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Name Space Analysis:
Verification of Named Data Network Data Planes

Mohammad Jahanian and K. K. Ramakrishnan, Fellow, IEEE

Abstract—Named Data Networking (NDN) has many forward-
ing behaviors, strategies, and protocols to enable the benefits of
Information-Centric Networking. This additional functionality in-
troduces complexity, motivating the need for a tool to help reason
about and verify that basic properties of an NDN data plane are
guaranteed. This paper proposes Name Space Analysis (NSA), a
network verification framework to model and analyze NDN data
planes. NSA can take as input one or more snapshots, each repre-
senting a state of the data plane. It then provides the verification
result against specified properties. NSA builds on the theory of
Header Space Analysis, and extends it in a number of ways, e.g.,
supporting variable-sized headers with flexible formats, introduc-
tion of name space functions, allowing for name-based properties
such as content reachability and name leakage-freedom, and
multi-snapshot verification such as equivalence checks. These im-
portant additions reflect the behavior and requirements of NDN,
requiring modeling and verification foundations fundamentally
different from those of traditional host-centric networks. As a
case study, we show how NSA can detect name space conflicts
in NDN, which can be often hard to catch. Leveraging the
learning from this study, we outline a conflict detection and
resolution protocol and a name space registry to avoid such
conflicts. We have implemented NSA and identified a number
of optimizations to enhance the efficiency of verification. Results
from our evaluations, using snapshots from various synthetic test
cases and the real-world NDN testbed, show how NSA is effective,
in finding errors, has good performance, and is scalable.

Index Terms—Named Data Networks, Network Verification

I. Introduction

NAMED DATA NETWORKING (NDN) [1], [2] provides
a content-aware network layer where information is

accessed over the network without necessarily focusing on
its location or the underlying mechanisms used to retrieve
that information. To enable this location-independence, NDN
supports name-based forwarding, and in-network caching,
thereby improving performance and availability. NDN routers
primarily rely on a Forwarding Information Base (FIB), Content
Store (CS) and Pending Interest Table (PIT) with reverse path
forwarding to deliver Data associated with an Interest [2].

The flexible structure of NDN supports a wide variety of net-
work functions and applications. On top of basic PIT, CS, and
FIB checks, additional packet processing such as forwarding
hint processing [3], rate-based forwarding [4], and hyperbolic
forwarding [5] have been adopted and incorporated into the
standard NDN Forwarding Daemon (NFD) [6]. Additionally, a
number of useful extensions to the core NDN packet processing
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have been proposed in the literature to potentially be part
of any NDN network, such as path switching [7], Interest
anonymization [8], [9], name resolution [10], cache-aware
forwarding [11], etc. While these network functions, whether
deployed in separate middleboxes or softwarized into a basic
ICN router, make NDN powerful, they may make the network’s
data (forwarding) plane, more complex. As a result, it is very
useful to ensure that the data plane, i.e., the forwarding and
processing rules for packets, is correct. To tackle this, an
automated framework to model and verify NDN network data
planes would be highly desirable.

Network verification [12]–[21] is an active research area,
useful in analyzing large, complicated networks in order to
ensure a network is free of bugs and corner-case errors,
investigating essential properties such as reachability and
loop-freedom. Data plane verification focuses on analyzing a
particular (e.g., the current) forwarding state, i.e., data plane, of
the network. These tools normally rely on a formal foundation
that covers a large space of possibilities. They can be automated
and applied to network snapshots, representing the data plane.
While these tools have focused on IP networks and are powerful
in verifying host-centric properties, they can be extended and
integrated for use in an ICN-based environment such as NDN.

We propose Name Space Analysis (NSA), a framework
for modeling and verification of NDN data planes. NSA is
based on the theory of Header Space Analysis (HSA) [13].
HSA uses a geometric view of packet headers, where each
packet header is generally modeled as a point in a space and
network functions transform that point to another one within
that space. Additionally, the ability to analyze a “space” rather
than a “single point”, makes this an efficient analysis approach.
This flexibility and efficiency make it a good formalism for
integration in the analysis of NDN. We add another geometric
space in NSA, namely the name space, and a new function,
name space function, that transforms a point in the header space
domain to a (collection of) point(s) in the name space domain.
We extend HSA by enabling flexible atoms and variable-size
wildcards to model headers (to support NDN-specific packet
formats [22]), and adding name spaces as an essential part of
the analysis. Analyzing name spaces in NDN is necessary and
very useful as they are key to accessing content. We propose
NDN-specific properties that can be checked by NSA; e.g., in
NDN we are interested in verifying host-to-content reachability,
rather than the host-to-host reachability requirement expected
of traditional host-centric IP networks. NSA has a number
of verification applications (to prove key properties), namely
content reachability test, name-based loop detection, and
name leakage detection. We additionally support verification
applications that go across multiple snapshots to analyze
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changes between multiple states (e.g., consistent producer
mobility check) and report on their equivalence. The complex
structure of names in NDN may cause issues, e.g., interfering
prefix announcements by two non-coordinated data producers,
which can potentially lead to blackholes. We call this name
space conflicts and show how NSA can identify them (§VIII-A).
The importance of having a name management method in NDN
has been identified in [23], [24]. Using the concepts of NSA, we
propose a name registration method that can catch and resolve
such conflicts in the data plane (§VIII-B). We implemented
NSA [25], including all the essential components of our design:
name atoms, set operations, transfer functions, state space
generation, and verification applications. We also identified a
number of optimizations, and evaluating our implementation
on synthetic snapshots and real-world NDN testbed snapshots
shows that NSA is effective, efficient and scalable (§VII).

