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ABSTRACT OF THE DISSERTATION

Averaging and Singular Perturbation on Multiple Time Scales: From Sperm Chemotaxis to
3D Source Seeking

By

Mahmoud Abdelgalil

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2023

Associate Professor Haithem Taha, Co-Chair
Distinguished Professor Tryphon Georgiou, Co-Chair

This work revisits higher order averaging with a focus on the analysis of high-amplitude,

high-frequency oscillatory systems; a class of systems that arises in the motion planning and

stabilization of control-affine systems via oscillatory inputs, and in extremum seeking control.

Traditional extremum seeking control suffers from persistent oscillations in the steady state.

As a first contribution of this thesis, we extend recent results in the literature to allow for

vanishing oscillations in steady state even when the optimal value of the function is unknown

apriori.

Next, we investigate the effect of multiple periodic time scales on the average behavior

of highly oscillatory systems through a recursive application of averaging methods. By

exploiting the multiple-scale nature of our analysis, it is possible to separate the dither signals

used for gradient estimation in extremum seeking on a slower time-scale, thereby relaxing

the non-resonance conditions that are otherwise necessary in multi-dimensional extremum

seeking.

Then, we consider a singularly perturbed version of highly oscillatory systems. In contrast

to the results in the literature, we provide explicit formulas for the reduced order averaged

ix



system that accounts for the interaction between the fast periodic time scale and the singu-

larly perturbed part of the system. Moreover, we combine recursive averaging results with

singular perturbation on multiple time-scales and provide explicit formulas for the reduced

order averaged system.

In addition, we provide two applications of the methods studied in this thesis. The first

application is concerned with klinotaxis in microorganisms. Specifically, we show that the

chemotactic strategy of sea urchin sperm cells is a natural implementation of an extremum

seeking control law under a nonholonomic integrator.

In the light of this novel connection, we propose bio-inspired 3D source seeking algorithms

for rigid bodies with collocated and non-collocated sensors. Unlike all the results in the

literature, our proposed algorithms do not assume any global attitude information.

Finally, we investigate, through formal calculations and numerical simulations, the effects

of time delays on highly oscillatory systems. We provide explicit formulas for second order

averaging of retarded differential equations with a constant time delay when the delay is

infinitesmal or is finite. We show that the dynamics of the second-order averaged system

depends on a twice-delayed state of the original system when the delay is finite. Moreover,

we show that even an infinitesmal delay may bifurcate a single periodic orbit of the original

system into multiple orbits and affect their stability. Our analysis highlights a fundamental

trade-off between robustness to infinitesmal time-delays and the domain and speed of at-

traction for highly oscillatory systems when the frequency of oscillation is large compared to

the natural time-scale of the dynamics.
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Chapter 1

Introduction

Perturbation theory is concerned with the study of dynamical systems with small param-

eters. The trivial approach in perturbation theory is to substitute with zero for the small

parameters, thereby obtaining as a zeroth-order approximation of the system under consid-

eration in the limit where the small parameters vanish. This simple approach, however, fails

in various ways and for various reasons. The problems where the simple approach fails are

called singular perturbation problems, and, depending on the nature of the problem, more

advanced tools are needed to approximate the behavior of the system.

This thesis considers a class of singular perturbation problems that arises in extremum

seeking control [2, 3, 4] and the motion planning and stabilization of control-affine systems

[5]. In particular, we employ higher-order averaging [6] and various extensions of the classic

theorem of Tikhonov [7, Theorem 11.1] in our analysis. This introductory chapter provides

a brief tour of the tools we use in this thesis, starting with the classical averaging method

in the next section.
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1.1 The classical averaging method

The method of averaging has a rich history going back as far as the early works of Laplace

and Lagrange on the study of secular planet motions in celestial mechanics during the 1700s.

Over the course of three centuries, the method continued to evolve thanks to the contributions

of many great mathematicians [6, Appendix A].

Averaging received strong interest from Soviet Union mathematicians during the 1900s,

which led to the formulation of the Krylov-Bogoliubov-Mitropolskii (KBM) averaging method

with application to nonlinear oscillations in physics and engineering [8]. The emphasis has

been on constructing asymptotically accurate solutions to nonlinear time varying differential

equations in the presence of weak oscillations.

Not long after, the chronological calculus was developed to provide a representation for the

flow of time varying vector fields as an exponential-like series [9]. The framework of chrono-

logical calculus naturally lends itself to the method of averaging. For example, Bullo utilized

the chronological calculus framework in the averaging analysis and vibrational stabilization

of mechanical systems [10, 11]. Concurrently, the framework was employed by Sarychev [12]

and later Vela [13] as a geometric formulation of the standard averaging theorem, and, in

combination with nonlinear Floquet theory, as a tool for the stability analysis of nonlinear

time periodic systems. For more details on the connection between the chronological calculus

approach to averaging and the KBM method, we refer the reader to the recent article [14].

Although the method of averaging applies to a general class of vector fields (the class of

so-called KBM vector fields [6, Chapter 4]), the averaging method is well developed for the

class of periodic vector fields and has been generalized to arbitrarily high orders under close-

to-minimal regularity assumptions [15]. In this introductory section, we focus on periodic

systems. The presentation in this chapter is largely based on the excellent book by Sanders

and Verhulst [6].
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Consider the following perturbation problem:

ẋ =
k∑

i=1

εi fi(x, t) + εk+1f[k+1](x, t, ε), x(0) = x0 (1.1)

where the vector fields fi, f[k+1] are T -periodic in t, k ∈ N is some constant integer, and

ε ∈ [0, ε0] is the perturbation parameter. We are interested in obtaining an approximation

of the behavior of the trajectories of the system (1.1). To achieve this task, the so-called

near-identity transform:

x = U(ξ, t, ε) = ξ +
k∑

i=1

εiui(ξ, t) (1.2)

can be utilized as a coordinate transform, where in the new coordinate ξ we have that:

ξ̇ =
k∑

i=1

εi fi(ξ) + εk+1f[k+1](ξ, t, ε), ξ(0) = x0 (1.3)

Now, we see that according to (1.2), we have that:

ẋ = ∂tU(ξ, t, ε) + ∂ξU(ξ, t, ε) ξ̇ =
k∑

i=1

εi
(
∂tui(ξ, t)−K1,i(ξ, t)

)
+O(εk+1) (1.4)

where K1,i for i ∈ {1, . . . , k} is the coefficient of the O(εi) term in the product ∂ξU(ξ, t, ε) ξ̇.

At the same time, we have from (1.1) that:

ẋ =
k∑

i=1

εi fi(U(ξ, t, ε), t) + εk+1f[k+1](U(ξ, t, ε), t, ε)

=
k∑

i=1

εi K2,i(ξ, t) +O(εk+1)

(1.5)

where the right-hand-side is to expand as a Taylor series in ε up to order εk, and K2,i is the

3



coefficient of εi in that expansion. By matching the coefficients of like-powers for the two

series in (1.4) and (1.5) up to order εk, we arrive at the so called homological equations :

∂tui(ξ, t) = K1,i(ξ, t) +K2,i(ξ, t), i ∈ {1, . . . , k} (1.6)

The remaining terms of order O(εk+1) and higher are grouped into the vector field fk+1.

Because (1.2) is a near identity transform, the homological equations take the form:

∂tui(ξ, t) = Ki(ξ, t)− fi(ξ), i ∈ {1, . . . , k} (1.7)

where Ki depends on fj, fj,uj for j ∈ {1, . . . , i − 1} and fi, but not on fi. Utilizing this

structure, the homological equations can be solved sequentially by defining fi as the time

average of Ki over one period:

fi =
1

T

ˆ T

0

Ki(ξ, t)dt, i ∈ {1, . . . , k} (1.8)

In this case, the homological equations (1.5) are solvable via direct integration:

ui(ξ, t) =

ˆ T

0

(
Ki(ξ, t)− fi(ξ)

)
dt, i ∈ {1, . . . , k} (1.9)

since the right-hand-side is a periodic function with zero average. The actual definition of

the near-identity transform and the averaged system can now be constructed by reversing

the arguments above. We provide here the first and second order terms in the expansion

because they will play important roles in subsequent sections:

K1(ξ, t) = f1(ξ, t) (1.10)

K2(ξ, t) = f2(ξ, t) + ∂ξf1(ξ, t)u1(ξ, t)− ∂ξu1(ξ, t) f1(ξ) (1.11)

We refer the reader to [14] for exact expressions of the third and fourth order terms, and to
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[6, Chapter 3] for a systematic procedure of obtaining higher order expansions using the so

called Lie transforms.

Now that we have defined the near-identity transform and the averaged system (1.2), we

would like to obtain estimates on the error between the trajectories of the original system

(1.1), and the trajectories of the averaged system (1.2). To state this relation, we introduce

a shorter version of the near identity transform:

Uj(ξ, t, ε) = ξ +

j∑
i=1

εiui(ξ, t) (1.12)

and the truncated averaged system:

ξ̇ =
k∑

i=1

εi fi(ξ), ξ(0) = x0 (1.13)

The following theorem, adapted from [6], summarizes the relation between the trajectories

of (1.1) and (1.13):

Theorem 1.1.1. The exact solution to (1.1), denoted as x(t), and its approximation x(t) =

Uk−1(ξ(t), t, ε), where ξ(t) is the solution to the system (1.13), satisfy the error estimate:

∥x(t)− x(t)∥ = O(εk) (1.14)

for t ∼ O(1/ε) and small ε.

The theorem above provides a direct relationship between the trajectories of the time-varying

system (1.1) and the time-invariant system (1.13). Therefore, by studying the simpler sys-

tem (1.13), we may be able to conclude qualitative properties of the original time-varying

system (1.1). As an example, when the averaged system possesses an exponentially stable

equilibrium point, one can show that the original system possesses an exponentially stable

periodic orbit.
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Despite the fact that the class of problems studied in this section are singular perturbation

problems in the general sense of the term, a truly singular behavior arises when a reduction

of the order of the differential equation under consideration happens in the limit ε → 0,

which is not the case for the system (1.1). The next section provides a brief introduction to

the main method in tackling such behavior.

1.2 Tikhonov’s Theorem

In later chapters, we will be primarily concerned with singular perturbation problems in

which a part of the system state (the fast states) converges sufficiently fast to an equilibrium

manifold. The typical setting for this type of problems (e.g. [7]) is the following. Let

x1 ∈ Rn1 and x2 ∈ Rn2 , and consider the following system of differential equations:

ẋ1 = f1(x1,x2), x1(0) = x1,0 (1.15a)

ε ẋ2 = f2(x1,x2), x2(0) = x2,0 (1.15b)

In the limit ε→ 0, the order of the differential equations drops to n1 due to the fact that ε

multiplies a part of the highest order derivative in the equations. Consequently, the equations

of the system reduce to:

˙̃x1 = f1(x̃1,x2), x̃1(0) = x1,0 (1.16a)

0 = f2(x̃1,x2) (1.16b)

If there exists a sufficiently smooth unique function φ(x1) such that:

f2(x̃1, φ(x̃1)) = 0 (1.17)
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and the boundary layer model given by:

dy2

dτ
= f2(x1,y2 + φ(x1)) (1.18)

where x1 is treated as a constant parameter, possesses the origin as a globally exponentially

stable equilibrium point, then under sufficiently regularity conditions a classical result known

as Tikhonov’s theorem provides a relation between the trajectories of the system (1.15) and

the system (1.16) and (1.18).

Theorem 1.2.1. [7] There exists a sufficiently small ε∗ ∈ (0,∞) such that ∀ε ∈ (0, ε∗) we

have:

x1(t)− x̃1(t) = O(ε) (1.19)

x2(t)−φ(x̃1(t))− y2(t/ε) = O(ε) (1.20)

∀t ∈ [t0, t1] where the interval [t0, t1] is the interval of existence and uniqueness of the solution

x̃1(t).

The key idea behind Tikhonov’s theorem is to exploit the exponential stability of the bound-

ary layer model (1.18) to replace the singularly perturbed part of the system (i.e. x2) with its

quasi-steady state φ(x1). However, Tikhonov’s theorem is concerned only with first order

behavior as is evident from the nature of the approximate relation between the trajecto-

ries (i.e. the error is O(ε)). In later chapters, we shall encounter situations in which the

first-order behavior of the system vanishes and it becomes necessary to proceed to at least

second-order so as to capture the leading order behavior of the system under consideration.

Consequently, we shall have to obtain an asymptotic approximation of the motion around

the quasi-steady state φ(x1) using a perturbative expansion in the small parameter ε.

The archetype application of the combination of singular perturbation and averaging, and

7



to which a major part of this thesis is a contribution, is the well-known adaptive control

technique called extremum seeking [2]. In the next section, we give a brief introduction to

extremum seeking control.

1.3 Extremum Seeking Control

Extremum Seeking (ES) control is an adaptive control technique designed to steer a dynam-

ical system towards the extremum of an objective function that depends on the state of the

system, without access to information about the gradient of the function (only the value of

the objective function is available for measurement at each instant in time). The first ES

control law can be traced back to the century old paper due to Leblanc [16], but the recent

interest in ES control was sparked by Krstić’s seminal paper [2]. In the simplest setting,

an ES controller is designed to find the optimal value of a single-variable static objective

function by dynamically estimating the gradient. Let c(x) be the objective function, and

consider the following dynamical system [17]:

x = x̄+ a sin(ωt) (1.21a)

˙̄x = 2 k (ζ2 − ζ1) sin(ωt), (1.21b)

ζ̇1 = ω (ζ2 − ζ1), (1.21c)

ζ̇2 = ω (c(x)− ζ2), (1.21d)

which is depicted in the block diagram shown in figure 1.1, where x̄ is the estimate of the

optimal value of the independent variable x, ζ1 and ζ2 are the states of a band-pass filter

centered around the constant frequency ω, and k, a are tuning parameters. The flow of

the block diagram in figure 1.1 can be traced as follows. First, a sinusoidal perturbation is

injected to sample the objective function near the estimate x̄. Using Taylor expansion, the

8



instantaneous cost can be written as:

c(x) = c(x̄) +
dc(x̄)

dx̄
a sin(ωt) +O(a2). (1.22)

We observe how the gradient appears as the amplitude of the sinusoidal perturbation. In

engineering terms, injecting the perturbation around the current estimate x̄ ‘modulates’

the local gradient information on the amplitude of the sinusoidal ‘carrier’ signal sin(ωt).

Therefore, to extract the gradient information, the measured objective function c(x) goes

through a band-pass filter centered around the frequency ω as defined by equations (1.21c)-

(1.21d). The output of the filter ζ can be approximated in a quasi-steady sense by:

ζ2 − ζ1 ≈
1

2

dc(x̄)

dx̄
a sin(ωt), (1.23)

Next, the gradient information is ‘demodulated’ (i.e., extracted from the carrier signal)

through multiplication with another sinusoid having the same frequency and phase as the

carrier signal:

2 (ζ2 − ζ1) k sin(ωt) ≈
a k

2

dc(x̄)

dx̄
(1− cos(2ωt)), (1.24)

where the time-average of the right hand side of equation (1.24) is proportional to the

gradient. Finally, the demodulated gradient information is used in adjusting the current

estimate x̄. Through a simple averaging argument, we obtain that the estimate x̄ evolves on

average according to:

˙̄x ≈ 2 (ζ2 − ζ1) k sin(ω t) =
a k

2

dc(x̄)

dx̄
, (1.25)

where the overline indicates the time average of the overlined quantity. That is, the estimate

x̄ evolves, in a quasi-steady average sense, along the gradient of the objective function under

9



PerturbationIntegrationDemodulation

Figure 1.1: A block diagram description of the simplest extremum seeking control scheme
as represented by equations (1.21).

the extremum seeking control law (1.21). The interested reader is referred to [2, 17, 18] for

more details.

A key feature of extremum seeking control is that it employs zeroth-order information (i.e.

objective function evaluation) to extract first-order information (i.e. objective function gra-

dient). As such, extremum seeking control arises as a second-order effect in a dynamical

system. In particular, it is clear that the oscillations around the current estimate x̄ in

equation (1.21a) have zero mean. Therefore, from an averaging perspective, the first-order

behavior of extremum seeking vanishes and the leading order behavior is second-order. This

aspect of extremum seeking is analogous to a situation that arises in nonholonomic control

affine systems typically studied in geometric control theory. The following section provides

a brief introduction to this connection with extremum seeking control.

1.4 Highly Oscillatory Systems

The development of geometric control theory in the second half of the 20th century rejuve-

nated the interest in the use of oscillatory inputs for the stabilization and motion planning

of nonlinear control affine systems. This approach culminated in the results obtained by

10



Sussmann and Liu [19, 20, 5] who extended the earlier work of Kurzweil and Jarnik [21]

on the limits of solutions of sequences of systems of ordinary differential equations. No-

tably, Sussmann and Liu’s techniques on trajectory approximation and tracking may be

combined with the notion of practical stability [22, 23] to analyze the long time behavior

of time varying control-affine nonlinear systems. This approach is based on establishing

the so-called ‘convergence-of-trajectories’ property between the system in consideration and

the ‘extended system’ in which the high-frequency, high amplitude-oscillation is replaced

by accounting for its average effect on the trajectories. In recent years, this approach was

utilized in analyzing extremum seeking systems with the introduction of the Lie Bracket

Approximation framework [3, 24, 1].

1.4.1 Lie Bracket Approximation Framework

The basic setting of the Lie Bracket Approximation framework, which is quite similar to

the second order case in Sussman and Liu’s results, is as follows. Consider the time varying

control affine system defined by:

ẋ = b0(x, t) +
r∑

i=1

√
ω ui(t, ωt)bi(x, t) (1.26)

where the functions ui are periodic in their second argument and have zero average over

the period. Through a combination of Grönwall’s inequality and integration by parts, the

authors in [3] establish the convergence of the trajectories of the system (1.26) on compact

time intervals and compact sets in the limit as ω → ∞ to the trajectories of the so called

Lie Bracket system:

ẋ = b0(x, t) +
r∑

i<j

vji(t)[bi,bj](x, t) (1.27)
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where:

vji(t) =
1

T

ˆ T

0

uj(t, τ)

ˆ τ

0

ui(t, ν)dν dτ (1.28)

[bi,bj] =
∂bj

∂x
bi −

∂bi

∂x
bj (1.29)

The convergence-of-trajectories property is then employed to establish the practical stability

as defined in [23] of the original system (1.26), provided that the Lie Bracket system (1.27)

posses a globally uniformly asymptotically stable compact subset.

1.4.2 Lie Bracket Approximation of Extremum Seeking

The Lie Bracket Approximation framework has been applied to study and establish the

practical stability of extremum seeking control. To illustrate, consider the following scalar

system:

ẋ =
√
ω cos(ωt) + J(x)

√
ω sin(ωt) (1.30)

which as the same form as the system (1.26). If we compute the Lie bracket system corre-

sponding to (1.30), we obtain the system:

ẋ =
1

2

dJ

dx
(1.31)

which is a gradient ascent algorithm. Hence, in the limit as ω → ∞, the trajectories of

(1.30) approximate the trajectories of (1.31), which drives the trajectories of the system

in the direction of the gradient. Various extensions of the Lie bracket approximations has

appear in the literature. Nevertheless, it seems that no attempts have been made to relate

this approach to the standard method of averaging except for the discussion in [3, Section

12



5]. Moreover, [3, Section 5] claims that the averaging method is not directly application to

the class of highly oscillatory systems, which is not true. We illustrate below how higher

order averaging can be used to analyze the behavior of this class of systems.

1.4.3 Classical Averaging Treatment of Highly Oscillatory Sys-

tems

Consider the system (1.26), and apply the time scaling τ = ω(t−t0)+t0. Then, let ε = 1/
√
ω

in order to obtain the system:

dx

dτ
= ε

r∑
i=1

ui(ε
2τ, τ)bi(x, ε

2τ) + ε2b0(x, ε
2τ) (1.32)

Observe that this system is on the averaging canonical form. If we attempt first-order

averaging we obtain the trivial system:

dx̄

dτ
= 0 (1.33)

due to the nature of the time-periodic signals ui. Nevertheless, by applying the stroboscopic

averaging theorem for systems with slow time dependence to second-order in ε, we obtain

the system:

dx̄

dτ
= ε2

r∑
i<j

vji(ε
2τ) [bi,bj](x, ε

2τ) + ε2b0(x, ε
2τ) (1.34)

By reversing the time scaling t = ε2(τ − t0) + t0, we obtain the averaged system:

˙̄x = b0(x̄, t) +
r∑

i<j

vji(t) [bi,bj](x̄, t) (1.35)
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which is identical to the Lie bracket system (1.27). Hence, the higher-order averaging theorem

is applicable to the class of systems considered in the Lie bracket approximations approach,

and more generally the class of systems considered in Sussmann and Liu’s results [19, 20, 5].

The key advantage of introducing the Lie Bracket approximation framework for extremum

seeking control is that versatility that the framework brings to the design of extremum seeking

systems. In particular, the approach made it possible to design extremum seeking control

laws with various important and interesting properties [24, 25, 1] Moreover, it facilitated

the study of extremum seeking systems when the underlying dynamics of the system has

a nonholonomic nature. We exploit this particular feature in our treatment of the source

seeking problem, a variant of extremum seeking control that has direct applications in robotic

navigation.
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Chapter 2

Extremum Seeking with Vanishing

Input Oscillations

One of the main issues with the traditional extremum seeking control [17, 3] is the inevitable

oscillation of the steady state response around the optimum point, which is a consequence

of continuously changing the control input. Only practical stability is guaranteed [3]; the

system converges to a periodic orbit around the optimum point whose size diminishes as

the frequency of the dither increases. However, because the amplitude of the dither signal

is typically scaled with frequency [3, 5], shrinking the size of the periodic orbit around the

optimum point will necessitate large-amplitude control signals, risking control saturation.

This issue can be resolved by using nonsmooth control vector fields as was demonstrated

by Scheinker and Krstic [24]. To show this interesting feature, they extended Liu and Suss-

mann’s averaging techniques [5] to nonsmooth systems (not differentiable at the minimum

point). This extension enabled analysis for a class of nonsmooth control vector fields that

possesses interesting properties for extremum seeking control such as vanishing at minimum

points and bounded update rates. Suttner and Dashkovskiy [25] proposed another type of

nonsmooth control vector fields that allow sharper results than that of Scheinker and Krstic
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[24]; the former proved exponential/asymptotic stability of the minimum point using ex-

tremum seeking control where as the latter only showed that the oscillations in the control

input will vanish if the system ever reaches the minimum point. Then, Grushkovskaya et al.

[1] presented a unifying class of generating vector fields for extremum seeking control with

vanishing control oscillations that subsumes the types used by Suttner and Dashkovskiy [25]

and Scheinker and Krstic [24]. They provided a detailed proof of exponential/asymptotic

stability for this class of vector fields. Moreover, their proof is constructive; it illustrates

how to pick the frequency of oscillation for the dither signals in terms of some constants that

define bounds on the cost function and the vector fields.

Nevertheless, one of the main assumptions in these efforts [24, 25, 1] to guarantee expo-

nential/asymptotic stability of the minimum (and consequently to eliminate persistent os-

cillations) is that the function takes a minimum value of zero at the minimum point, or

equivalently that the function value at the minimum point is known apriori, which is a

strong requirement. Suttner [26] made an attempt to relax this assumption by adapting

the frequency. In their framework, the minimum point is not assumed to be an equilibrium

point of the uncontrolled dynamics and convergence to the minimum point(s) is guaranteed.

However, asymptotic stability in the sense of Lyapunov is forfeited. More relevant to our

work, the frequency update rule leads to unbounded frequency as the system approaches the

minimum point. This behavior leads to a control input signal that grows without bound

and oscillates infinitely fast around the minimum point, even in the absence of a drift vector

field.

In this chapter, we propose a solution that resolves the two issues discussed above simul-

taneously: (i) achieving asymptotic convergence to the minimum point without requiring

knowledge of the minimum value of the cost function, and (ii) doing so without persistent

excitation of the control signal (i.e., the amplitude of the dither signal vanishes as the system

approaches the minimum point). Specifically, we prove asymptotic convergence to the mini-
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mum point with bounded amplitude and frequency for all initial conditions in an arbitrarily

large compact subset of the strict epigraph of the cost function containing the minimum

point. Although the presented proof is for the static cost case, it can be extended to the

case of a dynamic cost function under reasonable assumptions on the dynamics similar to

Suttner’s [26] with additional requirements on the drift vector field.

Let D ⊂ Rn be a bounded subset with a nonempty interior. Suppose that J : D → R is a

cost function that has the following properties:

Assumption 2.0.1. Assume that J ∈ C3(D;R) and that there exists a unique point x∗ ∈ D,

such that J̃(x) = J(x)− J∗ > 0,∀x ̸= x∗, where J∗ = J(x∗) and

κ1J̃(x)
2− 1

m ≤ ∥∇J(x)∥2≤ κ2J̃(x)
2− 1

m (2.1a)

γ1J̃(x)
1− 1

m ≤ ∥∇2J(x)∥≤ γ2J̃(x)
1− 1

m (2.1b)

where κi, γi > 0 and m ≥ 1.

Next, define the epigraph and strict epigraph of J

epi(J) =
{
(x, z) ∈ D × R

∣∣J(x)− z ≤ 0
}

(2.2)

epiS(J) =
{
(x, z) ∈ D × R

∣∣J(x)− z < 0
}
, (2.3)

Let θ = (x, z) ∈ epiS(J), and define the functions gi : epiS(J) → R, i ∈ {1, 2, 3}

g1(θ) = J̃(x)− J0, (2.4a)

g2(θ) = z − J∗ − z0 (2.4b)

g3(θ) =
tanh(J̃(x)2−

1
m )

z − J(x)
− y0 (2.4c)
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where J0, y0, z0 are positive constants. Let ϵ > 0 and define the domains

∆0 =
{
θ ∈ epiS(J)

∣∣gi(θ) ≤ 0, ∀i ∈ {1, 2, 3}
}

(2.5a)

∆ϵ =
{
θ ∈ epiS(J)

∣∣gi(θ) ≤ ϵ, ∀i ∈ {1, 2, 3}
}

(2.5b)

Let Λ denote the set of all ordered pairs (j, s), where j ∈ {1, ..., n}, s ∈ {1, 2}. Then, consider

the dynamical system

θ̇ = f0(θ) +
∑
λ∈Λ

fλ(θ)uλ(t) (2.6a)

f0(θ) = −(z − J(x)) en+1 (2.6b)

fj,s(θ) = Fs(z − J(x)) ej (2.6c)

and the functions uj,1, uj,2 (the dithers) are given by

uj,1(t) = 2
√
πωjω sin(2πωjωt) (2.7a)

uj,2(t) = 2
√
πωjω cos(2πωjωt) (2.7b)

where ω ∈ (0,∞), ωj ∈ N, ∀j ∈ {1, 2, ..., n}, and the functions F1(·), F2(·) satisfy the

condition:

F2(y) = F1(y)

ˆ
1

F1(y)2
dy, (2.8)

where the integral is understood as an anti-derivative. Note that many choices for Fs(·)

are possible. An example of such functions is F1(z) = z, F2(z) = 1, which is the simplest

extremum seeking system. Another example of such functions is F1(z) = |z|r, F2(z) =

|z|2−r, which was introduced by Scheinker and Krstic in [24]. Suttner and Dashkovskiy [25]

introduced another set: 1, F1(z) =
√
z sin ln z, F2(z) =

√
z cos ln z, which has the desirable

property that if J(x∗) = 0, then there is a critical frequency beyond which the point x∗
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becomes an asymptotically stable equilibrium point in the sense of Lyapunov. In particular,

the system converges to the point x∗ with vanishing control input oscillations. We remark

that if J(x∗) > 0, the point x∗ is no longer an equilibrium point, and only practical stability

holds. Moreover, if J(·) can take negative values, then the vector field introduced by Suttner

and Dashkovskiy [25] is not well defined. In such a case, a large enough positive constant

must be added to the function. However, this requires knowledge of a lower bound on J(x∗).

If J(x∗) is known exactly, a shift of the form J̃(x) = J(x)− J(x∗) makes the new function

J̃(·) satisfy the requirements of asymptotic stability. For simplicity, we will fix one choice of

the functions F1 and F2 to be:

F1(z) =
√
z sin ln z, F2(z) =

√
z cos ln z (2.9)

In this setting, we have the following theorem:

Theorem 2.0.1. Suppose that the function J satisfies Assumption 2.0.1, and consider the

system defined by (2.6), (2.7) and (2.9). Fix a choice for the collection of frequencies ωj ∈

N, ∀j ∈ {1, 2, ..., n} such that ∀i ̸= j, ωi ̸= ωj. Then, ∃ω∗ ∈ (0,∞) such that ∀ω ∈

(ω∗,∞), ∀θ(0) ∈ ∆0 we have:

1. θ(t) ∈ ∆ϵ, ∀t ∈ [0,∞),

2. θ(t) → (x∗, J∗) as t→ ∞.

