−25 clip). Figure 2.8 shows larger systems where

clients have different resource requirements, based on randomly selected rows from

Table 2.1. For each method, there are different lines representing plots for different

numbers of access points(M).

Figure 2.7: Scheduling performance for clients with identical resource demands

In Figure 2.7, we have a comparison of the LP and FJRS heuristics with the

optimal scheduler. It can be observed that in most cases the FJRS scheduler achieves

the maximum performance, i.e. scheduling all clients. In cases where it does not (e.g.

for M=2), its performance matches that of the optimum scheduler. The LP performs

well for smaller systems, but its performance degrades with increasing number of

nodes. For example, with 8 APs (M=8) and 24 clients, LP-based method schedules

17 clients on the average, while FJRS can schedules 24 clients. From Figure 2.8,

we observe that the performance of the FJRS scheduler flattens out as the number of

clients increase, which is how the optimum performance would be expected to behave.

We also see that the knee of the curve rises as more APs are added to the system. The

LP method works well for small number of nodes, but as the size of the system and

the number of possible solutions increase, its performance degrades rapidly. This is
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Figure 2.8: Scheduling performance for clients with varying resource demands

probably because the limited number of steps makes the quality of the solution very

dependent on the initial point. However, FJRS is found to be a robust method as it

performs well for larger systems and with a variety of client requirements as well.

Complete Problem with Interference

For the complete problem, we present two sets of results with three plots

in each, corresponding to our FJRS scheduler, a random allocation scheme, and a

nearest- access-point scheduler respectively. All three plots in each group are drawn

to a common scale to allow direct comparison. The lines in all the plots represent the

scheduling performance averaged over ten random distributions of client positions.

For each line, error bars showing the standard deviations provide an indication of the

statistical variations and a confidence measure of the results.

As mentioned in Section 2.7.1, the grid of access points shown in Fig. 2.6 is

scaled to different sizes. In Fig. 2.9, each line shows the performance for a different
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size of the terrain. So, for each line, the distance between the APs remains constant,

while more clients are placed within the same area. The plots demonstrate how the

scheduling performance changes with increasing client load on a given set of fixed

APs. In Fig. 2.10, the terrain size (and therefore the distance between access points)

is varied along each line, while the client density is held constant. Changing the

distance between neighboring access points changes the degree to which interference

affects the channel capacity for each AP.

It can be observed that our approach (FJRS) results in a significantly larger

number of clients being scheduled than the two other methods. Moreover, its perfor-

mance scales smoothly with increasing client density. The performance of the random

scheduler remains almost constant over an increase in client density, but shows a de-

crease in performance as the area is increased. This is expected, since it does not favor

the nearer access points. So the bandwidth penalty for randomly choosing the access

points far away increases when they are spread further apart. The third method, choos-

ing the nearest access point, shows a gradual increase in performance with increases

in density or terrain size.

2.7.3 Verification in NS

For the second part of our evaluation, we used packet-level simulation to ver-

ify whether a set of client assignments produced by the scheduler can be sustained

in a real network scenario. As mentioned in Section 2.7.1, the scheduler makes its

decisions based on an abstract model of the system. In this part, we evaluate how the

scheduler’s output is affected by limitations of this model. For example, the scheduler

estimates interference based on a constant interference range, and uses a worst case

estimate due to unknown client positions. In contrast, the simulator computes inter-

ference using a SINR model which provides a more realistic estimate. Moreover,

the MAC layer does not avoid interference completely, but uses a RTS/CTS mecha-

nism that results in some wasted throughput due to collisions. Similarly, back offs

during transmission also reduces throughput. Through these simulations, we observe

the effect of these losses on the throughput of individual clients. We used the well-
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Figure 2.9: Scheduling performance for clients with varying resource demands for

three scheduling approaches. 12 Access points, total area scaled with constant client

density. Equal number of clients within range of each AP.
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Figure 2.9: Scheduling performance for clients with varying resource demands for

three scheduling approaches. 12 Access points, total area scaled with constant client

density. Equal number of clients within range of each AP (Figure continued).
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Figure 2.10: Scheduling performance for clients with varying resource demands for

three scheduling approaches. 12 Access points, client density varied with constant

total area. Equal number of clients within range of each AP.
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Figure 2.10: Scheduling performance for clients with varying resource demands for

three scheduling approaches. 12 Access points, client density varied with constant

total area. Equal number of clients within range of each AP (Figure continued).
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known ns2 [NS] simulator for the packet-level simulations. We adapted the simulator

to override all automated routing and AP selections, and enforce the access point as-

signments produced by our scheduler.

Fig. 2.11 shows the performance of our scheduler under three different sets of

simulation parameters. The dotted line is included as a reference, showing the case

when the achieved throughput equals the requested. Thus the distance of each dot

from the reference line represents the difference between the requested and achieved

throughput for that client. As mentioned earlier, any difference would be the effect

of protocol overheads and interference effects that could not be accounted for by the

scheduler.

In Fig. 2.11(b), the area is scaled down from 53800 sq.m. to 26900 sq.m.,

while doubling the client density (from 570 to 1140 clients per sq.km.) to maintain the

same number of clients. The performances are similar, suggesting that the increase in

interference due to the APs being closer is accounted for effectively by the scheduler.

Fig. 2.12(c) shows the effect of increasing the density of clients by the same amount

as before, without scaling the size of the area from Fig. 2.11(a). It can be observed

that the scheduler selects more clients but with lower throughput requirements. It is

expected that with an increased client density, there are many more clients with lower

throughput requirements that are likely to be close to one or more APs. Since these

clients have the least effect on the remaining communication capacity of the system,

the scheduler selects them first.

We next demonstrate that our scheduler does not underutilize the network re-

sources, i.e., it schedules the maximum number of clients possible for a given system.

One way to do so could have been a comparison with the output of the optimal sched-

uler. However, the high computational complexity and running times of the optimal

scheduler makes it impractical to compute its output for every system configuration.

Instead, we use the ns2 simulations of the scheduler output to indirectly test how

closely the load generated by our scheduler matches the optimal allocation levels. To

do this, we inject approximately 10% extra clients into a system that is already de-

termined to be saturated, i.e., where the FJRS scheduler was able to schedule only a

subset of the given load. It is expected that after adding extra clients that attempt to
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Figure 2.11: Throughput for CBR traffic using NS2. (b) shows the effect of increasing

client density and reducing the area to keep the number of clients in the system same

as in(a). In (c), the client density is doubled while keep the AP density same as in (a).
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Figure 2.11: Throughput for CBR traffic using NS2. (b) shows the effect of

increasing client density and reducing the area to keep the number of clients in the

system same as in(a). In (c), the client density is doubled while keep the AP density

same as in (a) (Figure continued).
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Figure 2.12: Throughput for CBR traffic after adding 10% extra clients to the each of

the loads in Fig. 2.11.



49

0

50

100

150

200

250

300

0 50 100 150 200 250 300

A
ch

ie
ve

d 
th

ro
ug

hp
ut

 (
kb

ps
)

Requested throughput (kbps)

M=12 N=25  D=82m Area=5.38E+04sq.m.

(c) N=25, Area=5.38E04sq.m.
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the loads in Fig. 2.11 (Figure continued).
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use more resources than available, the resulting system will not be schedulable any-

more and will show a degradation in overall performance. The results are presented in

Fig. 2.12, for the three network configurations used earlier in Fig. 2.11. The number

of added clients are 1, 2 and 2 respectively. The reduction in achieved throughput

across the set of clients is very apparent, as the points fall away from the reference

line. This suggests that the load allocated by the scheduler was close to saturating the

network resources.

2.7.4 Running Time

Apart from the the number of clients scheduled, another critical property of

the scheduler that affects its overall performance is the running time. The running

time limits how frequently a new load can be scheduled in the system. Moreover,

since the processors in the APs are responsible for running the scheduler, the running

time indicates how much of the system resources is consumed by the scheduler itself.

In Fig. 2.13, we show how the running times for our algorithm scales with

increasing loads. When compared with Fig. 2.2 (Page 18), it can be observed that un-

like the optimal approach, FJRS can feasibly handle large sets of clients. For example,

even with loads of over 100 clients, the running time for the scheduler remains within

the range of a few seconds. In contrast, an optimal approach would require hours for

loads as small as 10-12 clients. Though the plot uses logarithmic scale to accommo-

date a large range of running times, when plotted on a linear scale (not included) it can

be observed that the running time of FJRS roughly increases proportionally with the

number of clients. This behavior agrees with the expected time complexity calculated

in Section 2.4, and can be useful in estimating the scheduling overhead during system

design.

2.8 Conclusions

In this paper, we presented a study of the joint computation and communica-

tion scheduling problem in a proposed network of enhanced access points designed to
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support rich mobile applications on thin clients. We have developed a set of heuris-

tic approaches to solve the scheduling problem when the running time is a critical

constraint. Through a set of simulation studies we demonstrated how our approach

can achieve an excellent scheduling performance, while performing under tight time

constraints.

The text of this chapter, in part, is based on material that has been pub-

lished in the IEEE Global Communications Conference(Globecom) (S. Mukhopad-

hyay, C. Schurgers, S. Dey, “Joint Computation and Communication Scheduling to

Enable Rich Mobile Applications”, Multimedia Communications, Software and Ser-

vices Symposium at the IEEE Global Communications Conference, Washington D.C.,

November 2007) and material submitted to the ACM Mobile Computing and Com-

munications Review (S. Mukhopadhyay, C. Schurgers, S. Dey, “Enabling Rich Mo-

bile Applications: Joint Computation and Communication Scheduling”, ACM Mobile
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Computing and Communications Review). The dissertation author was the primary

researcher and author in the publications, and the coauthors listed supervised the re-

search that forms the basis of this chapter.



Chapter 3

Model Based Techniques for Data

Reliability in Wireless Sensor

Networks

In the previous chapter, we discussed how the architectural principle presented

in Section 1.3 can be applied to mobile wireless networks to increase the application

functionality without expanding the footprint of the end nodes. In this chapter, we

present how the same principle can be applied to wireless sensor networks to reduce

the footprint of sensor nodes without affecting the functionality of the application. We

demonstrate an approach for effectively performing the primary function of reliable

data collection with these low-footprint sensor nodes.