Overall, the contributions of this paper are: 1) a framework
for verification of NDN data planes, focusing on the nature
of NDN, rather than the previous tools for host-centric
architectures; 2) modeling name spaces and name space
functions, as they are the main assets required to access content
in NDN; 3) specifying essential NDN-specific properties and
approaches to analyze them (content reachability test, name-
based loop detection, name (space) leakage detection, and
cross-snapshot equivalence checks); 4) studying the practical
issue of name space conflicts in NDN and guidelines for a
conflict detection and resolution engine; 5) an implementation
of NSA [25] with its optimizations; and 6) demonstrating
NSA’s applicability to the real-world NDN testbed [26].

II. Background and RelatedWork

A. Overview of Header Space Analysis

Header Space Analysis (HSA) [13] is a network data plane
verification tool used to model nodes and verify essential
properties. A network node is any packet processor that
performs in-network processing on a packet on its path. The
most important primitives in HSA are Header Space, Network
Transfer Function, and Topology Transfer Function.

Based on a geometric model, a Header Space H is an L-
dimensional space of packet headers, with L being the upper
bound on header length, in bits. One header is one point in
this L-dimensional space, consisting of 0’s and 1’s. A special
wildcard bit ‘x’ can be used to form a header space that con-
strains only certain bits. HSA defines primitive set operations
(union, intersection, etc.) to manipulate header spaces.

Using these operations and conditionals, we can define
Transfer Functions. A Network Transfer Function T models the
packet processing done by a network node. Function T (h, p)
takes as input a header space and incoming port, and produces
a new (h′, p′) pair denoting what header space will be produced
as output, and which port it has to go out of.

The Topology Transfer Function Γ models link behavior.
Assuming the link is up and working, this function basically
relays the header, unchanged, from the output port of one node
to the input port of the next node, assuming the two ports are
connected by this link. Using a long-lived snapshot, we can
model a topology of fixed, wired links, while a sequence of

short-lived snapshots may be used to capture the effects of a
mobile, wireless environment.

Using the aforementioned building blocks, HSA provides
algorithms to check the following properties in a network
configuration: Reachability Analysis, Loop Detection, and Slice
Isolation. The analyses typically consist of an initial header
space injected to a (set of) network node(s). The higher the
coverage of these header spaces, the more thorough the search
will be. Usually for a full analysis, initial header spaces of all
wildcard bits are injected. Reachability analysis gives all the
headers that a node B receives, starting from an initial header
space injected at a node A. For loop detection, the history
of a header space is checked, to see whether or not (a part
of) it has visited a node more than once. Slice Isolation uses
header spaces flowing in and out of critical network nodes, to
ensure certain traffic stays within a private network slice, e.g.,
a VLAN, and does not leak to another slice.