Since J(x(0)) is available via measurement, it is always possible to place z(0), which is

an internal state of the controller, such that the initial condition strictly lies in ∆0. We

emphasize that this does not require additional information other than online measurement

of the function value. The proof of Theorem 2.0.1 employs several lemmas which we now

state.
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Consider the Initial Value Problem (IVP)

ζ̇(t) = f0(ζ(t)) +
∑
λ∈Λ

fλ(ζ(t)) uλ(t), ζ(0) ∈ Ξ0 (2.10)

where Ξ0 ⊂ Ξ ⊂ Rn, Λ is the set of all ordered pairs (j, s), j ∈ {1, 2, ..., n}, s ∈ {1, 2},

f0, fλ ∈ Γ2(Ξ) and the dither signals uλ(·) are defined by Eq. (2.7)

Lemma 2.0.1. [3, 5, 26] Let g ∈ C3(Ξ;R). Then, for every solution ζ : I → Ξ of (2.10),

the function g ◦ ζ : I → R satisfies

g(ζ(t))
∣∣t2
t1
= Rg

1(ζ(t), t)
∣∣t2
t1
+

t2ˆ

t1

(
F g(ζ(t)) +Rg

2(ζ(t), t)
)
dt (2.11a)

where I is the interval of existence and uniqueness of ζ(·), t1, t2 ∈ I, t2 > t1, and

F g(ζ) = Lf0g(ζ)−
m∑
j=1

L[fj,1,fj,2]g(ζ) (2.12a)

Rg
1(ζ, t) =

∑
λ∈Λ

Lfλg(ζ) Uλ(t)−
∑

λ1,λ2∈Λ

Lfλ2
Lfλ1

g(ζ) Uλ1,λ2(t) (2.12b)

Rg
2(ζ, t) = −

∑
λ∈Λ

Lf0Lfλg(ζ) Uλ(t) +
∑

λ1,λ2∈Λ

Lf0Lfλ2
Lfλ1

g(ζ) Uλ1,λ2(t) (2.12c)

+
∑

λ1,λ2,λ3∈Λ

Lfλ3
Lfλ2

Lfλ1
g(ζ) Uλ1,λ2(t)uλ3(t) (2.12d)

Uλ(t) =

ˆ
uλ(t) dt, Uλ1,λ2(t) =

ˆ (
vλ1,λ2 + Uλ1(t) uλ2(t)

)
dτ (2.13a)

vλ1,λ2 =


+1 λ1 = (j, 1) & λ2 = (j, 2)

−1 λ1 = (j, 2) & λ2 = (j, 1)

0 otherwise

(2.13b)
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Lemma 2.0.2. Let Ξ ⊆ Rn, gi ∈ C3(Ξ;R) ∀i ∈ {1, 2, ..., r}. Let ϵ > 0 and define

∆0 =
{
ζ ∈ Ξ

∣∣gi(ζ) ≤ 0, ∀i ∈ {1, 2, .. , r}
}

(2.14a)

∆ϵ =
{
ζ ∈ Ξ

∣∣gi(ζ) ≤ ϵ, ∀i ∈ {1, 2, .. , r}
}

(2.14b)

and the subsets ∆i
ϵ =

{
ζ ∈ ∆ϵ

∣∣0 ≤ gi(ζ) ≤ ϵ
}
. Suppose that ∀i ∈ {1, 2, ..., r}, whenever

ζ ∈ ∆i
ϵ, the following bounds hold

∥∥Rgi
1 (ζ, t)

∥∥ ≤ cgi1√
ω
,
∥∥Rgi

2 (ζ, t)
∥∥ ≤ cgi2√

ω
, F gi(ζ) ≤ −bgi

∀t ∈ R, where cgi1 , c
gi
2 , b

gi > 0 are constants. Then ∃ω∗ ∈ (0,∞) such that ∀ω ∈ (ω∗,∞),∀ζ(0) ∈

∆0 and maximal solution ζ : I → ∆ϵ for the IVP (2.10), where 0 ∈ I = (t−e , t
+
e ),

lim sup
τ→t+e

gi(ζ(τ)) < ϵ, ∀i ∈ {1, 2, .., r}

Note that ω∗ in the proof of Lemma 2.0.2 gives an estimate of the required frequency of

oscillation in terms of the constants cgi1 , c
gi
2 , b

gi and a choice of δ ∈ (0, ϵ). Thus, to choose a

sufficiently large frequency, one needs to know the constants cgi1 , c
gi
2 , b

gi . In the next lemma,

we outline a procedure to estimate these constants under Assumption 2.0.1 for the static

cost case. In fact, for a general dynamical system, if one can establish these bounds on the

remainders, then the conclusions of Theorem 2.0.1 hold, as demonstrated by the numerical

results provided above.

Lemma 2.0.3. Consider the system (2.6) and the functions (2.4). Then, there exists con-

stants cgi1 , c
gi
2 > 0 such that, ∀θ ∈ ∆i

ϵ, i ∈ {1, 2, 3} and ∀t ∈ R:

∥∥Rgi
1 (θ, t)

∥∥ ≤ cgi1√
ω
,
∥∥Rgi

2 (θ, t)
∥∥ ≤ cgi2√

ω
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The proofs of Theorem 2.0.1, Lemma 2.0.2, and Lemma 2.0.3 can be found in the appendix.

We now give a numerical demonstration of the results presented in this chapter.

Example 2.0.1. Let x ∈ R2, and consider the dynamical system

ẋ = A(t)(x− x∗) +Bu (2.15a)

J(x, t) =
3

2
∥x− x∗∥2+5(1 + exp(−t)) (2.15b)

where u ∈ R2 is the control input, x∗ = (1,−1), and

A(t) =

 cos(t)2 sin(t)2

− sin(t)2 cos(t)2

 , B =

 1 1

−1 1



J(x)
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Figure 2.1: (left): Illustration of ∆0,∆ϵ and sample trajectories, (right): Numerical results
of Example 3.1 for the approach in [1] (top), and our approach (bottom)

The numerical results for the proposed control law are shown in figure 2.1 , where we used

the initial conditions x(0) = (−3, 3), z(0) = J(x(0))+3 = 61, and the frequency parameters
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ω = 4, ω1 = 1, ω2 = 2.

We remark that the proposed method can tolerate bounded monotonic decrease of the mini-

mum value of the function as demonstrated in the provided example. However, we emphasize

that it does not tolerate general time-dependent variations of the cost function in the current

formulation. This is due to the nature of the dynamic upper bound on the cost function (i.e.

z(t)).
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Chapter 3

Averaging and Singular Perturbation

on Multiple Time-Scales

In this chapter, we consider several situations in which the behavior of a dynamical system

with a small parameter is governed by second-order effects. This situation arises when first-

order effects vanish. A common feature among the systems we consider is the presence of

multiple time-scales. We are interested in approximating the behavior of the system on

the slowest time-scale. The main tools we employ in this chapter are: averaging, regular

perturbation, and singular perturbation. In each situation, we provide explicit formulas

for the vector fields that define a dynamical system whose trajectories approximate the

trajectories of the original system, and a characterization of the nature of this approximation.

Under a suitable trajectory approximation relation between the original system and the

limit system, the stability of the limit system can be transferred to the practical stability of

the original system. The approximations formulas and the theorems stated and proved in

this chapter are used in subsequent chapters to study the behavior of novel source seeking

algorithms and klinotaxis in microorganisms.
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3.1 Convergence of Trajectories and Practical Stability

It is well known in the averaging literature that if the averaged system possesses an expo-

nentially stable equilibrium, then the time-varying system possesses an exponentially stable

periodic orbit [7, 6]. However, the requirement on exponential stability is usually strict in the

sense that if only asymptotic as opposed to exponential stability is assumed then one can no

longer assert the existence of a periodic orbit. This can be attributed to the method in which

the existence of an orbit is established, which is typically done through the use of the implicit

function theorem under the assumption that the jacobian of the averaged vector field does

not drop rank near the equilibrium point [6, Theorem 6.3.2]. This requirement however is

too strong when only asymptotic stability is assumed as the jacobian of the averaged vector

field may indeed drop rank at the equilibrium point.

Nevertheless, if one is willing to sacrifice the assertion of the existence of a periodic orbit,

the asymptotic stability of an equilibrium point for the averaged system may be transferred

to a weaker notion of stability known as practical stability. This was first proven in [22] using

advanced Lyapunov techniques. It was shown later in [23] that this transfer of stability is of

a topological nature; it holds whenever the flows of two dynamical systems satisfy a certain

property known as the convergence of trajectories property. We now give a precise definition

of this property and of practical stability.

Let x,x0 ∈ D ⊂ Rn1 and ε ∈ (0,∞) and consider the system of differential equations:

ẋ = f(x, t, ε), x(t0) = x0, (3.1)

whose generating vector field depends on the parameter ε. Associated with the system (3.1)

is the flow map Φf
t : Dom(Φf

t) ∋ (x, t, t0) 7→ Φf
t(x, t, t0) ∈ D. Now consider another system
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of differential equations:

ẋ = f̄(x, t), x(t0) = x0 (3.2)

starting from the same initial condition, to which is associated the flow map Φf̄
t : Dom(Φf̄

t) ∋

(x, t, t0) 7→ Φf̄
t(x, t, t0) ∈ D.

Definition 3.1.1. [23] The system (3.1) is said to satisfy the convergence-of-trajectories

property w.r.t. the system (3.2) if: for every T ∈ (0,∞) and compact subset K ⊂ D

satisfying {(x0, t, t0) ∈ D × R × R : t ∈ [t0, t0 + T ], x0 ∈ K} ⊂ Dom(Φf̄
t), and for every

ϵ ∈ (0,∞), there exists ε∗ ∈ (0,∞) such that ∀t0 ∈ R, and ∀x0 ∈ K, and ∀ε ∈ (0, ε∗) we

have that
Φf

t(x0, t, t0) exists ∀t ∈ [t0, t0 + T ]

∥Φf
t(x0, t, t0)−Φf̄

t(x0, t, t0)∥< ϵ ∀t ∈ [t0, t0 + T ]

(3.3)

The meaning of the definition is as follows: whenever the trajectories of the system (3.2) exist

for a compact set of initial conditions and compact time intervals, then the trajectories of

the system (3.1) exist as well and converge to the trajectories of the system (3.2) on compact

time intervals uniformly with respect to initial conditions and initial time in the limit ε→ 0.

We now give the definition of practical stability. Let S ⊂ D ⊂ Rn1 be a compact subset and

define the distance between a point x ∈ Rn and the subset S to be:

d(x,S) = inf{∥x− y∥, y ∈ S} (3.4)

Definition 3.1.2. The compact subset S is called semi-globally practically uniformly asymp-

totically stable (SPUAS) for the system (3.1) if the following conditions are satisfied:

1. For every ϵ ∈ (0,∞), there exists δ ∈ (0,∞) and ε0 ∈ (0,∞) such that ∀t0 ∈ R, and
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∀x0 ∈ Rn1 with d(x0,S) < δ, and ∀ε ∈ (0, ε0), we have that:


Φf

t(x0, t, t0) exists ∀t ∈ [t0,∞)

d(Φf
t(x0, t, t0),S) < ϵ ∀t ∈ [t0,∞)

(3.5)

2. For every δ ∈ (0,∞), there exists ϵ ∈ (0,∞) and ε0 ∈ (0,∞) such that ∀t0 ∈ R, and

∀x0 ∈ Rn1 with d(x0,S) < δ, and ∀ε ∈ (0, ε0), we have that:


Φf

t(x0, t, t0) exists ∀t ∈ [t0,∞)

d(Φf
t(x0, t, t0),S) < ϵ ∀t ∈ [t0,∞)

(3.6)

3. For every δ ∈ (0,∞), and every ϵ ∈ (0,∞), there exists T ∈ (0,∞) and ε0 ∈ (0,∞)

such that ∀t0 ∈ R, and ∀x0 ∈ Rn1 with d(x0,S) < δ, and ∀ε ∈ (0, ε0), we have that:


Φf

t(x0, t, t0) exists ∀t ∈ [t0,∞)

d(Φf
t(x0, t, t0),S) < ϵ ∀t ∈ [t0 + T,∞)

(3.7)

When the subset S satisfies Definition 3.1.2 independently from ε ∈ (0,∞), it is said that the

subset S is globally uniformly asymptotically stable (GUAS) for the system (3.1) [3]. Having

introduced Definition 3.1.1 and Definition 3.1.2, we are now ready to state the following

theorem:

Theorem 3.1.1. [3, 23] Suppose that the system (3.1) satisfies the convergence-of-trajectories

property w.r.t. the system (3.2), and that S ⊂ Rn1 is a compact GUAS set for the system

(3.2). Then, the subset S is a SPUAS set for the system (3.1).

The proof of this theorem can be found in [3]. In the following section, we will use higher

order averaging to establish the convergence-of-trajectories property for a class of highly

oscillatory systems with multiple scales. Then, by employing Theorem 3.1.1, we transfer the
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stability properties of the averaged system to the practical stability of the original system

under consideration.

3.2 Recursive Averaging

In this section, we consider the situation when a finite dimensional dynamical system contains

two fast periodic time-scales in addition to the slowest time-scale. Specifically, we consider

the class of systems that can be written on the form:

ẋ =
2∑

k=1

εk−2fk(x, t, ε
−1t, ε−2t) +O(ε), x(t0) = x0 (3.8)

We make the following assumption on the right hand side of equation (3.8):

Assumption 3.2.1. The time-varying vector fields fk, k ∈ {1, 2} are such that:

A1 fk(·, ·, ·, τ) ∈ C3−k(Rn+2;Rn1), ∀τ ∈ R, fk(·, ·, ·, ·) ∈ C0(Rn+3;Rn1)

A3 fk is uniformly bounded in its second argument

A4 ∃T1 > 0 s.t. fk(·, ·, σ + T1, ·) = fk(·, ·, σ, ·) ∀σ ∈ R

A5 ∃T2 > 0 s.t. fk(·, ·, ·, τ + T2) = fk(·, ·, ·, τ) ∀τ ∈ R

A6
´ T1

0
f1(·, ·, ·, τ)dτ = 0

We note that assumptions of this nature are typical in the averaging literature [15]. Moreover,

aside from some technical regularity conditions, the class of systems (3.8) includes as a

special case the class of systems considered in the Lie Bracket Approximation framework

and the second-order case in Sussmann and Liu’s framework [5, 20, 19] when: i) the vector

field f1 is independent from the time-scale ε−1t and can be decomposed as f1(x, t, σ, τ) =
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∑r
ℓ=1 bℓ(x, t)uℓ(t, τ) for some functions uℓ that are T -periodic in the second argument and

some vector fields bℓ, and ii) the vector field f2 is independent from the fast periodic time

scales ε−1t and ε−2t. We show that the higher-order averaging method is directly applicable

to this class of systems in contrast to the belief that it is not (see the discussion in [3, Section

5]).

Due to item A6 in Assumption 3.2.1, first order averaging does not yield any useful infor-

mation about the average behavior of this system. It is, therefore, imperative to consider

higher-order averages. For our purposes, second-order averaging suffices. Consider the sys-

tem:

˙̄̄x = ¯̄f(¯̄x, t), ¯̄x(t0) = x0 (3.9)

where the time-varying vector field ¯̄f is given by:

¯̄f(x, t) =
1

T1T2

ˆ T1

0

ˆ T2

0

(
f2(x, t, σ, τ) +

1

2

[ˆ τ

0

f1(x, t, σ, ν) dν, f1(x, t, σ, τ)

])
dτ dσ

(3.10)

Then, we have the following theorem concerning the relation between the trajectories of the

systems (3.8) and (3.9):

Theorem 3.2.1. Let a nonempty compact subset K ⊂ Rn1 and a final time tf > 0 be

such that a unique trajectory ¯̄x : [t0, t0 + tf ] ∋ t 7→ ¯̄x(t) ∈ Rn1 of the system (3.9) exists

∀x0 ∈ K, ∀t0 ∈ R. Then ∃ε∗ ∈ (0,∞) and a constant C > 0 independent of ε ∈ (0, ε∗)

such that ∀ε ∈ (0, ε∗), ∀x0 ∈ K, ∀t0 ∈ R, a unique trajectory of the system (3.8) exists and

satisfies:

∥x(t)− ¯̄x(t)∥ ≤ C ε, ∀t ∈ [t0, t0 + tf ] (3.11)
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Observe that we have not made any mention of the near-identity transforms. This is due to

the fact the O(ε) terms in the standard averaging procedure vanish, and so the contribution

of the near-identity transform to the accuracy of the solution is of the same order as the

neglected remainders in the averaging procedure, i.e. O(ε). We refer the reader to [27] and

the discussion in [6, Subsection 2.9.2] for more details.

Next, we have the following theorem which characterizes the relation between the stability

of the averaged system (3.9) and the original system (3.8):

Theorem 3.2.2. Suppose that a compact subset S ⊂ Rn1 is GUAS for the system (3.9).

Then the subset S is SPUAS for the system (3.8).

Proof. The proof of this theorem follows from Theorem 3.1.1 [23, Theorem 1], provided

that the vector fields defining the two systems (3.8) and (3.9) possess the local existence

and uniqueness of trajectories property and the flow of (3.8) satisfies the convergence-of-

trajectories property w.r.t. the flow of (3.9). Local existence and uniqueness of trajecto-

ries follows from Assumption 3.2.1, whereas Theorem 3.2.1 establishes the convergence-of-

trajectories property.

As a direct application of the theorem above, we consider the problem of steering a 6n-

dimensional driftless control-affine system towards the optimum of an objective function

using extremum seeking. Traditional extremum seeking design [2] and Lie-Bracket based

extremum seeking [3] require choosing 6n non-resonating frequencies on the time-scale ωt

to estimate the gradient. Using a special feature of the extremum seeking vector fields

introduced in [28], only 3n non-resonating frequencies are required. However, using the

methods introduced in this section, only n frequencies can be used to steer the system.

Example 3.2.1. Let n ≥ 1, x ∈ R6n, u ∈ R6n, and J(x) be the objective function, then
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consider the following driftless control-affine system:

ẋ =
6∑

j=1

n∑
k=1

fj,k(x, t)uj,k (3.12)

It is required to design the control inputs uj,k to steer the system towards the extremum of

the objective function J(x). Consider the following time-varying output feedback control for

k ∈ {1, . . . , n}:

u1,k = ε−1
√
2 cos(ωkε

−2t− J(x)), (3.13a)

u2,k = ε−1
√
2 sin(ωkε

−2t− J(x)), (3.13b)

u3,k = ε−1
√
4 cos(ωkε

−2t− J(x)) cos(ε−1t), (3.13c)

u4,k = ε−1
√
4 sin(ωkε

−2t− J(x)) cos(ε−1t), (3.13d)

u5,k = ε−1
√
4 cos(ωkε

−2t− J(x)) sin(ε−1t), (3.13e)

u6,k = ε−1
√
4 sin(ωkε

−2t− J(x)) sin(ε−1t), (3.13f)

where ωk ∈ Q+ are positive rational numbers such that ωk1 ̸= ωk2 whenever k1 ̸= k2. Then,

a direct application of Theorem 3.2.1 in the limit ε→ 0 leads to the averaged system:

˙̄̄x = P(¯̄x, t)∇J(¯̄x) (3.14)

where the matrix P(¯̄x, t) is a positive semi-definite matrix. If, in addition to sufficient

regularity and boundedness assumptions, the driftless control system (3.12) is such that the

span of the vector fields fj,k is the entire tangent space R6n everywhere in the manifold, and

the objective function J(x) is sufficiently smooth and possesses a compact maximizing set

S, then we may conclude that the subset S is GUAS for the system (3.14). Hence, we may

also conclude using Theorem 3.2.1 and Theorem 3.1.1 that the subset S is SPUAS for the

system (3.12). We observe that only n non-resonating frequencies {ωk}k∈{1,...,n} are used on
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Figure 3.1: Numerical simulation results of Example 3.2.1.

the fast time-scale ε−2t, whereas in any other method in the literature [3, 2, 28] at least

three distinct frequencies must be used on the fast time-scale ε−2t. Intuitively, the results

of this section allow transferring the non-resonance requirement between the dithers used in

extremum seeking to the intermediate time-scale ε−1t.

We now give numerical simulation results for illustration. Suppose that n = 1, J(x) =

10 − 0.125∥x∥2, and that the vector fields fj,1 are the canonical orthonormal basis on R6.

Let ω1 = 1, ε = 1/
√
20π ≈ 0.126, and apply the control inputs defined by (3.13). The

trajectory of the system (3.12) with the control inputs (3.13) along with the time history of

the objective function for a randomly generated initial condition are shown in Figure 3.1.

We observe how the trajectories of the system converge to a small neighborhood around the

origin which is the maximizer for the objective function J(x).

Another application of the results in this section will be presented in the next chapter when

we tackle the problem of 3D source seeking.
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3.3 First-Order Singularly Perturbed Averaging

We now tackle the situation in which, in addition to the fast periodic time-scale, a part of the

system state is singularly perturbed. That is, a part of the system state, henceforth referred

to as the fast state, quickly converges to an equilibrium manifold parameterized by the slow

state and (possibly) the fast time-scale. In such a situation, the averaged behavior of the

slow state is affected by the fast periodic behavior (if any) of the equilibrium manifold. In

this section, we consider the situation in which this interaction takes place to first-order. In

the next section, we consider the situation in which such an interaction vanishes to first-order

and it becomes necessary to consider second-order interactions.

Let x1 ∈ Rn1 ,x2 ∈ Rn2 , and consider the following interconnected system:

ẋ1 = f1,2(x1,x2, t, ε
−1t) +O(ε), x1(t0) = x1,0 (3.15a)

ẋ2 =
2∑

k=1

εk−2f2,k(x1,x2, t, ε
−1t) +O(ε), x2(t0) = x2,0 (3.15b)

Suppose that the following assumption is satisfied:

Assumption 3.3.1. Suppose that there exists a unique and sufficiently smooth map ϕ0(x1, t, σ)

and a positive number T1 > 0 such that the vector fields fj,k are sufficiently smooth in all

their arguments and T1-periodic in the last argument, and that:

f2,1(x1,ϕ0(x1, t, σ), t, σ) = 0 (3.16a)

ϕ0(x1, t, σ + T1)− ϕ0(x1, t, σ) = 0 (3.16b)

Moreover, let y2 ∈ Rn2, and

f̃2,1(x1,y2, t, σ) = f2,1(x1,y2 + ϕ0(x1, t, σ), t, σ)− ∂σϕ0(x1, t, σ), (3.17)
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and suppose that there exists a Lyapunov function V and constants κi > 0 for i ∈ {1, . . . , 4}

such that the inequalities:

κ1∥y2∥2≤ V (y2, σ) ≤ κ2∥y2∥2 (3.18a)

∂2V (y2, σ) + ∂1V (y2, σ)̃f2,1(x1,y2, t, σ) ≤ −κ3∥y2∥2 (3.18b)

∥∂1V (y2, σ)∥ ≤ κ4∥y2∥ (3.18c)

are satisfied globally in y2, uniformly in t, σ,x1.

In addition, consider the reduced-order averaged system:

˙̄x = f̄(x̄, t), x̄(t0) = x1,0 (3.19)

where the vector field f̄ is defined by:

f̄(x̄1, t) =
1

T1

ˆ T1

0

f̃1,2(x̄1,ϕ0(x̄1, t, ν), t, ν) dν (3.20)

Then, we have the following lemma concerning the relation between the trajectories of the

reduced order averaged system (3.19) to the trajectories of the original system (3.15).

Theorem 3.3.1. Let Assumption 3.3.1 be satisfied, and let B2 ⊂ Rn2 be arbitrary but bounded

and D ∈ (0,∞) be arbitrary. In addition, let a bounded subset B1 ⊂ Rn1, a compact subset

N ⊂ Rn1, and a positive constant L ∈ (0,∞) be such that unique trajectories x̄1(t; t0,x1,0)

for the system (3.19) exist and x̄1(t; t0,x1,0) ∈ N , ∀t ∈ [t0, t0 + L], ∀t0 ∈ R, ∀x1,0 ∈

B1. Then, ∃ε∗ ∈ (0, ε0) and positive constants λσ, γσ such that ∀t0 ∈ R, ∀(x1,0,x2,0 −

ϕ0(x1,0, t0, t0)) ∈ B1 × B2, ∀t ∈ [t0, t0 + L], ∀ε ∈ (0, ε∗), and σ = ε−1(t − t0) + t0, unique

trajectories (x1(t; t0,x1,0),x2((t; t0,x2,0)) for the system (3.15) exist and satisfy the estimates:
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∥x1(t; t0,x1,0)− x̄1(t; t0,x1,0)∥ < D (3.21a)

∥x2(t; t0,x1,0)− ϕ0(x̄1(t; t0,x1,0), t, σ)∥ < γσ∥x2,0 − ϕ0(x1,0, t0, t0)∥e−λσ(σ−t0) +D

(3.21b)

This lemma provides a direct relation between the trajectories of the system (3.15) and the

trajectories of the reduced order averaged system (3.19). In particular, it establishes a singu-

larly perturbed version of the convergence-of-trajectories property given in Definition 3.1.1,

which allows transferring the stability properties of the reduced order averaged system (3.19)

to a singularly perturbed version of practical stability. We now give a precise definition of

singular practical stability:

Definition 3.3.1. The set S is said to be singularly semi-globally practically uniformly

asymptotically stable (sSPUAS) for system (3.15) if the following is satisfied:

1. ∀ϵ1, ϵ2 ∈ (0,∞) there exists δ1, δ2 ∈ (0,∞) and ε∗ ∈ (0,∞) such that ∀ε ∈ (0, ε∗),

∀t0 ∈ R, and ∀t ∈ [t0,∞) we have:

x1,0 ∈ US
δx

x2,0 − ϕ0(x1,0, t0) ∈ U0
δz

 =⇒


x1(t) ∈ US

ϵx

x2(t)− ϕ0(x1(t), t) ∈ U0
ϵz

2. ∀ϵ1, ϵ2 ∈ (0,∞) and all δ1, δ2 ∈ (0,∞), there exists a time tf ∈ (0,∞) and ε∗ ∈ (0,∞)

such that ∀ε ∈ (0, ε∗), ∀t0 ∈ R, ∀t1 ∈ [t0 + tf ,∞), and ∀t2 ∈ [t0 + tfη(ε),∞) we have:

x1,0 ∈ US
δ1

x2,0 − ϕ0(x1,0, t0) ∈ U0
δ2

 =⇒


x1(t1) ∈ US

ϵ1

x2(t2)− ϕ0(x(t2), t2) ∈ U0
ϵ2

where η(ε) is such that limε→0 η(ε) = 0.
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3. ∀δ1, δ2 ∈ (0,∞) there exists ϵ1, ϵ2 ∈ (0,∞) and ε∗ ∈ (0,∞) such that ∀ε ∈ (0, ε∗),

∀t0 ∈ R, and ∀t ∈ [t0,∞) we have:

x1,0 ∈ US
δ1

x2,0 − ϕ0(x1,0, t0) ∈ U0
δ2

 =⇒


x1(t) ∈ US

ϵ1

x2(t)− ϕ0(x1(t), t) ∈ U0
ϵ2

Having stated definition Definition 3.3.1, we are now ready to state the following theorem:

Theorem 3.3.2. Let Assumption 3.3.1 be satisfied and suppose that the compact subset S

is GUAS for the system (3.19). Then, the subset S is sSPUAS for the system (3.15).

A version of Theorem 3.3.1 appears in [29] under different assumptions. In the next section,

we extend the analysis above and the corresponding theorem to second-order behavior.

3.4 Second-Order Singularly Perturbed Averaging

We now analyze a class of singularly perturbed high-frequency, high-amplitude oscillatory

systems in which the first-order effects vanish and it becomes necessary to account for second-

order effects. To capture the behavior of this class of systems, we must account for the

interaction between the fast periodic time scale and the singularly perturbed part of the

system. We begin the discussion with a simple example to elucidate the motivation behind

our results. Consider the interconnected system:

dx1
dτ

= µβx1 + µ
√
2ω sin(x21 + 4(x4 − x3) + ωµτ) (3.22a)

dx2
dτ

= µβx2 + µ
√
2ω cos(x21 + 4(x4 − x3) + ωµτ) (3.22b)

dx3
dτ

= x4 − x3,
dx4
dτ

= x22 − x4 (3.22c)
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Figure 3.2: Numerical results for the motivational example. The initial condition is taken
as (−2, 2, 2, 2), and the parameters are β = 1/2, ω = 4π and µ = 1/(4π).

with an initial condition (x1,0, x2,0, x3,0, x4,0) ∈ R4, where β is fixed and positive, and µ and

ω are positive parameters. Observe that the system (3.22) has the same form as the class

of systems considered in [4]. If we attempt to apply the results in [4], we obtain the quasi-

steady state (x3, x4) = φ0(x1, x2) = (x22, x
2
2) for the singularly perturbed part of the system.

Hence, the reduced order system according to [4] becomes:

dx1
dτ

= βx1 +
√
2ω sin(x21 + ωτ) (3.23a)

dx2
dτ

= βx2 +
√
2ω cos(x21 + ωτ) (3.23b)

x3 = x22, x4 = x22 (3.23c)

It is clear that the system (3.23) has no practically asymptotically stable subsets for any

value of ω, and so the results in [4] are not useful here. However, numerical simulations

shown in Figure 3.2 demonstrate that the original system (3.22) exhibits practical stability.