3.1 Introduction

One of the results of the convergence of computing and wireless communica-

tion applications described in Chapter 1.1 has been the emergence of wireless sensor

networks in the last decade. These are networks of computing devices with wire-

less communication capabilities that can interface with sensors to enable autonomous,

fine-grained monitoring of the physical world. Numerous applications have emerged

for Wireless Sensor Networks in the recent years, for example, structural monitor-

53
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ing of building and bridges, monitoring of environment in farmlands and fine-grained

climate control in office buildings, industrial process control, etc. Moreover, a large-

scale, rapid growth in the deployment of such systems is predicted in the near future

[HC05, ONW05].

The main driving force behind the growth of wireless sensor networks has

been the phenomenal developments in semiconductor design, which have enabled the

creation of the sensor network nodes: small devices capable of computing, wireless

communication as well as sensing. The advancements made in VLSI circuits and mi-

croprocessor design technologies, like down-scaling of feature sizes and lowering of

operating voltages, have in turn allowed the sensor nodes to become smaller and more

power efficient [HSW+00]. In the future, sensor nodes can be expected to continue

to become smaller, more energy efficient and cheap, qualities that would enable ef-

fective and pervasive deployment for them. This would, in turn, benefit many new

applications that can benefit from large numbers of such low-footprint sensor nodes

[F+06, MI06].

The primary functionality of a sensor networking application is the reliable

collection of sensor data. As the sensor nodes become smaller and cheaper, errors

in various stages of the data collection process become more and more prevalent,

and ensuring the reliability of sensor data becomes progressively harder. On the other

hand, traditional approaches for reliability require various overheads in hardware, pro-

cessing and communication bandwidth. These overheads make it hard to achieve the

required reliability concurrently with the footprint reduction of sensor nodes.

We believe that to perform reliable data collection under these conditions, fun-

damentally new approaches will be necessary. Here we present an example, based on

the architectural principle introduced in Chapter 1 (Fig. 1.3 on Page 8). The principle

of splitting the end-node is applied here by dividing the functionalities of sensing,

processing and reporting data among two types of network nodes. The sensing is

performed by dedicated, very low-footprint wireless sensor nodes, which represent

the wireless nodes in Fig. 1.3(b). A second type of nodes, called aggregator nodes

representing the shared fixed node in the same figure. These are equipped with sub-

stantial data processing capabilities and can connect to one or more sensor nodes. The
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Figure 3.1: Network of sensor nodes and clusterheads

resulting architecture is shown in Fig. 3.1, with two types of customized sensor nodes

available today representing the sensor and aggregator nodes respectively. In prac-

tice, the aggregator nodes can be made with generic off-the-shelf processors, while

the sensor nodes are expected to be even smaller and simpler.

In this chapter, we specifically look at the problem of making the sensor data

collection reliable in such an architecture, where the sensor node is not capable of in-

curring the overheads of traditional reliability approaches. We propose a solution that

allows reliable data collection with no overhead at the sensor nodes, concentrating all

of the necessary processing at the aggregator nodes. Below, we first present the prob-

lem of data reliability in more detail and explain the intuition behind our approach.

Data Reliability in Wireless Sensor Networks

The data reliability problem in wireless sensor networks arises due to errors

introduced at various stages in the data collection. First, the hardware becomes less

robust to many types of errors due to the effects of aggressive technology scaling. An-

other source of unreliability are the errors in the wireless communication channels, as

limitations on transmission power due to tight energy constraints makes them more

susceptible to noise and interference. The problem is further aggravated by exposure



56

to harsh physical environments, which is common for many typical sensing applica-

tions. Subsequently, ensuring reliability of the data in a sensor network is a growing

problem, and will be a challenging part of designing sensor networks. Our proposed

approach utilizes properties specific to sensor networks and has two main advantages:

first, it handles multiple sources of errors together, and second, it imposes no overhead

at the sensor nodes.

To introduce our approach, let us consider a sensor network that monitors the

temperature distribution in an office environment by making new readings every few

minutes. Now, since the ‘meaning’ of the data carried over this network is known

beforehand, during regular operation certain properties of the data can be validated

within the network and samples deduced to be impossible can be marked or ruled out.

For example, if the temperature is measured every minute, and is always observed

to report a value within two degrees of 25◦C, an few isolated readings at 100◦C or

-10◦C are likely to be due to errors, and should be verified against other sources

before triggering any response. Similarly, if a light sensor that is used to automatically

control lighting reports a sudden change in the light level but falls back to the prior

level in the next second, it is probably not a good design to change the lighting level

immediately. Both these cases illustrate how the meaning of the data, known to the

application designer, can be used to test the validity of the samples within the network

as they are recorded. Our proposed approach for reliability is a generalization of this

idea, where knowledge of any properties about the data source can be systematically

used to perform error correction. Such knowledge could be available during design,

passed on during deployment, or inferred from historical data.

The different sources of errors affecting wireless sensor networks have been

studied extensively, and many methods to handle them individually have been de-

veloped in the literature. However, the traditional approaches to provide reliability

against each kind of error are based on adding redundancy, and lead to resource over-

heads in terms of communication bandwidth or hardware complexity, as discussed in

Section 3.2 of this Chapter. On the other hand, our approach uses the properties of

the data to distinguish them from errors introduced at any stage. Moreover, it intro-

duces no hardware, processing or energy overheads at the simplified sensor nodes,
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and allows simplification of the sensor node design and further miniaturization with-

out impacting the robustness. This makes it a perfect fit for our proposed architecture,

which is discussed in more detail in Section 3.3.2.

We demonstrate our approach through a methodology that uses temporal cor-

relation in sensor data sets to perform error detection and correction at receiver nodes.

Our method, described in Section 3.4, consists of generating predictions for future

sensor data at run-time by using the knowledge about correlation, and comparing

sequences of these predictions with the observed data within a decision tree. The

correlation properties are embodied in data models, which generate predictions based

on recent history of observations. While we limit our implementation only to au-

toregressive(AR) models, the methodology can be extended to work with other types

of models that are suitable for specific properties of data, e.g., periodicity. We also

illustrate how our method can be used to complement traditional techniques like CRC-

based error detection, e.g., to adjust the level of protection depending on the relative

levels of correlation in the data and the levels of errors. We present the problem of

data modeling in Section 3.5, and discuss the criteria that makes a model suitable for

use in our method. We also describe how the model can be adapted to changes in data

properties at run-time.

3.2 Errors in Wireless Sensor Networks

In this section, we present a background on the types of errors in wireless

sensor network, and motivate the need for new approaches of reliable data collection.

We first describe the different types of errors that can affect the sensor data, and

then look at some of the traditional methods for handling such problems. We also

discuss why these techniques will not be able to meet the requirements of many sensor

networking applications, and why a different approach for reliability is necessary.

3.2.1 Sources of Errors in Sensor Networks

In a wireless sensor network, sensor data samples are exposed to various

sources of errors during the course of sensing, processing and communication. First,
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the sensors can report faulty readings because of changing operating conditions (e.g.,

temperature, humidity, etc.) or bias and calibration drifts caused by aging [EN03,

BMEP03]. After sensing and quantization, the data can still be affected within the sen-

sor nodes by various hardware errors such as crosstalk and radiation effects [KH04].

Afterward, the data samples are again exposed to channel errors in the wireless com-

munication channel. These errors can differ widely in terms of severity, frequency of

occurrence and statistical properties. We classify the sources of error into two types,

transient and permanent, based on the effect they have on the sensor data. The method

of error correction that we present here is designed to address the transient errors that

affect the sensor data after quantization, and is effective against errors from multiple

sources.

The main driving force behind the feasibility of ultra-small, cheap, low-power

sensor nodes has been the aggressive technology scaling in VLSI circuits, which has

enabled the small form factors and high battery efficiency of sensor nodes. However,

as a side-effect of this scaling, transient errors in hardware are becoming a prominent

problem, as the shrinking of feature sizes to nanometer scales and the lowering of

supply voltages to sub-volt ranges are making them vulnerable to various noise and

interference effects [S+02, Sch06, Bau03]. These effects include various temporary

environmental conditions such as power supply and interconnect noise, electromag-

netic interference, electrostatic discharges and also neutron and alpha particle strikes

[Bau05, H+03, ZBD05]. Short term disturbances caused by any of these effects can

lead to transient errors in logic or memory circuits that would affect any data being

processed or stored.

The other source of transient errors in sensor data is the communication chan-

nel. Effects like noise, interference and fading are already substantial problems, and

since they are fundamental properties of the physical medium, are going to be around

for future generations of sensor networks too. Moreover, the need for longer battery

life and low-power operation are going to limit the transmission power and number

of retransmissions that could be used to compensate for such channel impairments at

the lower layers.

For the current prototypes of sensor nodes, the dominant source of errors are
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Table 3.1: Different reliability methods and their resource overheads.
Sources of Error Addressed

Reliability
Method

Sensor
Node
Hard-
ware

Comm.
Chan-
nel

Resource
Overheads

TMR
(hardware)

X Hardware
area

ECC
(memory)

X Hardware
area

Channel
coding

X Transmitted
bits

Channel
coding +
Source
coding

X Hardware
complexity,
Extra com-
putation at
sensor node

Model-
based
error
correction

X X None at
sensor node,
Processing at
clusterhead

the sensing errors and the communication channel errors. But the trends shown by

semiconductor technology development indicate that as the nodes get smaller, the

effect of soft errors in the hardware are going to become more dominant. Additionally,

outdoor deployment in harsh physical conditions also aggravates the vulnerability

of these nodes. So, for future generations of sensor networks that are envisioned

(e.g., Smartdust [MI06, WLLP01]), errors in both the hardware and communication

channels are going to be significant problems. We now look at how these problems

may be handled by traditional approaches to error correction.

3.2.2 Traditional Methods for Error-correction

The different sources of errors have been studied extensively in literature and

various methods have been developed to handle them individually. Some of these tra-

ditional methods for error correction are listed in the first four rows of Table 3.1, with

the check marks indicating which source of errors each method is able to address.
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However, each of these approaches also adds some overhead into the system, which

can be prohibitive for many applications of sensor networks. As also listed in the ta-

ble, these overheads can be in terms of transmitted data, costs or hardware complexity.