B. Network Verification and NDN Diagnostics

Network verification aims at analyzing large, complicated
networks in order to find corner case errors and investigate
essential properties. There have been efforts to build models
to describe and verify networks. For the purpose of building
verification frameworks, some works focus on analyzing control
plane (to analyze all data planes caused by configurations) and
some on data plane (to analyze the current state of the network).
Computational feasibility and full verification coverage are
challenges of control plane verification [17], [27]. We focus on
data plane verification in this paper. Some of the more notable
data plane verification tools are Anteater [12], HSA [13],
VeriFlow [16], and NetPlumber [14]. These methods typically
consist of snapshot-based static checking. Anteater [12] models
the data plane as a set of boolean expressions and runs a SAT
solver to verify invariants. HSA [13] uses a geometric view
of packet headers, not making any presupposition about what
each packet header element represents, thus making it a flexible
model for integration for new network architectures. Some veri-
fication tools additionally support real-time checking of network
policies of Software-Defined Networks (SDN) such as Veri-
Flow [16] and NetPlumber [14]. These methods leverage and
rely on control update messages issued by the centralized SDN
controller for fast, incremental checking of network data planes.
Thus, they can react to changes before those changes are applied
to every one of the associated routers. Our proposed model is
a generic one, with no assumption on how the network is man-
aged. However, if we have NDN integrated with SDN, real-time
verification using control update messages may be leveraged.
Work in [17], [20] propose data plane equivalence checks.
While they focus on equivalence pertaining to host-centric
properties, NSA can check information-centric equivalence,
e.g., checking if the same subset of the content namespace of
a particular content provider is reachable in two (or multiple)
data plane snapshots. This is important since we may need to
have multiple snapshots each with the desired differences, and
compare them against each other, i.e., cross checks, where the
goal is not to conform to an external property, but rather to
compare against a complete, separate snapshot in time [20].
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An important prerequisite of data plane verification is
collecting the current state of the data plane in the form of a
snapshot. Based on how the network is managed, different
methods can be used for this collection procedure. With
traditional non-SDN networks, methods such as SNMP [28],
NETCONF [29] or node-specific terminals [30], can be used to
collect FIBs and topology information. NDNconf [31] presents
an NDN-ized version of NETCONF, to collect NDN-specific
FIBs. In addition to the capability of querying, NDNconf
allows for a push-based notification of changes in the network
state to management servers, which helps with real-time
collection of up-to-date snapshots. SDN-controlled networks
can support a more efficient snapshot collection by monitoring
the forwarding rule updates (insert, modification or deletion)
on the southbound interface [32]. Snapshot collection and
verification are two logically independent procedures. NSA
focuses on the verification component, while leveraging the
complementary support of these snapshot collection methods.

Our work presents an NDN-specific verification framework.
Diagnostic tools such as Ping [33] and Traceroute [34]–[37]
have been proposed and developed for NDN. While these tools
are very helpful for performance measurements and small-scale
connectivity checks, they are often limited in high-coverage
checks across the network in a scalable way, and also use
network resources. Thus, a formal approach gives us a higher
level of flexibility and coverage for property checking [13].

III. Overview of NSA

Fig. 1 shows the overall functionality provided by NSA, what
specific building blocks it proposes, and the ways in which it
extends and integrates HSA for NDN. HSA leverages a number
of functions, using header primitives to enable verification. Each
verification application analyzes a particular network property.
As Fig. 1 shows, NSA is designed to be modular, so it can be
extended to support additional verification applications.

HSA is most suitable for analysis of protocols with headers
having fixed formats, e.g., IP packet headers, where (mandatory)
fields have fixed sizes and positions, according to the protocol
version. Since this is not the case for NDN packets [22], we
develop NSA to support the modeling of NDN-style flexible
headers with variable fields. NSA introduces variable-length
wildcard elements to enable modeling NDN’s header space.
Also, we change HSA’s bit-based header space modeling to a
flexible atom-based one. Atoms can be bytes (octets), fields, or
names. This allows us to reasonably model how NDN packets
are encoded, at the desired level of abstraction.

While utilizing HSA network and topology functions, NSA
also proposes a Name Space Function, which enables trans-
forming a header space into a name space, which is an
essential part of a content-oriented network. Details of NSA
elements are provided in §IV. Using this function, a wide
variety of name-based network properties can be reasoned
about. Almost all of the HSA verification applications can
also be used to analyze NDN. However, there are additional
properties, specific to an ICN/NDN, that need to be addressed.
This necessitates a verification tool that takes NDN specifics
and intents into account. To this end, we introduce some
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applications that use these additional properties in NSA, namely
Content Reachability Test, Name-based Loop Detection and
Name Space Leakage Detection. These properties focus on the
specifics related to the NDN architecture, and how consumers
interact with named content. Additionally, NSA supports Cross-
Snapshot Equivalence Check, which takes as input multiple
snapshots (states of the data plane), and can be used to check
a variety of properties, e.g., consistent NDN producer mobility.
Details of NSA’s verification applications are provided in §V.

NSA, just like HSA and other data plane verification
approaches, focuses on a snapshot, and models how the state
of packets change with regards to a given network state, but
not how the state of the network itself changes. In other words,
NSA reads and writes to state at a packet-level, as explained in
§V (Fig. 3(b)), and only reads from state at the network-level.
Thus, it focuses on a set of properties that are dependent on a
particular state of the network, and not on how other packets
may change it. The properties cover all packets and their paths
in the network state. However, this is still a huge improvement
in terms of coverage of analysis compared to existing solu-
tions [33]–[37], and allows for important classes of properties
such as reachability and loop-freedom [12], [13]. At any state
of the network (except for temporary transient states, perhaps),
each content must be correctly reachable from anywhere, and
packets must not loop. Modeling the transition of network
state from one data plane state to another will require control
plane verification approaches as well. It is feasible to analyze
a finite, limited number of data plane snapshots (e.g., NSA’s
cross-snapshot equivalence check), each representing a state of
the network, by successively running NSA on those snapshots.
An example of multi-snapshot verification is checking if the
network’s handling of producer mobility is correct (§V-D).