The intuitive reason why this stable behavior is not captured by the singularly perturbed

Lie Bracket Approximation framework [4] is that the latter neglects the interaction between

the singularly perturbed part of the system and the fast periodic time-scale. We shall return

to this motivational example after formulating a general result.
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Consider the interconnected system:

ẋ1 =
2∑

k=1

εk−2f1,k(x1,x2, t, ε
−2t), x1(t0) = x1,0 (3.24a)

ẋ2 =
2∑

k=0

εk−2f2,k(x1,x2, t, ε
−2t), x2(t0) = x2,0 (3.24b)

where x1,x1,0 ∈ Rn1 , x2,x2,0 ∈ Rn2 , t ≥ 0, and ε ∈ (0,∞). We adopt the following assump-

tions on the regularity of the right-hand side of the equations (3.24):

Assumption 3.4.1. Suppose that there exists a unique and sufficiently smooth map φ0(x1, t)

and a positive number T2 > 0 such that the vector fields fj,k are sufficiently smooth in all

their arguments and T2-periodic in the last argument, and that:

f2,1(x1,φ0(x1, t), t, τ) = 0 (3.25)

Moreover, let y2 ∈ Rn2, and

f̃2,0(x1,y2, t, τ) = f2,0(x1,y2 +φ0(x1, t), t, τ) (3.26)

and suppose that there exists a Lyapunov function V and constants κi > 0 for i ∈ {1, . . . , 4}

such that the inequalities:

κ1∥y2∥2≤ V (y2, τ) ≤ κ2∥y2∥2 (3.27a)

∂2V (y2, τ) + ∂1V (y2, τ )̃f2,0(x1,y2, t, τ) ≤ −κ3∥y2∥2 (3.27b)

∥∂1V (y2, τ)∥ ≤ κ4∥y2∥ (3.27c)

are satisfied globally in y2, uniformly in t, τ,x1.
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In addition, consider the reduced order system:

˙̃x1 =
2∑

k=1

εk−2 f̃k(x̃1, t, ε
−2t), x̃1(t0) = x1,0, (3.28)

where the time-varying vector fields f̃k are defined by:

f̃1(x1, t, τ) = f1,1(x1,φ0(x1, t), t, τ), (3.29a)

f̃2(x1, t, τ) = f1,2(x1,φ0(x1, t), t, τ) + ∂2f1,1(x1,φ0(x1, t), t, τ)φ1(x1, t, τ), (3.29b)

φ1(x1, t, τ) =
(
I−ΦAφ(τ + T2, τ)

)−1
ˆ τ+T2

τ

ΦAφ(τ + T2, ν)bφ(x1, t, ν) dν, (3.29c)

b1(x1, t, τ) = f2,1(x1,φ0(x1, t), t, τ)− ∂1φ0(x1, t) f1,1(x1,φ0(x1, t), t, τ), (3.29d)

the matrix-valued map Aφ is defined by:

Aφ(x1, t, τ) = ∂2f2,0(x1,φ0(x1, t), t, τ), (3.30)

and the matrix-valued map ΦAφ is the fundamental matrix associated with the linear time-

periodic system:

dy2

dτ
= Aφ(·, τ)y2, (3.31)

The second order averaging theorem may be applied [30, 6] to the reduced order system

(3.28) to obtain the reduced order averaged system:

˙̄x1 = f̄(x̄1, t), x̄1(t0) = x1,0 (3.32)

where the vector field f̄ is given by:

f̄(x1, t) =
1

T2

ˆ T2

0

(
f̃2(x1, t, τ) +

1

2

[ˆ τ

0

f̃1(x1, t, ν) dν, f̃1(x1, t, τ)

])
dτ (3.33)
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Then, we have the following trajectory approximation result between the original system

(3.24) and the reduced order averaged system (3.32):

Theorem 3.4.1. Let Assumption 3.4.1 be satisfied, and let B2 ⊂ Rn2 be arbitrary but bounded

and D ∈ (0,∞) be arbitrary. In addition, let a bounded subset B1 ⊂ Rn1, a compact subset

N ⊂ Rn1, and a positive constant L ∈ (0,∞) be such that unique trajectories x̄1(t; t0,x1,0)

for the system (3.32) exist and x̄1(t; t0,x1,0) ∈ N , ∀t ∈ [t0, t0 + L], ∀t0 ∈ R, ∀x1,0 ∈

B1. Then, ∃ε∗ ∈ (0, ε0) and positive constants λτ , γτ such that ∀t0 ∈ R, ∀(x1,0,x2,0 −

φ0(x1,0, t0, t0)) ∈ B1 × B2, ∀t ∈ [t0, t0 + L], ∀ε ∈ (0, ε∗), and τ = ε−2(t − t0) + t0, unique

trajectories (x1(t; t0,x1,0),x2(t; t0,x2,0)) for the system (3.24) exist and satisfy the estimates:

∥x1(t)− x̄1(t)∥< D (3.34)

∥x2(t)−φ0(x1(t), t)∥< γτ∥x2,0 −φ0(x1,0, t0)∥ e−λτ (τ−t0) +D (3.35)

Having this trajectory approximation result, we are now able to state the following theorem:

Theorem 3.4.2. Let Assumption 3.4.1 be satisfies and suppose that a compact subset S is

GUAS for the system (3.32). Then, the subset S is sSPUAS for the system (3.24).

Going back to the motivational example, we see that when µ = 1/ω, the system can be

written in the timescale t = τ/ω on the form:

ẋ1 = βx1 +
√
2ω sin(x21 + 4(x4 − x3) + ωt) (3.36)

ẋ2 = βx2 +
√
2ω cos(x21 + 4(x4 − x3) + ωt) (3.37)

ẋ3 = ω (x4 − x3), ẋ4 = ω (x22 − x4) (3.38)

If we apply our results, we obtain the system:

˙̄x1 = (β − 2)x̄1 (3.39)
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˙̄x2 = (β − 2)x̄2 (3.40)

It is clear that the reduced order averaged system has a GUAS equilibrium point at the

origin when β < 2. Hence, we conclude from Theorem 3.4.2 that the origin x1 = x2 = 0 is a

sSPUAS subset for the original system (3.22a)-(3.22c).

3.5 Recursive Singularly Perturbed Averaging

Finally, we consider the situation in which first-order and second-order singularly perturbed

averaging take place in the same dynamical system but operate on different time-scales.

The class of systems we consider in this section contains three distinct time-scales. We

are interested in approximating the trajectories of the system on the slowest time-scale.

Two parts of the system state are singularly perturbed but on two different time-scales. The

motivation for considering this class of systems comes from the 3D source seeking algorithms

that we propose and analyze in subsequent chapters.

Let x1 ∈ Rn1 , x2 ∈ Rn2 , x3 ∈ Rn3 , and x = (x1,x2,x3) ∈ Rn1+n2+n3 . Next, consider the

following dynamical system:

ẋ1 =
2∑

k=1

εk−2f1,k(x1,x2,x3, t, ε
−1t, ε−2t) +O(ε), x1(t0) = x1,0 (3.41a)

ẋ2 =
2∑

k=1

εk−2f2,k(x1,x2,x3, t, ε
−1t, ε−2t) +O(ε), x2(t0) = x2,0 (3.41b)

ẋ3 =
2∑

k=0

εk−2f3,k(x1,x2,x3, t, ε
−1t, ε−2t) +O(ε), x3(t0) = x3,0 (3.41c)

where O(ε) refers to small terms that are neglected in the limit ε → 0. We are interested

in approximating the trajectories of the system (3.41) in the limit ε → 0. It is clear that

the system above contains three distinct time-scales: t, ε−1t, ε−2t. We are interested in

41



approximating the trajectories of the system on compact intervals in the slowest time-scale

t. We assume that all the vector fields on the right hand side of the equations (3.41)

are sufficiently smooth, T2-periodic in the fastest time variable τ , and T1-periodic in the

intermediate time variable σ. In addition, we make the following assumption:

Assumption 3.5.1. Suppose that there exists a unique and sufficiently smooth map φ0 such

that:

f3,0(x1,x2,φ0(x1,x2, t, σ), t, σ, τ) = 0 (3.42)
ˆ T2

0

f1,1(x1,x2,φ0(x1,x2, t, σ), t, σ, τ) dτ = 0 (3.43)

In addition, let y3 ∈ Rn3, and

f̃3,0(x1,x2,y3, t, σ, τ) = f3,0(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (3.44)

and suppose that there exists a Lyapunov function V3 and constants κ3,i > 0 for i ∈ {1, . . . , 4}

such that the inequalities:

κ3,1∥y3∥2≤ V3(y3, τ) ≤ κ3,2∥y3∥2 (3.45a)

∂2V3(y3, τ) + ∂1V3(y3, τ )̃f3,0(x1,x2,y3, t, σ, τ) ≤ −κ3,3∥y3∥2 (3.45b)

∥∂1V3(y3, τ)∥ ≤ κ3,4∥y3∥ (3.45c)

are satisfied globally in y3, uniformly in t, σ, τ,x1,x2.

Moreover, suppose that there exists a unique T1-periodic and sufficiently smooth map ϕ0 such

that:

ˆ T2

0

f2,1(x1,ϕ0(x1, t, σ),φ0(x1,ϕ0(x1, t, σ), t, σ), t, σ, τ) dτ = 0 (3.46)
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Furthermore, let y2 ∈ Rn2, and:

˜̄f2,1(x1,y2, t, σ) =

1

T2

ˆ T2

0

f2,1(x1,y2 + ϕ0(x1, t, σ),φ0(x1,ϕ0(x1, t, σ), t, σ), t, σ, τ) dτ
(3.47)

and suppose that there exists a Lyapunov function V2 and constants κ2,i for i ∈ {1, . . . , 4}

such that the inequalities:

κ1∥y2∥2≤ V (y2, σ) ≤ κ2∥y2∥2 (3.48a)

∂2V (y2, σ) + ∂1V (y2, σ)̃̄f2,1(x1,y2, t, σ) ≤ −κ3∥y2∥2 (3.48b)

∥∂1V (y2, σ)∥ ≤ κ4∥y2∥ (3.48c)

are satisfied globally in y2, uniformly in t, σ,x1.

By changing to the fastest time variable τ = ε−2(t− t0) + t0, and with some notation abuse,

we obtain the following system:

dx1

dτ
=

2∑
k=1

εkf1,k(x1,x2,x3, t, σ, τ) +O(ε3), x1(t0) = x1,0 (3.49a)

dx2

dτ
=

2∑
k=1

εkf2,k(x1,x2,x3, t, σ, τ) +O(ε3), x2(t0) = x2,0 (3.49b)

dx3

dτ
=

2∑
k=0

εkf3,k(x1,x2,x3, t, σ, τ) +O(ε3), x3(t0) = x3,0 (3.49c)

where t = ε2(τ − t0) + t0, and σ = ε(τ − t0) + t0. We apply a coordinate shift:

y3 = x3 −φ0(x1,x2, t, σ)−
2∑

i=1

εiφi(x1,x2, t, σ, τ) (3.50)

where the maps φi(x1,x2, t, σ, τ) are to be defined below. Under this coordinate shift, the
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system takes the form:

dx1

dτ
=

2∑
k=1

εk f̃1,k(x1,x2,y3, t, σ, τ) +O(ε3), x1(t0) = x1,0 (3.51a)

dx2

dτ
=

2∑
k=1

εk f̃2,k(x1,x2,y3, t, σ, τ) +O(ε3), x2(t0) = x2,0 (3.51b)

dy3

dτ
=

2∑
k=0

εk f̃3,k(x1,x2,y3, t, σ, τ) +O(ε3), y3(t0) = y3,0 (3.51c)

where x̃ = (x1,x2,y3), and the new vector fields f̃j,k are obtained from the older vector fields

f through substitution with the coordinate shift (3.50), expanding using Taylor’s theorem in

the small parameter ε, and matching the coefficients of like-powers. The exact expressions

can be found in Appendix E.

Since we are interested in a second-order approximation of the trajectories, we enforce a

condition on the vector fields f̃3,1 and f̃3,2. Namely, we enforce the conditions that:

f̃3,1(x1,x2, 0, t, σ, τ) = 0, f̃3,2(x1,x2, 0, t, σ, τ) = 0 (3.52)

which leads to the following simple partial differential equations for i ∈ {1, 2}:

∂τφi(x1,x2, t, σ, τ) = Aφ(x1,x2, t, σ, τ)φi(x1,x2, t, σ, τ) + bφ,i(x1,x2, t, σ, τ) (3.53)

where the exact expressions for the vector-valued maps bφ,i can be found in Appendix

E. These partial differential equations are solvable when supplemented with a boundary

condition. Since all vector fields are T1-periodic, enforcing the periodicity of the maps φ1

and φ2 provides the missing boundary condition:

φi(x1,x2, t, σ, τ + T1) = φi(x1,x2, t, σ, τ), ∀i ∈ {1, 2} (3.54)
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The maps φi are well-defined only when the solutions to the boundary value problems above

are well-defined. A sufficient condition for solvability is that the matrix Aφ is uniformly

non-singular, which is guaranteed by Assumption 3.5.1 and converse Lyapunov theorems [7].

To summarize, we have the following two Boundary Value Problems (BVPs):

∂τφi(·, τ) = Aφ(·, τ)φi(·, τ) + bφ,i(·, τ) (3.55)

φi(·, τ + T ) = φi(·, τ), (3.56)

where the variables x1,x2, t, σ have been omitted since they appear only as constant param-

eters. The solutions are given by the formula:

φi(·, τ) =
(
I−ΦAφ(τ + T1, τ)

)−1
ˆ τ+T1

τ

ΦAφ(τ + T1, ν)bφ,i(·, ν) dν, (3.57)

where ΦAφ is the fundamental matrix associated with the linear system:

dy3

dτ
= Aφ(·, τ)y3, (3.58)

which completely defines the coordinate shift (3.50).

Consequently, we have that:

f̃3,k(x1,x2, 0, t, σ, τ) = 0, ∀k ∈ {0, 1, 2}, (3.59)

and for sufficiently small ε, trajectories of the system (3.51) converge exponentially fast to

an O(ε3) of the slow manifold defined by y3 = 0. On this slow manifold, the system behaves

approximately according to the reduced order dynamics:

dx̃1

dτ
=

2∑
k=1

εk f̃1,k(x̃1, x̃2, 0, t, σ, τ) +O(ε3), (3.60a)
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dx̃2

dτ
=

2∑
k=1

εk f̃2,k(x̃1, x̃2, 0, t, σ, τ) +O(ε3), (3.60b)

which is on the averaging canonical form. We may, therefore, perform second order averaging

to obtain the system:

d¯̃x1

dτ
= ε2¯̃f1,2(¯̃x1, ¯̃x2, t, σ) +O(ε3), (3.61a)

d¯̃x2

dτ
=

2∑
k=1

εk¯̃f2,k(¯̃x1, ¯̃x2, t, σ) +O(ε3), (3.61b)

where the exact expressions for the vector fields ¯̃fj,k can be found in Appendix E. By re-scaling

time to σ = ε(τ − t0) + t0 we obtain the system:

d¯̃x1

dσ
= ε ¯̃f1,2(¯̃x1, ¯̃x2, t, σ), (3.62a)

d¯̃x2

dσ
= ¯̃f2,1(¯̃x1, ¯̃x2, t, σ) + ε ¯̃f2,2(¯̃x1, ¯̃x2, t, σ), (3.62b)

We apply another coordinate shift:

¯̃y2 = ¯̃x2 −
1∑

k=0

εkϕk(¯̃x1, t, σ) (3.63)

where the map ϕ1 is to be defined later. Under this coordinate shift, the system becomes:

d¯̃x1

dσ
= ε ˜̄f1,2(¯̃x1, ¯̃y2, t, σ) +O(ε2) (3.64)

d¯̃y1

dσ
= ˜̄f2,1(¯̃x1, ¯̃y2, t, σ) + ε ˜̄f2,2(¯̃x1, ¯̃y2, t, σ) +O(ε2) (3.65)

where the exact expressions for the vector fields ˜̄fj,k can be found in Appendix E. We observe

that:

˜̄f2,1(¯̃x1, 0, t, σ) = 0 (3.66)
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We proceed to define the map ϕ1 by requiring that:

˜̄f2,2(¯̃x1, 0, t, σ) = 0 (3.67)

which leads to the equation:

∂σϕ1(·, σ) = Aϕ(·, σ)ϕ1(·, σ) + bϕ(·, σ) (3.68)

where the vector bϕ is given by:

bϕ(¯̃x1, t, σ) =
˜̄f2,2(¯̃x1, 0, t, σ)− ∂1ϕ0(¯̃x1, t, σ)̃̄f1,2(¯̃x1, ¯̃y2, t, σ)− ∂tϕ0(¯̃x1, t, σ) (3.69)

We define the map ϕ1 by:

ϕ1(·, σ) =
(
I−ΦAϕ

(σ + T2, σ)
)−1
ˆ σ+T2

σ

ΦAϕ
(σ + T2, ν)bϕ(·, ν) dν, (3.70)

where ΦAϕ
is the fundamental matrix. Observe that in this case we have:

˜̄f2,i(¯̃x1, 0, t, σ) = 0, ∀i ∈ {1, 2} (3.71)

which implies that the trajectory converges exponentially fast to an O(ε2) neighborhood of

the slow manifold ¯̃y2 = 0. On the slow manifold, the system is governed by the equations:

d¯̃x1

dσ
= ε ˜̄f1,2(¯̃x1, 0, t, σ) +O(ε2) (3.72)

which is again on the averaging canonical form. We may, therefore, perform first order

averaging to obtain the system:

d¯̄x1

dσ
= ε ¯̄f1,2(¯̄x1, t) +O(ε2) (3.73)
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where the vector field ¯̄f1,2 is given by:

¯̄f1,2(¯̄x1, t) =
1

T2

ˆ T2

0

˜̄f1,2(¯̄x1, 0, t, σ) dσ (3.74)

By changing back to the slowest time variable t = ε(σ− t0)+ t0, we obtain the fully averaged

reduced order model:

˙̄̄x1 =
¯̄f1,2(¯̄x1, t), ¯̄x1(t0) = x1,0 (3.75a)

¯̄x2 = ϕ0(¯̄x1, t, σ) (3.75b)

¯̄x3 = φ0(¯̄x1,ϕ0(¯̄x1, t, σ), t, σ) (3.75c)

We give the relation between the trajectories of the system (3.41) and the trajectories of the

system (3.75).

Theorem 3.5.1. Let Assumption 3.5.1 be satisfied, and let B2 × B3 ⊂ Rn2 × Rn3 be arbi-

trary but bounded and D ∈ (0,∞) be arbitrary. In addition, let a bounded subset B1 ⊂ Rn1,

a compact subset N ⊂ Rn1, and a positive constant L ∈ (0,∞) be such that unique tra-

jectories ¯̄x1(t; t0,x1,0) for the system (3.75) exist and ¯̄x1(t; t0,x1,0) ∈ N , ∀t ∈ [t0, t0 + L],

∀t0 ∈ R, ∀x1,0 ∈ B1. Then, ∃ε∗ ∈ (0, ε0) and positive constants λσ, γσ, λτ , γτ such that

∀t0 ∈ R, ∀(x1,0,x2,0 − ϕ0(x1,0, t0, t0),x3,0 − φ0(x1,0,ϕ0(x1,0,x2,0, t0, t0, t0)) ∈ B1 × B2 × B3,

∀t ∈ [t0, t0 + L], ∀ε ∈ (0, ε∗), σ = ε−1(t − t0) + t0, and τ = ε−2(t − t0) + t0, unique tra-

jectories (x1(t; t0,x1,0),x2(t; t0,x2,0),x3(t; t0,x3,0)) for the system (3.41) exist and satisfy the

estimates:

∥x1(t)− ¯̄x1(t)∥< D (3.76)

∥x2(t)− ϕ0(¯̄x(t), t, σ)∥< γσ∥x2,0 − ϕ0(x1,0, t0, t0)∥ e−λσ (σ−t0) +D (3.77)

∥x3(t)−φ0(¯̄x1(t),ϕ0(¯̄x1(t), t, σ), t, σ)∥<

γτ∥x3,0 −φ0(x1,0,ϕ0(x1,0, t0, t0), t0, t0)∥ e−λτ (τ−t0) +D

(3.78)
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With this trajectory approximation result, we are now able to state the following theorem:

Theorem 3.5.2. Let Assumption 3.5.1 be satisfied and suppose that a compact subset S is

GUAS for the system (3.32). Then, the subset S is sSPUAS for the system (3.75).

Theorem 3.5.1 and Theorem 3.5.2 combine the results from the previous sections into a

multiple time-scales setting. The proofs follow essentially the same steps as in the proofs of

the previous sections, therefore we omit them. The main application of the results in this

section are in the source seeking problem considered in the next chapter.
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Chapter 4

Bio-Inspired 3D Source Seeking

Source seeking is the problem of locating a target that emits a scalar measurable signal, typ-

ically without any global positioning information. Many control problems and phenomena

can be abstracted as a source seeking problem. For example, the navigation of a robot, op-

erating in a GPS-denied environment, and tasked with locating and homing onto the source

of a signal is an instance of a source seeking problem. This setting may arise, for example,

when a vehicle is operating under water, under ice, or in a cave [31]. The situation also

arises whenever position and attitude information are no longer available for measurement

as a consequence of the absence of a global reference frame. Remarkably, many organisms

are constantly faced with the source seeking problem in their environment. Bacteria need

to follow the gradient of chemical concentration to find food. Sperm cells ascend the con-

centration gradient to find the egg. Nematodes estimate and follow thermal gradients for

thermoregulation. As with every other natural phenomenon, there is an incredible diversity

of the behavior displayed by the organisms in solving the source seeking problem. Some

strategies, such as bacterial chemotaxis, are inherently stochastic. Other strategies, such as

that common in organisms with paired receptors, employ a spatial approach to the estima-

tion of the gradient by simultaneously comparing stimuli between paired receptors. More
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relevant to us here is the strategy employed by organisms with a single receptor. Such

organisms cannot estimate the gradient spatially. Rather, they estimate the gradient in a

temporal fashion. When the temporal estimation of the gradient happens through periodic

movements of the body, the behavior of the organism is called klinotaxis. It turns out that

klinotaxis is essentially an extremum seeking-based solution to the source-seeking problem.

We investigate this novel connection in depth in the next chapter. In this chapter, we propose

and analyze several source seeking algorithms inspired by this novel connection.

Extensive work has been done on the source seeking problem using extremum seeking con-

trol, of which we mention a few. For velocity-actuated point-like kinematics (i.e. single

integrator dynamics), the source seeking problem can be easily solved using several non-

resonating extremum seeking controllers if we assume full control authority on the velocity

in all degrees of freedom. For double integrator dynamics, the problem is more difficult

and requires careful considerations [32]. The situation is also difficult for kinematic models

of planar rigid bodies under nonholonomic constraints, yet solutions have been proposed

[33, 28]. Further difficulties arise when one considers the 2D underactuated dynamics with

acceleration, rather than velocity, control [34]. However, most of the work in the literature

focuses on the two dimensional case where the rigid body kinematics is described by a uni-

cycle model. The pioneering work on the 3D case by Cochran et al [35] considers the 3D

source seeking problem for an under-actuated vehicle with a rigid body kinematic model.

However, they employ a parameterization of the rotation group SO(3) through Euler angles.

In particular, the control law proposed in [35] assumes direct control authority on the Euler

angle rates, which is not convenient for practical implementation; actuating the Euler angle

rates requires measurement of the angles themselves. The situation is similar with all sub-

sequent algorithms proposed for the 3D source seeking problem [36, 37, 38, 39, 40, 41, 42].

To elaborate, consider Euler’s rigid body equations of motion:

q̇ = Rv, m v̇+mΩ× v = T (4.1a)
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Ṙ = RΩ̂, J Ω̇+Ω× JΩ = M (4.1b)

written in the body frame of reference, where q is the position of the center of the mass m,

R is the rotation matrix relating the body axes to the axes of an inertial frame of reference,

v and Ω are the linear and angular velocities in body coordinates, Ω̂ is the skew-symmetric

matrix associated with the vector Ω, J is the moment of inertia matrix around the center of

mass represented in the body frame, and the T and M are the body net forces and torques,

respectively. The control of free rigid body motion is achieved through the body forces and

torques T and M. All kinematic models are approximations of (4.1) when T and M are

such that:

T = −D1 (v− u), M = −D2 (Ω−Λ) (4.2)

where Λ and u are free, and the matricesDi for i ∈ {1, 2} are positive definite with minimum

eigenvalues that are much greater than the massm and the maximum eigenvalue of the inertia

tensor J. Such an assumption is satisfied in the locomotion of microorganisms that swim

in a low Reynolds number where viscous forces dominate inertia, or when high-gain velocity

feedback is employed to enforce sufficient damping. If such an assumption is satisfied, a

singular perturbation argument leads to the quasi-steady approximation:

q̇ = Rv, v = u (4.3a)

Ṙ = RΩ̂, Ω = Λ (4.3b)

Notably, the free parameters (i.e. the control inputs) in the quasi-steady approximation (4.3)

are the linear and angular velocities in body coordinates.

If we are to design a source seeking controller for the kinematic model (4.3) that does not

employ any global information, we must not use any information on either the position q or
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the orientation R. However, a parameterization of the rotation matrix R through an Euler

angle triplet θ leads to relations of the form:

θ̇ = Φ(θ)Ω (4.4)

where Φ involves the jacobian of the parameterization. As such, even if the motion stays

within the range of attitudes in which the map Φ is non-singular, any control authority over

the Euler angles rates θ̇ is achieved by inverting the map Φ since one must only assume

control over the angular velocities Ω in body coordinates when working with kinematic

models of free rigid body motion. Hence, assuming direct control authority on the Euler

angle rates θ̇ implicitly requires measurement of the angles θ.

4.1 3D Gradient Alignment

Recall that the kinematics of a rigid body in 3D space are given by:

q̇ = Rv, Ṙ = RΩ̂ (4.5)

First, we consider the problem of orienting a 3D rigid body with a fixed position such that

one of the body axes points along the gradient of a signal strength field at the initial fixed

position. A solution to this problem is interesting on its own and constitutes the first step

towards solving the 3D source seeking problem. To that end, we assume a model of the

vehicle such that the origin of the body frame is fixed (i.e. v = 0), and two of the angular

velocities in body coordinates are the control inputs:

Ω = Ω∥e1 + Ω⊥e3 (4.6)
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In addition, we assume that a non-collocated sensor is attached at the location qs where:

qs = q+ rRe2 (4.7)

We would like to design a control law that aligns the body axis Re1 with the gradient ∇c(q)

of a smooth signal strength field c(q) at the fixed position q, assuming that ∇c(q) ̸= 0. That

is, we would like to stabilize the compact subset:

S+
q = {R ∈ SO(3) : ∇c(q)⊺Re1 = ∥∇c(q)∥} (4.8)

We propose the linear dynamic feedback law:

ẏ = ε−2Fy+ ε−2B c(qs), Ω⊥ = ε−1Hy, Ω∥ = ε−2 (4.9)

where y ∈ R2, and F,B,H are given by:

F =

 −1 1

0 −1

 , B =

 0

1

 , H =

[
−4 4

]
(4.10)

Observe how the feedback law does not contain any information on the attitude of the vehicle

and only employs the measured cost function c(qs). In the ‘distinguished limit’ [43] where

the offset r of the sensor from the center of the vehicle is small: r = O(ε) = r0ε, as ε → 0

for some r0 > 0, we have the following proposition:

Proposition 4.1.1. For a fixed q such that ∇c(q) ̸= 0, the compact subset S+
q is a proper

subset of SO(3) and is singularly (almost) semi-globally practically uniformly asymptotically

stable for the system defined by equations (4.5) and (4.6) under the feedback law (4.9).

Before we proceed with the proof of this proposition, we remark on the word ‘almost’ inside

the parenthesis in its statement. Topological considerations [44] prohibit asymptotic stabil-
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ity via continuous feedback on the group SO(3). As such, it is impossible to conclude global

practical stability results, since the reduced order averaged system cannot be globally uni-

formly asymptotically stable. Instead, we can prove ‘almost’ semi-global practical stability

which is a straightforward extension of Definition 3.3.1.

Proof. Let R0 = exp (ε−2t ê1) , P = RR⊺
0, and compute:

Ṗ = ṘR⊺
0 +RṘ

⊺
0 = Ω⊥Rê3R

⊺
0 = Ω⊥PR0ê3R

⊺
0 = Ω⊥PR̂0e3 (4.11)

Let Λ(y, ε−2t) = HyR0e3 and observe that:

Ṗ = ε−1PΛ̂(y, ε−2t) (4.12)

To simplify the presentation, we embed SO(3) into R9 by partitioning the matrix P =

[p1, p2, p3], defining the state vector p = [p⊺
1, p

⊺
2, p

⊺
3]

⊺, and restricting the initial conditions

for p to lie on the compact submanifold M =
{
pi ∈ R3 : p⊺

ipj = δij, pi × pj = ϵijkpk

}
(which is the image of SO(3) under the embedding), where δij is the Kronecker symbol and

ϵijk is the Levi-Civita symbol. On M× R2, the system is governed by:

ṗi = ε−1

3∑
j,k=1

Λj(y, ε
−2t)ϵijkpk (4.13a)

ẏ = ε−2 (Fy+ B c(qs)) (4.13b)

where qs is now given by:

qs = q+ r (cos(ε−2t)p2 + sin(ε−2t)p3) (4.14)

The signal strength field at qs can be expanded as a series in r = r0ε using Taylor’s theorem:
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c(qs) = c(q) + r0ε∇c(q)⊺(cos(ε−2t)p2 + sin(ε−2t)p3) + r20ε
2ρ(q,qs, ε

−2t, ε) (4.15)

where the remainder ρ is differentiable in all of its arguments. Now, observe that the system

defined by the equations (4.13) and (4.15) belongs to the class of systems described by (3.24).

Hence, we may employ Theorem 3.4.1 and Theorem 3.4.2 in analyzing the stability of the

system. In order to proceed, the reduced order averaged system must be computed. First, we

observe that φ0 = 1c(q) is the zeroth-order quasi-steady state for the singularly perturbed

part of the system. We proceed to compute the first-order periodic correction φ1 as given

in equations (3.29). The vector b1 in this case is given by:

b1 = r0B∇c(q)⊺(cos(τ)p2 + sin(τ)p3) (4.16)

Direct computation using equations (3.29c) and (3.29d) shows that:

φ1 =
r0
2

 (sin(τ)p2 − cos(τ)p3)
⊺∇c(q)

(cos(τ)(p2 − p3) + sin(τ)(p2 + p3))
⊺∇c(q)

 (4.17)

Therefore, the reduced order averaged system as defined by the formulas given in equations

(3.32) is:


˙̄p1

˙̄p2

˙̄p3

 =


r0 (p̄2p̄

⊺
2 + p̄3p̄

⊺
3)∇c(q)

−r0p̄1p̄
⊺
2∇c(q)

−r0p̄1p̄
⊺
3∇c(q)

 (4.18)

We claim that the subset S+
q is (almost) globally uniformly asymptotically stable for the
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system (4.18). To prove this statement, we define the candidate Lyapunov function:

V = ∥∇c(q)∥−∇c(q)⊺p̄1 (4.19)

which is clearly positive definite on M\S+
q , and V = 0 if and only if p ∈ S+

q . We compute

the derivative of V to obtain:

V̇ = r0∇c(q)⊺ (p̄2p̄
⊺
2 + p̄3p̄

⊺
3)∇c(q) (4.20)

However, it is not difficult to see that:

p̄2p̄
⊺
2 + p̄3p̄

⊺
3 = I− p̄1p̄

⊺
1 (4.21)

where I is the identity matrix. Hence, we have that:

V̇ = r0∥∇c(q)∥2−r0 (∇c(q)⊺p̄1)
2 ≤ 0 (4.22)

Observe that V̇ = 0 if and only if p ∈ S+
q or p ∈ S−

q where:

S−
q = {R ∈ SO(3) : ∇c(q)⊺p1 = −∥∇c(q)∥} (4.23)

Thus, if we restrict our attention to the subset M\S−
q , we have that V̇ ≤ 0 ∀p ∈ SO(3)\S−

q

and V̇ = 0 if and only if p ∈ S+
q ⊂ SO(3)\S−

q . We conclude that S+
q is almost globally uni-

formly asymptotically stable for the system (4.18). Hence, a modification of the statement of

Theorem 3.4.2 to account for the zero measure unstable invariant set S−
q leads us to conclude

that the subset S+
q is singularly (almost) semi-globally practically uniformly asymptotically

stable.