For example, the traditional methods to handle soft errors in circuits, such as Triple

Modular Redundancy (TMR) or Error Correction Codes (ECC), result in adding extra

hardware and complexity to the designs [ZD03, IHK06, MER05]. With the projected

increase in the levels of soft errors, the cost and complexity overheads will continue to

increase with successive generations of technology. Similarly, communication errors

are traditionally handled by introducing redundancy, either through channel coding

or Automatic Retransmission Requests (ARQ) coupled with error detection. Channel

coding works using Forward Error Correction (FEC) codes, which add extra bits to

transmitted packets that allow correct decoding when some of the bits are corrupted.

One common example of FEC is Reed-Solomon coding [Wic95], which is widely

used in telecommunications, broadcasting and data storage. It works by processing

data in fixed-size blocks, adding a fixed number of overhead bits during encoding.

The decoder can recover a block of data when the number of errors for the block

does not exceed half the number of overhead bits. In Section 3.6.4, we compare our

approach against Reed-Solomon coding, and demonstrate the substantial energy sav-

ings that can be achieved by avoiding the overheads in packet size. The overheads of

channel coding can be offset by data compression through source coding, but this will

increase the complexity and cost requirements on the sensor nodes. ARQ is simple to

implement and has little overhead under good channel conditions, but in presence of

errors it can have high energy and bandwidth overheads due to retransmissions.

These observations show that the traditional techniques for error handling have

significant resource overheads, which will make them prohibitively difficult to apply

in many sensor networking applications. The effect of these overheads will increase

further in future generations of sensor networks, with sensor nodes becoming smaller

and more resource constrained. As a result, newer techniques for reliability need to

be developed to fit the needs of highly resource-constrained sensor networks, partic-

ularly for applications with large numbers of sensor nodes operating in presence of

multiple sources of errors. We propose an approach that uses the redundancy within
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sensor data sets to address transient errors in both computation and communication,

thus enhancing reliability without any complexity overhead in the sensor nodes. We

also demonstrate how this approach can be combined with traditional techniques de-

pending on the requirements of the application and the level of redundancy within the

data.

3.3 Overview of Model-based Error Correction

In this section, we present an overview of our approach and methods for

model-based error correction. We first discuss our overall approach and its implica-

tions on the network architectures for sensor networks. Later, we discuss a proposed

methodology for error correction based on this approach.

3.3.1 Using Sensor Data for Error Correction

The central idea of our proposed approach consists of using the properties

of sensor data sources to detect and correct errors in the data. Sensor networks are

designed to observe physical processes, and typically designed to oversample the sen-

sors, which results in significant spatial and temporal correlations [VAA04]. The cor-

relation provides built-in redundancy within the data which can be handled in different

ways as part of system design. One option could be to eliminate this redundancy close

to the source by compression techniques, as is done in traditional communication net-

works. However, while this improves utilization of the communication channel, it also

reduces the robustness of the data against errors and necessitates strong error coding

methods that can add complexity to the end-points. Instead, we propose to utilize

this redundancy to correct errors from various sources. The approach is based on the

difference between the correlation properties of the data and the sources of errors. For

example, the soft errors are completely uncoordinated [KH04], while the sensor data

can have different types of correlation depending upon the application, type of sensor,

location of deployment, etc. Since the correlation properties of the sensor data can

vary depending on many factors, the success of this approach depends on effectively

identifying these properties. It also depends on how well the properties of the errors
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distinguish them from the data. In the later part of this section, we describe a method

that tries to achieve both these goals, and in the next section, we will discuss which

properties of errors allow them to be distinguishable. When the level of redundancy

in the data is extreme (too low or too high), it is possible to use our techniques in con-

junction with traditional approaches like channel coding and source coding to tune the

level of operation to current requirements. We illustrate this in Section 3.4.5 through

a hybrid approach that incorporates the outcome of CRC checksum computation in

our method.

There are two important benefits of being able to use the data properties for

error correction. First, it makes the network design simpler and more efficient by ad-

dressing multiple types of errors together and removing the overheads of removing

or adding any redundancy through compression or error coding. Secondly, it allows

all the processing required for error correction to be moved out of the sensor node.

This makes this approach fundamentally suitable for the network architecture prin-

ciple outlined in Chapter 1, since it lets the sensor nodes to become simpler, and

use specialized nodes to perform error correction, possibly for multiple sensor nodes

simultaneously. The impacts of using this network architecture are described below.

3.3.2 Hierarchical Network Architecture

Hierarchical topologies are becoming increasingly popular for wireless sensor

network design, e.g., in IEEE 802.15.4 and other research networks [SKM04, BC03,

SH05]. In a hierarchical topology, some of the nodes (clusterheads) are dedicated

to work as gateways for group of other nodes (called leaf nodes), so that the latter

can only connect to a node outside their cluster through the clusterheads. Typically,

the nodes in a hierarchical sensor network architecture are heterogeneous, since the

clusterheads carry more traffic while the leaf nodes are dedicated to sensing.

As noted earlier, our approach for reliability allows the splitting up the oper-

ations in data collection between sensing and error correction, which can be placed

on different nodes, following the application design shown in Fig. 1.3. This, coupled

with the resulting asymmetric resource requirements makes our approach a natural

fit for hierarchical network architectures. Fig. 3.1 shows such an architecture, and
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illustrates how the tasks of our correction approach can be mapped on it. The sens-

ing is performed by clusters of dedicated sensor nodes that report the sensor data to

more complex clusterhead nodes. Each cluster is organized in a star topology, but the

clusterheads can connect between themselves using any flat or clustered connection

topology. The clusterheads are distinct from the resource-limited sensor nodes by de-

sign as well as functionality. Unlike the very resource-limited sensor nodes, they have

more processing and energy resources, and are capable of multiple complex functions

that involve data processing and storage. Each clusterhead node can configure the

scheduling of sensing, data reporting and sleeping cycles of the sensor nodes around

it.

Using this architecture and our proposed approach for reliability can make a

sensor network more flexible and scalable, by enabling the handling of diverse sensing

requirements without sacrificing the reliability of the overall system. Thus, the sensor

nodes can be simple and very cheap, with only sense-and-report functionality. Such

sensors can be deployed in large numbers and can be replaced or supplemented when

requirements change or individual nodes fail. On the other hand, the clusterheads will

be complex, but can have most of their functionality implemented in software, which

will allow a cost-effective, generic design to be used across applications. Since our

approach is based on using the correlation properties of sensor data, it can also benefit

from the large number of sensor nodes and lot of measurement points that such an

architecture will enable. In summary, the use of the proposed architectural principle

for WSNs promises to enable new applications by drastically shrinking the footprints

of the sensor nodes, without sacrificing the reliability of the sensor data.

3.3.3 Overview of our Implementation

We implemented the idea of using data properties for reliability in our pro-

posed methodology for error correction, called Model-based Error Correction. Our

method consists of analyzing the sensor data and capturing the relevant properties in

a data model, which is used during system operation to perform error detection and

correction on incoming data. The algorithms in our approach run on the clusterhead

nodes, and can also be implemented in hardware to improve their efficiency or allow
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Figure 3.2: Overall scheme for model-based error correction.

parallel execution.

There are two main parts in this method: data modeling and correction. The

first step is the construction of the data model by analysis of the properties of the

source data. Certain statistical properties will be generally applicable to the type of

application, and may be identified by offline analysis, e.g., knowing that correlation

time is on the order of hours rather than milliseconds. Other properties will need to be

identified for each sensor and need runtime tuning of the data model. Once a model

is identified, it is used during normal operation of the network to detect and correct

errors, as illustrated in Fig. 3.2. Before each sample of sensor data is received, its

predicted value (Xp) is computed using the data model. Upon receiving the observed

sample (X), the error correction block uses Xp and the past observations to decide

the likelihood of the observed data being erroneous. The algorithm chooses the cor-

rected value (XC) to report based on either the observed value or the predicted value,

depending on the outcome of error detection. The proposed method also includes a

facility for adapting the model online based on the collected data to improve the accu-

racy of prediction and correction. It should be noted that our approach is best suited

for sensor networks designed to monitor slow variations over time in relation to the

sampling rate. This excludes event-detection applications or those with low sampling

rates, where the data is normally expected to contain sharp variations lasting for one or

two samples, and the transient errors can be indistiguishable from application events.
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3.4 Predictive Error Correction

In the previous section, we presented the idea of performing error correction

using data models that can represent the correlation in the sensor data sources. Here,

we first discuss how our approach for correction is shaped and supported by charac-

teristics of errors occurring in wireless sensor networks. We then present the details

of our method, and explain the correction algorithms and implementation framework.

It is assumed in this section that a working data model is made available externally.

The computation of the model is covered in the Section 3.5.

3.4.1 Error Models

The main idea behind our proposed approach for error correction is to use the

correlation properties within the data. For this to be effective, it is necessary that the

correlation characteristics of the data are different than that of the error. Since our

implementation is based on temporal correlation across successive data samples, it is

expected to be effective against errors that are uncorrelated in the same time scale. We

observed that among the types of errors discussed in Section 3.2, many of the errors

can be modeled as random bit-errors in the quantized samples, uniformly distributed

across the bit-positions. Below, we explain how this model can be applicable for

two different types of errors, and its importance in the context of our error correction

methodology.

The first type consists of the transient errors that occur in hardware for the var-

ious reasons discussed in Section 3.2. These are well-known problems, and numerous

fault models have been developed for different sources, e.g., probabilistic models for

process variations or random particle strikes, as well as deterministic models based

on circuit layouts and signals for Crosstalk [ZS04, ZBD04]. However, these usually

model the effect of the errors at the gate-level or register level [MKK05]. Since we

are interested in the overall effect of errors on the data, we propose to model the vari-

ous types of uncorrelated single event upsets as described in [ZBD05] as independent

bit errors that are uniformly distributed across the data. This model is particularly

appropriate for transient errors in memory chips, where the uniform structures for the
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logic and layout of memory cells make the cells equally susceptible to radiation and

interference effects. However, although it does not include design and input specific

parameters, our model is also useful as a first order approximation for logic circuits.