Overall NSA procedure. We outline the procedure in



IEEE/ACM TRANSACTIONS ON NETWORKING 4

outlined in Fig. 2. It consists of the following:
• The data plane information is fed to NSA as inputs containing

Topology (i.e., the links’ information), Node Rules (such as
FIB rules or PIT state at routers), and Name Trees at nodes.
All these elements, combined, constitute the current state of
the network, inserted as a snapshot, collected through the
methods described in §II. If the snapshot does not capture
the full global information and is only a subset, NSA focuses
its verification on that particular subset.

• After parsing these inputs, NSA models the data plane, called
a Network Space, by generating the representative Name
Spaces, and Transfer and Transform Functions, to model node
operations, links, and mapping between headers and names.

• Another important input for NSA are Header Injections,
which trigger the verification procedure. These “headers” are
symbolic packets which can contain logical elements such
as wildcards. For a full test, we typically inject all-wildcard
headers at all node faces in the network.

• Based on the header injections and the generated network
space, NSA’s Automatic Verification Engine generates the
Propagation Graph, which is basically the state space of all
packet transitions and paths. The topology and network rules
existing in the collected snapshot will dictate these transitions
(if we want to consider changes in the network space, we will
have to collect new snapshots and process them separately).

• NSA checks network-wide properties, such as loop-freedom,
content reachability, and name leakage-freedom, by querying
over the generated propagation graph. This way, NSA
provides the verification result and error report.

IV. NSA Design

A. Modeling NDN Header Space

1) Atoms and Header Representation: The atoms of analysis
in HSA are bits, since some fields can be encoded as single
bits in IP. An NDN packet, on the other hand, is a set of nested
Type-Length-Value (TLV) codes represented as octets [22].
Thus, the smallest possible atom in NSA is octets (bytes). With
byte-based atoms, NSA header representations follow NDN’s
TLV octet-based encoding. Other atoms could be picked as
well: e.g., if checking the correctness of TLV encoding is not
important in a particular analysis, atoms can be NDN fields.
With field atoms, NSA header representation will be an XML-
like structure. If only the name field needs to be checked, atoms
can be names. With name atoms, NSA headers are represented
as a combination of name components, similar to NDN regular
expressions [38]. Unlike HSA’s strict use of bit atoms, NSA
provides the flexibility of using byte, field and name atoms for
header representation. The correct atom depends on the scope
of verification and the desired level of abstraction.

Unlike IP packet headers, NDN does not have a fixed header
with fixed fields at fixed positions. Interest and Data packets
have different types. Normally, an NDN Interest has only
headers; thus, we use the terms “packet” and “header” for
NDN interchangeably, throughout this paper.

NSA can model headers of any length; however, for the sake
of checking finiteness, an upper bound L (maximum header
length) has to be set. Still, headers of different lengths can be

processed together; variable-length wildcard atoms provide the
necessary padding to facilitate this.

2) Wildcard Expressions: In order to efficiently model and
process a header space rather than a single point, i.e., a single
header, we use special wildcard elements to represent atoms
that can take any possible value. Wildcard expressions are
supported by the set operation as we explain below.

Single-atom wildcard. Similar to the original HSA, albeit
using flexible atoms rather than only bits, we sometimes use
a wildcard of size one, denoted as “[?]”, and defined as
[?] = a1 ∪ a2 ∪ · · · ∪ an, where ai is a possible value for an
atom and n is the number of possible values for an atom; e.g.,
with byte atoms, we have n = 256.

Variable-length wildcard. Unlike IP headers, the NDN
header has a flexible format and there is no rule on how much
information should exist between two particular fields. To
efficiently incorporate this feature into NSA, we add a new
wildcard type: variable-length wildcard, denoted by “[∗]”,
which can be a wildcard of any size (zero or more atoms) up
to the size allowed for the maximum header length. Formally,
[∗] = ∅ ∪ [?] ∪ [?][?] ∪ . . . until length allowable by L.
Note that the “[∗]” wildcard is not currently part of the

NDN architecture [39]; we use it as part of NSA headers for
the model’s representation and verification efficiency, to be
used in a symbolic execution fashion, which we explain in §V.