We illustrate the behavior of this gradient alignment algorithm on a numerical example. The
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Figure 4.1: Numerical simulation results for the 3D gradient alignment algorithm: the blue
curve is the path traced by the tip of the unit vector p1 = Re1, and the green arrow is the
direction of the gradient which in this case points along the x-axis.

simulation results are shown in figure 4.1. The signal strength field is taken as the linear

field c(q) = q⊺e1, the frequency was taken as ω = 4π, the parameter r0 = 1, and the initial

conditions are taken as q(0) = [3, −1, 3], R(0) = exp(−0.99πê2), z(0) = [3, 3].

4.2 Helical 3D Source Seeking with Oscillatory For-

ward Velocity

Next, we employ the gradient alignment results from the previous section to design a 3D

source seeking control law. We assume a vehicle model in which the linear and angular

velocity vectors are given in body coordinates by:

v = ve1, Ω = Ω∥e1 + Ω⊥e3 (4.24)
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where ei for i ∈ {1, 2, 3} are the standard unit vectors. This model is a natural extension of

the unicycle model to the 3D setting. It is well known that this system is controllable using

first-order Lie brackets [45].

Let c : R3 → R be the signal strength field emitted by the source, and consider the case of

a non-collocated signal strength sensor that is mounted at qs as defined in equation (4.7).

Assumption 4.2.1. Suppose that the signal strength field c ∈ C3(R3;R) is radially un-

bounded, ∃!q∗ ∈ R3 such that ∇c(q) = 0 ⇐⇒ q = q∗, and for some κ > 0 it satisfies the

inequality:

c(q∗)− c(q) ≤ κ∥∇c(q)∥2, ∀q ∈ Rn, (4.25)

Now, consider the following control law:

v = 2α1ε
−1 cos(2ε−2t− c(qs)) (4.26a)

ẏ = ε−2Ay+ ε−2B c(qs) (4.26b)

Ω⊥ = 4α2ε
−1Cy, Ω∥ = ε−2 (4.26c)

where y ∈ R2, α1 and α2 are tuning parameters, and the matrices A,B,C are given by

equations (4.10). The static part of this controller, i.e. equation (4.26a) is a 1D extremum

seeking control law [28]. Note that other choices of this control law are possible [1]. The

dynamic part of this controller, i.e. the equations (4.26b)-(4.26c), is a narrow band-pass

filter centered around the frequency ε−2.

In addition, assume that the distance r specifying the offset of the sensor from the center of

the frame is such that r = O(ε) = r0ε for some r0 > 0. This assumption may seem artificial

at first glance, though its implication is clear; we require that as the small parameter ε

tends to 0, the distance r from the center of the vehicle is small enough so as not to amplify

59



unwanted nonlinearities in the signal strength field. Alternatively, one may consider this

assumption as a “distinguished limit” [43] for the perturbation calculation in the presence

of the two parameters ε and r. Under these assumptions, we have the following proposition:

Proposition 4.2.1. Let Assumption 4.2.1 be satisfied, and let r = r0ε
−1. Then, the compact

subset S = {q∗}×SO(3) is sSPUAS for the system defined by equations (4.5), (4.24), (4.7),

and (4.26).

Proof. Let R0 = exp (ε−2t ê1) , P = RR⊺
0, and compute:

Ṗ = ṘR⊺
0 +RṘ

⊺
0 = Ω⊥Rê3R

⊺
0 = Ω⊥PR0ê3R

⊺
0 = Ω⊥PR̂0e3 (4.27)

Let Λ(y, ε−2t) = 4α2CyR0e3 and observe that:

q̇ = Rv = RR⊺
0R0v = vPR0e1 = vPe1 (4.28)

Ṗ =
√
ωPΛ̂(y, ε−2t) (4.29)

To simplify the presentation, we embed SO(3) into R9 by partitioning the matrix P =

[p1, p2, p3], and defining the state vector p = [p⊺
1, p

⊺
2, p

⊺
3]

⊺. Restrict the initial conditions

for p to lie on the compact submanifold M =
{
pi ∈ R3 : p⊺

ipj = δij, pi × pj = ϵijkpk

}
,

where δij is the Kronecker symbol and ϵijk is the Levi-Civita symbol. On R3 ×M×R2, the

system is governed by:

q̇ = 2α1ε
−1 cos(2ε−2t− c(qs))p1 (4.30a)

ṗi = ε−1

3∑
j,k=1

Λj(y, ε
−2t)ϵijkpk (4.30b)

ẏ = ε−2 (Ay+ B c(qs)) (4.30c)

The signal strength field can be expanded as a series in the small parameter r = r0ε using
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Taylor’s theorem:

c(qs) = c(q) + r0ε∇c(q)⊺(cos(ωt)p2 + sin(ωt)p3) + ε2ρ(q,qs, ωt, ε) (4.31)

where the remainder ρ is Lipschitz continuous in all of its arguments. Now, observe that the

system governed by the equations (4.30a)-(4.30c) belongs to the class of systems described

by (3.24). Hence, we may employ Theorem 3.4.1 and Theorem 3.4.2 in analyzing the sta-

bility of the system. In order to proceed, the reduced order averaged system needs to be

computed. Similar computations to the proof of Proposition 4.1.1 produce the system:



˙̄q

˙̄p1

˙̄p2

˙̄p3


=



α1p̄1p̄
⊺
1∇c(q̄)

α2r0 (p̄2p̄
⊺
2 + p̄3p̄

⊺
3)∇c(q̄)

−α2r0p̄1p̄
⊺
2∇c(q̄)

−α2r0p̄1p̄
⊺
3∇c(q̄)


(4.32)

which can be equivalently written as:

˙̄q = α1r0P̄e1e
⊺
1P̄

⊺∇c(q̄), (4.33a)

˙̄P = α2r0P̄
̂̄Λ(q,P) (4.33b)

where the average angular velocity vector Λ̄ is given by:

Λ̄(q,P) = P⊺∇c(q)× e1 (4.34)

We claim that the compact subset S is globally uniformly asymptotically stable for the

reduced order averaged system (4.33). To prove this claim, we use the negative of the signal

strength field as a Lyapunov function Vc(q) = c(q∗)−c(q). Observe that the system (4.33) is

autonomous, and so the function Vc is indeed a candidate Lyapunov function for the compact
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subset S due to Assumption 4.2.1 [7]. We proceed to compute the derivative of Vc:

V̇c = −α1∇c(q̄)⊺P̄e1e
⊺
1P̄

⊺∇c(q̄) ≤ 0 (4.35)

Now, consider the subset N = {(q,P) ∈ R3×SO(3) : V̇c = 0}, and observe that S ⊂ N , and

that S is an invariant subset of the reduced order averaged system (4.33). Suppose that a

trajectory (q̄(t), P̄(t)) of the system (4.33) exists such that (q̄(t), P̄(t)) ∈ N\S, ∀t ∈ I, where

I is the maximal interval of existence and uniqueness of the trajectory. Such a trajectory

must satisfy:

∇c(q̄(t))⊺P̄(t)e1 = 0, ∀t ∈ I (4.36)

The differentiability of the trajectories allows us to compute the derivative of this identity

and obtain that:

d

dt

(
∇c(q̄(t))⊺P̄(t)e1

)
= 0, ∀t ∈ I (4.37)

which simplifies to:

∇c(q̄(t))⊺P̄(t)(Λ̄(q̄(t), P̄(t))× e1) = 0 (4.38)

Recalling equation (4.34), we see that:

Λ̄(q̄(t), P̄(t))× e1 = (Id− e1e
⊺
1)P̄(t)⊺∇c(q̄(t)) = P̄(t)⊺∇c(q̄(t)) (4.39)

Hence, the equation (4.38) necessitates that:

∥∇c(q̄(t))∥2= 0, ∀t ∈ I (4.40)
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which is clearly in contradiction with Assumption 4.2.1. Accordingly, it follows from LaSalle’s

Invariance principle [7, Corollary 4.2 to Theorem 4.4] that the compact subset S is globally

uniformly asymptotically stable for the system (4.33). Hence, we conclude by Theorem 3.4.2

that the subset S is singularly semi-globally practically uniformly asymptotically stable for

the original system defined by (4.5)-(4.10).

If we attempt to apply the framework of singularly pertubed Lie Bracket Approximation

introduced in [4] to the system (4.30a)-(4.30c), then the quasi-steady state of the system will

be y = [c(qs), c(qs)]
⊺. Hence, according to [4], the reduced order system is:

q̇ =
√
4ω cos(2ωt− c(qs))p1, ṗi = 0 (4.41)

which yields the Lie Bracket system:

˙̄q = P̄e1e
⊺
1P̄

⊺∇c(q̄), ˙̄P = 0 (4.42)

It is clear that the compact subset S is not asymptotically stable for the Lie Bracket system

(4.42), and so the framework in [4] is not suitable for proving the stability of the system

(4.30a)-(4.30c).

We now demonstrate the behavior of the proposed algorithm through numerical simulations.

In the following example, we have that: r0 = 1, α1 = 1 and α2 = 0.5.

Example 4.2.1. Consider the signal strength field given by

c(q) =
10

1 + 0.025q⊺q
, (4.43)

which represents a stationary source located at the origin. We take the initial conditions as
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Figure 4.2: Numerical simulation results of the 3D source seeking algorithm for the non-
collocated sensor case with oscillatory forward velocity: the history of the signal strength
at the vehicle center and the position coordinates (left), and the 3D spatial trajectory with
various projections (right)

q(0) = [−7,−7, 7]⊺, R(0) = [r1, r2, r3] where the unit vectors rk are given by:

r1 = − ∇c(q(0))
∥∇c(q(0))∥

, r2 =
r1 × e1
∥r1 × e1∥

, r3 = r1 × r2, (4.44)

y(0) = 0, and the small parameter as ε = 1/
√
6π. We also take the parameters α1 = r0 = 1

and α2 = 1/2.

The numerical simulations for the example are shown in figure 4.2. Observe that the behavior

near the source is nontrivial, i.e. there is a small non-trivial attractor. However, this complex

behavior does not appear in the reduced order averaged system and it can be made arbitrarily

small by choosing a sufficiently small ε.
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4.3 Helical 3D Source Seeking with Strictly Positive

Forward Velocity

In the previous section, the forward velocity of the vehicle was considered as a control input

and was employed in the design of the source seeking control law. As a consequence, the

velocity was taken as an oscillatory signal, which may be positive or negative. Nevertheless,

it may be desirable to maintain a strictly positive forward velocity for the vehicle. In this

case, the algorithm of the previous subsection becomes obsolete and a different algorithm is

needed. In this section, we tackle such a problem.

Recall that the 3D kinematics of a rigid body are given by:

q̇ = Rv, Ṙ = RΩ̂ (4.45)

Let us assume a vehicle model in which the velocities in body coordinates are given by

equations (4.24), such that the forward velocity v = α1 > 0 is strictly positive and constant,

and the angular velocity components Ω∥ and Ω⊥ are treated as inputs. Suppose that the

assumptions on the sensor location and the signal strength field stated in the previous sections

are satisfied and consider the following control law:

ż = ε−1(c(qs)− z) (4.46a)

ẏ = ε−2Ay+ ε−2B c(qs) (4.46b)

Ω⊥ = 4α2ε
−1Cy+ 2α3ε

−1 cos(ε−2t) (c(qs)− z), Ω∥ = ε−2 (4.46c)

where z ∈ R,y ∈ R2, αi, i ∈ {1, 2, 3} are tuning parameters, and the matrices A,B,C are

given by equations (4.10).

Proposition 4.3.1. In the limit ε → 0, the trajectory q of the system (4.45) under the
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control law (4.46) converge to the trajectories of the following system:

˙̄̄q = α1
¯̄h1 (4.47a)

˙̄̄
h1 = r0α2

(
I− ¯̄h1

¯̄h⊺
1

)
∇c(¯̄q) + α1α3

¯̄h2
¯̄h⊺
1∇c(¯̄q) (4.47b)

˙̄̄
h2 = α1α3

¯̄h1
¯̄h⊺
2∇c(¯̄q)− r0α2

(
I− ¯̄h2

¯̄h⊺
2

)
∇c(¯̄q) (4.47c)

Proof. Let R0 = exp (ε−2t ê1) , R1 = exp (α3z ê3) , P = RR⊺
0R

⊺
1, and compute:

q̇ = vRe1 = vPR1R0e1 (4.48a)

Ṗ = ṘR⊺
0R

⊺
1 +RṘ

⊺
0R

⊺
1 +RR⊺

0Ṙ
⊺
1 (4.48b)

Now, observe that:

ṘR⊺
0R

⊺
1 = ε−2PR1R0ê1R

⊺
0R

⊺
1 + Ω⊥PR1R0ê3R

⊺
0R

⊺
1 (4.49)

RṘ
⊺
0R

⊺
1 = −ε−2PR1R0ê1R

⊺
0R

⊺
1 (4.50)

RR⊺
0Ṙ

⊺
1 = −α3ε

−1(c(qs)− z)Pê3 (4.51)

In addition, direct computation shows that:

Ω⊥R1R0e3 = 4α2ε
−1Cy

(
sin(ε−2t)(sin(z)e1 − cos(z)e2) + cos(ε−2t)e3

)
+ ε−1α3(c(qs)− z) sin(2ε−2t)(cos(z)e2 − sin(z)e1)

+ ε−1α3(c(qs)− z) cos(2ε−2t)e3 + α3ε
−1(c(qs)− z)e3

(4.52)

Hence, we have that:

q̇ = α1P(cos(z)e1 + sin(z)e2), (4.53a)

Ṗ = ε−1PΛ̂(y, z, ε−2t) (4.53b)

ż = ε−1(c(qs)− z) (4.53c)
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ẏ = ε−2Ay+ ε−2B c(qs) (4.53d)

where the angular velocity vector Λ is given by:

Λ(y, z, ε−2t) = 4α2Cy

(
sin(ε−2t)(sin(z)e1 − cos(z)e2) + cos(ε−2t)e3

)
+ α3(c(qs)− z)

(
sin(2ε−2t)(cos(z)e2 − sin(z)e1) + cos(2ε−2t)e3

) (4.54)

and the sensor location qs is given by:

qs = q+ rPR1R0e2 = q+ rP
(
cos(ε−2t)(cos(z)e2 − sin(z)e1) + sin(ε−2t)e3

)
(4.55)

Furthermore, we embed SO(3) into R9 once again by partitioning the matrixP = [p1, p2, p3],

and defining the state vector p = [p⊺
1, p

⊺
2, p

⊺
3]

⊺. In the new coordinates, the system is

governed by:

q̇ = α1 (cos(z)p1 + sin(z)p2), (4.56a)

ṗi = ε−1

3∑
j,k=1

Λj(y, z, ε
−2t)ϵijkpk (4.56b)

ż = ε−1(c(qs)− z) (4.56c)

ẏ = ε−2 (Ay+ B c(qs)) (4.56d)

As in the previous section, we may expand c(qs) as a Taylor series in the small parameter

r = r0ε to obtain:

c(qs) = c(q) + r0ε
(
cos(ε−2t)(cos(z)p2 − sin(z)p1) + sin(ε−2t)p3

)⊺∇c(q) +O(ε2)

(4.57)

By substituting for c(qs) with its Taylor expansion, we obtain a system that belongs to the

class of systems on the form (3.41). Therefore, we may employ Theorem 3.5.1 to approximate
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the trajectories of the system. In order to proceed, we need to compute the reduced order

recursively averaged system. First, we observe that the quasi-steady states for the singularly

perturbed part of the system z,y are given by ϕ0(q,p) = c(q), φ0(q,p, z) = c(q)1. Using

the formulas provided in Appendix E, we obtain the following reduced order recursively

averaged system:

˙̄̄q = α1 cos(α3c(¯̄q))¯̄p1 + α1 sin(α3c(¯̄q))¯̄p2 (4.58a)

˙̄̄p1 = r0α2 cos(α3c(¯̄q))
(
I− ¯̄p1

¯̄p⊺
1)∇c(¯̄q)− r0α2 sin(α3c(¯̄q))¯̄p2

¯̄p⊺
1∇c(¯̄q) (4.58b)

˙̄̄p2 = r0α2 cos(α3c(¯̄q))¯̄p1
¯̄p⊺
2∇c(¯̄q)− r0α2 sin(α3c(¯̄q))

(
I− ¯̄p2

¯̄p⊺
2

)
∇c(¯̄q) (4.58c)

˙̄̄p3 = r0α2 sin(α3c(¯̄q))¯̄p2
¯̄p⊺
3∇c(¯̄q) + r0α2 cos(α3c(¯̄q))¯̄p1

¯̄p⊺
3∇c(¯̄q) (4.58d)

The result of the proposition follows after we perform the following change of coordinates:

¯̄h1 = cos(α3c(¯̄q))¯̄p1 + sin(α3c(¯̄q))¯̄p2, (4.59a)

¯̄h2 = sin(α3c(¯̄q))¯̄p1 − cos(α3c(¯̄q))¯̄p2 (4.59b)

The stability of the system given by (4.47) is very intricate; there is a complex attractor near

the source whose size does not diminish in the limit ε → 0. We leave a detailed analysis of

this attractor and its stability for future work. Instead, we provide here numerical examples

illustrating the behavior of the system.

Example 4.3.1. Consider the signal strength field given by

c(q) =
10

1 + 0.025q⊺q
, (4.60)

which represents a stationary source located at the origin. We take the initial conditions as
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Figure 4.3: Numerical simulation results of the 3D source seeking algorithm for the non-
collocated sensor case with strictly positive forward velocity: the history of the signal
strength at the vehicle center and the position coordinates (left), and the 3D spatial trajec-
tory with various projections (right)

q(0) = [−7,−7, 7]⊺, R(0) = [r1, r2, r3] where the unit vectors rk are given by:

r1 = − ∇c(q(0))
∥∇c(q(0))∥

, r2 =
r1 × e1
∥r1 × e1∥

, r3 = r1 × r2, (4.61)

y(0) = 1c(q(0)), z(0) = c(q(0)), and the small parameter as ε = 1/
√
6π. Moreover, we take

the parameters α1 = α2 = α3 = r0 = 1.

The numerical simulations for the example are shown in figure 4.3. The size of the attractor

can be made small by tuning the parameters α1, α2, α3, which are controller parameters.

4.4 Spherical 3D Source Seeking

In this section, we consider an alternative 3D source seeking algorithm that, unlike the

previous algorithms, works for the case of a collocated sensor. The algorithm proposed here

is named ‘spherical’ due to the nature of the trajectory in 3D space as will be clear later in
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the numerical examples towards the end of the section.

The 3D kinematics of a rigid body are given by

q̇ = Rv, Ṙ = RΩ̂ (4.62)

We consider a vehicle model in which the velocity v and angular velocity Ω are given by:

v = 2 ε−1 e1, Ω = Ω∥e1 + Ω⊥e3 (4.63)

where Ω∥ and Ω⊥ are the control inputs, which represent roll and yaw of the body frame,

respectively, and ω is a positive parameter. This model is a natural extension of the unicycle

model to the 3D setting. It is well known that this system is controllable using depth one

Lie brackets [45].

Let c ∈ C2(R3;R) represent the signal strength field and define the control inputs Ω∥ and

Ω⊥ by the dynamic time periodic feedback law:

ε2 ż = c(q)− z (4.64)

Ω⊥(c(q), z) = ε−2 − ż (4.65)

Ω∥(z, ε
−2t) = 2αε−1 sin

(
ε−2t− z

)
(4.66)

where ε > 0, and α > 0 are constant parameters.

Remark 4.4.1. When the motion is confined to the plane (i.e. α = 0), this control law is

the same as the source seeking algorithm for the unicycle model introduced in [28], which

also turns out to be the same algorithm employed by sea urchin sperm cells for seeking the

egg in 2D [46]. Here we extend the controller to the 3D setting and establish its practical

stability. We emphasize that the 2D source seeking algorithm in [28] does not work directly

in 3D.
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Assumption 4.4.1. Suppose that the signal strength field c ∈ C2(R3;R) is radially un-

bounded, ∃!q∗ ∈ R3 such that ∇c(q) = 0 ⇐⇒ q = q∗, and for some constant κ > 0, it

satisfies the inequality:

c(q∗)− c(q) ≤ κ∥∇c(q)∥2, ∀q ∈ Rn (4.67)

Then, we have the following theorem:

Theorem 4.4.1. Let Assumption 4.4.1 be satisfied. Then, the compact subset {q∗}× SO(3)

is singularly semi-globally practically uniformly asymptotically stable for the control system

defined by (4.62)-(4.63) under the dynamic feedback law defined by (4.64)-(4.66).

Proof. Define τ = ε−2t, σ = ε−1t, and the intermediate rotation P = RR⊺
1R

⊺
2, where:

R1 = exp ((τ − z)ê3) , Ṙ1 = (ε−2 − ż)R1ê3 (4.68a)

R2 = exp (ασ ê2) , Ṙ2 = ε−1αR1ê2 (4.68b)

Then, compute:

Ṗ = ṘR⊺
1R

⊺
2 +RṘ

⊺
1R

⊺
2 +RR⊺

1Ṙ
⊺
2 (4.69)

In addition, observe that:

ṘR⊺
1R

⊺
2 = PR2R1

(
Ω∥ê1 + Ω⊥ê3

)
R⊺

1R
⊺
2 (4.70a)

RṘ
⊺
1R

⊺
2 = −PR2R1 (Ω⊥ê3)R

⊺
1R

⊺
2 (4.70b)

RR⊺
1Ṙ

⊺
2 = −ε−1αPR2ê2R

⊺
2 (4.70c)
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Direct computation shows that:

Ω∥R1e1 = ε−1α e2 − ε−1α sin(2(z − τ))e1 − ε−1α cos(2(z − τ))e2 (4.71)

Hence, we have that:

Ṗ = ε−1PΛ̂(z, σ, τ) (4.72)

where

Λ(z, σ, τ) = −α sin(2(z − τ))(cos(ασ)e1 − sin(ασ)e3)− α cos(2(z − τ))e2 (4.73)

Furthermore, the position kinematics evolves according to the equations:

q̇ = ε−1Pf(z, σ, τ), f(z, σ, τ) = 2R2R1e1 (4.74)

Consequently, in the new coordinates, the system is governed by:

q̇ = ε−1
√
2Pf(z, σ, τ), Ṗ = ε−1PΛ̂(z, σ, τ), ż = ε−2 (c(q)− z) (4.75a)

We embed the manifold SO(3) into R3 ×R3 ×R3 by partitioning the matrix P into column

vectors P = [p1, p2, p3]. Observe that:

Ṗ = PΛ̂ = PΛ̂P⊺P = P̂ΛP (4.76)

and so it is easy to see that the time evolution of the columns of P is governed by:

dpj

dt
= ε−1

3∑
i=1

Λi(z, σ, τ)pi × pj, j ∈ {1, 2, 3} (4.77)
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Next, define the state vector x ∈ R12 by x = [q⊺, p⊺
1, p

⊺
2, p

⊺
3]

⊺, and the vector field X which

is given in coordinates by:

X(x, z, σ, τ) =



3∑
i

fi(z, σ, τ)pi

3∑
i,k

Λi(z, σ, τ)ϵi1kpk

3∑
i,k

Λi(z, σ, τ)ϵi2kpk

3∑
i,k

Λi(z, σ, τ)ϵi3kpk


(4.78)

where ϵijk is the Levi-Civita symbol. Restrict the initial conditions to lie on the manifold

M = {(x, z) ∈ R13 |p⊺
ipj = δij, pi × pj = ϵijkpk}, where δij is the Kronecker symbol. With

this embedding, the kinematics can be written succinctly as:

ẋ = ε−1X(x, z, σ, τ) (4.79)

ż = ε−2(c(q)− z) (4.80)

which is a system that belongs to the class of systems on the form (3.41). Therefore, we may

employ the formulas. Hence, we may apply Theorem 3.5.1 and Theorem 3.5.2 to investigate

the stability properties of the system. To proceed, we need to compute the reduced order

recursively averaged (RORA) system. We observe that the quasi-steady state φ0 = c(q) is

a scalar, and therefore the vector-valued map bφ,1, which appears on the RHS of equation

(3.57), is also a scalar and is given by:

bφ,1 = −
3∑

k=1

fk(c(q), σ, τ)p
⊺
k∇c(q) (4.81)

Proceeding to compute the first-order correction term φ1 to the quasi-steady state, we obtain:

φ1(x, σ, τ) = − 1

1− e−2π

ˆ 2π

0

∑
k=1

eν−2πfk(c(q), σ, τ + ν)p⊺
k∇c(q) (4.82)
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Substituting into the formulas in Appendix E, and computing the average, we obtain the

reduced order recursively averaged system: By changing the coordinates back, we obtain:

˙̄̄q = ¯̄PQ ¯̄P⊺∇c(¯̄q), ˙̄̄
P = 0, ¯̄z = c(¯̄q) (4.83)

where the matrix Q is given by:

Q =


1
2

0 0

0 1 0

0 0 1
2

 (4.84)

The compact subset S = {(q,P) : q = q∗} is globally uniformly asymptotically stable

for the dynamics defined by (4.83). This is easy to see since the matrix ¯̄PA ¯̄P⊺ is positive

definite ∀ ¯̄P ∈ SO(3), and ¯̄P does not change. Reverting back to ¯̄R from ¯̄P will not affect

this stability result. Therefore, we conclude using Theorem 3.5.2 that the compact subset S

is s-SPUAS, which concludes the proof.

We now provide a numerical example illustrating the behavior of the algorithm proposed in

this section.

Example 4.4.1. Consider the signal strength field given by

c(q) =
10

1 + 0.025q⊺q
, (4.85)

which represents a stationary source located at the origin. We take the initial conditions as

q(0) = [−7,−7, 7]⊺, R(0) = [r1, r2, r3] where the unit vectors rk are given by:

r1 = − ∇c(q(0))
∥∇c(q(0))∥

, r2 =
r1 × e1
∥r1 × e1∥

, r3 = r1 × r2, (4.86)

z(0) = c(q(0)), and the small parameter as ε = 1/
√
6π. Moreover, we take the parameter
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Figure 4.4: Numerical simulation results of the 3D source seeking algorithm for the collocated
sensor case with strictly positive forward velocity: the history of the signal strength at the
vehicle center and the position coordinates (left), and the 3D spatial trajectory with various
projections (right)

α = 1/4. The simulation results are shown in figure 4.4. Clearly, the location of the source

is asymptotically stable as predicted by our analysis.
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Chapter 5

Helical Klinotaxis and Source Seeking

Many organisms are routinely faced with the source seeking problem [31]. A well studied

example is that of sperm chemotaxis [47, 48]. To locate an egg in open water, sea urchin

sperm evolved to swim up the gradient of the concentration field established by the diffusion

of a species-specific chemoattractant, a sperm-activating peptide (SAP), secreted by the eggs

[48]. Unlike the inherently stochastic bacterial chemotaxis [49], the navigation strategy of

sea urchin sperm can be reasonably described in a deterministic fashion; the cells employ the

mean curvature of the flagellum, regulated by intracellular Ca2+, as a steering mechanism to

swim in circular paths that drift in the direction of the gradient in 2D, and in helical paths

that align with the gradient in 3D [50, 47, 51, 52]. This feedback mechanism is mediated by

a complex signaling pathway that regulates the influx and efflux of Ca2+ in the cell [53, 54].

In this chapter, we revisit sperm chemotaxis from the perspective of control theory. We frame

the search for the egg as a source seeking problem, then we show that the 3D navigation

strategy of sea urchin sperm, also known as helical klinotaxis, is in fact a natural imple-

mentation of the well-established adaptive control paradigm known as extremum seeking

[31, 55, 28].
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We illustrate this novel connection by establishing a one-to-one correspondence between the

key components of the navigation strategy of sea urchin sperm cells and the hallmark features

of an extremum seeking solution to the source seeking problem, which are: i) the injection of

periodic perturbation signals to sample the local signal strength, ii) a filter that measures the

instantaneous signal strength and extracts the oscillations due to the perturbation signals,

iii) the demodulation of the local gradient information from the filter’s output, and iv) an

integrator that biases the motion in the direction of the gradient [2]. More specifically,

we show that the swimming pattern of sea urchin sperm provides the roles of the periodic

perturbation, demodulation, and integration components of the standard extremum seeking

loop (figure 5.2). As such, the proposed formulation automatically suggests characterizing

the chemotactic signaling pathway as an adaptive band pass filter attuned to the frequency

of the swimming pattern of the sperm cell. In this manner, the swimming kinematics of

sea urchin sperm, together with the signaling pathway, naturally constitute an extremum

seeking strategy for chemotaxis.