The other source of errors that we consider is the wireless communication

channel. There are various well-known models to represent communication channel

errors as well. The choice can depend on the source of the errors, which can include

noise, interference and fading due to mobility, as well as the specifics of the modula-

tion scheme, channel conditions, transmission rates, etc. For channels dominated by

fading or interference errors, the channel conditions are usually measured and used to

estimate an error model, which is applied for a sequence of packets together. How-

ever, such models are most effective where data is transmitted in continuous streams,

so that the channel properties across adjacent packets are correlated. On the other

hand, in a typical sensor network scenario, the sensor data may be sampled and trans-

mitted at larger intervals, probably on the order of seconds [S+04]. This leads to the

packet interval being larger than typical channel coherence times by orders of magni-

tude, so that estimating a channel model for shaping the transmissions of a sequence

of packets will be very inefficient. In the absence of any estimates, we propose to use

a model of uncoordinated random bit errors that are independent across packets.

If both the hardware and communication errors can be represented with the

uniform random model, it allows our correction approach to be effective in distin-

guishing them from the data by relying on the data correlation. Moreover, this also

allows both types of errors to be addressed together, which is one of the main benefits

of our method. For our simulations in Section 3.6, we generate the errors using a

Bernoulli process with an uniform error probability for all bits in the data. It should

be noted that although we have used the uniform BER model for its simplicity, it is

not a prerequisite for our method, which can be effective under bursty error condi-

tions as well. The main requirement for our approach is that errors are uncorrelated

across data samples. So as long as the packet transmission intervals outstrip the chan-

nel coherence time or burst lengths, the correlation in the data can still be effective in

identifying errors. For example, if the sampling of the sensors happens every few sec-

onds, 50-200 ms error bursts [WM06] are not going to affect multiple data samples,
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so the errors in successive samples will be uncorrelated. Moreover, if the high BER

during an error burst affects multiple bits within each packet, it helps our approach

by making such a sample easier to detect. We also confirm this in Section 3.6, using

traces of real errors with bursty, non-idealized characteristics.

3.4.2 Correction Methodology

Our error-correction method consists of computing a predicted value for each

sample, and using the prediction error, i.e. the difference between the predicted and

the observed value, to detect whether the observation is correct or erroneous. In gen-

eral, an abruptly large prediction error implies that the observation has been corrupted

by an error. However, since the data source is a random process, there will always

be a certain level of prediction error for even the best model. Moreover, as described

in Section 3.5, limitations like complexity or size of history can also introduce in-

adequacies in the models, which lead to an increase in the level of prediction errors.

Therefore, the main challenge in our method lies in detecting the cause of a prediction

error after it is observed, i.e., whether it is due to the randomness of the data or from

an error introduced into the data after sensing.

In our method, we compare the prediction error for each sample with that of

its neighboring samples, and delay the reporting of the final value by a few sample

periods to allow comparison with future samples. Whenever there is a prediction

error, our method decides whether to report the observed or the predicted value by

looking at how the choice affects the prediction errors for the subsequent samples.

Since the correlation model makes the prediction based on recent history, choosing

an erroneous observation affects the prediction of the future samples and results in

a progressive degradation of prediction accuracy. On the other hand, if a prediction

inaccuracy is due to randomness or modeling error, choosing the observed value is

unlikely to impact the future levels of prediction errors. The details of the decision-

making algorithms are discussed in Section 3.4.4. Since we assume that errors in

adjacent samples are uncorrelated (see Section 3.2), whenever the decision algorithm

detects an error in an observed data sample the observation is marked and treated as an

erasure. The sample is also excluded from use in computing subsequent predictions
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in order to limit propagation of errors.

The main steps in our implementation of error detection are outlined in Fig. 3.3.

There are two blocks, prediction and decision, which implement the main control

functions. There are also two storage blocks, observation history and prediction his-

tory, which maintain the state information required for modeling and prediction re-

spectively. The prediction block implements the data prediction model obtained from

an external model generator, which produces a predicted value for incoming data sam-

ples based on recent history of observations. The output from the prediction block is

stored in the prediction history, and is used along with the history of observations as

input by the prediction block to predict future samples. The decision block determines

whether an error occurred in a sample by analyzing the effect of this decision on the

predictions of the future samples. To enable doing this efficiently, the history of the

predictions since the last corrected sample is stored in a tree structure, called Predic-

tion History Tree (PHT), which is processed by the decision algorithm. Below, we first

explain the structure of the PHT, followed by a detailed description of the decision al-

gorithms that can operate on the PHT structure. We also discuss a hybrid approach

that can be used when the sensor node radio has some out-of-band error detection

mechanism, such as a CRC checksum function, built into the hardware. In that case,

we discuss how the result of the checksum calculation can be used to complement the

model-based error detection to improve the correction performance.

3.4.3 Data Structure for Prediction History : PHT

The prediction history tree holds the few most recently observed sensor data

samples at any time. It also stores the all the possible sequences of predicted values for

these samples, along with the corresponding prediction errors. It is a complete binary

tree, where all nodes at a given level, i.e. at the same distance away from the root,

contain the different possible values for the same sample. The root node contains the

last corrected data sample, and its two children hold the observed and predicted values

of the next sample currently under consideration. The leaf nodes of the PHT hold the

predicted values for the currently observed sample, and each path from the root to a

leaf node holds a possible sequence of observed or predicted values for the samples
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Figure 3.3: Functional diagram of predictive error correction block. The dotted line
shows the hybrid approach which incorporates the output from CRC detection when
available.

from the one last corrected till the one most recently observed. The depth of the PHT,

N , defined as the number of samples held in it after the first level, is a key parameter

in the decision algorithm. It is called decision delay and its choice is bounded by the

delay tolerance of the application and the available processing resources in the node.

The structure of the PHT and the method of updating it are illustrated with

an example in Fig. 3.4, where N = 2, so that the tree has 4 (N + 2) levels and 15

(2N+2− 1) nodes. Each level l ∈ 0, 3 corresponds to a sample value at time n− 3 + l,

and each node in this level holds a pair of values; the first represents the observed or

a predicted value for the data sample and the second holds the prediction error for the

nodes with a predicted sample. Outgoing links marked 0 and 1 connect each node

to two child nodes, containing the observed and predicted data values for the next

sample respectively. The nodes are sequentially numbered starting with 0 for the root,

such that for any node i there are two child nodes 2i + 1 and 2i + 2 that hold the

observed and predicted values respectively. The root contains the last corrected value

Xc[n − 3] = 100 (Xc[n − N − 1]), and the even numbered leaf nodes contain the

different predicted values of Xp[n] that would be computed for different choices of

previous values.

Once the new sample X[n] is observed, the prediction errors for all the values

of Xp[n] are computed. The decision algorithm is run to choose the most likely value
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Figure 3.4: Prediction History Tree with example data (N = 2).
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for Xc[n− 2] out of the values in nodes 1 and 2. The contending paths in the example

are the ones ending in any of the even numbered nodes in the last level, i.e. nodes 8,

10, 12 or 14. The prediction errors for the nodes on each of the paths are used as a

basis of comparison by the algorithm, and finally the value of either the observation

125 (node 1) or the prediction 100 (node 2) is chosen for Xc[n− 2].

After making the decision, the algorithm updates the PHT for the next sample.

We call the two subtrees rooted in node 1 and 2 as the observation subtree and predic-

tion subtree respectively. One of these nodes is chosen to become the new root node,

and all the nodes in its subtree move up by one level. The values in the other subtree

are discarded. A new level of leaf nodes is then added, with the even numbered nodes

containing the next set of predicted values Xp[n+1]. The next observed value X[n] is

inserted in the all odd numbered nodes in level N, and the decision and update process

is repeated for the next sample.

3.4.4 Decision algorithm

Given the recent history stored in the PHT, the task of the decision algorithm

is to determine at time n whether X[n − N ], the observation N samples back, was

erroneous. In other words, X[n − N ] has to be assigned either the observed or the

predicted value, stored in nodes 1 and 2 of the PHT respectively (Fig. 3.4). The

decision is based on how the choice affects the prediction accuracy of the next N

samples (till X[n]). Each root-to-leaf path in the PHT contains a possible sequence

of values for these samples, based on different choices of observed or predicted value

for each. The algorithms compare the behavior of prediction errors along these paths

to reach the decision.

One possible approach for the decision algorithm is to select the subtree of

PHT that contains the root-leaf path with the minimum average correction error. How-

ever, since the samples in the PHT are yet to be corrected, the correction errors for

them are still unknown. Our first algorithm, MinErr, follows this approach, using the

prediction errors as estimates of the correction errors. The average prediction error

(RMS) is computed over all the predicted samples in each path, and the path with the

minimum RMS error is selected (Algorithm 3). This path will contain either node 1
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Algorithm 3 MinErr Algorithm for Error Detection and Correction.
Input: PHT , N //N:depth of PHT
Output: Choice of Observed or Predicted value

procedure PathError(PHT, leaf)
patherror ← 0
num_pred← 0
for all node i ∈ path(0 : leaf) such that i is even do

//Compute RMS prediction error for the predicted values
patherror ← patherror + PredErr[i]2

+ + num_pred
end for
return (patherror/num_pred)

procedure UpdatePHT(i,Xnew)
if path i contains node 1 then //Select correct subtree

PHT ← Subtree rooted at node 1
else

PHT ← Subtree rooted at node 2
end if
for all leaf node j of new PHT do //Update last level of new PHT

//Add Observed value to 1st child
DataV alue[2j + 1]← Xnew

PredErr[2j + 1]← 0
//Add Predicted value from Data Model to 2nd child

Xp ← PredictionModel(PHT, j,Xc)
Err ← Xnew −Xp //Compute prediction errors
DataV alue[2j + 2]← Xp

PredErr[2j + 1]← Err
end for

main
//Find path with minimum average error

imin ← min
i∈Leafnodes

PathError(PHT, i)

where Leafnodes = {2N+1, 2N+1 + 2, . . . , (2N+2 − 2)}
Xnew ← X[n + 1] //get next sample value at time n + 1
UpdatePHT(imin, Xnew)
if imin ≤ 2N+2 + 2N+1 then

return 0 //Use observed value
else

return 1 //Use predicted value
end if

or 2, which is returned as the corrected value of Xc[n−N ]. For example, in Fig. 3.4,

among the four paths ending in nodes 8, 10, 12 and 14 the path with minimum error is

0:14. Since it contains node 2, the predicted value is chosen for X[n− 2]. The PHT is
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then updated as discussed earlier, and the steps repeated for the next sample [MPD04].