3) Set Operations: Set operations are important for ma-
nipulating header spaces in order to model packet processing
through transfer functions. We use a similar algebra as HSA,
with the difference being that we use variable-length wildcards
and flexible atoms.

Union. This is the basic operation. For header spaces h1 and
h2, header space h = h1 ∪ h2 contains all headers in h1 and h2.
Result of union may or may not be simplifiable.

Intersection. For two headers to have a non-empty intersec-
tion, they should be of equal length and have the same values
(or wildcard element) at the same position. To convert length,
“[∗]” should be converted by an appropriate number of “[?]’s”,
as explained above. At the atom-level, we have a ∩ a = a,
a ∩ [?] = a. For two unequal atom values, a1 ∩ a2 = [z].
Special atom “[z]” denotes an atom that has zero possible
values, i.e., null (empty). A header space h that has even one
“[z]” is regarded as empty. Also, intersection of any atom-string
with an all-wildcard “[∗]” header will be the atom-string itself.

Complementation. Complement of non-wildcard atom a,
denoted as a, can take any values other than that of a.

Difference. Difference of two headers is defined as h =

h1 − h2 = h1 ∩ h2. For example, with byte atoms, using these
set operators, we will have:
ab?− abc = ab?∩ (abc) = ab?∩ (abc∪ abc∪ abc∪ abc∪
abc ∪ abc ∪ abc) = ∅ ∪ ∅ ∪ abc ∪ ∅ ∪ ∅ ∪ ∅ ∪ ∅ = abc

This basically means any three-byte string starting with
“/a/b” but not (i.e., minus) “/a/b/c”.

B. Modeling NDN Nodes

Packet processing in an NDN node uses Network Transfer
Functions, as T (h, f ) : T (h0, f0) → {(h1, f1), (h2, f2), . . . }
where function T maps header h0 coming to face f0, to all
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headers h1, h2, etc., going out of faces f1, f2, etc. of the node
respectively. NSA’s transfer functions are at the level of a face,
rather than being port-level as in HSA. Domain and range of
NSA transfer functions are of the same type (both Interest or
both Data headers). Transitioning from Interest to Data is not
a part of NSA verification as it requires changing the state of
the data plane. Depending on the functionality being modeled,
function T may or may not change h0, and may or may not
depend on the incoming face f0. Any NDN packet processing,
including an NDN forwarding behavior, can be modeled using
(a set of) transfer functions.

For example, the transfer function for forwarding an Interest
as a result of the Longest Prefix Matching (LPM) on the FIB,
assuming there are two entries with indexes (prefixes) n1 and
n2 in the FIB, can be written as:

TI.fwd(h, f ) =


⋃

(h, f n1
i ), if FIBM(name(h), n1),∀ f n1

i ∈ S F(n1)⋃
(h, f n2

i ), if FIBM(name(h), n2),∀ f n2
i ∈ S F(n2)

∅, otherwise

where the FIB is a collection of (prefix, set of faces) pairs; as-
suming the use of LPM, the FIB match function FIBM() returns
true for at most one FIB entry; and depending on forwarding
strategy, i.e., best route, etc., the function S F() (selected faces)
will return the appropriate corresponding outgoing faces.

In general, a typical Interest processing transfer function can
be modeled as TI(.) = TI. f wd(TI.CS (TI.PIT (.))). What elements
we put into a transfer function depends on our architecture and
the purpose of the analysis. For example, if we have the as-
sumption of the CS and PIT being empty upon the arrival of an
Interest, then we can simply have TI(.) = TI. f wd(.). Additional
functions can be added to the pipeline as well; more generally,
as Tn(Tn−1(. . . T1(.))) where each Ti is a specific function (step)
in the pipeline. These functions include those that modify the in-
coming header space as well. More example transfer functions,
e.g., a packet anonymizer transfer function, are provided in [40].

Generally, a condition on a header is modeled as a header
space (which may or may not have wildcard expressions) and
the result depends on the output of a logic operation on the
incoming header and the condition. This depends on the process
and the condition and may in some cases be tricky. E.g., for
LPM checking, for a header to be forwarded out of a face, the
FIB entry index corresponding to that face has to be a prefix
of the header’s name (non-empty intersection) in the Interest,
and a longer FIB index must not be a prefix of that header
(empty intersection). For example, consider an NDN node with
FIB consisting of two rules “/a → f1” and “/a/b → f2”. Given
an all-wildcard input header, Interest headers coming out of
face f1 are those whose names start with “/a/” (i.e., “/a/∗”)
and not with “/a/b” (i.e., “/a/b/∗”).