Based on this formulation, we propose a coarse-grained minimal dynamical description that

captures the crucial features of the chemotactic signaling pathway, including the peculiar

behavior of sea urchin sperm cells where they seem to switch between two distinct navigation

modes: i) the ‘on-response’ which is a low-gain steering mode when the average velocity

vector of the cell is mostly aligned with the gradient, and ii) the ‘off-response’ which is a high-

gain steering mode otherwise [52]. Previous models employed a threshold-based switching

logic to account for this behavior [52]. The threshold defining the discontinuous switching

boundary was later determined as the solution to an optimal decision problem [56]. Here,

we show that the behavior can arise from a continuous dynamical description in a simpler

way: it arises as a consequence of the motion pattern and a time-scale separation between

the proposed dynamics of the signaling pathway and the average motion. In particular, the

proposed model does not exploit any information other than the perceived instantaneous

local concentration.
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5.1 Modeling the sperm motion

Swimming in a low Reynolds number is dominated by viscous forces, which enables the use

of kinematic models as a good approximation to the motion of micro-swimmers, including

sperm cells [57]. The kinematics of a rigid body are given by:

ẋ = Rv, Ṙ = Rω̂, (5.1)

where the vectors v and ω are the linear and angular velocity vectors in the body frame,

ω̂ denotes the skew-symmetric matrix corresponding to the angular velocity vector ω, x

is the instantaneous position of the body with respect to the origin of a fixed frame of

reference, and R is the instantaneous rotation matrix that relates the body frame to the

fixed frame. In sea urchin sperm, the mean curvature of the flagellar beating pattern, which

is regulated by the chemotactic signaling pathway, controls the angular velocities in the body

frame [50, 48]. A common model of the effect of the chemotactic signaling pathway on the

swimming kinematics of sea urchin sperm is given by the relations:

v =

[
v 0 0

]⊺
, ω =

[
ω∥ 0 ω⊥

]⊺
, (5.2)

where v > 0 is constant, and the angular velocity components ω∥ and ω⊥ are given by:

ω∥ = ω∥0 + ω∥1η, ω⊥ = ω⊥0 + ω⊥1η, (5.3)

with ω⊥0, ω⊥1, ω∥0, ω∥1 as constant coefficients, and η is a dynamic feedback term representing

the effect of the signaling pathway [58, 47, 52].
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Figure 5.1: The geometry of helical swimming. A: the helical nature of the trajectory
suggests decomposing the motion (x,R) into an average part along the helical centerline
(x̄, R̄) and a periodic excursion R̄d(t) that is orthogonal to the centerline. B: the direction
of the gradient ∇̌c can be decomposed into two parts, one along the helical centerline h̄
(denoted as ∇̌∥c), and another orthogonal to it (denoted as ∇̌⊥c) which is contained in the
same plane as the direction q̄(t) of the periodic excursion R̄d(t).

5.2 An extremum seeking loop

The constant forward velocity v > 0, along with the constant angular velocity components

ω∥0 and ω⊥0, lead to a periodic swimming pattern, a helical trajectory. The sign of ω∥0 and

ω⊥0 determine the handedness of the helical trajectory. For simplicity, we consider the case

in which both ω∥0 and ω⊥0 are positive. The geometry of helical swimming (see figure 5.1A)

suggests decomposing the motion into an average part and an oscillatory part. We define

the average instantaneous position x̄ and orientation R̄ of the cell as:

R0(t) = exp
(
ω̂0t
)
, R̄ = RR0(t)

⊺, (5.4a)

x̄ = x− R̄d(t), (5.4b)

where the vector ω0 is given by:

ω0 =

[
ω∥0 0 ω⊥0

]⊺
(5.5)
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and the vector d(t) is the perturbation in the position due to the helical swimming pattern,

and is defined by:

vm = R0(t)v, d(t) =

ˆ
(R0(t)v− vm) dt. (5.6)

In particular, the periodic perturbation vector d(t) and the average velocity vector vm are

orthogonal. The evolution of the average motion variables x̄ and R̄ is governed by the

following system of differential equations with periodic coefficients:

˙̄x = R̄vη(t)η + R̄vm, vη(t) = d(t)× ωη(t), (5.7a)

˙̄R = R̄ω̂η(t)η, ωη(t) = R0(t)ω1, (5.7b)

where the vector ω1 is given by:

ω1 =

[
ω∥1 0 ω⊥1

]⊺
. (5.8)

Under the assumption that |d(t)| ≪ 1, the instantaneous local concentration c(x) can be

approximated as a Taylor series in terms of the average motion variables x̄ and R̄ using

equation (5.4b):

c(x) ≈ c(x̄) +∇c(x̄)⊺R̄d(t). (5.9)

Clearly, the helical swimming pattern modulates the local gradient information on the am-

plitude of the perturbation R̄d(t), similar to the perturbation stage of the ES control loop.

The amplitude of the periodic component ∇c(x̄)⊺R̄d(t) of the instantaneous local concen-

tration (5.9) is proportional to the component of the local gradient that is orthogonal to the

average swimming direction as defined by R̄vm.
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It is well known that microorganisms that swim in helical trajectories, including sea urchin

sperm, can align the axis of their helical trajectory with the gradient by periodically varying

the angular velocities of the cell with the same frequency of the helical trajectory [50, 58].

That is, a sperm cell can align its swimming direction with the gradient provided that the

signaling pathway is able to extract the periodic component of the instantaneous local con-

centration, similar to the role of the filter in the ES control loop. This implication about

the role of the signaling pathway is one of the main outcomes of the connection between

chemotaxis and ES, as proposed in this paper.

Going back to the governing equations of the kinematics (5.7), we see that the feedback sig-

nal η multiplies the periodic feedback coefficients vη(t) and ωη(t). Consequently, the local

gradient information carried on the periodic component in the signal η is ‘demodulated’ into

the non-zero average component of the product signals ωη(t) η and vη(t) η, similar to the

demodulation stage of the ES control loop.

Finally, the demodulated local gradient information passes through the kinematics of the

motion represented by equations (5.7), which is responsible for biasing the motion in the

direction of the gradient. The closed-loop behavior of the nonholonomic integrator defined

by the kinematics is investigated in the next section. A block diagram description of the

dynamical equations (5.7) representing the navigation strategy of sea urchin sperm is shown

in figure 5.2, where the special integration symbol
ffl

denotes the nonholonomic kinematic

integrator corresponding to the equations (5.7). The isomorphism between the block dia-

grams in figure 1.1 and figure 5.2 clearly reveals the connection between sperm chemotaxis

and extremum seeking. We remark that the signaling pathway is more complicated than the

simple input-output depiction shown in figure 5.2 (see [48] for more details).
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Out

In

Figure 5.2: A block diagram description of the chemotactic navigation of sperm represented
by equations (5.4) and (5.7). The helical swimming pattern injects periodic perturbations
into the instantaneous position of the cell which leads to oscillations in the perceived stimu-
lus. The signaling pathway relays the oscillations to the angular velocities through flagellar
deformation. Next, the periodic feedback coefficients (i.e. vη and ωη) of the dynamics of av-
erage motion demodulate the gradient information carried by the feedback signal η through
signal multiplication. Finally, the kinematic integrator

ffl
biases the motion in the direction

of the gradient.

It is note-worthy that the 2D version of the model (5.1)-(5.3) (i.e. when ω∥ = 0 and the

motion is restricted to a plane) is a well-studied kinematic model in the control community

known as the unicycle model. Remarkably, the trajectories generated by an ES-based algo-

rithm for the unicycle model, which was recently proposed in [55, 28] independently from

the literature on sperm chemotaxis, are astonishingly similar to the actual trajectories of sea

urchin sperm in shallow observation chambers [59].

5.3 Chemotactic Response and Closed Loop Behavior

The evident one-to-one correspondence between the key components of the navigation strat-

egy of sea urchin sperm and ES control immediately clarifies the role of the signaling path-

way: it must act as an adaptive band-pass filter attuned to the frequency of the swimming
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pattern of the cell. Motivated by this observation, and building upon previous phenomeno-

logical models [47, 52], we propose the following coarse-grained dynamical description of the

signaling pathway:

σ ξ̇ = s(t)− ξ, (5.10a)

µ η̇ = ρ ξ̇ − η3, (5.10b)

µ ρ̇ = ρ− ρ η2, (5.10c)

where µ and σ are positive constants such that σ < µ, and s(t) is the input to the model,

which represents the time-varying external stimulus to which the pathway is exposed due to

the binding of SAP molecules with the receptors. Without accounting for noise, the stimulus

s(t) is customarily approximated by:

s(t) ≈ λ c(x) (5.11)

for some positive proportionality constant λ [47, 52]. The proposed model possesses three

essential dynamical features: excitation, relaxation, and adaptation. The excitation is mod-

elled by equation (5.10a), which acts as a differentiator that detects changes in the local

concentration. The relaxation is modelled by equation (5.10b), which brings the response

η back to resting levels when there is no change in the stimulus. Finally, the adaptation is

modelled by equation (5.10c), which adjusts the sensitivity of the pathway to the stimulus.

A sample trajectory of the equations (5.1)-(5.3) and (5.10) is shown in figure 5.3 along with

time-history of the average local concentration c(x̄), the steering response η and the angle

ψ between the gradient and the average swimming direction.

We now analyze the closed loop behavior when the dynamics of the pathway is given by the

proposed dynamical system (5.10) using analytical calculations based on linear response
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theory and averaging, similar to [47, 52]. The details of calculations in this section can

be found in the Appendix F. In the parametric regime where σ|vm|≪ µ|vm|≪ σ|ω0|≈

O(1), there is a large time-scale separation between the dynamics of average motion (5.7)

in the absence of feedback and the dynamics of the pathway (5.10). Consequently, we may

approximate the response η due to the time-varying local concentration (5.9) by the quasi-

steady response:

ηQS =
h̄
⊺∇̌c+

√
2 β q̄(t+ tϕ)

⊺∇̌⊥c√
|∇̌∥c|2+β2 |∇̌⊥c|2

, (5.12)

where β = γ(ω)|d(t)|/(µ
√
2|vm|), tϕ = ϕ(ω)/ω with γ(ω) and ϕ(ω) being the gain and

phase contributions of the linear part of the system (5.10) at the frequency ω = |ω0|, ∇̌c =

∇c(x̄)/|∇c(x̄)| is a unit vector in the direction of the gradient, and we used the following

shorthand notations:

h̄ = R̄vm/|vm|, q̄(t) = R̄d(t)/|d(t)|, (5.13)

∇̌∥c = h̄ h̄
⊺∇̌c, ∇̌⊥c = ∇̌c− ∇̌∥c, (5.14)

to simplify the expression (see figure 5.1B for a geometric illustration of the introduced

variables). Notably, the quasi-steady response (5.12) is independent of the ambient concen-

tration c(x0) and the stimulus proportionality constant λ, which are irrelevant information

from a chemotactic perspective. If we close the loop by replacing η with the quasi-steady

approximation ηQS, an intricate averaging analysis on the fast time scale τ = ωt when ω ≫ 1

for the system of equations (5.7a)-(5.7b) coupled with equation (5.12) leads to the following

averaged quasi-steady equations:

˙̄x⊺h̄ =
v ω∥0

ω

(
1 +

ω2
⊥0ω∥1

ω2ω∥0α
h̄
⊺∇̌c

)
, (5.15a)

˙̄h⊺∇̌c =
γ(ω)ω2

⊥0ω∥1

2µω2ω∥0α
cos(ϕ(ω))|∇̌⊥c|2, (5.15b)
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α =
√

|∇̌∥c|2+β2|∇̌⊥c|2. (5.15c)

Equation (5.15a) expresses the speed along the average direction of motion h̄, while equation

(5.15b) presents the rate of alignment of the average direction of motion h̄ with the gradient.

We now analyze the qualitative dynamic behavior of the quasi-steady averaged equations

(5.15) by considering three events and the corresponding response. The first event (the

segments highlighted in green in figure 5.3) is when the average swimming direction h̄ is

mostly aligned with the gradient (i.e. β|∇̌⊥c|≪ h̄
⊺∇̌∥c ≈ 1), in which case the response ηQS

is approximately given by:

ηQS ≈ 1 +
√
2 β q̄(t+ tϕ)

⊺∇̌⊥c, (5.16)

where the second term is small compared to 1 (i.e. the periodic component is attenuated

relative to the slope of the ramp component), and the change in the misalignment between

the average swimming direction and the gradient is minor. Moreover, the net motion along

the average swimming direction h̄ is sped up:

˙̄x⊺h̄ ≈
v ω∥0

ω

(
1 +

ω∥1ω
2
⊥0

ω∥0ω2

)
, (5.17)

The second event (the segments highlighted in purple in figure 5.3) is when the average

swimming direction is almost opposite to the gradient (i.e. h̄
⊺∇̌∥c ≈ −1), in which case the

response is approximately given by:

ηQS ≈ −1 +
√
2 β q̄(t+ tϕ)

⊺∇̌⊥c, (5.18)

where once again the periodic term is small. However, the net speed along the average
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swimming direction h̄ is reduced:

˙̄x⊺h̄ ≈
v ω∥0

ω

(
1−

ω∥1ω
2
⊥0

ω∥0ω2

)
. (5.19)

That is, when the motion is opposite to the gradient, the net motion along the average

swimming direction h̄ is slowed down, thereby reducing the helical pitch of the trajectory.

This helical pitch reduction can be observed in the purple segment of the trajectory in figure

5.3. Moreover, the average swimming direction defined by h̄
⊺∇̌∥c = −1 is unstable, so any

slight misalignment triggers the transition towards the stable average swimming direction

defined by h̄
⊺∇̌∥c ≈ 1.

The third event (the segments highlighted in red in figure 5.3) is when the average swimming

direction h̄ is orthogonal to the gradient (i.e. h̄
⊺∇̌∥c ≈ 0 and |∇̌⊥c|≈ 1), in which case the

quasi-steady response ηQS is dominated by the periodic component in the local concentration:

ηQS ≈
√
2 q̄(t+ tϕ)

⊺∇̌⊥c, (5.20)

and the alignment between the average swimming direction and the gradient is increased at

a peak rate:

˙̄h⊺∇̌c ≈
ω⊥0ω∥1√

2ω
cos(ϕ(ω)). (5.21)

We remark that near the maximum concentration, the gradient vanishes, and the behavior

of the system is dominated by second order effects, due to the Hessian of the concentration

field, which are neglected here.
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5.4 Discussion

Helical klinotaxis is a ubiquitous mode of taxis in microorganisms. In this study, we used

sperm chemotaxis in sea urchins to highlight extremum seeking control as an underlying

principle behind helical klinotaxis. This connection sheds light on the role played by the

chemotactic signaling pathway and emphasizes the characterization of its dynamics as an

adaptive band pass filter. Moreover, we showed that the switching-like behavior of sea

urchin sperm can arise from a continuous dynamical description (5.10) without an explicit

discontinuous switching logic as in previously proposed models [52, 56]. The key feature

of the model (5.10) is that the gain ρ adapts to the filtered stimulus ξ̇ rather than the

stimulus s(t) directly. As a consequence, the ambient concentration levels do not alter

the behavior of the model significantly. The forward velocity v of the cell is treated as a

constant in the kinematic model (5.1)-(5.3). Yet, the cell is able to adjust the speed of the

net motion along the average swimming direction (i.e. the pitch of the helical trajectory) by

dynamically regulating the angular velocity components. Our results suggest that this helical

pitch adjustment mechanism is behind the peculiar switching-like behavior. That is, the on-

response corresponds to the combined effect of helical pitch increase and the attenuation of

the periodic component when the direction of motion is mostly aligned with the gradient. In

contrast, the off-response may be explained as the combined effect of helical pitch decrease

when the direction of motion is opposite to the gradient followed by amplification of the

periodic component when the direction of motion is misaligned with the gradient. The

strength of the off-response in our model is determined by the maximum pitch reduction

and the peak alignment rate given in equations (5.19) and (5.21), respectively. In particular,

the off response is most pronounced when ω∥1ω
2
⊥0 ≈ ω∥0ω

2, since that leads to zero helical

pitch when the direction of motion is opposite to the gradient. Furthermore, the feedback

gain in the peak rate alignment depends on the factor cos(ϕ(ω)), which attains its maximum

value when the frequency of the periodic swimming pattern ω is inside the pass-band of
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the signaling pathway defined by µ and σ so that the phase lag is minimal. Finally, we

remark that the proposed connection between klinotaxis and extremum seeking may guide

technological developments in robotic navigation [60, 30]; it may inspire engineers to design

source seeking algorithms with minimal sensors, suitable for miniaturized robots.
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v ω∥0 ω∥1 ω⊥0 ω⊥1 µ σ η(t0) ζ(t0) ρ(t0)
3.07 3.07 2.30 8.91 1.00 3.07 9.42 0.00 c(x0) 5.00

Figure 5.3: The three cases of the behavior of the signaling pathway illustrated on a sample
trajectory projected on the xy-plane, the response η, the average instantaneous concentration
c(x̄), and the angle ψ = cos−1(h̄

⊺∇̌c) (in degrees) between the gradient and the average
direction of motion h̄, in a radial concentration field c(x) = 1/(1 + 0.5|x|2). The initial
position is taken as x0 = (6, 1, 0), and the initial orientation is R(t0) = exp(2πê2/5), where
ê2 = (0, 1, 0). The rest of the initial conditions and parameter values are in the table.

89



Chapter 6

Averaging for Delay Systems

In this chapter, we investigate the effect of time-delays on the behavior of highly oscillatory

systems. The presentation in this chapter is formal as there are no tools for higher-order

averaging for time-delay systems. The existing tools in the literature can only tackle first

order averaging [61, 62]. Such tools, however, are insufficient to tackle the class of systems we

consider here due to the simple fact that the first-order vanishes. Therefore, one must proceed

to second-order averaging. It turns out, however, that proceeding to higher-order averages is

nontrivial as it requires the computation of the Frechet derivative of an infinite dimensional

operator. Nevertheless, by formally following the same methodology of averaging in finite

dimensions, one can obtain approximation formulas for systems with constant commensurate

time-delays. We compute such formulas in this chapter for the second-order case, leaving

the convergence proofs for future work.
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6.1 The infinitesmal delay case

Consider a class of delayed systems on the form:

ẋ =
2∑

k=1

εk−2 fk(x,x−1, ε
−2t) +O(ε), x−1(t) = x(t− td) (6.1)

where there is a point time delay of td. First, we consider the effect of an infinitesimal

time delay on the performance of the trajectories of this system. Specifically, suppose that

td = O(ε2) = τdε
2. In this case, we can apply the time scaling τ = ε−2t to obtain the system:

dx

dτ
=
∑
k=1

εk fk(x,x−1, τ), x−1(τ) = x(t− τd) (6.2)

This system is on the canonical averaging form. Suppose that the first-order average vanishes:

ˆ T

0

f1(x,x−1, τ) dτ = 0 (6.3)

Let us attempt to formally apply a near-identity transform defined by:

x = U(x̄, x̄−1, x̄−2, τ, ε) = x̄+ εu1(x̄, x̄−1, τ) + ε2u2(x̄, x̄−1, x̄−2, τ), (6.4)

that takes the system (6.2) to a system:

dx̄

dτ
= ε f̄1(x̄, x̄−1) + ε2f̄2(x̄, x̄−1, x̄−2) + ε3h3(x̄, x̄−1, x̄−2, τ, ε) (6.5)

91



Observe that we included the dependency of the system (6.2) on x̄−2 in anticipation. Under

this coordinate transformation, we have that:

dx

dτ
=
dx̄

dτ
+ ε

(
∂τu1 + ∂x̄u1

dx̄

dτ
+ ∂x̄−1u1

dx̄−1

dτ

)
+ ε2

(
∂τu2 + ∂x̄u2

dx̄

dτ
+ ∂x̄−1u2

dx̄−1

dτ
+ ∂x̄−2u2

dx̄−2

dτ

)
= ε f̄1(x̄, x̄−1) + ε∂τu1(x̄, x̄−1, τ) + ε2f̄2(x̄, x̄−1, x̄−2) + ε2∂τu2(x̄, x̄−1, x̄−2, τ)

+ ε2∂x̄u1(x̄, x̄−1, τ )̄f1(x̄, x̄−1) + ε2∂x̄−1u1(x̄, x̄−1, τ)f1(x̄−1, x̄−2) +O(ε3)

(6.6)

In addition, we have that:

dx

dτ
= ε f1(U(x̄, x̄−1, x̄−2, τ, ε),U(x̄−1, x̄−2, x̄−3, τ − τd, ε), τ)

+ ε2f2(U(x̄, x̄−1, x̄−2, τ, ε),U(x̄−1, x̄−2, x̄−3, τ − τd, ε), τ)

= ε f1(x̄, x̄−1, τ) + ε2∂x̄f1(x̄, x̄−1, τ)u1(x̄, x̄−1, τ)

+ ε2∂x̄−1f1(x̄, x̄−1, τ)u1(x̄−1, x̄−2, τ − τd) + ε2 f2(x̄, x̄−1, τ) +O(ε3)

(6.7)

Matching the coefficients of like-power terms in ε, we obtain the homological equations:

∂τu1(x̄, x̄−1, τ) = K1(x̄, x̄−1, τ)− f̄1(x̄, x̄−1) (6.8)

∂τu2(x̄, x̄−1, x̄−2, τ) = K2(x̄, x̄−1, x̄−2, τ)− f̄2(x̄, x̄−1, x̄−2) (6.9)

where we have that:

K1(x̄, x̄−1, τ) = f1(x̄, x̄−1, τ) (6.10)

K2(x̄, x̄−1, x̄−2, τ) = f2(x̄, x̄−1, τ) + ∂x̄−1f1(x̄, x̄−1, τ)u1(x̄−1, x̄−2, τ − τd) (6.11)

+ ∂x̄f1(x̄, x̄−1, τ)u1(x̄, x̄−1, τ)− ∂x̄u1(x̄, x̄−1, τ )̄f1(x̄, x̄−1) (6.12)

− ∂x̄−1u1(x̄, x̄−1, τ )̄f1(x̄−1, x̄−2) (6.13)
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Now, we simply let:

f̄1(x̄, x̄−1) =
1

T

ˆ T

0

K1(x̄, x̄−1, τ)dτ (6.14)

f̄2(x̄, x̄−1, x̄−2) =
1

T

ˆ T

0

K2(x̄, x̄−1, x̄−2, τ)dτ (6.15)

where T is the period of the right hand side of (6.2). The homological equations are then

solvable with the solution having zero average. The actual proof can now be constructed by

reversing the argument above. We emphasize that the averaged system depends on a twice

delayed state. Moreover, the average vector field f̄2 depends crucially on the delay τd. After

truncating the terms of order ε3 and higher in (6.5), we obtain the system:

dx̄

dτ
= ε f̄1(x̄, x̄−1) + ε2f̄2(x̄, x̄−1, x̄−2) (6.16)

Since the first order terms vanish, we obtain an averaged system on the form:

dx̄

dτ
= ε2f̄(x̄, x̄−1, x̄−2) (6.17)

where the vector field f̄ is given by:

f̄(x,x−1,x−2) =
1

T

ˆ T

0

(
f2(x̄, x̄−1, τ) + ∂x̄f1(x̄, x̄−1, τ)u1(x̄, x̄−1, τ)

+ ∂x̄−1f1(x̄, x̄−1, τ)u1(x̄−1, x̄−2, τ − τd)

)
dτ

(6.18)

By reversing the time scaling t = ε2τ , we obtain the delayed averaged system:

˙̄x(t) = f̄(x̄(t), x̄(t− ε2τd), x̄(t− 2τdε
2)) (6.19)

We observe that the averaged system depends on a twice-delayed state of the system even

when the original system does not. Moreover, the averaged system depends, quite surpris-
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ingly, on the coefficient τd of the time-delay. This seems to be a characteristic of higher order

averaging for delayed system. The dependency on τd means that highly oscillatory systems

are severely vulnerable to time-delays of order O(ε2). To illustrate this vulnerability, we now

provide a numerical example.

Consider the following two systems:

ẋ1 = ε−1
(
cos(ε−2t)− c(x1) sin(ε

−2t)
)
, ẋ2 = ε−1 cos

(
ε−2t+ c(x1)

)
(6.20)

where c(·) is a smooth function. In the limit ε → 0, both systems behave on average

according to the dynamics of the averaged system:

˙̄x = − dc

dx
(6.21)

That is, both systems have identical behavior on average. Now, consider the situation that

arises when there is an infinitesmal delay:

ẋ1 =
√
2 ε−1

(
cos(ε−2t)− c(x1(t− τdε

2)) sin(ε−2t)
)
, (6.22)

ẋ2 =
√
2 ε−1 cos

(
ε−2t+ c(x2(t− τdε

2))
)

(6.23)

By applying the formulas presented in this section, we obtain the averaged systems:

˙̄x1 = − dc

dx
(x̄1(t− τdε

2))
(
cos(τd) + c(x̄1(t− 2τdε

2)) sin(τd)
)

(6.24)

˙̄x2 = − dc

dx
(x̄2(t− τdε

2)) cos
(
τd + c(x̄2(t− τdε

2))− c(x̄2(t− 2τdε
2))
)

(6.25)

For sufficiently small ε, the difference between the state and its delay becomes insignificant.

In that case, we have that x̄i(t−2τdε
2) ≈ x̄i(t−τdε2) ≈ x̄i(t), which implies that the averaged
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systems may be approximated by finite dimensional counterparts:

˙̄x1 = − cos(τd)
dc

dx
− sin(τd)c(x̄1)

dc

dx
(6.26)

˙̄x2 = − dc

dx
cos (τd) (6.27)

Nevertheless, we observe the drastic difference in behavior between the two systems when

τd ̸= 0. For instance, when τd = π/2, the averaged systems are given by:

˙̄x1 = −c(x̄1)
dc

dx
, ˙̄x2 = 0 (6.28)

To demonstrate the drastic difference in the behavior of these systems, let us consider the

situation where the function c(·) is given by:

c(x) =
1

2
x2 (6.29)

Therefore, the two systems will be given by:

˙̄x1 = −1

2
x̄31, ˙̄x2 = 0 (6.30)

We observe how the origin for the first system is stable, though it is only asymptotically

stable compared to exponential stability when τd = 0, whereas the second system is only

marginally stable.

Even more disturbingly, as soon as τd is larger than π/2, say τd = 3π/4, one of the systems

becomes unstable while the other system bifurcates leading to the creation of two additional

exponentially stable equilibria while simultaneously destabilizing the original equilibrium at

the origin:

˙̄x1 =
1√
2
x̄1

(
1− 1

2
x̄21

)
, ˙̄x2 =

1√
2
x̄2 (6.31)
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Figure 6.1: Time response of the time-delayed system for various values of τd.

We visualise this drastic change in the behavior by providing numerical simulation results

for both systems, which are shown in figure 6.1. It is, therefore, clear that highly oscillatory

systems are severely vulnerable to infinitesmal delays. One is naturally led to inquire after the

reason behind this vulnerability. Intuitively, the reason behind this vulnerability stems from

the manner in which higher-order effects manifest in highly oscillatory systems. Second-

order effects are aptly named so because they only appear naturally to second-order. In

highly oscillatory systems, the vector fields responsible for generating second-order effects are

amplified to force their effects to appear as the leading order. As a consequence, minute time-

delays in the original time-scale of the dynamics directly affect the phase of the oscillations

that interact with one-another and produce the second-order effects. This is understandable

since one is attempting to perform first-order actions (i.e. gradient ascent/descent) using

zeroth-order information (i.e. function evaluations). In this setting, there is a fundamental

trade-off between the speed and domain of attraction and the robustness to infinitesmal

time-delays. This has been recognized early on in the literature of open-loop vibrational

stabilization [62, 63, 64]. Here, we extend this analysis to the class of highly oscillatory
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systems.

It is worth mentioning that this vulnerability does not appear when one allows the dynamics

to evolve on their natural time-scale. That is, when second-order effects are not amplified

using large gains, the vulnerability to infinitesmal time-delays is no longer present.