This algorithm is simple to implement, and consists of a small and fixed number of

computations, but it suffers from a high sensitivity to the modeling performance. As

mentioned in Section 3.4.2, prediction errors can occur even for correctly recorded

samples due to modeling errors. While the modeling error reflects the quality of the

model when averaged over a number of samples, the errors in individual samples can

be unpredictably high or low. In the PHT, the effect of individual modeling errors

is amplified for the paths that have a small number of predicted samples, which can

allow a single sample to determine the overall decision. For example, for path 0:8 in

Fig. 3.4, the path error is the same as the error in node 8. Now, if the observed value

of X[n] were 111 instead of 110, the errors for paths 0:8 and 0:14 would have been

19 and 21 respectively, and MinErr would have chosen the observed value for X[n].

This problem is avoided in the MinMax algorithm (Algorithm 4), where the

subtrees of nodes 1 and 2 are considered separately and the path with the maximum

average error in each subtree is found. The subtree with the smaller maximum error is

selected for the decision. This approach favors the solution that is expected to perform

better in the worst case, e.g., the predicted value is chosen in the example because it

performs better over multiple paths. This makes MinMax more resilient to modeling

errors, since a path with a spuriously low average error will not affect the solution if

the other paths in the subtree have higher average errors. For example, in Fig. 3.4,

only paths 0:10 and 0:12 are directly compared. In this case, X[n] would have to be

as high as 145 (path errors = 15, 32, 19, 33) to affect the final decision.

Though more resilient than MinErr to modeling errors, MinMax does not

take into account the specific properties of the model, which can cause spurious de-

tections for certain types of models. Consider a case where the size of the history

required to compute the prediction is smaller than the depth of the PHT. Now, for

some paths, the value of X[n − N ] may not have any effect on the prediction for

X[n]. For example, if the model used in Fig. 3.4 only uses the previous sample for

prediction, then the choice of the predicted value in node 1 will have no effect on

the predicted value in node 12. In some cases, the robustness of the decision can be

further improved by excluding paths like these.
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Algorithm 4 MinMax Algorithm for Error Detection and Correction.
Input: PHT , N //N:depth of PHT
Output: Choice of Observed or Predicted value

obsErr ← 0
for k = 2N+1 to (2N+1+2N−2) do //Find Max. Error in Observation Subtree

err ← PathError(PHT, 1, k) //RMS Prediction Error for path 1:k
if err > obsErr then

obsErr ← err
end if

end for
predErr ← 0
for k = (2N+1 + 2N ) to (2N+2 − 2) do //Find Max. Error in Prediction
Subtree

err ← PathError(PHT, 2, k) //RMS Prediction Error for the path 2:k
if err > predErr then

predErr ← err
end if

end for
if obsErr < predErr then

return 0 //Use observed value
else

return 1 //Use predicted value
end if

This is done in the Peer algorithm, shown in Algorithm 5. Here, individual

pairs of nodes in each subtree are compared, instead of full paths. The algorithm

compares nodes in parallel (peer) positions within the observation and prediction sub-

trees in terms of the absolute prediction errors. After all the comparisons, the subtree

which has more samples with lower prediction errors than their peer nodes is chosen.

The correction engine also uses available knowledge of the model to identify the pre-

dictions that are independent of the choice of X[n−N ], and excludes them from the

decision making process. So, for the example PHT in Fig. 3.4, the prediction errors

for nodes 4, 8 and 10 are compared against that of nodes 6, 12 and 14 respectively,

and the result is to choose the predicted value, since its subtree has lower prediction

errors in two comparisons vs. one higher. The property of the model is represented

as the model order parameter M , which is the number of samples from history that

are used by the model for prediction (Section 3.5.1). Before each comparison, it is

ensured that either node 1 or 2, or a sample directly predicted from it is among the pre-

vious M samples of the ones under examination. As mentioned earlier, if M = 1, this
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Algorithm 5 Peer Algorithm for Error Detection and Correction.
Input: PHT , N , M , ETH

//M:model order, ETH: error threshold, N:depth of PHT
Output: Choice of Observed or Predicted value

for all n ∈ Prediction Subtree do
s← FindSibling(n) //Find sibling of n in Observation Subtree
if s, n are even then //Only compare for predicted samples

//Check if predicion of n depends on the root node
comp← CanCompare(PHT, n,M)
if comp = true then

if abs(PHT [n].err) > abs(PHT [s].err) + ETH then
count← count− 1 //Prefer observed value

else if abs(PHT [n].err) < abs(PHT [s].err)− ETH then
count← count + 1 //Prefer predicted value

end if
end if

end if
end for
if count > 0 then

return 1 //Use predicted value
else

return 0 //Use observed value
end if

step would exclude the comparison between nodes 8 and 12 in the example. More-

over, when the difference in prediction errors within a pair is much smaller than the

average modeling errors, that pair is disregarded as well. The parameter ETH , repre-

senting this Error threshold, is used to implement this. The resulting algorithm offers

the most stable results among the three approaches.

The three algorithms mentioned here have similar complexity of run-time

computation and storage requirements, with the problem size defined to be the tree-

depth N . Since the PHT has 2N+2 nodes, the space complexity is Θ(2N+2). The

worst case time complexity has two components from the prediction [Θ(M.2N)] and

the decision algorithm [Θ(2N+1)] respectively, either of which can dominate depend-

ing on the relative sizes of the model order and the PHT. The correction accuracy is

harder to analyze, because it depends on the statistics of the modeling errors as well

as the actual errors introduced in the observation. We observed from our experimental

studies (Section 3.6) that all the algorithms perform well when the models are accu-

rate. However, as discussed before, they have different types of resilience towards
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Algorithm 6 PeerHybrid Algorithm for Error Detection and Correction.
Input: PHT , N , M , ETH

//M:model order, ETH: error threshold, N:depth of PHT
Output: Choice of Observed or Predicted value

if CRCError(1) then //Check CRC checksum for observed value in node 1
return 1 //Use predicted value

else // Check rest of prediction history if CRC passed for node 1
for all n ∈ Prediction Subtree do

s← FindSibling(n) //Find sibling of n in Observation Subtree
if s, n are even then //Only compare for predicted samples

//Check if predicion of n depends on the root node
comp← CanCompare(PHT, n,M)
if comp = true then

if abs(PHT [n].err) > abs(PHT [s].err) + ETH then
count← count− 1 //Prefer observed value

else if abs(PHT [n].err) < abs(PHT [s].err)− ETH then
count← count + 1 //Prefer predicted value

end if
end if

end if
end for
if count > 0 then

return 1 //Use predicted value
else

return 0 //Use observed value
end if

end if

modeling errors, with Peer designed to perform best.

3.4.5 Hybrid correction

The method for model-based correction described above assumes that the error

detection has to be done without any additional information apart from the observed

sensor data. However, most radios used in currently available sensor nodes already

have a checksum function built into the hardware [N+05], and it is possible to com-

plement our approach using the CRC output.

When the checksum is available, we use it to complement the model-based

error detection and increase the overall performance of correction. The pseudo-code

for this hybrid method is shown in Algorithm 6. Here the result of the checksum com-

putation is fed to the decision algorithm when it is available, as denoted in Fig. 3.3
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with the dotted line. The normal model-based detection using the PHT is done on a

data sample only when the checksum detects no errors. When an error is detected by

the CRC, it is treated as a missing sample and the predicted value from the model is

used. The modeling and update stages remain unchanged. This approach improves the

correction performance by identifying communication errors which could have been

misinterpreted by our approach as modeling errors. It does not capture errors origi-

nating before the communication link, i.e. sensing errors or hardware errors, which

would still have to be detected by the model-based approach.

3.5 Data Modeling

In the previous sections we described how predictive data models can be used

to perform error detection and correction on sensor data. So far, we have assumed

that a data model, which can provide a prediction of the next data sample, is available

to the error-correction framework. In this section, we discuss the problem of creating

the data model, examine which characteristics make a model suitable, and describe

the implementation of data modeling in our system.

The objective of the data model in our model-based correction system is to

predict the next sample of the sensor data. Properties of the data source are identified

and used to make the predictions. Previous research has shown that there are many

possible types of model that can be used for this purpose [Aka69, Har89, KSW98].

However, there are a number of additional requirements characteristic to our error-

correction framework that determine the suitability of a particular type of model. In

this section, we first explore the most important of these requirements and show how

our specific choice of model satisfies these requirements. In the second part, we

discuss the implementation issues for data modeling.

3.5.1 Requirements of Data Model

The performance of the model-based error correction depends on the accuracy

of the predictions, so maximizing the prediction accuracy is the primary goal of the
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data model. However, for the model to be used effectively in our framework, the

prediction also needs to be fast and have reasonably low computation and storage

overheads. These requirements can place conflicting demands on the model, and it is

necessary to a strike a balance among them when choosing the model.

Ideally, to maximize the prediction accuracy, the model should completely

represent the correlation present in the data set. But when a data set shows strong

long range correlation, a complete representation of the correlation can lead to pro-

hibitive latency or resource overheads. It can be also caused by the choice of high

sampling rates for slowly varying data sources. The resource limitation is most criti-

cal for the prediction step, since it is repeated for every path of the PHT, i.e. 2N times,

for each data sample during the data-correction process (Section 3.4.3). Moreover,

with multiple sensors reporting to a clusterhead, the impact of any overhead is multi-

plied many times. For example, environmental sensor data like outdoor temperatures

can exhibit correlation in the short term, on the scale of hours (e.g., day vs. night),

as well as in the long term, on a scale of years (e.g., seasons) or multiple year cycles

(e.g., El Niño). Now, in order to capture the inherent correlation completely, the pre-

diction model would have to refer to a very large data set spanning durations of years.

For computing even a single prediction, the computations involved will lead to unac-

ceptable latency. Similarly, the need to refer to large amounts of history would also

incur prohibitive memory requirements. As a result, it may be necessary to choose a

less complex model of limited dimensions to make its use on the clusterhead feasible.

Another problem affecting the accuracy of the predictions occurs when the

data source is not strictly stationary, but has statistical properties that change over

time. This will cause the the prediction accuracy to deteriorate progressively, so that

a new model will need to be computed. Depending on the type of data source, it may

be necessary to learn the model multiple times to reflect the current characteristics of

the sensor data. However, while prediction accuracy is important, the best possible

model may be too complex or too large to update efficiently.