C. Modeling Name Spaces
We add the notion of name spaces as a key component of our

analysis approach. Name spaces show relations between content
names, in a content repository and across the network. They are
an important part of NDN, and NSA factors them carefully in its
analysis. As far as NSA is concerned, a name space is any struc-
ture representable by a graph. We assume a special case of that,
namely NDN-style hierarchically structured tries (prefix trees).

Formally, a name space in NSA represents names and their
relations, and is a domain separate from the header space
domain. A name space function, transforms a point in the header
space domain to a name space domain, i.e., its corresponding
name(s). Name space function Ω() is introduced in NSA. It
transforms a (set of) header space(s) (after parsing it to the
individual name parts) to a name space. In particular, Ω()
performs the following two steps on an input header space h:
1) extracts the (prefix) names associated with h, 2) provides the
reverse construction of the prefix tree from the list of prefixes
derived in step 1. This resulting prefix tree is the name space,
used in NSA verification applications. It is worth mentioning
that in this case, since the name space is generated from an
L-bound header space (via Ω()), the height of the name space
will be at most L. This does not take away any generality
from our analysis: even though a name tree can be potentially
infinite, any name component that is beyond the limit of an
Interest size cannot be expressed and thus cannot be reached.
Thus, they are not visible to the outside world (in other words,
we cannot define a “reachability” requirement for them), and
can be safely omitted from our verification.

V. Using NSA for Verification

We present a number of verification applications of NSA.
Specifically, we look at the important applications of testing
content reachability, loop detection and name leakage detection.
NSA provides significant benefits both for verification results
and its efficiency compared to simulation-based tests.

An important part of NSA’s formal verification approach that
facilitates automated checking is the generation and analysis of
the state space, or propagation graph. The graph represents all
possible paths any packet can take, rather than a single trace that
a simulation-based approach would support. This provides the
desired coverage we need for verification. An example is shown
in Fig. 3. Each node in this propagation graph is a state, mainly
consisting of a header and a face, denoting the arrival/departure
of the header to/from the face. Depending on the specific
application, there can be additional state information, such as a
visited nodes list, e.g., for loop detection. We record as much
information within a state (e.g., list of visited nodes) as needed,
so that checks could be done by looking at the state only, so
that extra processing on the graph would not be necessary (e.g.,
checking all ancestors of a state by traversing paths). The initial
states, i.e., parent-less nodes in the graph, represent injections
to the network. For example, in Fig. 3, the propagation graph
(Fig. 3(b)) implies that header h0 is injected to face A0 of
node A (as shown in Fig. 3(a) as well). State transitions in the
propagation graph can be through network transfer functions
(i.e., processing packets within a node) represented by single
arrows in Fig. 3(b), or topology transfer functions (i.e., moving
over physical links) shown by double arrows.

While NSA can be used for both Interest and Data packets,
we focus on Interests in the remainder of this paper. As pointed
out in [6], Interest processing is more complicated than Data
processing: it has longer, more complicated pipelines, has
additional procedures such as forwarding strategy selection, and
its forwarding decisions are made through the result (i.e., FIB)
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Fig. 3. Propagation graph example

of complicated distributed algorithms (i.e., routing protocols).
All these motivate more careful attention.

A. Content Reachability Test

Reachability analysis in HSA, and other host-based verifica-
tion solutions, focuses on host (content provider) reachability.
We extend this to content (name space) reachability in NSA,
since this is a main concern in NDN. This analysis generates
name spaces that can reach content repositories, i.e., at
producers or content stores. To this end, we apply a name space
function on the header space received at a content repository:

CRA→B(h, f ) =
⋃

A→B paths{Ω(Tn(Γ(Tn−1(. . . Γ(T1(h, f ))))))}

where CR denotes the content reachability function, its range
being all the content names, in form of name spaces, received
at content repository B, having injected h at face f of A, and
functions Ti and Γi being switch network and topology transfer
functions on the path, respectively. Function Ω is the name
space function that transforms header spaces to name spaces.

A big part of name space reachability analysis is comparing
the received name space request, i.e., NS rcv

B = Ω(hB) with
the hosted (actual) name space NS hos

B at node B, where B
is a content provider (or a router equipped with a content
store). Ideally, we desire both name spaces, NS rcv

B and NS hos
B

to be equal. Generally, there can be three cases possible when
comparing NS rcv

B and NS hos
B :

1) If part of NS rcv
B is not in NS hos

B (Case 1: unsolicited names),
it means B would receive Interests for names the node does
not have, i.e., those packets get blackholed.

2) If part of NS hos
B is not in NS rcv

B (Case 2: unreachable names),
part of B’s name space is untouched, i.e., requests for them
would never be received. Cases 1 & 2 need not be disjoint.

3) If neither of the cases occur, verification is successful, i.e.,
NS hos

B = NS rcv
B (Case 3).