6.2 The finite delay case

Now suppose instead that the delay is not infinitesimal. That is, suppose that td = O(1). In

this case, the time scaling τ = ε−2t will lead to a system of the form:

dx̄

dτ
= ε f1(x(τ),x(τ − td/ε

2), τ) + ε2f2(x(τ),x(τ − td/ε
2), τ) (6.32)

It is clear that the averaging of this system is much more complicated because in the limit

as ε→ 0, the delay becomes infinite. Indeed, one cannot perform a time-scale change to put

the system on the averaging canonical form. That is, one has to deal with the system in the

original time-scale:

ẋ =
2∑

k=1

εk−2fk(x,x−1, ε
2t) +O(ε) (6.33)

In order to proceed with the analysis, we shall attempt, at least formally, to use the same

near-identity transform:

x = x̄+ εu1(x̄, x̄−1ε
2t) + ε2u2(x̄, x̄−1, x̄−2, ε

2t) (6.34)
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Computing the derivative of both sides with respect to t, we obtain:

ẋ = ˙̄x+ ε
(
ε−2∂3u1(x̄, x̄−1, ε

−2t) + ∂1u1(x̄, x̄−1, ε
2t) ˙̄x+ ∂2u1(x̄, x̄−1, ε

2t) ˙̄x−1

)
+ ε2

(
ε−2∂4u2(x̄, x̄−1, x̄−2, ε

−2t) + ∂1u2(x̄, x̄−1, x̄−2, ε
2t) ˙̄x

+ ∂2u2(x̄, x̄−1, x̄−2, ε
2t) ˙̄x−1 + ∂3u2(x̄, x̄−1, x̄−2, ε

2t) ˙̄x−2

) (6.35)

Substituting with the expression for x and expanding in a Taylor series, we obtain that:

ẋ = ε−1f1(x̄, x̄−1, ε
−2t) + ∂1f1(x̄, x̄−1, ε

−2t)u1(x̄, x̄−1, ε
2t)

+ ∂2f1(x̄, x̄−1, ε
−2t)u1(x̄−1, x̄−2, ε

−2(t− td)) +O(ε)

(6.36)

Furthermore, we let:

˙̄x = f̄(x̄, x̄−1, x̄−2, td, ε) (6.37)

By matching the coefficient of ε−1 we obtain the homological equation:

∂3u1(x̄, x̄−1, ε
−2t) = f1(x̄, x̄−1, ε

−2t), (6.38)

and by matching the coefficient of O(1) we obtain the homological equation:

∂4u2(x̄, x̄−1, x̄−2, ε
−2t) = ∂1f1(x̄, x̄−1, ε

−2t)u1(x̄, x̄−1, ε
−2t)

+ ∂2f1(x̄, x̄−1, ε
−2t)u1(x̄−1, x̄−2, ε

−2t− ε−2td)

− f̄(x̄, x̄−1, x̄−2, td, ε)

(6.39)

If we define:

u1(x̄, x̄−1, τ) =

ˆ
f1(x̄, x̄−1, τ) dτ (6.40)
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where the integral is considered as an anti-derivative, we can define the vector field f̄ by:

f̄(x̄, x̄−1, x̄−2, td, ε) =
1

T

ˆ T

0

(
∂1f1(x̄, x̄−1, τ)u1(x̄, x̄−1, τ)

+∂2f1(x̄, x̄−1, τ)u1(x̄−1, x̄−2, τ − ε−2td)

)
dτ

(6.41)

and the averaged system in this case is given by:

˙̄x = f̄(x̄, x̄−1, x̄−2, td, ε) (6.42)

We observe that the averaged system depends explicitly on td and on ε. Notice, however,

that the averaged system needs more information than the original system. In particular,

the averaged system depends on a twice-delayed state even when the original system depends

only on a once-delayed state. This fact translates to an ambiguity regarding the behavior of

the averaged system until sufficiently long time has passed. In particular, During the interval

[−td, 0), the averaged system and the original system have the same initial condition and so

they must coincide. However, during the interval [0, td), the original system will have started

to evolve according to the time-varying first-order dynamics whereas the averaged system is

still in the initial condition phase. Therefore, the approximation provided above only works

beyond the interval [−td, td) and we are required to supply the averaged system with the

remaining initial condition on the interval [0, td). This is done by inverting the near-identity

transform:

x(t) = x̄(t) + εu1(x̄(t),x(t− td), ε
−2t), ∀t ∈ [0, td) (6.43)

We now illustrate the nature of the approximation using the two systems considered in the

previous section.
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Consider the two systems:

ẋ1 =,
√
2 ε−1 cos

(
ε−2t+ c(x1(t− td))

)
(6.44)

ẋ2 =
√
2 ε−1

(
cos(ε−2t)− c(x2(t− td)) sin(ε

−2t)
)

(6.45)

where the function c(·) is a smooth convex function. By applying the formulas presented in

this section, we obtain the averaged systems:

˙̄x1 = − dc

dx
(x̄1(t− td)) cos

(
tdε

−2 + c(x̄1(t− td))− c(x̄1(t− 2td))
)

(6.46)

˙̄x2 = − dc

dx
(x̄2(t− td))

(
cos(tdε

−2) + c(x̄2(t− 2td)) sin(tdε
−2)
)

(6.47)

In contrast to the previous section, we can no longer obtain a finite dimensional approxi-

mation of these systems due to the fact that the delay is no longer infinitesmal. Yet, the

trajectories of the averaged systems faithfully track the trajectories of the original system

for sufficiently small ε. We illustrate this fact using numerical simulations. Let us consider

the case where the function c(·) is given by:

c(x) =
2x2

2 + x2
(6.48)

Therefore, the averaged systems are given by:

˙̄x1 = − 8x̄2(t− td)

(2 + x̄1(t− td)2)2
cos

(
tdε

−2 +
2x̄1(t− td)

2

2 + x̄1(t− td)2
− 2x̄1(t− 2td)

2

2 + x̄1(t− 2td)2
)

)
(6.49)

˙̄x2 = − 8x̄2(t− td)

(2 + x̄2(t− td)2)2

(
cos(tdε

−2) +
2x̄2(t− 2td)

2

2 + x̄2(t− 2td)2
sin(tdε

−2)

)
(6.50)

First, let us consider the situation in which:

cos(tdε
−2) = 1, sin(tdε

−2) = 0, (6.51)
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which leads to the relation td = 2πℓε2 between the delay td and the small parameter ε where

ℓ ∈ N. Consider the sequence:

{εk}∞k=1, εk =
1√
2πk

(6.52)

and observe that εk → 0, and that td = 2πℓε2k = ℓ/k. Therefore, we make the delay as large

as we want for any k by selecting ℓ ∈ N sufficiently large. In this situation, the averaged

systems reduce to:

˙̄x1 = − 8x̄1(t− ℓ/k)

(2 + x̄1(t− ℓ/k)2)2
cos

(
2x̄1(t− ℓ/k)2

2 + x̄1(t− ℓ/k)2
− 2x̄1(t− 2ℓ/k)2

2 + x̄1(t− 2ℓ/k)2
)

)
(6.53)

˙̄x2 = − 8x̄2(t− ℓ/k)

(2 + x̄2(t− ℓ/k)2)2
(6.54)

Fix k = 12, and let us consider three situations where ℓ ∈ {1, 8, 16}. Simulation results are

shown in figure 6.2. We observe that the gradual increase in the time-delay leads to gradually

increasing the instability of the system. Indeed, when the delay becomes sufficiently large,

a limit cycle appears in the averaged system. Nevertheless, the averaged systems described

by our formulas faithfully track the original system.

We now consider a different situation where:

cos(tdε
−2) = 0, sin(tdε

−2) = 1, (6.55)

which leads to the relation td = (π/2+2πℓ)ε2 between the delay td and ε where ℓ ∈ N. Once

again, consider the sequence:

{εk}∞k=1, εk =
1√
2πk

(6.56)

and observe that εk → 0. In addition, observe that td = (4ℓ + 1)/(4k), and therefore, by

selecting ℓ sufficiently large, we can make the delay as large as we want. We observe that in
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Figure 6.2: Time response of the time-delayed system for various values of td.

this situation, the averaged systems simplify to:

˙̄x1 = 0 (6.57)

˙̄x2 = − 16x̄2(t− ℓ/k)x̄2(t− 2td)
2

(2 + x̄2(t− ℓ/k)2)2(2 + x̄2(t− 2td)2)
(6.58)

Let us fix k = 12, and simulate the system for various values of ℓ. The response is shown in

figure 6.3. We observe how the first system is marginally stable for all values of the time-

delay where as the gradual increase in the delay progressively degrades the stability of the

102



Figure 6.3: The response of the averaged delayed systems for td = (4ℓ + 1)/(48), ℓ ∈
{1, 12, 18, 22, 24, 30}.

equilibrium point at the origin until it becomes a limit cycle. In both cases, the averaged

systems faithfully track the trajectories of the original systems.

Finally, let us consider the situation in which:

cos(tdε
−2) = − 1√

2
, sin(tdε

−2) =
1√
2

(6.59)

which leads to the relation tdε
−2 = 3π/8 + 2πℓ between the delay td and ε where ℓ ∈ N. We
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observe that in this situation, the averaged systems simplify to:

˙̄x1 = − 4
√
2x̄2(t− td)

(2 + x̄1(t− td)2)2
cos

(
3π

8
+

2x̄1(t− td)
2

2 + x̄1(t− td)2
− 2x̄1(t− 2td)

2

2 + x̄1(t− 2td)2
)

)
(6.60)

˙̄x2 = − 4
√
2x̄2(t− td)

(2 + x̄2(t− td)2)2

(
2x̄2(t− 2td)

2

2 + x̄2(t− 2td)2
− 1

)
(6.61)

Once again, consider the sequence:

{εk}∞k=1, εk =
1√
2πk

(6.62)

and observe that εk → 0. In addition, observe that td = (8ℓ + 3)/(8k), and therefore, by

selecting ℓ sufficiently large, we can make the delay as large as we want. We fix k = 12

and simulate the system for various values of ℓ. The simulation results are shown in figure

6.4. As predicted by our formulas, there are two additional equilibria at x = ±
√
2 for the

second system. Moreover, these equilibria are exponentially stable when the delay is small.

Furthermore, as the delay is gradually increased, the stability of the equilibria degrades

progressively until, for sufficiently high delay, they turn into limit cycles. Furthermore, the

first system is unstable as predicted by our formulas. Finally, we observe that the trajectories

of the averaged systems faithfully track their original counterparts.
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Figure 6.4: The response of the averaged delayed systems for td = (8ℓ + 3)/(96), ℓ ∈
{1, 12, 18, 22, 26, 30}.
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Chapter 7

Conclusion and Future Work

In this thesis, we revisited the theory of higher-order averaging, particularly second-order

averaging, with an emphasis on highly oscillatory systems. We have shown that the averaging

theorem is applicable to this class of systems. In addition, we combined singular perturbation

and averaging on multiple scales in order to analyze a class of highly oscillatory systems that

arises in extremum seeking applications. Finally, we investigated the effect of time-delays,

infinitesmal and finite, on the behavior of highly oscillatory systems using the methodology

of averaging and numerical simulations.

In addition to the theoretical contributions of the thesis, we considered the application of

sperm chemotaxis in biology. We established a novel connection between helical klinotaxis,

the navigation strategy of sea urchin sperm cells, and extremum seeking control. Using the

tools developed in this thesis, we were able to show that the seemingly discontinuous observed

behavior of sperm cells may arise from a continuous dynamical description provided that an

appropriate time-scale separation exists between the dynamics of motion and the dynamics

of the signaling pathway. Unlike previous models of this phenomenon in the literature,

our model is continuous and does not employ any threshold-based switching rules, thereby
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making it more natural for a cellular implementation.

Based on the novel connection we established in this thesis, we were able to propose sev-

eral 3D source seeking algorithms for different kinematic vehicle configurations. Unlike all

existing algorithms in the literature, our algorithms do not require any information on the

attitude of th seeking agent. We analyze the behavior of the proposed algorithms using the

theoretical tools of singularly perturbed averaging on multiple scales that were developed in

the thesis.

The work in this thesis can be extended on several fronts. We now discuss such extensions

that will be pursued in the future.

7.1 Bio-Inspired 3D Source Seeking

The algorithms proposed for 3D source seeking were inspired by the chemotactic navigation

of sperm cells. Since sperm cells swim in the low Reynolds number fluid regime, their

motion can be well-approximated with kinematic models. Nevertheless, robots that swim on

the macro scale swim in a relatively high Reynolds number fluid regime, and therefore the

effects of inertia cannot be neglected. It is, therefore, of practical importance to consider

extensions of the methods developed in this thesis to the case where inertial effects are not

neglected.

In addition, in the presence of obstacles, it may be of interest to navigate the environment

while circumventing the obstacles. Moreover, one may consider the situation in which mul-

tiple, rather than a single, vehicles employ 3D source seeking algorithms for cooperative

targeting. Each of these extensions will be considered in future work.
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7.2 Convergence Proofs for Averaging Time-Delayed

Systems

Our analysis of highly oscillatory time-delayed systems in this thesis has been formal. Despite

the fact that such an analysis is absent from the literature, it is important to obtain rigorous

convergence proofs to relate the trajectories of the averaged and the original systems.

It is worth noting that such an endeavour is not trivial. Already for the first-order averag-

ing case and finite delays, one has to work with ordinary differential equations on infinite

dimensional abstract Banach spaces [61].

In addition, it is of interest to attempt to exploit this vulnerability to infinitesmal time-delays

in an adversarial setting where an attacker attempts to confuse or destabilize a stable highly

oscillatory system.

Finally, knowing this vulnerability, are there any solutions one can implement in order to

increase the robustness of the system. That is, with an incomplete information regarding

the time-delay, is it possible to estimate and compensate for the presence of the delay in a

highly oscillatory system. Such questions may be addressed in future work.
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Appendix A

Proofs of Chapter 1

A.1 Proof of Theorem 2.0.1

Proof. Let J0 > 0 be such that the level set

LJ0 =
{
x ∈ Rn

∣∣J̃(x) ≤ J0
}
⊂ D (A.1)

Fix an ϵ > 0, and let:

y0 >
1

2κ1

(
1 +

√
1 + 8κ1ϵ

)
, z0 > J0 + y0 (A.2)

The functions Fs(·), s ∈ {1, 2} are locally Lipschitz in ∆ϵ. Hence, absolutely continuous

maximal solutions of (2.6) with θ(0) ∈ ∆ϵ exist and are unique. We consider a maximal

solution θ : I → ∆ϵ of (2.6) with θ(0) ∈ ∆0 and apply Lemma 2.0.1 to the functions

gi, i ∈ {1, 2, 3} defined by Eq. (2.4). The next step is to establish the bounds on F gi , Rgi
1 , R

gi
2
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in Lemma 2.0.2 for gi(·), i ∈ {1, 2, 3}. We compute

F g1(θ) = −∥∇J(x)∥2 (A.3a)

F g2(θ) = −z + J(x) (A.3b)

F g3(θ) =
η(J̃(x)2−

1
m )

(z − J(x))
− η(J̃(x)2−

1
m ) ∥∇J(x)∥2

(z − J(x))2
(A.3c)

−
(
2− 1

m

)
J̃(x)1−

1
mη′(J̃(x)2−

1
m ) ∥∇J(x)∥2

z − J(x)
(A.3d)

where η(y) = tanh(y). We note that in case of g2, the remainder termsRg2
1 , R

g2
2 in Lemma 2.0.1

identically vanish, and the only remaining term inside the integral is

F g2(θ) = −z + J(x) < 0, ∀θ ∈ epiS(J) (A.4)

We conclude, similar to the proof of Lemma 2.0.2, that g2(θ(t)) ≤ 0, ∀t ∈ I, ∀ω ∈ (0,∞).

Due to Assumption 2.0.1, we know that ∀θ ∈ ∆1
ϵ , we have

F g1(θ) ≤ −κ1J
2− 1

m
0 (A.5)

Furthermore, by definition of g3(·), and thanks to the property that tanh(y) ≤ y, ∀y ≥ 0

and the choice of y0, we have:

F g3(θ) ≤ y0 + ϵ− κ1y
2
0 < −ϵ, ∀θ ∈ ∆3

ϵ (A.6)

The bounds on the remaindersRg2
1 , R

g2
2 can be explicitly computed, as outlined in Lemma 2.0.3.

We now apply Lemma 2.0.2 with the bounds established above to conclude that ∃ω∗ ∈ (0,∞)

such that ∀ω ∈ (ω∗,∞), ∀θ(0) ∈ ∆0 and maximal solution θ : I → ∆ϵ, where 0 ∈ I =
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(t−e , t
+
e ), we have :

lim sup
τ→t+e

gi(θ(τ)) < ϵ, ∀i ∈ {1, 2, 3} (A.7)

We note that the only remaining boundary in the definitions of ∆0,∆ϵ is the point (x
∗, J(x∗)).

Clearly ż(t) < 0. Moreover, we have that:

ż = −z + J(x) ≥ −z + J(x∗) =⇒ z̃(t) ≥ z̃(0)e−t > 0, (A.8)

where z̃(t) = z(t)− J(x∗). Thus for any finite t+e > 0, we have that

lim
τ→t+e

z(τ)− J(x1(τ)) > 0 (A.9)

This implies that ∀ω ∈ (ω∗,∞), maximal solutions that start inside ∆0 do not escape ∆ϵ

in any finite time, hence [0,∞) ⊂ I. Moreover, since z(t) is bounded below and strictly

decreasing, we have that

lim
τ→+∞

z(τ)− J(x1(τ)) = 0 (A.10)

Consequently, we see that due to the definition of g3(·), it must be true that

lim
τ→+∞

η(J̃(x1(τ))
2− 1

m ) = 0 =⇒ limx1(τ) = x∗ (A.11)

Combining all of the above, we conclude that:

lim
τ→+∞

θ(τ) = (x∗, J(x∗)) (A.12)
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A.2 Proof of Lemma 2.0.2

Proof. Fix δ ∈ (0, ϵ). If gi(ζ(t)) < δ,∀t ∈ [0, t+e ), the proof is complete. If not, then, by

continuity of gi ◦ ζ and the Intermediate Value Theorem, ∃t1, t2 ∈ I, t2 > t1 ≥ 0, where

gi(ζ(t1)) = 0, gi(ζ(t2)) = δ, and ζ(t) ∈ ∆i
ϵ, ∀t ∈ [t1, t2]. Using the bounds on Rgi

1 , R
gi
2 , F

gi

and Lemma 2.0.1, we get

gi(ζ(t2)) ≤�����:0
gi(ζ(t1)) +

2cgi1√
ω

+

t2ˆ

t1

(
− bgi +

cgi2√
ω

)
dt

We define

ω∗ = max
i∈{1,2,...,r}

{(2cgi1
δ

)2
,
(cgi2
bgi

)2}
and observe that ∀ω ∈ (ω∗,∞),∀i ∈ {1, 2, ..., r}, we have

gi(ζ(t2)) < δ =⇒ lim sup
τ→t+e

gi(ζ(τ)) < ϵ

A.3 Proof of Lemma 2.0.3

Proof. Via direct integration, the following bounds can be established

|Uλ1(t)| ≤
a1√
ω
, |Uλ1,λ2(t)| ≤

a1
ω
, (A.13a)

|Uλ1,λ2(t)uλ3(t)| ≤
a1√
ω

(A.13b)

∀λ1, λ2, λ3 ∈ Λ, ∀t ∈ R, where a1 > 0 depends on the choice of the frequencies ωj. Due to

space constraints, we only show how to establish a bound on one of the highest order terms
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in Rg3
2 (·, ·). The rest of the bounds can be established following the same approach. Let

y = z − J(x). We compute

Lf(i,1)Lf(i,1)Lf(i,1)g3(θ) = ∂3i g3(θ)F1(y)
3 − 2∂2i g3(θ) (A.14a)

×F ′
1(y)F1(y)

2∂iJ(x)− ∂2i g3(θ)F
′
1(y)F1(y)

2∂iJ(x) (A.14b)

+∂ig3(θ)F
′′
1 (y)F1(y)

2∂iJ(x)
2 + ∂ig3(θ)F

′
1(y)

2 (A.14c)

×F1(y)∂iJ(x)
2 − ∂ig3(θ)F

′
1(y)F1(y)

2∂2i J(x) (A.14d)

It can be shown by direct computation that, for y > 0, we have

|F1(y)| ≤
√
y, |F ′

1(y)| ≤
2
√
y
, |F ′′

2 (y)| ≤
2

y
√
y

∂ig3(θ) =(2− 1

m
)
J̃(x)1−

1
m∂iJ(x)

z − J(x)
sech(J̃(x)2−

1
m )2

+
tanh(J̃(x)2−

1
m )∂iJ(x)

(z − J(x))2

|∂ig3(θ)| ≤
2J̃(x)1−

1
m |∂iJ(x)|

|z − J(x)|
+
J̃(x)2−

1
m |∂iJ(x)|

(z − J(x))2

Using Assumption 2.0.1, we can see that

|∂iJ(x)| ≤ ∥∇J(x)∥≤
√
κ2J̃(x)

1− 1
2m

Moreover, we know that

tanh(J(x)2−
1
m )

z − J(x)
≤ y0 + ϵ, ∀θ ∈ ∆3

ϵ

Thus, it holds that

|∂ig3(θ)| ≤
√
κ2(y0 + ϵ)

J̃(x)2−
3

2m

tanh(J̃(x)2−
1
m )

(2 + J̃(x)) (A.15)
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For θ ∈ ∆3
ϵ , we have J̃(x) ≤ J0, and |F ′(y)F (y)| ≤ 2. Thus, we have:

|∂ig3(θ)F ′(y)F (y)∂iJ(x)| ≤ a2
J̃(x)2−

1
m

tanh(J̃(x)2−
1
m )

where a2 = κ2J
1− 1

m
0 (y0 + ϵ)(2 + J0). Finally, it can be shown that

J̃(x)2−
1
m

tanh(J̃(x)2−
1
m )

≤ J̃(x)2−
1
m + 1

This leads to the bound:

|∂ig3(θ)F ′(y)F (y)∂iJ(x)| ≤ a3

where a3 = a2(1 + J
2− 1

m
0 ). Following a similar approach, it can be shown that all the terms

in the Lie derivative are bounded, |Lf(i,1)Lf(i,1)Lf(i,1)g3(θ)| ≤ a4, where a4 > 0 is the sum of

all the bounds on the individual terms. Consequently, we have established the bound

|Lf(i,1)Lf(i,1)Lf(i,1)g3(θ)U(i,1),(i,1)(t)u(i,1)(t)| ≤
a5√
ω

∀θ ∈ ∆3
ϵ ,∀t ∈ R, where a5 = a1a4 > 0. Following this procedure for each individual term in

the remainders will give the explicit bounds on Rgi
1 , R

gi
2 , i ∈ {1, 2, 3} in terms of the constants

κ1, κ2, γ1, γ2, ϵ, J0, y0, z0, ωj.
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Appendix B

Proof of Theorem 3.2.1

Proof. The idea of the proof hinges on a two-step procedure in which the first step is second-

order averaging of the system (3.8) on the time-scale ε−2t, followed by first-order averaging

of the resulting system on the time-scale ε−1t; hence the ‘recursive’ nature. We begin the

proof by applying the time-scaling τ = ε−2(t− t0) + t0 thus yielding the system:

dx

dτ
=
∑
k=1

εk fk(x, ε
2τ, ετ, τ) +O(ε3) (B.1)

which is on the averaging canonical form. Note that we suppressed the dependency on the

initial time t0 for brevity, but it is implied. By applying the stroboscopic averaging procedure

for systems with slow time dependence to second-order in ε [6, Section 3.3], we obtain the

system:

dx̄

dτ
= ε2f̄(x̄, ε2τ, ετ) (B.2)
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where the vector field f̄ is given by:

f̄(x̄, t, σ) =
1

T2

ˆ T2

0

(
f2(x̄, t, σ, τ) +

1

2

[ˆ τ

0

f1(x̄, t, σ, ν)dν, f1(x̄, t, σ, τ)

])
dτ (B.3)

A second time-scale change to σ = ε(τ − t0) + t0 leads to the system:

dx̄

dσ
= ε f̄(x̄, εσ, σ) (B.4)

which is again on the averaging canonical form. By applying the stroboscopic periodic

averaging procedure for systems with slow time dependence to first-order in ε [6, Section

3.3], we obtain the system:

d¯̄x

dσ
= ε ¯̄f(¯̄x, εσ) (B.5)

A final time-scale change to t = ε(σ − t0) + t0 brings the system to the fully averaged form:

˙̄̄x = ¯̄f(¯̄x, t), ¯̄x(t0) = x0 (B.6)

From the assumptions of the theorem, we know that ∀x0 ∈ K, ∀t0 ∈ R, a unique trajectory

¯̄x(t) of the system (B.6) exists on the compact time interval t ∈ [t0, t0 + tf ]. Moreover. we

know that the vector fields fk are uniformly bounded in the second argument, which implies

that there exists a compact subset M ⊂ Rn1 such that ¯̄x(t) ∈ M, ∀t ∈ [t0, t0 + tf ], ∀x0 ∈

K, ∀t0 ∈ R. Hence, the first-order periodic averaging theorem [6] ensures the existence of

ε1, C1 ∈ (0,∞) such that ∀ε ∈ (0, ε1), ∀x0 ∈ K, ∀t0 ∈ R, a unique trajectory x̄(σ) of the

system (B.4) exists on the time interval σ ∈ [t0, t0 + tf/ε] and satisfies:

∥¯̄x(εσ)− x̄(σ)∥ ≤ C1ε, ∀σ ∈ [t0, t0 + tf/ε] (B.7)
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Equivalently, a unique trajectory x̄(ετ) of the system (B.2) exists on the compact time in-

terval τ ∈ [t0, t0 + tf/ε
2] and x̄(ετ) ∈ Mε1 , where the compact subset Mε1 is defined by

Mε1 = {x̄ ∈ Rn1 | infx∈K ∥x− x̄∥ ≤ C1ε1}. Hence, the conditions of the second-order peri-

odic averaging theorem with trade-off [6, Section 2.9], [27] are satisfied and we are guaranteed

the existence of ε2 ∈ (0,∞) such that ∀ε ∈ (0, ε2), ∀x0 ∈ K, ∀t0 ∈ R a unique trajectory

x1(τ) of the system (B.1) exists on the compact time interval τ ∈ [t0, t0 + tf/ε
2] and satisfies:

∥x̄(ετ)− x1(τ)∥ ≤ C2ε, ∀τ ∈
[
0, tf/ε

2
]

(B.8)

Let ε∗ = min{ε1, ε2} and observe that it follows from the triangle inequality that ∃C > 0

such that ∀ε ∈ (0, ε∗):

∥¯̄x(t)− x1(t)∥ ≤ C ε, ∀t ∈ [t0, t0 + tf ] (B.9)
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Appendix C

Proof of Theorem 3.3.1

Proof. Define the coordinate shift:

y2 = x2 −
1∑

k=0

εkϕk(x1, t, σ) (C.1)

where the map ϕ1 by the formula:

ϕ1(·, σ) =
(
I−ΦAϕ

(σ + T2, σ)
)−1
ˆ σ+T2

σ

ΦAϕ
(σ + T2, ν)bϕ(·, ν) dν, (C.2)

where the matrix-valued map Aϕ is defined by:

Aϕ(x1, t, σ) = ∂2f2,1(x1,ϕ0(x1, t, σ), t, σ), (C.3)

the matrix-valued map ΦAϕ
is the fundamental matrix associated with the linear time-

periodic system:

dy2

dσ
= Aϕ(·, σ)y2, (C.4)
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and the vector-valued map bϕ is defined by:

bϕ(x1, t, σ) = f2,2(x1,ϕ0(x1, t, σ), t, σ)− ∂tϕ0(x1, t, σ)

− ∂1ϕ0(x1, t, σ)f1,2(x1,ϕ0(x1, t, σ), t, σ)

(C.5)

Then, change the timescale to σ = ε−1(t− t0) + t0 to obtain the system:

dx1

dσ
= ε f̃1,2(x1,y2, t, σ) +O(ε2), x1(t0) = x1,0 (C.6)

dy2

dσ
=

2∑
k=1

εk−1f̃2,k(x1,y2, t, σ) +O(ε2), y2(t0) = x2,0 −
1∑

k=0

εkϕk(x1,0, t0, t0) (C.7)

where the vector fields f̃j,k are given by:

f̃2,1(x1,y2, t, σ) = f2,1(x1,y2 + ϕ0(x1, t, σ), t, σ)− ∂σϕ0(x1, t, σ) (C.8a)

f̃1,2(x1,y2, t, σ) = f1,2(x1,y2 + ϕ0(x1, t, σ), t, σ) (C.8b)

f̃2,2(x1,y2, t, σ) = f2,2(x1,y2 + ϕ0(x1, t, σ), t, σ)

+ ∂2f2,1(x1,y2 + ϕ0(x1, t, σ), t, σ)ϕ1(x1, t, σ)

− ∂1ϕ0(x1, t, σ)̃f1,2(x1,y2, t, σ)− ∂tϕ0(x1, t, σ)

− ∂σϕ1(x1, t, σ)

(C.8c)

We observe that, due to Assumption 3.3.1 and the definition of the map ϕ1, we have that:

f̃2,1(x1, 0, t, σ) = 0, f̃2,2(x1, 0, t, σ) = 0 (C.9)

Let (x1(σ; t0,x1,0),y2(σ; t0,y2,0)) denote the unique maximal solution starting at the initial

condition x1(t0) = x1,0 and y2(t0) = y2,0. Define the time σe by:

σe = inf
T
{T ∈ (0,∞) :∃!(x1(σ; t0,x1,0),y2(σ; t0,y2,0)),

∀σ ∈ [t0, t0 + T ), t0 ∈ R, (x1,0,y2,0) ∈ B1 × B2}
(C.10)
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Consider the trajectories of the reduced order system given by:

dx̃1

dσ
= ε f̃1,1(x̃1, 0, t, σ), x̃1(t0) = x1,0 (C.11)

From the averaging theorem, we know that ∃ε0 ∈ (0,∞) such that ∀x1,0 ∈ B1, ∀t0 ∈ R, and

∀ε ∈ (0, ε0), unique trajectories x̃1(σ; t0,x1,0) of the system (C.11) exist ∀σ ∈ [t0, t0 + tf/ε]

and are contained in a compact subset N1 ⊂ Rn1 . Define a tubular neighborhood O1(σ)

around x̃1(σ; t0,x1,0) by:

O1(σ) = {x1 ∈ Rn1 : ∥x1 − x̃1(σ; t0,x1,0)∥< D/2} (C.12)

and observe that the component x1(σ; t0,x1,0) of the solution (x1(σ; t0,x1,0),y2(σ; t0,y2,0))

starts inside O1(σ). Define the compact subset:

M1 = {x′
1 ∈ Rn1 : infx1∈N1∥x1 − x′

1∥< D/2} (C.13)

From the continuity of solutions we have that one of the following two cases holds: C1)

∃σD ∈ (0, t0) such that x1(σ; t0,x1,0) ∈ O1(σ), ∀σ ∈ [t0, t0 + σD) and ∥x̃1(σD; t0,x1,0) −

x1(σD; t0,x1,0)∥= D/2, or C2) x1(σ; t0,x1,0) ∈ O1(σ), ∀σ ∈ [t0, t0+σe). The proof in case C2)

is trivial. Suppose that case C1) holds and observe that x1(σ; t0,x1,0) ∈ M1,∀σ ∈ [t0, t0+σD].

Let c ∈ (0,∞) be such that the compact subset N2 = {y2 ∈ Rn2 : ∥y2∥≤
√
c/κ2} contains

the subset B2, and define the compact subset M2 by:

M2 = {y2 ∈ Rn2 : ∥y2∥≤
√
c/κ1} (C.14)
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In addition, define the compact subset K = M1 × M2 and compute the derivative of the

Lyapunov function V along the trajectories:

dV

dσ
= ∂2V (y2, σ) +

1∑
k=0

εk∂1V (y2, σ)̃f2,k(x1,y2, t, σ) +O(ε2) (C.15)

≤ −(κ3 + ε κ4LK,̃f2,2
)∥y2∥2+BK,̃f2,3

ε2 (C.16)

where we use the fact that the O(ε2)-terms are uniformly bounded on the compact subset

K, and the vector field f̃2,2 has an equilibrium point at y2 = 0 and is Lipschitz continuous.