Therefore, there are three main requirements that need to be considered when

selecting a data model: it has to produce accurate predictions, it should be easy to use

for prediction, and it needs to be easy to learn when necessary. There are many types
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of models that can satisfy these requirements with different degrees of success. For

our example implementation, we specifically chose linear autoregressive (AR) mod-

els, which capture the effect of recent history through an ’aging’ process. Such mod-

els have been shown to be effective in capturing short-term prediction in time-series

analysis and are widely used for forecasting [TJ99, Cha04]. Choosing AR models

also satisfies the additional requirements very well, since they use linear prediction

functions which can be computed very efficiently with minimal resource overhead.

The AR model captures the auto-correlation in a data set by expressing the

prediction as a linear combination of previous samples, as shown in Equation (3.1):

Xp[n] =
M∑
i=1

ai[n].X[n− i] (3.1)

X[n] = Xp[n] + e[n] (3.2)

where X[n] and Xp[n] represent the observed and predicted data values at time n

respectively, and e[n] is the prediction error. The model is characterized in terms of

the model order M , which defines the size of the model, and the M coefficients ai.

This model has the advantage of low complexity of prediction, Θ(M), which reduces

the impact on the resource cost at the clusterhead. Learning the model consists of

estimating the coefficients ais, for which we use recursive LS-estimation [Aka69,

Hay96].

Some examples of the modeling performance are shown below using sensor

data from four types of sources that are listed in Table 3.2 . The sources include an

indoor light-level sensor from a testbed network we implemented [MPD04], publicly

available environmental temperature and humidity sensor data from the California

Data Exchange Center (CDEC) [CDE], and server rack temperature variations col-

lected from a commercial data center 1. Each of the data sets reports information

about the sensed physical process as values quantized to 8 bit samples, i.e. the data

values range from 0 to 255. Table 3.3 presents the modeling errors with estimated AR

models offline.
1Unpublished data sets obtained from HP Data Centers through HP Lab, Palo Alto, CA
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Table 3.2: List of data sets

Data
set

Sensor type Sampling
period

Number
of samples
used in
modeling

1 Data Center: Temperature 1 min 425
2 CDEC Alpine: Temperature 1 hr 398
3 CDEC Alpine: Humidity 1 hr 398
4 Testbed: Light 0.2 min 30000

Table 3.3: Modeling performance for data sets

Data Set Model order Modeling error (%)
1 4 0.021
2 22 0.430
3 4 1.150
4 2 0.007

3.5.2 Implementation of Modeling and Update

We designed the data modeling system in two parts: (i) off-line identification

of the type of the model through the analysis of statistical properties, and (ii) run-time

updates to the model (Fig. 3.5). As described earlier in this section, we selected the

AR model as a balance between accuracy and ease of updates. In our implementation,

the offline modeling consists of computing the order of the AR model, based on the

correlation time and the sampling rate from training data. The process of run-time

model estimation involves two operations, one to determine when an update to the

model is needed by tracking the prediction accuracy, and a second block that performs

the actual model update.

To support the run-time model updates, we introduce a special mode of op-

eration, called Estimation Mode, in which the sensor nodes temporarily report the

data with additional error protections. Operating in this mode makes more reliable

data available for computing updated data models at the clusterheads. The Estimation
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Mode can be implemented through a variety of temporary, software-based redundancy

measures. For example, this may involve storing redundant copies to overcome hard-

ware errors or multiple transmissions to protect against communication channel er-

rors. During normal operation, the tracking process continuously monitors the trends

in the prediction errors and triggers an model update request when necessary. The

details of this monitoring process are discussed later. Upon receiving the update re-

quest, the error correction system pauses the regular data gathering process, instructs

the sensor node to temporarily switch to the Estimation Mode and starts updating the

model with the protected data. After the update is complete the sensor node goes back

to Correction Mode, the normal mode of operation.

It should be noted that the sensor data collected in the Estimation Mode are

still useful to the application using the data, and the switching between modes is

transparent to the application. Moreover, the Estimation Mode can be implemented

without any additional hardware overhead. However, the redundancy measures in-

troduced in the sensor node increase the energy costs per bit when operating in this

mode. Therefore, when triggering the updates, the benefits of updating the data model

need to be compared to the overhead of switching to the Estimation Mode. In some

cases, this overhead may make it preferable to continue to use the offline models in-

stead of making the updates, especially if the properties of the data source do not

change too much. For many applications, the model updates can be made more effi-

cient by sharing them across multiple neighboring clusterheads, since a change in the

observed physical phenomena that requires a model update is likely to affect many

sensors deployed over a large area covering multiple clusters. In such a situation,

a newly updated model from a neighboring clusterhead can serve as a good starting

point for model estimation, or even be used directly. While this would require ad-

ditional traffic and synchronization between clusterheads, it can lead to substantial

savings in resources by reducing the time spent in Estimation Mode by each sensor

node.
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Figure 3.5: Detailed schematic of data modeling.

Model Tracking

We track the model accuracy using the prediction error, i.e. the difference be-

tween the observed and predicted values, for the recently obtained samples. When

operating in Correction Mode, a running windowed average of the prediction error is

maintained, and compared with a fixed threshold value to trigger a switch to Estima-

tion Mode. Among the past samples, only the correctly received ones are used and

the threshold is scaled for the number of correct samples in the averaging window. A

comparison of the average estimation error with a fixed threshold gives a simple way

to trigger model changes. The choice of the two parameters, threshold value and size

of the averaging window, determine the frequency of updates. The optimal choice

would depend on various characteristics of the data source and the system: the level

of randomness within the data, the stationarity properties of the generation process,

the accuracy of the data model, as well as the the cost overhead of operating in the

Estimation Mode as compared to the Correction Mode. Thus the parameters provide

a way to tune the overall system operation to achieve cost-performance trade-offs

according to a global policy.

Model Updates

The run-time update stage operates in the resource-heavy Estimation Mode,

so it needs to estimate the model with a minimal set of data points, unlike offline
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modeling which can be done with unlimited data points. In order to reduce the over-

heads, we restrict the updates to only estimating the parameters of an existing model

instead of recomputing the model. Many other optimizations are possible to make the

online updates efficient as well. For example, if long term periodic variations (known

as seasonality in Time-Series literature) can be identified in the data during offline

modeling, it may be possible to characterize the data-generating process in terms of a

set of states among which it operates. The states can be associated with pre-computed

models, so that the run-time updates would only consist of matching the current con-

ditions with the most likely state. For our specific case of AR models, we re-estimate

the coefficients, but do not change the model’s order at run-time.

The trade-off between the accuracy of the model and the resource costs of

update is also important in determining when to stop the online estimation process.

Increasing the number of samples used for estimation can increase the accuracy of

the model. At the same time, sending more protected samples adds to the resource

overhead at the sensor node and also reduces the number of data samples corrected

by the clusterhead. In our implementation, we have used the RMS prediction error as

a measure of the adequacy of the model. The system moves from Estimation Mode

to the Correction Mode when the average prediction error over the current Estimation

Mode window falls below a preset threshold.

Fig. 3.6 shows the effect of run-time updates on the modeling errors for the

data set 4 from Table 3.2. The figure lists the coefficients of three data models com-

puted using different subsets of the same data set as training data. Each subset is

denoted in terms of a range of the time indices (R0-R3). The table shows the model-

ing errors observed when the models computed over some of these ranges were used

to predict the values of samples in the other regions. The figure illustrates how the

prediction error for region R3 can be vastly reduced by recomputing the model at re-

gion R1 (Model 2) or R2 (Model 3), compared to using Model 1, which is computed

over R0.
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Figure 3.6: Effect of run-time model updates on prediction accuracy for light sensor

data (Data set 4).

3.6 Experimental Evaluation

To evaluate our method of model-based correction, we used simulations over

multiple data sets. We start with the description of the evaluation setup, and describe

the performance of our approach without and with online model updates. For each

case, we present the performance of the models, followed by the performance of the

overall error detection and correction algorithms. We also show the performance of

the correction system when used together with an external error detection system like

CRC.

3.6.1 Evaluation Setup

In order to evaluate our model-based correction technique, we implemented

our algorithms in C and Matlab ([MAT]), and evaluated their correction performance

on real sensor data from different sources, under different levels of simulated error

conditions. The specific data sets considered in the evaluation were listed in Table 3.2

on Page 80, along with their sampling period and the number of samples available.

Each of the data sets reports information about the sensed physical process as values

quantized to 8 bit samples, i.e. the data values range from 0 to 255. It is important

to note that the data sets differ in terms of autocorrelation properties and degrees of

stationarity, which provided an opportunity for evaluating the correction performance

under real-world limitations of the model.

As discussed in Section 3.2, we model the errors in the sensor data as random
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bit errors. In our model, the data received at the clusterhead is represented as a se-

quence of 8-bit values, with an independent error probability for each bit. This error

represent the transient errors occurring both in the sensor nodes as well as the wire-

less communication links. For our simulations, We vary the error probability over the

range 10−4 to 10−2.

The performance of the correction is evaluated in terms of the errors in the

sensor values after correction. To capture the higher impact of errors on smaller values

and make a fair comparison across data sets with different average levels, we use a

relative error measure. Using the notation described in section 3.4, we define the

metric as the percent error in corrected output Xc as

Eout = 100.

√√√√ 1
Ntot

.

Ntot∑
i=1

∣∣∣∣Xs(i)−Xc(i)
Xc(i)

∣∣∣∣2

where Xs(k) is the k-th sample originally generated by the sensor, and Ntot

is the total number of sample values in a data set. In our evaluations, the output

error Eout is compared to the input error Ein, which represents the relative errors in

the observed samples as received by the error correction block. Ein is computed by

replacing Xc with X in the above expression.