The process is exemplified in Fig. 4, where header space
hA injected at host A traverses nodes (e.g., routers) with
transfer functions TC and TB where the header space hB gets
transformed and compared with the content name space at B.
Node B can generally be any node in the network that has
the capability of storing and serving content, be it a content
publisher or an ICN-capable router with content store.

A ��() ��()

ℎ� ℎ� ℎ�

�	�

�� �	�

��

Compare
�(ℎ�)

Fig. 4. Content reachability test

Algorithm 1 specifies the application for the name space
reachability test in a network, denoted by its Network Space
N, which is the collection of all name spaces, and transfer
and transform functions. Starting from an initial header space,
typically of all-wildcard elements, this application generates
output headers of each node, step-by-step, by walking through
the header propagation graph. It can start from one (as shown in
Algorithm 1), or any arbitrary number of consumers. The name
space functions and comparisons are applied and performed
at all the nodes in the network that are considered content
providers. The application finds all case 1 and case 2 errors for
each content provider and also returns the overall verification
result, as either True (verification success, no bugs found) or
False (verification failure, bugs exists), for the whole network.
In the case of verification failure, NSA can provide the
counterexamples, i.e., “unsolicited” (unwanted) or “unreachable”
names at each content repository.

Algorithm 1 Content Reachability Test
1: procedure ConReach(C, h0,N) . Inject h0, at C, netw. space N
2: Start with h0 at C . Typically all wildcard, i.e., [∗]
3: Calculate all hPi ’s . Headers reached at provider Pi
4: for all Pi do
5: NS rcv

Pi
← Ω(hPi )

6: NS UW
Pi
← NS rcv

Pi
− NS hos

Pi
. ‘Unsolicited’ names

7: NS UR
Pi
← NS hos

Pi
− NS rcv

Pi
. ‘Unreachable’ names

8: if NS UR
Pi
∪ NS UW

Pi
= ∅ then

9: ResultPi ← True . Success at Pi
10: else
11: ResultPi ← False . Failure at Pi

12: return
∧

allPi’sResultPi . Overall verification result

This application can be used to reason about various issues,
both in current NDN as well as in a more general research
context, as explained in the following examples:
• Content censorship-freedom. Censorship leads to content

reachability errors; e.g., in Fig. 5, censoring node R may drop
all interests for “/democracy” [8]. This would result in (all
or part of) content provider P’s name space to be unreachable.
This is an undesired effect that can easily be detected by NSA.
While NSA cannot definitively deduce that such a problem is
caused by content censorship, the lack of existence of such
errors would imply content censorship-freedom. Furthermore,
the effectiveness of a censorship countermeasure mechanisms
can be checked using NSA.

• Content neutrality. We define Content Neutrality as not fa-
voring a content provider over another (by not discriminating),
with regards to same prefixes that they serve. An example
of content neutrality violation is shown in Fig. 6, where
content provider P3’s served name space “/news” is not
reachable, even with the Interest going through nodes with
multicast forwarding strategies enabled (which are supposed
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PC
f1 f2

/democracy/* /democracy/*
P serves 

“/democracy”

R drops “/democracy”

P would not receive interests for “/democracy” it serves, since R has censored it!

Fig. 5. Content censorship example

P1C
f1 f2

/news/*

P2
P3

/news/*

P1, P2 and P3 all 

serve “/news”

R multicasts “/news” towards 

P1 and P2, but not P3

P3 would not receive interests for “/news” which it serves, since R is favoring P1 

and P2 over P3, while the data plane supports multicast forwarding strategiesFig. 6. Content neutrality violation example

to send Interests towards the direction of all potential content
providers.) Here, router R (which can be part of an ISP) is dis-
criminating by favoring P1 and P2, over P3, for Interests re-
questing name “/news” (all three may be news organizations,
thus producers). With multicast forwarding strategy at every
router for every prefix, NSA can check whether all content
providers receive Interests matching their entire name space,
for every ‘all-wildcard’ injection. While NSA cannot detect
if a reachability error is caused by discriminatory neutrality
violation or benign configuration mistakes, an error-free data
plane could be used to show if content neutrality holds.
A number of other use cases of NSA’s content reachability

test, e.g., checking route computation outcome correctness, and
security infrastructure soundness are provided in [40].

B. Loop Detection
Loop freedom is an important property in networks. For NDN

in particular, looping Interests is a widely known issue, which
led to the addition of extra processes in the forwarding pipelines,
such as a Dead Nonce List [6]. While such reactive measures
detect looped Interests after they occur, looped Interest would
not be prevented and could potentially waste a large amount
of network resources. Also, it is very likely that an Interest is
looping because it is not satisfied; i.e., did not reach its intended
content provider(s) due to errors in the forwarding state of the
network. As a result, making a local decision at an NDN router
to discard or drop a looping Interest does not solve the problem
of unsatisfiability of certain Interests. Thus, it would be highly
desirable to detect all potential loops in a data plane, before
they occur, with a holistic view of the network data plane.