Let ε2 = min{ε0, κ3/(2κ4LK,̃f2,2
)}, and observe that ∀ε ∈ (0, ε2), ∀(x1,y2) ∈ K, and ∀σ ∈ R,

we have that:

dV

dσ
≤ −κ3

2
∥y2∥2+BK,̃f2,3

ε2 (C.17)

Next, let ε3 = min{ε2,
√

(κ3 − κ4κ5)c/(4κ2BK,̃f2,3
)}, then observe that ∀ε ∈ (0, ε3), ∀(x1,y2) ∈

M1 × (M2\N2), and ∀σ ∈ R we have that dV/dσ ≤ 0, which implies that the solutions

(x1(σ; t0,x1,0),y2(σ; t0,y2,0)) stay in K, ∀σ ∈ [t0, t0 + σD]. Moreover, similar to [7, The-

orem 4.18], there exist positive constants γσ, λσ, κσ such that the following estimate holds

∀σ ∈ [t0, t0 + σD]:

∥y2(σ)∥< γσ ∥y2,0∥e−λσ(σ−t0) + κσ ε (C.18)

Define the ε-dependent time σε = max{0, log((γ
√
c/κ2)/(κσε))/λ}, and observe that ∀σ >

σε + t0 and ∀ε ∈ (0, ε3) we have that:

γσ ∥y2,0∥ e−λσ(σ−t0) < κσ ε, ∀y2,0 ∈ M2 (C.19)
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We now show that ∃ε4 ∈ (0, ε3) such that σε ≤ σD, ∀ε ∈ (0, ε4). To obtain a contradiction,

suppose the contrary, and estimate the difference:

∥x1(σ)− x̃1(σ)∥ ≤
ˆ σ

t0

BK,̃f1
ε dν ≤ BK,̃f1

ε(σ − t0) (C.20)

Therefore, we have that:

∥x1(t0 + σD)− x̃1(t0 + σD)∥ ≤ BK,̃f1
εσD ≤ BK,̃f1

εσε (C.21)

Observe that limε→0 εσε = 0, and therefore we are guaranteed the existence of ε4 ∈ (0, ε3)

such that ∀ε ∈ (0, ε4) we have that σεε < D/(4BK,̃f1
). In other words, we have that

∀ε ∈ (0, ε4):

∥x1(σD)− x̃1(σD)∥< D/4 (C.22)

contradicting the definition of σD, which proves the claim. Next, we show the existence

of ε5 ∈ (0, ε4) such that ∀ε ∈ (0, ε5) we have that L/ε < σD. To obtain a contradiction,

suppose the contrary and once again estimate the difference ∥x1(σ)− x̃1(σ)∥ on the interval

σ ∈ [t0 + σε, t0 + σD]:

∥x1(σ)− x̃1(σ)∥≤ ∥x1(t0 + σε)− x̃1(t0 + σε)∥+ε
∥∥∥∥ˆ σ

t0+σε

i(ν)dν

∥∥∥∥+ ˆ σ

t0+σε

BK,̃f1,3
ε2 dν

(C.23)

where the integrand i is given by:

i(ν) = f̃1,2(x1(ν),y2(ν), t(ν), ν)− f̃1,2(x̃1(ν), 0, t(ν), ν) (C.24)
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We proceed to estimate:

∥∥∥∥ˆ σ

t0+σε

i(ν)dν

∥∥∥∥ ≤
ˆ σ

t0+σε

(∥i1(ν)∥+ ∥i1(ν)∥)dν (C.25)

where the integrands i1 and i2 are given by:

i1(ν) = f̃1,2(x1(ν),y2(ν), t(ν), ν)− f̃1,2(x1(ν), 0, t(ν), ν) (C.26)

i2(ν) = f̃1,2(x1(ν), 0, t(ν), ν)− f̃1,2(x̃1(ν), 0, t(ν), ν) (C.27)

Using Lipschitz continuity, we obtain that:

∥∥∥∥ˆ σ

t0+σε

i(ν)dν

∥∥∥∥ ≤
ˆ σ

t0+σε

LK,̃f1,2
(∥y2(ν)∥+∥x1(ν)− x2(ν)∥)dν (C.28)

Substituting back and simplifying we obtain:

∥x1(σ)− x̃1(σ)∥ ≤ ∥x1(t0 + σε)− x̃1(t0 + σε)∥+
ˆ σ

t0+σε

LK,̃f1,2
ε ∥y2(ν)∥dν

+

ˆ σ

t0+σε

LK,̃f1,2
ε ∥x1(ν)− x2(ν)∥dν +BK,̃f1,3

σDε
2

(C.29)

Recall that:

∥x1(t0 + σε)− x̃1(t0 + σε)∥≤ BK,̃f1
σεε (C.30)

∥y2(σ)∥≤ 2κ ε, ∀σ ∈ [t0 + σε, t0 + σD] (C.31)

and therefore, we have that:

∥x1(σ)− x̃1(σ)∥≤ η(ε) +

ˆ σ

t0+σε

LK,̃f1,2
ε ∥x1(ν)− x2(ν)∥dν (C.32)
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where the function η(ε) is given by:

η(ε) = BK,̃f1
σεε+ 2κLK,̃f1,2

σDε
2 +BK,̃f1,3

σDε
2 (C.33)

From Grönwall’s inequality, we obtain that:

∥x1(σ)− x̃1(σ)∥≤ η(ε) exp
(
LK,̃f1,2

σDε
)

(C.34)

By assumption, we have that σD < L/ε, therefore we have that:

∥x1(σ)− x̃1(σ)∥≤ η(ε) exp
(
LK,̃f1,2

L
)

(C.35)

Observe, however, that limε→0 η(ε) = 0, and so we are guaranteed the existence of ε5 ∈ (0, ε4)

such that:

η(ε) < D exp
(
−LK,̃f1,2

L
)
/4 (C.36)

which implies that:

∥x1(t0 + σD)− x̃1(t0 + σD)∥< D/4 (C.37)

contradicting the definition of σD, which proves the claim. The lemma follows by reverting

back to the original time-scale t = ε (σ− t0)+ t0 and selecting a sufficiently small ε∗ ∈ (0, ε5)

such that ε∥ϕ1(x1, t, σ)∥< D/2.
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Appendix D

Proof of Theorem 3.4.1

Proof. We remark that parts of the proof are inspired by the proof of Lemma 1 in [4].

However, the major difference and a significant technical difficulty in our case compared to

[4] lies in the fact that only a single parameter is used to induce the time-scale separation

needed for both singular perturbation and averaging. A reader familiar with the literature of

perturbation theory will recognize this as a ‘distinguished limit’ in which several parameters

are assumed to have precise asymptotic orders with respect to a single parameter in the

system [43]. Due to the nature of the distinguished limit we choose here, the interaction

between the fast periodic time variable and the singularly perturbed part of the system is

not negligible and must be explicitly accounted for. In fact, the choice of the distinguished

limit we make here is precisely why our results capture the stable behavior of the class of

systems to which the motivational example (3.22) belongs, whereas the results in [4] fail to

do so. We emphasize that our results are not a special case of the results in [4].

We begin by applying the time scaling τ = ε−2(t − t0) + t0. In contrast to the standard

singular perturbation analysis (e.g. [7, Chapter 11], [4, Section I]), we augment the standard
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coordinate shift with a near-identity part:

y2 = x2 −φ0(x1, t)− εφ1(x1, t, τ)− ε2φ2(x1, t, τ), (D.1)

where the maps φi(x, t, τ) for i ∈ {1, 2} are the solutions to the linear non-homogeneous two

point boundary value problems:

∂τφi(x1, t, τ) = Aφ(x1, t, τ)φi(x1, t, τ) + bi(x1, t, τ) (D.2)

φi(x1, t, τ) = φi(x1, t, τ + T ) (D.3)

for i ∈ {1, 2}, where:

bφ,1(x1, t, τ) = f2,1(x1,φ0(x1, t), t, τ)− ∂1φ0(x1, t)f1,1(x1,φ0(x1, t), t, τ) (D.4)

bφ,2(x1, t, τ) = f2,2(x1,φ0(x1, t), t, τ)− ∂1φ0(x1, t)f1,2(x1,φ0(x1, t), t, τ)

− ∂1φ1(x1, t, τ)f1,1(x1,φ0(x1, t), t, τ)− ∂tφ0(x1, t)

+ ∂22f0,2(x1,φ0(x1, t), t, τ)[φ1(x1, t, τ)]

(D.5)

The following lemma is a simple consequence of Assumption 3.4.1 and standard linear sys-

tems theory:

Lemma D.0.1. Let Assumption 3.4.1 be satisfied. Then, the non-homogeneous BVPs (D.2)-

(D.3) have unique periodic solutions φi defined by:

φi(x, t, τ) =
(
I−ΦAφ(τ + Tτ , τ)

)−1
ˆ τ+Tτ

τ

ΦAφ(τ + Tτ , ν)bφ,i(x1, t, ν) dν (D.6)

Proof. The result can be verified by direct substitution.
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We observe that under this coordinate change and time scaling, we have that:

dx1

dτ
=

2∑
k=1

εk f̃1,k(x1,y2, t, τ) +O(ε3), x1(t0) = x1,0 (D.7a)

dy2

dτ
=

2∑
k=0

εk f̃2,k(x1,y2, t, τ) +O(ε3), y2(t0) = y2,0 (D.7b)

where the vector fields f̃j,k given by:

f̃1,1(x1,y2, t, τ) = f1,1(x1,y2 +φ0(x1, t), t, τ) (D.8a)

f̃2,0(x1,y2, t, τ) = f2,0(x1,y2 +φ0(x1, t), t, τ)

f̃1,2(x1,y2, t, τ) = f1,2(x1,y2 +φ0(x1, t), t, τ)

+ ∂2f1,1(x1,y2 +φ0(x1, t), t, τ)φ1(x1, t, τ)

(D.8b)

f̃2,1(x1,y2, t, τ) = f2,1((x1,y2 +φ0(x1, t), t, τ)

+ ∂2f2,0(x1,y2 +φ0(x1, t), t, τ)φ1(x1, t, τ)

− ∂1φ0(x1, t)f1,1(x1,y2 +φ0(x1, t), t, τ)− ∂3φ1(x1, t, τ)

(D.8c)

f̃2,2(x1,y2, t, τ) = f2,2(x1,y2 +φ0(x1, t), t, τ)

+ ∂2f2,0(x1,y2 +φ0(x1, t), t, τ)φ2(x1, t, τ)

+ ∂22f3,0(x1,y2 +φ0(x1, t), t, τ)[φ1(x1, t, τ)]

− ∂1φ0(x1, t)f1,2(x1,y2 +φ0(x1, t), t, τ)

− ∂1φ1(x1, t, τ)f1,1(x1,y2 +φ0(x1, t), t, τ)

− ∂tφ0(x1, t)− ∂3φ2(x1, t, τ)

(D.8d)

and the remainder terms are Lipschitz continuous and bounded on every compact subset

K ⊂ Rn1 × Rn2 , uniformly in t0 ∈ R, τ and ε ∈ [0, ε0] for some ε0 > 0, with Lipschitz

constants Lf1,k,K, Lf2,k,K > 0 and bounds Bf1,k,K, Bf2,k,K > 0. By virtue of the way in which

the maps φi(x1, t, τ) for i ∈ {1, 2} are defined, we observe that f̃1,1(x1, 0, t, τ) = f̃1(x1, t, τ),

f̃1,2(x1, 0, t, τ) = f̃2(x1, t, τ), and that f̃2,1(x1, 0, t, τ) = f̃2,2(x1, 0, t, τ) = 0, ∀x1 ∈ Rn1 , ∀τ ∈ R.
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That is, the origin y2 = 0 is an equilibrium point for the boundary layer model:

dy2

dτ
=

2∑
k=0

εk f̃2,k(x1,y2, t, τ), y2(t0) = y2,0 (D.9)

when x1 and t are treated as parameters. From second-order averaging [30, 6], we know that

∃ε0 ∈ (0,∞) such that ∀x1,0 ∈ B1, ∀t0 ∈ R, ∀ε ∈ (0, ε0), unique trajectories x̃1(t; t0,x1,0) of

the system (3.28) exist and x̃1(t; t0,x1,0) ∈ N1,∀t ∈ [t0, t0 + tf ] for some compact subset N1.

Equivalently, we know that x̃1(τ ; t0,x1,0) ∈ N1,∀τ ∈ [t0, t0+tfε
−2]. Due to Assumption 3.4.1,

we know that ∀(x1,0,y2,0) ∈ B1×B2, and ∀ε ∈ (0, ε0), unique trajectories of the system (D.7)

exist. Let [t0, t0+τe) with τe ∈ (0,∞) be the maximal interval of existence and uniqueness of

a given solution (x1(τ ; t0,x1,0),y2(τ ; t0,y2,0)). Define an open tubular neighborhood O1(τ)

around x̃1(τ ; t0,x1,0) by:

O1(τ) = {x ∈ Rn1 : ∥x− x̃1(τ ; t0,x1,0)∥< D}, (D.10)

and observe that the x1-component of the solution to (D.7) is initially insideO1(0). Moreover,

define the compact subset

M1 = {x1 ∈ Rn1 : inf
x′∈N1

∥x− x′∥< D} (D.11)

From Assumption 3.4.1, we know that there exists a function V ∈ C1(Rn2 ×R), and positive

constants κi, i ∈ {1, 2, 3, 4} such that:

κ1∥y2∥2≤ V (y2, τ) ≤ κ2∥y2∥2 (D.12a)

∂2V (y2, τ) + ∂1V (y2, τ )̃f2,0(x1,y2, t, τ) ≤ −κ3∥y2∥2 (D.12b)

∥∂1V (y2, τ)∥ ≤ κ4∥y2∥ (D.12c)

Let c ∈ (0,∞) be such that the compact subset N2 = {y2 ∈ Rn2 : ∥y2∥≤
√
c/κ2} contains
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the bounded set By2
, and define the compact subset M2 = {y2 ∈ Rn2 : ∥y2∥≤

√
c/κ1},

and let K = M1 ×M2. Finally, define the time τD as follows: x1(τ ; t0,x1,0) ∈ O1(τ), ∀τ ∈

[t0, t0+ τD), and ∥x1(t0+ τD; t0,x1,0)− x̃1(t0+ τD; t0,x1,0)∥= D, or τD = τe if x1(τ ; t0,x1,0) ∈

O1(τ), ∀τ ∈ [t0, t0 + τe). Then, we have the following lemma adapted from a portion of the

proof of Lemma 1 in [4]:

Lemma D.0.2. [4] Let the assumptions of Theorem 3.4.1 be satisfied. Then, there exist

constants λτ > 0, κτ > 0, γτ > 0, and ε2 ∈ (0, ε0) such that ∀ε ∈ (0, ε2), ∀(x1,0,y2,0) ∈

B1 × B2, the solution (x1(τ ; t0,x1,0),y2(τ ; t0,y2,0)) stays inside K, ∀τ ∈ [t0, t0 + τD], and:

∥y2(τ ; t0,y2,0)∥< γτ ∥y2,0∥e−λτ (τ−t0) + κτε
3
2 (D.13)

where the constants λτ > 0, κτ > 0, γτ > 0 are independent from the choice of ε.

We proceed to define ε3 = min{ε1, ε2}, and an ε-dependent time τε by requiring that the

following inequality is satisfied:

γτ ∥y2,0∥e−λτ (τ−t0) < κτε
3
2 , ∀y2,0 ∈ M2, ∀τ > τε + t0 (D.14)

We note that this is always possible for ε > 0. In fact, it can be shown that τε =max{(3/(2λ))

log((γ
√
c/α2)/(α ε)), 0} satisfies the inequality (D.14). Now, we show that ∃ε4 ∈ (0, ε3) such

that τε < τD, ∀ε ∈ (0, ε4). To obtain a contradiction, suppose that there exists a bounded

subset B1×B2 ⊂ Rn1 ×Rn2 , and a D ∈ (0, D̄), such that ∀ε4 ∈ (0, ε3), ∃ε ∈ (0, ε4) such that

τε ≥ τD. We estimate the difference:

∥x1(τD; t0,x1,0)− x̃1(τD; t0,x1,0)∥ ≤
ˆ t0+τD

t0

BK,f1ε dτ ≤ BK,f1τDε ≤ BK,f1τε ε, (D.15)

where BK,f1 > 0 is a uniform upper bound on the norm of the integrand inside the compact

subset K whose existence is guaranteed by Assumption 3.4.1. Now, observe that limε→0 τε ε =
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0, and so ∃ε4 ∈ (0, ε3) such that BK,f1τε ε ≤ D/2, ∀ε ∈ (0, ε4). Hence, we have that

∀ε ∈ (0, ε4), ∥x1(τD; t0,x1,0)− x̃1(τD; t0,x1,0)∥≤ D/2 which contradicts the definition of τD.

Accordingly, we have that ∃ε4 ∈ (0, ε3), such that ∀ε ∈ (0, ε4), ∀(x1,0,y2,0) ∈ B1 × B2, we

have that τε < τD.

Next, we show that ∃ε5 ∈ (0, ε4) such that tf/ε
2 < τD, ∀ε ∈ (0, ε5). To obtain a contradiction,

suppose that ∀ε5 ∈ (0, ε4), ∃ε ∈ (0, ε5) such that tf/ε
2 ≥ τD. Once again, we estimate the

difference ∥x1(τ ; t0,x1,0)− x̃1(τ ; t0,x1,0)∥ on the interval [t0, t0 + τD]. We have that:

∥x1(τ ; t0,x1,0)− x̃1(τ ; t0,x1,0)∥=

∥∥∥∥∥
2∑

k=1

ˆ t0+τε

t0

∆f̃1,k(s)ds+

ˆ t0+τ

t0+ε

∆f̃1,k(s)ds+O(ε3)

∥∥∥∥∥
(D.16)

where the integrands ∆f̃1,k(s) are given by:

∆f̃1,k(s) = f̃1,k(x1(τ),y2(τ), t(τ), τ)− f̃1,k(x̃1(τ), 0, t(τ), τ) (D.17)

which leads to the estimate:

∥x1(τ)− x̃1(τ)∥ ≤ BK,f1(τε + τDε
2)ε+ ∥i1∥, i1 =

ˆ τ

τε

2∑
k=1

εk∆f̃1,k(s)ds (D.18)

on the interval [0, τD]. We proceed to estimate ∥i1∥ as follows:

∥i1∥ ≤ ε(∥i2∥+∥i3∥) + ε2(∥i4∥+∥i5∥) (D.19)

where ii for i ∈ {2, 3, 4, 5} are given by:

i2 =

ˆ τ

τε

(̃f1,1(x1(s),y2(s), t(s), s)− f̃1,1(x1(s), 0, t(s), s)) ds (D.20)

i3 =

ˆ τ

τε

(̃f1,1(x1(s), 0, t(s), s)− f̃1,1(x̃1(s), 0, t(s), s))ds (D.21)
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i4 =

ˆ τ

τε

(̃f1,2(x1(s),y2(s), t(s), s)− f̃1,2(x1(s), 0, t(s), s)) ds (D.22)

i5 =

ˆ τ

τε

(̃f1,2(x1(s), 0, t(s), s)− f̃1,2(x̃1(s), 0, t(s), s))ds (D.23)

We estimate each of the integrals above, starting by i2, i4 and i5, which can be estimated as:

∥i2∥ ≤
ˆ τ

τε

Lf1,K∥y2(s)∥ds (D.24)

∥i4∥ ≤
ˆ τ

τε

Lf2,K∥y2(s)∥ds (D.25)

∥i5∥ ≤
ˆ τ

τε

Lf2,K∥x1(s)− x̃1(s)∥ds (D.26)

where Lf1,K, Lf2,K, Lf2,K > 0 are Lipschitz constants. Next, we estimate ∥i3∥. We proceed by

dividing the interval I = [τε, τ ] into sub-intervals of length T and a left over piece:

I =

N(ε)⋃
i=1

[Ti−1, Ti]

⋃ [N(ε)T, τ ],

where Ti = τε + i T , and N(ε) is the unique integer such that N(ε)T ≤ τ < N(ε)T + T .

Then, we split i3 into a sum of sub-integrals:

i3 =

N(ε)∑
i=1

i3,i +

ˆ τ

N(ε)T

(̃f1,1(x1(s), 0, t(s), s)− f̃1,1(x̃1(s), 0, t(s), s)) ds (D.27)

i3,i =

ˆ Ti

Ti−1

(̃f1,1(x1(s), 0, t(s), s)− f̃1,1(x̃1(s), 0, t(s), s)) ds (D.28)

The part of the integral on the leftover piece can be bounded independently from ε as follows:

∥∥∥∥ˆ τ

N(ε)T

(̃f1,1(x1(s), 0, t(s), s)− f̃1,1(x̃1(s), 0, t(s), s)) ds

∥∥∥∥ ≤ 2Bf1,KT (D.29)
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Next, we employ Hadamard’s lemma to obtain:

i3,i =

ˆ Ti

Ti−1

F1(x1(s), x̃1(s), s)(x1(s)1 − x̃1(s))ds (D.30)

where the matrix valued map F1 is given by:

F1(x1, x̃1, s) =

ˆ 1

0

∂1f̃1,1(x̃1 + λ(x1 − x̃1), t(s), s)dλ (D.31)

Through adding and subtracting a term, we may write:

i3,i =

ˆ Ti

Ti−1

F1(x1(Ti−1), x̃1(Ti−1), s) (x1(s)− x̃1(s))ds+

ˆ Ti

Ti−1

∆i

[
F1

]
(s) (x1(s)− x̃1(s))ds

(D.32)

where the term ∆i[F1] is given by:

∆i

[
F1

]
(s) = F1(x1(s), x̃1(s), s)− F1(x1(Ti−1), x̃1(Ti−1), s)

Next, since the matrix-valued map F1 is periodic with zero average over its third argument

when the other arguments are fixed, we have that

ˆ Ti

Ti−1

F1(x1(Ti−1), x̃1(Ti−1), s)w ds = 0 (D.33)

for any fixed w. Thus, we may write:

i3,i =

ˆ Ti

Ti−1

∆i

[
F1

]
(x1(s)− x̃1(s)) +

ˆ Ti

Ti−1

F1(x1(Ti−1), x̃1(Ti−1), s)∆i[x− x̃]ds (D.34)

where ∆i[x1 − x̃1] = (x1(s) − x1(Ti−1)) − (x̃1(s) − x̃1(Ti−1)). The fundamental theorem of
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calculus yields:

(x1(s)− x1(Ti−1))− (x̃1(s)− x̃1(Ti−1)) (D.35)

=ε

ˆ s

Ti−1

(̃f1,1(x1(ν),y2(ν), ν)− f̃1(x̃1(ν), ν))dν +O(ε2) (D.36)

=ε

ˆ s

Ti−1

(̃f1,1(x1(ν),y2(ν), ν)− f̃1,1(x1(ν), 0, ν))dν (D.37)

+ε

ˆ s

Ti−1

(̃f1(x1(ν), ν)− f̃1(x̃1(ν), ν))dν +O(ε2) (D.38)

Through integration by parts, we obtain:

ˆ Ti

Ti−1

F1(x1(Ti−1), x̃1(Ti−1), s)∆i[x− x̃]ds = iF,i(s)∆i[x− x̃]

∣∣∣∣s=Ti

s=Ti−1

− ε

ˆ Ti

Ti−1

iF,i(s)∆[̃f1]ds

− ε

ˆ Ti

Ti−1

iF,i(s)∆[̃f1,1]ds+O(ε2)

(D.39)

where we have that:

∆[̃f1,1] = f̃1,1(x1(s),y2(s), t(s), s)− f̃1,1(x1(s), 0, t(s), s) (D.40)

∆[̃f1] = f̃1(x1(s), t(s), s)− f̃1(x̃1(s), t(s), s) (D.41)

iF,i(s) =

ˆ s

Ti−1

F1(x1(Ti−1), x̃1(Ti−1), ν)dν (D.42)

The boundary term coming out of the integration by parts vanishes because the right factor

vanishes at s = Ti−1 and the left factor vanishes at s = Ti, leaving only the integral terms.

Using Lipschitz continuity and boundedness on compact subsets, it is not hard to see that:

∥∥∥∥ˆ Ti

Ti−1

iF,i(s)∆[̃f1,1]ds

∥∥∥∥ ≤
ˆ Ti

Ti−1

MiF ,̃f1,1,K ∥y2(s)∥ds (D.43)∥∥∥∥ˆ Ti

Ti−1

iF,i(s)∆[̃f1]ds

∥∥∥∥ ≤
ˆ Ti

Ti−1

MiF,f1,K ∥∆[x]∥ds (D.44)
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∥∥∥∥ˆ Ti

Ti−1

∆i

[
F1

]
∆[x]ds

∥∥∥∥ ≤ ε

ˆ Ti

Ti−1

LF1,K ∥∆[x]∥ds (D.45)

where ∆[x] = x1(s)−x̃1(s). By utilizing the above estimates, the integral on the sub-intervals

can be shown to satisfy the bound:

∥i3,i∥ ≤MK ε

ˆ Ti

Ti−1

(∥∆[x]∥+∥y2(s)∥) ds (D.46)

for some constant MK. As a consequence, the integral term i3 satisfies the bound:

∥i3∥ ≤MK ε

ˆ τ

τε

(∥∆[x]∥+∥y2(s)∥) ds+ 2Bf1,KT (D.47)

Combining (D.18), (D.19), (D.24), (D.25), (D.26), and (D.47), in addition to the fact that

τε < τD, ∀ε ∈ (0, ε4), we can show that the following estimate holds:

∥x1(τ)− x̃1(τ)∥≤ (MK,1 +MK,2τε +MK,3τDε
2)ε

+MK,4ε

ˆ τ

τε

∥y2(s)∥ds+MK,5ε
2

ˆ τ

τε

∥x1(s)− x̃1(s)∥ds
(D.48)

for some positive constants MK,j, j ∈ {1, . . . , 5}. Using the fact that ∥y2(τ)∥< 2α ε
3
2 , ∀τ ∈

[τε, τD] by definition, we obtain that:

ˆ τ

τε

∥y2(s)∥ds ≤ 2α τ ε
3
2 ≤ 2α τD ε

3
2 (D.49)

Now, remember that in order to obtain a contradiction we assumed that τD ≤ tf/ε
2, and so

we will have:

∥x(τ)− x̃1(τ)∥≤ δ(ε) +

ˆ τ

τε

MK,5ε
2∥x1(s)− x̃1(s)∥ds (D.50)
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where the function δ(ε) is given by:

δ(ε) =MK,1ε+MK,2τεε+MK,3tfε+ 2MK,4tfε
1
2 (D.51)

An application of Grönwall’s inequality yields:

∥x1(τ)− x̃1(τ)∥≤ δ(ε)eMK,5ε
2τ ≤ δ(ε)eMK,5ε

2τD (D.52)

on the interval τ ∈ [τε, τD]. Once again, recall that we assumed that τD ≤ tf/ε
2, and so we

have:

∥x1(τ)− x̃1(τ)∥≤ δ(ε)eMK,5tf (D.53)

Now, observe that limε→0 δ(ε) = 0, and so we are guaranteed the existence of an ε5 ∈ (0, ε4)

such that ∀ε ∈ (0, ε5) we have that ∥x1(τD)−x̃1(τD)∥≤ D/2, which contradicts the definition

of τD. Hence, the assumption that τD ≤ tf/ε
2 is wrong, and we have that ∃ε5 ∈ (0, ε4), such

that ∀ε ∈ (0, ε5), ∀(x0,y2,0) ∈ B1 × B2, we have that tf/ε
2 < τD. To summarize, we have

proven that ∀ε ∈ (0, ε5), ∀(x0,y2,0) ∈ Bx × By2
, ∀τ ∈ [0, tf/ε

2] we have that:

∥x1(τ)− x̃1(τ)∥< D (D.54a)

∥y2(τ)∥< γ ∥y2,0∥e−λτ + α ε
3
2 (D.54b)

Now recall the definition of y2, which leads to the bound:

∥y(τ)−φ0(x1(τ))∥< γ∥y0 −φ0(x0)∥+δ̄(ε) (D.55a)

δ̄(ε) =Mφ,Kε+ α ε
3
2 (D.55b)

where we used the fact that the maps φi for i ∈ {1, 2} are uniformly bounded in time

due to continuity and periodicity. Since limε→0 δ̄(ε) = 0, it follows that ∃ε6 ∈ (0, ε5) such
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that δ̄(ε) < D̄. Moreover, it follows from the results in [3, 30] that ∃ε7 ∈ (0, ε6) such that

∀x0 ∈ Bx, ∀τ ∈ [0, tf/ε
2] we have:

∥x1(τ)− x̃1(τ)∥< D̄ −D (D.56)

Hence, the result follows after an application of the triangle inequality and reversing the

time scaling τ = ε−2(t− t0) + t0.
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Appendix E

Vector Fields Expressions

f̃1,1(x1,x2,y3, t, σ, τ) = f1,1(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.1)

f̃2,1(x1,x2,y3, t, σ, τ) = f2,1(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.2)

f̃3,0(x1,x2,y3, t, σ, τ) = f3,0(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.3)

f̃1,2(x1,x2,y3, t, σ, τ) = f1,2(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.4)

+ ∂3f1,1(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ)φ1(x1,x2, t, σ, τ) (E.5)

f̃2,2(x1,x2,y3, t, σ, τ) = f2,2(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.6)

+ ∂3f2,1(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ)φ1(x1,x2, t, σ, τ) (E.7)

f̃3,1(x1,x2,y3, t, σ, τ) = f3,1(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.8)

+ ∂3f3,0(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ)φ1(x1,x2, t, σ, τ) (E.9)

− ∂1φ0(x1,x2, t, σ)f1,1(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.10)

− ∂2φ0(x1,x2, t, σ)f2,1(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.11)

− ∂σφ0(xs,xm, t, σ)− ∂τφ1(xs,xm, t, σ, τ) (E.12)

f̃3,2(x1,x2,y3, t, σ, τ) = f3,2(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.13)
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+ ∂3f3,0(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ)φ2(x1,x2, t, σ, τ)

(E.14)

+ ∂23f3,0(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ)[φ1(x1,x2, t, σ, τ)]

(E.15)