3.6.2 Performance with Only Off-line Modeling

Data Modeling

We used AR models for predicting the sensor data for the different data sets

mentioned in Table 3.2. For each data set, the model order which minimized the

modeling error over the given data set using recursive LS-estimation [Hay96]. The

model computed this way for each of the data sets are shown in Table 3.3. The table

illustrates the differences in characteristics among the various data sets in terms of

the correlation and sampling rate. For example, data set 4 is likely to have been

oversampled because of the very low modeling error that could be obtained even with

a order 2 model. On the other hand, the models for data sets 2 and 3 have high degrees

of randomness, as denoted by the larger modeling errors.
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Data Correction

Fig. 3.7 shows the variation of the sensor data (data set 4) with time, well

as the effects of errors on the data. It also provides a qualitative idea of the error

correction performance of the Peer algorithm. The probability of error for each bit

is 10−2, and the large number of sharp peaks in the upper plot illustrate the instances

when errors occur in higher order data bits. Some of the errors that were not corrected

happen to occur near a point where the sensor data is also changing fast, in which case

the modeling error is more likely to be high.
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Figure 3.7: Error correction using Peer algorithm on light sensor data (data set 4)

with offline data modeling only (BER=10−2).
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The plots in Fig. 3.8 compare the performances of the three algorithms, MinErr,

MinMax and Peer, when the same model is used without run-time re-estimation.

The final correction error (Eout) is plotted against the errors in the observed data(Ein).

The results demonstrate that Peer performs marginally better than MinMax for most

of the measured error rates, and they both outperform MinErr substantially. More-

over, these performance gaps keep increasing with rising error levels. The two plots

show the difference in comparative performance in two data sets that are different in

the distribution of data values and the existing temporal correlation. From Table 3.3

it can be seen that the modeling error for data set 2 is substantially higher than set

4. This agrees with the observation that the final correction errors for data set 4 are

smaller as well. For example, the output error in data set 4 at Ein=1 is less than the

error in data set 2 at Ein=0.5. Also, all the curves show a knee above which the output

error starts to grow at a faster rate, marking the point where the effects of modeling

and observation errors have similar characteristics. The position of the knee increases

with the modeling error.

To validate our error models, we also evaluated our algorithms over real com-

munication channel errors, using the same data set as Fig. 3.8(b). The errors were

introduced using traces of transmissions between Zigbee CC2420 (Chipcon) radios

and GNURadio receivers, which were obtained from [JB07]. The resulting plots in

Fig. 3.9 show that the results from our simulations correspond closely with perfor-

mance over real error sources.

It can be observed from the plots that our method performs well in presence of

high error levels, but at very low error levels of input errors there is a non-zero residual

error remaining in the output. There are two sources of errors in the output: modeling

errors that are introduced when a predicted value is substituted for an erroneous sam-

ple, and observation errors that pass undetected because they cannot be distinguished

from modeling errors. Moreover, when the modeling errors are high, they can also

cause observations to be falsely detected as erroneous by the decision algorithms, in

which case the modeling errors get passed into the output. At low input error levels,

the output error is thus dominated by the modeling errors, and the residual error is

dependent on the model quality. Upon close comparison of the output and the input
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Figure 3.8: Comparison of correction performance of the three decision algorithms

using offline modeling. (a) and (b) correspond to two data sets.
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traces using offline modeling. Sensor data set same as in Fig. 3.8(b).
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data, examples of the residual errors were observed where there were sharp and nar-

row peaks in the data itself, which can happen when the data is under-sampled. The

decision algorithms interpret them as erroneous since the line quickly falls back to the

previous trend, very much resembling a transient error. However, it should be noted

that the rate of these errors is directly connected to a lack of correlation within the

data. If this happens frequently, it may be possible to reduce the level of the residual

error by adjusting the sampling rate so that no correlated variations in the process are

interpreted as errors.

3.6.3 Performance with Run-time Model Estimation

Data Modeling

Table 3.4: Need for model updates: Data set 4, Model order 4
Range of Prediction Prediction
indices for Data Prediction

Model
Range Error

estimation (%)
A1: 550-700 0.0082

1-3251 1 − 1.06q−1 −
.027q−2

1550-1700 0.0432

−0.07797q−3 + 0.1649q−4 1700-2000 0.0967
A2:
1 − .4935q−1 −
.0974q−2

1550-1700 0.0761

550-700 −.1883q−3 − .2208q−4 1700-2000 0.1571
A3:
1 − .9714q−1 −
.3835q−2

1550-1700 −.02821q−3 + .3829q−4 1700-2000 0.1038

Table 3.4 shows the effect of updating the model parameters at run-time on

the modeling error for the example data set 4. The first row shows the outcome of an

idealized best-case scenario for offline-only updates, where all the available data are

used to estimate the model parameters. While this is impractical to use, it provides an

idea of the minimum modeling error that can be attained by using the largest possible
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amount of data for model estimation. The second model A2 is estimated using only

the early portion of the data (samples 550-700), and shows an increase in modeling

error when used for later samples (1550-1700 or 1700-2000). Estimating the model

again at 1550-1700 (A3) shows an improvement in prediction for subsequent samples.

The above results illustrate the need for a way of modeling different parts of the data

differently. As mentioned in section 3.5, we do this by run-time re-estimation of the

model parameter, whose effect on the overall correction performance is shown below.

Data correction with run-time model estimation

The plot in Fig. 3.10 shows the effect of putting run-time model updates to-

gether with the Peer algorithm. The plot shows part of the same data with same error

level as in Fig. 3.7, but with on line re-estimation of model parameters. The plot

shows a better correction performance than without online updates. The time spent

in the estimation mode is indicated by the line at the top. Since the variation in the

sensor values is very regular, only a small fraction of the time is spent estimating the

model in this case.

Table 3.5: Effect of dynamic model updates
Data Ein Eout w/o Eout with Factor of Modeling
set updates updates improvement overhead
ID (%) (%) (%) (Ein/Eout) (%)

0.83 0.012 0.008 1.5 1.41
1.58 0.077 0.034 2.3 3.0
0.89 0.030 0.022 1.4 7.54
2.40 0.240 0.042 5.7 11.1

Table 3.5 shows the performance improvements obtained for two data sets by

using model updates. It also shows the overhead for the online estimation, as the ratio

of number of samples used for model updates and those corrected using the model.

It is observed that for either of the data sets, when the error at the input is higher,

the improvement attained with model updates for a given data set is higher. This is

expected, since the presence of higher levels of modeling error makes it more likely

for larger observation errors to be passed through the correction block, thus degrading



92

0

100

200

S
e

n
s
o

r 
d

a
ta

 v
a

lu
e

0

100

200

S
e

n
s
o

r 
d

a
ta

 v
a

lu
e

0 100 200 300 400 500 600
0

100

200

S
e

n
s
o

r 
d

a
ta

 v
a

lu
e

Time (min)

Estimation mode

Correction mode

Original data

Data with errors

Corrected data

Figure 3.10: Error correction using Peer on light sensor data (data set 4) with run-

time model updates (BER=10−2). The plot at the top shows when the system state

switches between Estimation and Correction modes.
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the performance further. We also notice that the frequency of updates is automatically

adjusted based on the level of the error, therefore both data sets have substantially

larger modeling overheads when there are more errors at the input.

3.6.4 Comparison with Traditional Approaches

Since the proposed approach addresses errors from multiple sources together,

it is difficult to perform a one-on-one comparison of the correction performance with

traditional techniques for error handling. Instead, here we compare the costs of using

each approach in terms of the resource overheads incurred to perform error correction.
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Figure 3.11: Comparison of Model-based error correction with Reed-Solomon Cod-

ing at different code-rates (Data Set 4, N=4).

Fig. 3.11 shows the comparison of our approach with Reed-Solomon coding,

a traditional forward error correction method for the communication channel. The

plot shows the error-correction performance for different configurations of the FEC

method with different code rates and overheads. It can be observed that using Reed-
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Solomon coding to match the performance of our approach would lead to overheads

of up to 86%, for BERs ranging from 10−4 to 10−2. This overhead will occur in terms

of additional transmitted bits. In comparison, the costs of our method are the storage

and processing overheads for the PHT, which had 64 nodes (N=4) for this experiment.

Unlike FEC, the overhead for our approach only occurs at the clusterhead.

The traditional methods of hardware error correction are circuit hardening

techniques like ECC and TMR. These methods incur overheads in terms of silicon

area, up to 25-180% [ZD03]. In comparison, it should be noted that our proposed

technique poses no resource or complexity overhead on the sensor nodes to correct

transient errors. Moreover, the proposed approach handles all types of random errors,

where each of the traditional methods address only one source of error.

3.6.5 Result of using CRC checksum

Fig. 3.12 shows the reliability obtained when the output of CRC checksum

can be utilized, simulated with data set 4. For these experiments, the model-based

correction approach used the Peer algorithm in Fig. 5, while the hybrid approach

used the modified version of the algorithm shown in Fig. 6. The error model used

in this simulation was different, including only communication channel errors. The

bit-error rate varied from 10−3 to 10−1 to simulate very strong error conditions. It can

be observed from the figure that using the CRC output can reduce the error by about

50% under such high error conditions.

3.7 Related Work

In the second part of the dissertation, we presented a method for improving the

reliability of sensor data against specific types of transient errors. We demonstrated

that our method can handle uncorrelated errors introduced in the hardware as well

as in the communication channel, which are two of the common sources of errors

in wireless sensor networks. Below, we first present an overview of prior work that

address different types of data unreliability in wireless sensor networks. Later, we
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Figure 3.12: Error correction performance for hybrid approach (with CRC).

also discuss approaches that are traditionally used to target the same types of errors

discussed in here.

The problem of ensuring data reliability is considered to be an important prob-

lem in sensor networks, and many techniques have been developed to address vari-

ous types of reliability problems. In one of the most closely related works, the au-

thors described a method which corrects measurement errors at the sensor based on

prior knowledge of the statistical properties (distribution) of the data and an error

model[EN03]. While there is a similarity in the main idea of using data models, this

approach is designed only for additive errors with a small variance. On the other hand,

the focus of our problem is the occurrence of errors in the circuits and the communi-

cation channels, which have non-linear effects on the sensor data values. Due to this

non-linearity, these errors do not benefit from representation as additive models, and

cannot be effectively corrected by such techniques designed to handle additive errors.

Permanent sensing errors like bias or faulty sensors have been addressed by

calibration methods [BMEP03] or distributed detection schemes [LDH06b, KI]. Ap-

plication level techniques have been proposed to address coverage or event detection
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goals in spite of erroneous samples or malfunctioning nodes, like query processing

in presence of erroneous data [HHMS03], or localization [SGMS05], where known

properties of the data are used to maximize the probability of detection. Also, prob-

lems like link or node outages have been addressed by robust aggregation and routing

techniques that ensure the reliability of the data aggregation tree [MNG05, KDG03,

SH05, DGSE02]. These techniques are orthogonal to our approach, and can be used

on top of our methods to address other failures.

We note that our approach of handling the errors in the post-processing stage

with online updates is closely related to filtering techniques like smoothing[Hay96].

However, such techniques are typically based on linear additive error models. On

the other hand, modeling the random-bit-errors as modeled as additive error leads to

complex statistical properties, so that many of the common filtering techniques can

not be applied. There are non-linear filtering techniques that could be designed for

this error model, however we believe that the correlative properties of the sensor data

offer us a simpler way of distinguishing errors from data.

The transient failures in the communication channel or hardware that cause

loss or corruption of individual data bits have been a focus of extensive research out-

side the context of sensor networks as well. For circuit-level problems, there have

been replication-based methods proposed to mitigate the effects of soft errors, like

Triple Modular Redundancy or Error-corrected memory [ZD03, ZD06]. However,

the overhead of replication makes them unsuitable for use in sensor networks.

Studies on real deployments have shown the losses due to communication

errors to be significantly higher in sensor networks than in other wireless networks

[ZG03]. Traditional ways of handling channel errors in wireless communication in-

clude various types of FEC e.g., Reed-Solomon, Turbo codes, all of whom have over-

heads in terms of transmitted data and energy [Wic95]. Some channel coding schemes

have been proposed for wireless sensor networks, but these still incur overheads at the

sender for computing the codes as well as for additional transmitted bits [HSI06],

[JE06]. Another approach has been to add reliability in MAC or Transport layers,

but these are based on packet retransmissions and hence incur even higher energy

overheads [SH03], [WCK04]. On the other hand, our approach is based on adaptive
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post-processing, and requires no overheads on the sensor nodes. One area where a

similar approach is used is in voice communication over wireless links. As in our ap-

proach, the correlation in the data source makes it possible to handle erroneous frames

by just replacing them with repetitions of the previous frames [SS99].

Another approach to handle communication errors has been in the context

of multi-hop networks, where the effect of errors on routing and clustering can be

taken into account for better performance [C+07],[VA06]. A different approach has

been taken in joint source-channel coding [C+05, GV05], which try to optimize the

communication architecture for properties of the data source to minimize the effect of

communication errors. However, they require additional customization or processing

to adapt to the properties of the data source which, in turn, increases the overhead on

the sensor nodes.

While we use the correlation properties in the sensor data to distinguish data

from errors, another approach for system design is to remove this correlation through

compression. Several techniques have been proposed which use the correlations of

sensor data to develop efficient compression algorithms ([PR00]), reduce memory us-

age for routing algorithms ([D+03]), etc. These methods do not consider the footprint

limitations on the sensor nodes and are thus suitable for alternate system architectures

with more complex end devices. On the other hand, our approach enables the appli-

cation of the design principle proposed in Chapter 1, and enables drastic reductions in

the footprints of the sensor nodes.

3.8 Scope and Limitations

The scope of our approach for reliability in wireless sensor networks can be

defined in terms of the type of sensor data as well as errors. Below, we outline the

scope and limitations of our approach.

Data Properties

Applications for wireless sensor networks can be classified into two types

based on their primary functionality: event detection and sampling. Event detec-
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tion networks are mainly interested in identifying and reacting to individual physical

events or changes in the state of their surroundings. On the other hand, sampling ap-

plications are designed to collect and document the variations in physical processes

over time and space for future analysis. There are further differences in the appli-

cation characteristics among the event-detection systems. For some, the events of

interest appear as sudden changes, perhaps for a single sample, while in others these

events or changes consist of longer lasting, more complex patterns involving multiple

patterns.

We note that the approach for reliability proposed in this dissertation cannot be

applied effectively to the first type of event-detection applications. In these networks,

interesting events can consist of sudden changes lasting only one or two samples,

which would appear as anomalies or outliers. In our approach, individual outliers are

ignored as errors, while frequently occurring ones may be used to trigger a change in

the model. Therefore, it is not a good fit for a network whose main interest is in these

outliers.

On the other hand, our approach works for other event-detection networks

where the relevant changes in the data are expected to be slow, e.g., triggering a fault

report when some equipment begins to perform below specifications, turning a fan on

when the temperature in a room rises above a threshold or a sprinkler when humidity

in the soil falls below one. Our work is also applicable to sampling or metering

networks, like recording light levels or water flow, where the regular observations are

more important than outliers. Furthermore, sensor networks where important events

are detectable from single samples are likely to have some processing performed on

them before reporting. Such applications would require more complex sensor nodes,

which are unlikely to use the type of network architecture we proposed in Section 3.1.

Error Characteristics

The applicability of our approach is also shaped by the types of errors ad-

dressed by it. As discussed in detail in Section 3.2.1, these errors consist of transient

errors introduced in the storage/processing hardware in the sensor nodes, and during

wireless communications. The main characteristic of these errors is that they manifest
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as inversion of random bits in the data. Representing such errors as additive leads to

complex statistical properties, which is why this type of errors does not lend itself to

common linear filtering or smoothing techniques that are designed for additive linear

errors arising from sampling inaccuracies or bias in the sensor. Instead, our approach

presents a complementary solution to other methods that correct additive sensing er-

rors.

3.9 Conclusions

In this chapter, we investigated transient data errors in wireless sensor net-

works, and examined the problems of trying to apply traditional error correction meth-

ods in this context. We presented a novel approach to sensor network design that uses

specific properties of sensor data to enable reliable data collection at no additional cost

to the sensor nodes. We show that our approach, called model-based error correction,

corrects transient errors introduced in the sensor node hardware as well as in the wire-

less communication channel. Through simulation-based study on real sensor data,

we demonstrate that with the proposed enhancements, the presented framework can

be used efficiently to address transient errors in different types of sensor data across

diverse applications. We also implemented the correction algorithm in software on a

sensor testbed.

The text of this chapter, in part, is based on material that has been pub-

lished in the IEEE Wireless Communications and Networking Conference in 2004

(S. Mukhopadhyay, D. Panigrahi, and S. Dey, “Data Aware, Low Cost Error Cor-

rection for Wireless Sensor Networks”, Proceedings of IEEE Wireless Communica-

tions and Networking Conference , Atlanta, USA, March 2004), the IEEE Sensor and

Ad Hoc Communications and Networks Conference(SECON), (S. Mukhopadhyay,

D. Panigrahi, S. Dey, “Model Based Error Correction for Wireless Sensor Networks”,

Proceedings of IEEE Communications Society Conference on Sensor and Ad Hoc

Communications and Networks, Santa Clara, October 2004), and accepted for publi-

cation in the IEEE Transactions on Mobile Computing (S. Mukhopadhyay, C. Schurg-
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ers, D. Panigrahi, S. Dey, “Model Based Techniques for Data Reliability in Wireless

Sensor Networks”, IEEE Transactions on Mobile Computing). The dissertation au-

thor was the primary researcher and author in all three publications, and the coauthors

listed collaborated on or supervised the research that forms the basis of this chapter.



Chapter 4

Conclusions and Future Directions

This chapter concludes the dissertation with a summary of our principal con-

tributions and some thoughts about the implications of this research for future gener-

ations of systems.

The underlying idea of this work has been the architectural principle of split-

ting the functionality of the end nodes, as presented in Figure 1.3 in Chapter 1. In

subsequent chapters, we looked at two different types of wireless networks where this

idea was realized to satisfy different goals specific to each system.

In Chapter 2, we presented an architecture for a wireless network where the

wireless access points are enhanced with embedded processing resources, which en-

ables them to support some of the application-specific processing for the client nodes.

For this application, we addressed the problem of sharing the processing resources

in the network among end nodes, by a designing a set of heuristic solutions for joint

scheduling of computation and communication. We showed that these heuristics allow

efficient usage of these shared resources in such a network architecture. As a result,

this architecture can be successfully used to enable rich applications with enhanced

functionality, while continuing to use low-footprint devices as clients.

In Chapter 3, we focused on wireless sensor networks, and showed how a hi-

erarchical network architecture can allow the use of ultra low-footprint sensor nodes,

and still remain capable of performing reliable data collection. To achieve this, we

presented a method for correcting errors in sensor data that uses patterns and prop-

101
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erties of the sensor data itself. Our method moved the processing overheads of error

correction out of the thin sensor nodes and into the more powerful cluster-head nodes,

and in the process effectively allowed the sensor nodes to be made smaller and thinner.

Though the types of systems covered in the last two chapters differed drasti-

cally in terms of goals and functionality, they can both be considered to be instantia-

tions of the same architectural principle that was presented in Chapter 1. In both cases,

the proposed architectural idea involved splitting what was formerly the functionality

of the end nodes into two different parts. In the first instance, the resulting architecture

allows the extension of the functionality of mobile applications even as the footprints

of the end nodes continued to remain low. In the second case, the use of the same

principle enables significant reduction in the footprints of the sensor nodes without

sacrificing the primary functionality of the system, which is reliable data collection.

The two examples illustrate the ability of the proposed architectural principle

to solve some of the technical challenges of next generations of wireless comput-

ing systems. As discussed in Chapter 1, there has been a convergence of computing

and communication functionalities in the present generation of wireless networks,

and future generations of these systems have to address the twin goals of enhanced

functionality and reduced footprints. For any given generation of technology, any

design involves a trade-off between these two goals. What we have demonstrated in

this dissertation is that another approach, consisting of an architectural redesign, can

transcend this trade-off in a way that is not feasible without breaking the current archi-

tecture. The architectural change comes with its own effects on the application design,

and in the previous chapters we demonstrated how some of these challenges can be

addressed in the context of two types of systems with widely disparate requirements

and constraints.

We envision this idea to be an initial step in the direction of new design tech-

niques specialized for future systems that emerge out of the convergence between

computing and communication applications. The design of any such system involves

a consideration of numerous trade-offs, and our work serves to hand an extra option

to the designer in terms of balancing requirements and capabilities. In the future,

we envision this architectural principle to become more generalized by designs that
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push more and more of the user-specific functionality into the network. In the manner

of the blurring of the lines between computing and communication systems, we ex-

pect this approach to eventually blur the boundaries between the user and the system,

the additional flexibility allowing a designer to generate more efficient designs. As

demonstrated in this dissertation, this holds the promise for increasing the capabilities

of these systems, while at the same time making them more and more efficient.
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