− ∂1φ0(x1,x2, t, σ)f1,2(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.16)

− ∂2φ0(x1,x2, t, σ)f2,2(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.17)

− ∂1φ1(x1,x2, t, σ)f1,1(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.18)

− ∂2φ1(x1,x2, t, σ)f2,1(x1,x2,y3 +φ0(x1,x2, t, σ), t, σ, τ) (E.19)

− ∂σφ1(x1,x2, t, σ, τ)− ∂tφ0(x1,x2, t, σ)− ∂τφ2(x1,x2, t, σ, τ)

(E.20)

bφ,1(x1,x2, t, σ, τ) = f3,1(x1,x2,φ0(x1,x2, t, σ), t, σ, τ)− ∂σφ0(x1,x2, t, σ) (E.21)

− ∂1φ0(x1,x2, t, σ)f1,1(x1,x2,φ0(x1,x2, t, σ), t, σ, τ) (E.22)

− ∂2φ0(x1,x2, t, σ)f2,1(x1,x2,φ0(x1,x2, t, σ), t, σ, τ), (E.23)

bφ,2(x1,x2, t, σ, τ) = f3,2(x1,x2,φ0(x1,x2, t, σ), t, σ, τ)− ∂tφ0(x1,x2, t, σ) (E.24)

− ∂1φ0(x1,x2, t, σ)f1,2(x1,x2,φ0(x1,x2, t, σ), t, σ, τ) (E.25)

− ∂2φ0(x1,x2, t, σ)f2,2(x1,x2,φ0(x1,x2, t, σ), t, σ, τ) (E.26)

− ∂1φ1(x1,x2, t, σ)f1,1(x1,x2,φ0(x1,x2, t, σ), t, σ, τ) (E.27)

− ∂2φ1(x1,x2, t, σ)f2,1(x1,x2,φ0(x1,x2, t, σ), t, σ, τ) (E.28)

−Q(x1,x2, t, σ, τ)[φ1(x1,x2, t, σ, τ)]− ∂σφ1(x1,x2, t, σ, τ), (E.29)

Q(x1,x2, t, σ, τ) = ∂23f3,0(x1,x2,φ0(x1,x2, t, σ), t, σ, τ) (E.30)
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¯̃f1,1(x1,x2, t, σ) =
1

T1

ˆ T1

0

f̃1,1(x1,x2, 0, t, σ, τ) dτ (E.31)

¯̃f2,1(x1,x2, t, σ) =
1

T1

ˆ T1

0

f̃2,1(x1,x2, 0, t, σ, τ) dτ (E.32)

¯̃f1,2(x1,x2, t, σ) =
1

T1

ˆ T1

0

f̃1,2(x1,x2, 0, t, σ, τ) dτ (E.33)

+
1

T1

ˆ T1

0

∂1f̃1,1(x1,x2, 0, t, σ, τ)

ˆ τ

0

f̃1,1(x1,x2, 0, t, σ, ν)dν dτ (E.34)

+
1

T1

ˆ T1

0

∂2f̃1,1(x1,x2, 0, t, σ, τ)

ˆ τ

0

f̃2,1(x1,x2, 0, t, σ, ν)dν dτ (E.35)

− 1

T1

ˆ T1

0

ˆ τ

0

∂1f̃1,1(x1,x2, 0, t, σ, ν)
¯̃f1,1(x1,x2, t, σ)dν dτ (E.36)

− 1

T1

ˆ T1

0

ˆ τ

0

∂2f̃1,1(x1,x2, 0, t, σ, ν)
¯̃f2,1(x1,x2, t, σ)dν dτ (E.37)

− 1

T1

ˆ T1

0

ˆ τ

0

∂σ f̃1,1(x1,x2, 0, t, σ, ν) dνdτ (E.38)

¯̃f2,2(x1,x2, t, σ) =
1

T1

ˆ T1

0

f̃2,2(x1,x2, 0, t, σ, τ) dτ (E.39)

+
1

T1

ˆ T1

0

∂1f̃2,1(x1,x2, 0, t, σ, τ)

ˆ τ

0

f̃1,1(x1,x2, 0, t, σ, ν)dν dτ (E.40)

+
1

T1

ˆ T1

0

∂2f̃2,1(x1,x2, 0, t, σ, τ)

ˆ τ

0

f̃2,1(x1,x2, 0, t, σ, ν)dν dτ (E.41)

− 1

T1

ˆ T1

0

ˆ τ

0

∂1f̃2,1(x1,x2, 0, t, σ, ν)
¯̃f1,1(x1,x2, t, σ)dν dτ (E.42)

− 1

T1

ˆ T1

0

ˆ τ

0

∂2f̃2,1(x1,x2, 0, t, σ, ν)
¯̃f2,1(x1,x2, t, σ)dν dτ (E.43)

− 1

T1

ˆ T1

0

ˆ τ

0

∂σ f̃2,1(x1,x2, 0, t, σ, ν) dν dτ (E.44)

˜̄f1,1(¯̃x1, ¯̃y2, t, σ) =
¯̃f1,1(¯̃x1, ¯̃y2 + ϕ0(¯̃x1, t, σ), t, σ) (E.45)

˜̄f2,1(¯̃x1, ¯̃y2, t, σ) =
¯̃f2,1(¯̃x1, ¯̃y2 + ϕ0(¯̃x1, t, σ), t, σ)− ∂σϕ0(¯̃x1, t, σ) (E.46)

− ∂1ϕ0(¯̃x1, t, σ)̃̄f1,1(¯̃x1, ¯̃y2, t, σ) (E.47)
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˜̄f1,2(¯̃x1, ¯̃y2, t, σ) =
¯̃f1,2(¯̃x1, ¯̃y2 + ϕ0(¯̃x1, t, σ), t, σ) (E.48)

+ ∂2
¯̃f1,1(¯̃x1, ¯̃y2 + ϕ0(¯̃x1, t, σ), t, σ)ϕ1(¯̃x1, t, σ) (E.49)

˜̄f2,2(¯̃x1, ¯̃y2, t, σ) =
¯̃f2,2(¯̃x1, ¯̃y2 + ϕ0(¯̃x1, t, σ), t, σ) (E.50)

+ ∂2
¯̃f2,1(¯̃x1, ¯̃y2 + ϕ0(¯̃x1, t, σ), t, σ)ϕ1(¯̃x1, t, σ) (E.51)

− ∂1ϕ0(¯̃x1, t, σ)̃̄f1,2(¯̃x1, ¯̃y2, t, σ) (E.52)

− ∂1ϕ1(¯̃x1, t, σ)̃̄f1,1(¯̃x1, ¯̃y2, t, σ)− ∂tϕ0(¯̃x1, t, σ) (E.53)

− ∂σϕ1(¯̃x1, t, σ) (E.54)
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Appendix F

Derivation of Sperm Chemotaxis

Equations

If the angular velocity components ω⊥ and ω∥ are given by:

ω⊥ = ω⊥0 + ω⊥1η, (F.1)

ω∥ = ω∥0 + ω∥1η, (F.2)

then we may rewrite the rotational kinematics as:

Ṙ = R (ω̂0 + ω̂1η) (F.3)

where the vectors ω0 and ω1 are given by:

ω0 =


ω∥0

0

ω⊥0

 , ω1 =


ω∥1

0

ω⊥1

 (F.4)
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Let R0(t) = exp(ω̂0t) and R̄ = RR0(t)
⊺, and compute:

R0(t) =


ω2
⊥0

ω2 cos (ωt) +
ω2
∥0
ω2 −ω⊥0

ω
sin (ωt)

ω⊥0ω∥0
ω2 (1− cos (ωt))

ω⊥0

ω
sin (ωt) cos (ωt) −ω∥0

ω
sin (ωt)

ω⊥0ω∥0
ω2 (1− cos (ωt))

ω∥0
ω

sin (ωt)
ω2
∥0
ω2 cos (ωt) +

ω2
⊥0

ω2

 (F.5)

where ω = |ω0|. Then, observe that:

ẋ = Rv = RR0(t)
⊺R0(t)v = R̄R0(t)v

˙̄R = ṘR0(t)
⊺ +RṘ

⊺
0 = Rω̂0R0(t)

⊺ + ηRω̂1R0(t)
⊺ −Rω̂0R0(t)

⊺

= RR0(t)
⊺R0(t)ω̂1R0(t)

⊺η = R̄R0(t)ω̂1R0(t)
⊺ η

Define the average velocity vector vm and the vector d(t) by:

vm = R0(t)v =
ω

2π

ˆ 2π
ω

0

R0(t)dtv, d(t) =

ˆ
(R0(t)v− vm) dt (F.6)

then observe that:

R0(t)v = vm + ḋ(t) (F.7)

If v > 0, ω∥0 > 0, ω⊥0 > 0, direct computation shows that:

vm =
vω∥0

ω


ω∥0
ω

0

ω⊥0

ω

 , ḋ(t) =
vω⊥0

ω


ω⊥0

ω
cos (ωt)

sin (ωt)

−ω∥0
ω

cos (ωt)

 , d(t) =
vω⊥0

ω2


ω⊥0

ω
sin (ωt)

− cos (ωt)

−ω∥0
ω

sin (ωt)


(F.8)
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Define the average position x̄ = x− R̄ d(t), which evolves according to:

˙̄x = ẋ− ˙̄Rd(t)− R̄ ḋ(t) = −R̄R0(t)ω̂1R0(t)
⊺d(t) η + R̄ vm (F.9)

If we make the identifications:

ω̂η(t) = R0(t)ω̂1R0(t)
⊺ (F.10)

vη(t) = −ω̂η(t)d(t) (F.11)

then the evolution of the average motion variables x̄ and R̄ is governed by:

˙̄x = R̄vη(t)η + R̄vm (F.12)

˙̄R = R̄ω̂η(t)η (F.13)

We compute the expressions for vη(t),ωη(t) which turn out to be:

ωη(t) =
ω∥1ω∥0 + ω⊥1ω⊥0

ω


ω∥0
ω

0

ω⊥0

ω

+
ω∥1ω⊥0 − ω⊥1ω∥0

ω


ω⊥0

ω
cos (ωt)

sin (ωt)

−ω∥0
ω

cos (ωt)

 (F.14)

vη(t) =
vω⊥0

(
ω⊥1ω∥0 − ω∥1ω⊥0

)
ω3


ω∥0
ω

0

ω⊥0

ω

−
vω⊥0

(
ω∥1ω∥0 + ω⊥1ω⊥0

)
ω3


ω⊥0

ω
cos (ωt)

sin (ωt)

−ω∥0
ω

cos (ωt)


(F.15)

Observe that the feedback coefficients vη,ωη are periodic with non zero average in general,

whereas the periodic perturbation d(t) always has zero average. In the absence of feedback,

the instantaneous local concentration c(x) may be approximated by its Taylor series:

c(x) = c(x̄+ R̄d(t)) = c(x̄) +∇c(x̄)⊺R̄d(t) +O(|d(·)|2) (F.16)
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By employing the fundamental theorem of calculus, the local concentration at the average

position c(x̄) can be written as:

c(x̄) = c(x̄0) +

ˆ t

t0

∇c(x̄(ν))⊺ ˙̄x(ν) dν = c(x̄0) +

ˆ t

t0

∇c(x̄(ν))⊺R̄(ν) (vη(ν) η + vm) dν

(F.17)

where x̄0 is the initial average position of the cell at the initial time t0. Hence, in the absence

of feedback, the instantaneous local concentration may be approximated by:

c(x) = c(x̄0) +

ˆ t

t0

∇c(x̄(ν))⊺R̄(ν)vm dν +∇c(x̄)⊺R̄ d(t) +O(|d(·)|2) (F.18)

The dynamics of the signaling pathway is modelled by:

σ ξ̇ = s(t)− ξ, (F.19)

µ η̇ = ρ ξ̇ − η3, (F.20)

µ ρ̇ = ρ− ρ η2, (F.21)

We employ a coordinate change to study the behavior of the signal pathway. Let ζ2 = ξ,

ζ1 = ξ − η/ρ, which leads to:

µ ζ̇1 = ζ2 − ζ1 (F.22)

σ ζ̇2 = s(t)− ζ2 (F.23)

µ ρ = ρ (1− ρ2ζ2) (F.24)

ζ = ζ2 − ζ1, η = ρ ζ (F.25)

We take the stimulus to be s(t) = λc(x) for some proportionality constant λ. Under the

assumption that µ|vm|≪ 1 and σ|vm|≪ 1 in the absence of feedback, there is enough time-

scale separation between the dynamics of the average motion variables x̄, R̄ and the dynamics
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of ζ1 and ζ2, which allows approximating the signal ζ = ζ2 − ζ1 by its quasi-steady state

in which the average motion variables x̄, R̄ are treated as constants. In this quasi-steady

approximation, the local concentration maybe taken as:

c(x) ≈ c(x̄0) +∇c(x̄)⊺R̄vm∆t+∇c(x̄)⊺R̄d(t) +O(|d(·)|2) (F.26)

where ∆t = t − t0. This form of the local concentration is treated as an input for the

dynamics of the signaling pathway. Accordingly, we obtain the quasi-steady output for ζ,

denoted as ζQS, which can be computed from standard linear systems theory:

ζ ≈ ζQS = λµ∇c(x̄)⊺R̄vm + λ γ(ω)∇c(x̄)⊺R̄ d(t+ ϕ(ω)/ω) (F.27)

where γ(ω) and ϕ(ω) are the gain and phase contribution at the frequency ω, and are defined

by:

γ(ω) =
ω (µ+ σ)√

(1 + µ2ω2)(1 + σ2ω2)
, (F.28)

sin(ϕ(ω)) =
1− µσω2√

(1 + µ2ω2)(1 + σ2ω2)
, cos(ϕ(ω)) =

µω + σω√
(1 + µ2ω2)(1 + σ2ω2)

(F.29)

Hence, a quasi steady approximation of the adaptation rule for the signaling pathway be-

comes:

µ ρ̇ = ρ
(
1− ρ2ζ2QS

)
(F.30)

and the motion evolves, in the quasi-steady sense, according to the equations:

˙̄x = R̄ vη(t) ρ ζQS + R̄ vm (F.31)

˙̄R = R̄ ω̂η(t) ρ ζQS (F.32)

µ ρ̇ = ρ
(
1− ρ2 ζ2QS

)
(F.33)
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ζQS = λµ∇c(x̄)⊺R̄vm + λ γ(ω)∇c(x̄)⊺R̄ d(t+ ϕ(ω)/ω) (F.34)

To proceed with the rest of the analysis, we make several definitions that will simplify the

calculations. First, we define the three unit vectors:

i1(t) =
d(t)

|d(t)|
=


ω⊥0

ω
sin (ωt)

− cos (ωt)

−ω∥0
ω

sin (ωt)

 , i2(t) =
1

ω

di1(t)

dt
=


ω⊥0

ω
cos (ωt)

sin (ωt)

−ω∥0
ω

cos (ωt)

 , (F.35)

i3 =
vm

|vm|
=


ω∥0
ω

0

ω⊥0

ω

 (F.36)

and we observe that:

i1(t)× i2(t) = i3, i2(t)× i3 = i1(t), i3 × i1(t) = i2(t) (F.37)

i1(t) · i2(t) = 0, i2(t) · i3 = 0, i3 · i1(t) = 0 (F.38)

where × and · are the cross product and the dot product between 3D vectors, respectively. In

other words, the vector triplet {i1(t), i2(t), i3} comprises a right-handed orthogonal rotating

coordinate basis for the 3D space. Next, we observe that:

d(t) =
v ω⊥0

ω2
i1(t), vm =

v ω∥0

ω
i3 (F.39)

and that:

ωη(t) =
ω∥1ω⊥0 − ω⊥1ω∥0

ω
i2(t) +

ω∥1ω∥0 + ω⊥1ω⊥0

ω
i3 (F.40)

vη(t) =
vω⊥0

ω2

(
−
(
ω∥1ω∥0 + ω⊥1ω⊥0

)
ω

i2(t) +

(
ω⊥1ω∥0 − ω∥1ω⊥0

)
ω

i3

)
(F.41)
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We apply the time scaling τ = ωt, which leads to the equations:

dx̄

dτ
=

1

ω
ρ ζQS R̄ vη(τ) +

1

ω
R̄ vm (F.42)

dR̄

dτ
=

1

ω
ρ ζQS R̄ ω̂η(τ) (F.43)

dρ

dτ
=

1

µω
ρ
(
1− ρ2 ζ2QS

)
(F.44)

ζQS = λµ∇c(x̄)⊺R̄vm + λ γ(ω)∇c(x̄)⊺R̄ d(τ + ϕ(ω)) (F.45)

Up to this point, the analysis is valid irrespective of the asymptotic orders of the terms in

the equations as long as the assumptions µ|vm|≪ 1, σ|vm|≪ 1 and |d(·)|≪ 1 are valid.

Before we proceed to perform an averaging analysis, all the terms in the equations must be

assigned a precise asymptotic order, in relation to the frequency ω, that is consistent with the

assumptions adopted so far. There are several choices for this asymptotic order assignment,

each of them corresponds to a different ‘distinguished limit’ in which the behavior of the

system is qualitatively different. We investigate the particular distinguished limit in which

we have:

µ = O(1/
√
ω), σ = O(1/ω), v = O(

√
ω), ω⊥0 = O(ω), (F.46)

ω⊥1 = O(1), ω∥0 = O(
√
ω), ω∥1 = O(

√
ω), (F.47)

First, we verify that this limit is consistent with the assumptions:

µ|vm|=
µv ω∥0

ω
= O(1/

√
ω) ≪ 1, σ|vm|=

σv ω∥0

ω
= O(1/ω) ≪ 1, (F.48)

|d(t)|=
vω∥0

ω2
= O(1/

√
ω) ≪ 1 (F.49)
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which is true in the limit ω → ∞. We proceed to define the vector h̄ = R̄ i3, which evolves

according to the equation:

dh̄

dτ
=
dR̄

dτ
i3 =

1

ω
ρ ζQS R̄ ω̂η(τ)i3 =

1

ω
ρ ζQS R̄ ω̂η(τ)i3 =

1

ω
ρ ζQS R̄ ω̂η(τ)R̄

⊺
R̄ i3 (F.50)

We compute:

R̄ ω̂η(τ)R̄
⊺
=
ω∥1ω⊥0 − ω⊥1ω∥0

ω
R̄ î2R̄

⊺
+
ω∥1ω∥0 + ω⊥1ω⊥0

ω
R̄ î3R̄

⊺
(F.51)

Hence, we have that:

R̄ ω̂η(τ)R̄
⊺
R̄i3 =

ω∥1ω⊥0 − ω⊥1ω∥0

ω
R̄ i1(τ) =⇒ dh̄

dτ
=
ω∥1ω⊥0 − ω⊥1ω∥0

ω2
ρ ζQSR̄ i1(τ)

(F.52)

Moreover, it easy to verify through direct computation that:

d(τ + ϕ(ω)) =
v ω⊥0

ω2
cos(ϕ(ω)) i1(τ) +

v ω⊥0

ω2
sin(ϕ(ω)) i2(τ) (F.53)

which implies that:

ζQS = λ

(
µv ω∥0

ω
R̄ i3 +

v ω⊥0γ(ω)

ω2

(
cos(ϕ(ω)) R̄ i1(τ) + sin(ϕ(ω)) R̄ i2(τ)

))⊺

∇c(x̄)

(F.54)

Hence, we have:

dh̄

dτ
= R̄ (α1 i1(τ)i

⊺
3 + α2 i1(τ)i1(τ)

⊺ + α3 i1(τ)i2(τ)
⊺) R̄

⊺
ρ∇c(x̄) +O(ρ/ω3/2) (F.55)
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where the coefficients αi for i ∈ {1, 2, 3} are given by:

α1 =
µv ω⊥0ω∥0ω∥1

ω3
, α2 =

v ω2
⊥0ω∥1γ(ω)

ω4
cos(ϕ(ω)), α3 =

v ω2
⊥0ω∥1γ(ω)

ω4
sin(ϕ(ω))

(F.56)

In the distinguished limit defined above, we have that:

α1 = O(1/ω), α2 = O(1/ω), α3 = O(1/ω)

Next, we compute:

R̄ vm =
v ω∥0

ω
R̄ i3, (F.57)

R̄ vη(τ) = −vω⊥0

ω3

((
ω∥1ω∥0 + ω⊥1ω⊥0

)
R̄ i2(τ) +

(
ω⊥1ω∥0 − ω∥1ω⊥0

)
R̄ i3

)
(F.58)

which implies that:

dx̄

dτ
= R̄ (β1i3i

⊺
3 + β2i3i1(τ)

⊺ + β3i3i2(τ)
⊺) R̄

⊺
ρ∇c(x̄) +

v ω∥0

ω2
R̄ i3 +O(ρ/ω2) (F.59)

where the coefficients βi for i ∈ {1, 2, 3} are given by:

β1 =
µv2ω2

⊥0ω∥0ω∥1

ω5
, β2 =

v2ω3
⊥0ω∥1γ(ω)

ω6
cos(ϕ(ω)), β3 =

v2ω3
⊥0ω∥1γ(ω)

ω6
sin(ϕ(ω))

(F.60)

In the distinguished limit defined above, we have that:

β1 = O(1/ω3/2), β2 = O(1/ω3/2), β3 = O(1/ω3/2)
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In addition, we have that:

µω = O(
√
ω),

v ω∥0

ω2
= O(1/ω),

µv ω∥0

ω
= O(1/

√
ω),

v ω⊥0γ(ω)

ω2
= O(1/

√
ω) (F.61)

Recall that the evolution equation for the adaptive gain ρ is given by:

dρ

dτ
=

1

µω
ρ
(
1− ρ2 ζ2QS

)
(F.62)

ζQS =

(
µv ω∥0

ω
R̄ i3 +

v ω⊥0γ(ω)

ω2

(
cos(ϕ(ω)) R̄ i1(τ) + sin(ϕ(ω)) R̄ i2(τ)

))⊺

∇c(x̄)

(F.63)

which has equilibrium points: {0,±1/|ζQS|}. We are only interested in the behavior of ρ

around the equilibrium point ρ = 1/|ζQS|, since the equilibrium point ρ = 0 is unstable and

the equilibrium point ρ = −1/|ζQS| does not satisfy the requirement that ρ > 0. We note,

however, that in the distinguished limit defined above we have that ζQS = O(1/
√
ω), which

implies that near the equilibrium point ρ = 1/|ζQS| we have that ρ = O(
√
ω). This implies

that ρ will change the asymptotic orders of all the terms in which it appears. In other words,

we have that:

α1ρ = O(1/
√
ω), α2ρ = O(1/

√
ω), α3ρ = O(1/

√
ω)

β1ρ = O(1/ω), β2ρ = O(1/ω), β3ρ = O(1/ω)

Now that all terms have been assigned a precise asymptotic order in relation to the frequency

ω, we may proceed to average out the equations:

dh̄

dτ
= R̄ (α1 i1(τ)i

⊺
3 + α2 i1(τ)i1(τ)

⊺ + α3 i1(τ)i2(τ)
⊺) R̄

⊺
ρ∇c(x̄) (F.64)

dx̄

dτ
= R̄ (β1i3i

⊺
3 + β2i3i1(τ)

⊺ + β3i3i2(τ)
⊺) R̄

⊺
ρ∇c(x̄) +

v ω∥0

ω2
R̄ i3 (F.65)

dρ

dτ
=

1

µω
ρ
(
1− ρ2 ζ2QS

)
(F.66)
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ζQS = λ

(
µv ω∥0

ω
R̄ i3 +

v ω⊥0γ(ω)

ω2

(
cos(ϕ(ω)) R̄ i1(τ) + sin(ϕ(ω)) R̄ i2(τ)

))⊺

∇c(x̄)

(F.67)

We compute:

ζ2QS/λ
2 =

µ2v2 ω2
∥0

ω2

(
h̄
⊺∇c(x̄)

)2
+
v2 ω2

⊥0γ(ω)
2

ω4
cos(ϕ(ω))2

(
∇c(x̄)⊺R̄ i1(τ)

)2
(F.68)

+
v2 ω2

⊥0γ(ω)
2

ω4
sin(ϕ(ω))2

(
∇c(x̄)⊺R̄ i2(τ)

)2
(F.69)

+
2µv2 ω∥0ω⊥0γ(ω)

ω3

(
h̄
⊺∇c(x̄)

) (
cos(ϕ(ω))

(
∇c(x̄)⊺R̄ i1(τ)

)
+ sin(ϕ(ω))

(
∇c(x̄)⊺R̄ i2(τ)

))
(F.70)

+
2v2 ω2

⊥0γ(ω)
2

ω4
sin(ϕ(ω)) cos(ϕ(ω))

(
∇c(x̄)⊺R̄ i2(τ)

) (
∇c(x̄)⊺R̄ i1(τ)

)
(F.71)

Finally, we apply second order averaging with respect to the parameter 1/
√
ω to obtain:

dh̄

dτ
= R̄

(
α2 i1(τ)i1(τ)⊺ + α3 i1(τ)i2(τ)⊺

)
R̄

⊺
ρ∇c(x̄) (F.72)

dx̄

dτ
= β1R̄ i3i

⊺
3R̄

⊺
ρ∇c(x̄) +

v ω∥0

ω2
R̄ i3 (F.73)

dρ

dτ
=

1

µω
ρ
(
1− ρ2 ζ2QS

)
(F.74)

where we neglected all terms of non-leading order in each equation. Direct calculation shows

that:

i1(τ)i1(τ)⊺ = i2(τ)i2(τ)⊺ =
1

2
(I− i3i

⊺
3) , i1(τ)i2(τ)⊺ = −i2(τ)i1(τ)⊺ =

1

2
î3 (F.75)

where I is the identity matrix of appropriate dimension. Hence, the averaged equations are:

dh̄

dτ
=

1

2
R̄
(
α2 (I− i3i

⊺
3) + α3 î3

)
R̄

⊺
ρ∇c(x̄) (F.76)

dx̄

dτ
= β1R̄ i3i

⊺
3R̄

⊺
ρ∇c(x̄) +

v ω∥0

ω2
R̄ i3 (F.77)

dρ

dτ
=

1

µω
ρ
(
1− ρ2 ζ2QS

)
(F.78)
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ζ2QS = λ2∇c(x̄)⊺R̄

(
µ2v2 ω2

∥0

ω2
i3i

⊺
3 +

v2 ω2
⊥0γ(ω)

2

2ω4
(I− i3i

⊺
3)

)
R̄

⊺∇c(x̄) (F.79)

Using the definition h̄ = R̄ i3, and some algebraic manipulations, we obtain that:

dh̄

dτ
=

1

2

(
α2

(
I− h̄ h̄

⊺)
+ α3

̂̄h) ρ∇c(x̄) (F.80)

dx̄

dτ
= β1h̄ h̄

⊺
ρ∇c(x̄) +

v ω∥0

ω2
h̄ (F.81)

dρ

dτ
=

1

µω
ρ
(
1− ρ2 ζ2QS

)
(F.82)

ζ2QS = λ2
v2

ω2

(
µ2ω2

∥0(∇c(x̄)⊺h̄)2 +
ω2
⊥0γ(ω)

2

ω2

(
|∇c(x̄)|2−(∇c(x̄)⊺h̄)2

))
(F.83)

We observe that ζ2QS is strictly positive as long as |∇c(x̄)| is strictly positive which implies

that the equilibrium point ρ = 1/
√
ζ2QS is well-defined as long as |∇c(x̄)| is strictly positive.

In addition, we observe that the leading order behavior in x̄ is O(1/ω) and in h̄ is O(1/
√
ω),

whereas the leading order behavior in ρ is O(1). By employing a singular perturbation

argument that exploits this time scale-separation, we obtain the quasi-steady approximation

of the dynamics of h̄ and x̄ as:

dh̄

dτ
=

1

2
α2ρ

(
I− h̄ h̄

⊺)∇c(x̄) + 1

2
α3ρ h̄×∇c(x̄) +O(1/ω) (F.84)

dx̄

dτ
= β1h̄ h̄

⊺
ρ∇c(x̄) +

v ω∥0

ω2
h̄ (F.85)

ρ =
1√
ζ2QS

,
√
ζ2QS = λ

v

ω
|∇c(x̄)|

√
µ2ω2

∥0|∇̌∥c|2+(ω⊥0γ(ω)/
√
2ω)2|∇̌⊥c|2 (F.86)

We make some definitions to compactify the equations:

∇̌c = ∇c(x̄)/|∇c(x̄)|, ∇̌∥c = h̄ h̄
⊺∇̌c, ∇̌⊥c =

(
I− h̄ h̄

⊺) ∇̌c, (F.87)
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which leads to the following equations when projected along the vector h̄ and the normalized

gradient ∇̌c:

˙̄x⊺h̄ =
v ω∥0

ω

(
1 +

µω2
⊥0ω∥1

χω2
h̄
⊺∇̌c

)
(F.88)

˙̄h⊺∇̌c =
ω2
⊥0ω∥1γ(ω)

2χω2
cos(ϕ(ω))(1− (h̄

⊺∇̌c(x̄))2) (F.89)

χ =
√
µ2ω2

∥0|∇̌∥c|2+(ω⊥0γ(ω)/
√
2ω)2|∇̌⊥c|2 (F.90)

This may be simplified to:

˙̄x⊺h̄ =
v ω∥0

ω

(
1 +

ω2
⊥0ω∥1

αω2ω∥0
h̄
⊺∇̌∥c

)
, (F.91)

˙̄h⊺∇̌c =
γ(ω)ω2

⊥0ω∥1

2µω2ω∥0α
cos(ϕ(ω))|∇̌⊥c|2, (F.92)

α =
√
|∇̌∥c|2+β2|∇̌⊥c|2. (F.93)

where β = γ(ω)ω⊥0/(
√
2ωµω∥0). In particular, the quasi-steady signaling pathway response

ηQS is given by:

ηQS =
∇̌∥c+

√
2β(R̄d(t)/|d(t)|)⊺∇̌⊥c√
|∇̌∥c|2+β2|∇̌⊥c|2

(F.94)
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