NSA helps in identifying all Interests that might potentially
loop. NSA typically does this by injecting all-wildcard headers
and looking for possible loops. Thus, we can track every
possible Interest and find all potential loops by following FIB
rules established in a given data plane. We therefore achieve a
purely name-based loop detection, rather than a nonce-based
detection. NSA models the transition of all packets within a
single data plane snapshot, thus enabling a robust loop detection
algorithm (as does HSA [13]). As all FIB rules causing the
loops are contained in one single snapshot and it is possible
to analyze them with transitioning packets (headers), NSA can
catch all potential loops.

A2

A1

/a/b

h0=“/*”

D0

FIB rule for “/prefix” and 

its output face direction

(a) Topology, injection, and FIB rules

Header: h0 = “/*”

Face: D0

Visits: D

Header: h=“/a/*”

Face: A1

Visits: D, A

Header: h’=“/a/b/*”

Face: A2

Visits: D, A, B, C, A

…

…

Loop detected!

ℎ
�
⊆ ℎ ⇒ Infinite loop!

(b) Propagation graph

Fig. 7. Loop detection example

The loops detected can be potentially infinite or finite.
Suppose node A appears twice in a single path in the
propagation graph, visiting two header spaces h and h′ (in
that order); if h′ ⊆ h, then this would be a potential infinite
loop. An example is shown in Fig. 7, where NSA first detects
a loop (as node A appears twice in one particular path), and
second, it determines the loop to be infinite, checking the header
spaces h and h′ associated with the visits, where headers with
name “/a/b/∗” return back to node A. Having h′ ∩ h = ∅
implies a certainly finite, thus non-hazardous, loop which NSA
ignores. By adding the history of each state to NSA, i.e., the
sequence of headers and faces, NSA can easily detect infinite
loops by checking whether a particular header space (subset)
has been visited by a node twice or not.

C. Name (Space) Leakage Detection

What if a consumer issuing an Interest for a particular name,
wishes (parts of) the name, e.g., his ID or a particular content
name, to not be visible in the network except for certain
authorized nodes, e.g., those in his home network? This can
be a desirable property for a variety of reasons. Works such
as [9] have identified the need for Interest name privacy.

In NSA, inspired by HSA’s slice isolation check, we can
check whether or not any confidential name leaves a particular
set of nodes authorized for read-access. Let us call this set
of nodes as a zone. A zone can be a particular router, a local
network, a service provider network, etc.

Let us consider the example in Fig. 8: Consumer C issues
Interests with header h0, which results in headers h1, h2 and
h3 leaving the authorized zone of routers, denoted as Z1. We
define all the headers going out of Z1 as hout = h1 ∪ h2 ∪ h3.
NSA allows us to define and apply access control rules on
names in a number of ways, and check name constraints on
hout accordingly, e.g., the following examples:
• Headers of particular form, e.g., containing a particular name

component, should not appear in any packets leaving or
entering zone Z1. Then we should have hout ∩ hprohibited =

∅, where the left-hand side of the equation denotes the
intersection of all headers leaving Z1 with all prohibited
headers. Prohibited headers can be built using NSA’s atoms
and algebra, as described in §IV. The “∅” on the right-hand
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C

Zone Z1

Fig. 8. Name leakage detection example

side means that we do not want any header in the result of
the intersection to leave Z1.

• Packets associated with name space NS 0 should not leave
Z1; then we should have Ω(hout) ∩ NS 0 = ∅. This way of
defining a rule is more efficient for a larger set of prefix-suffix
name relations representing a portion of a name space graph:
instead of checking many prefixes one by one, we can check
once against name space NS 0 comprising all those prefixes.

D. Cross-Snapshot Equivalence Check

The applications above focused on checking properties within
a single snapshot of the data plane, i.e., a single state. However,
in many cases we may wish to check properties across multiple
snapshots. An important class of multi-snapshot checks is to
do a comparison between two (or more) separate snapshots
of the network. NSA enables a Cross-snapshot Equivalence
Check. A pair of snapshots may be fed as inputs and we can
check the equivalence between the two with a custom notion
of equivalence. The two snapshots can represent two versions
of a data plane, or different states of the same data planes
at two different points in time (collected at certain intervals
or triggered by certain events). In particular, our goal is to
check how the point of attachment of a producer affects its
content reachability. Ideally, we want it to have no effect.
While single-snapshot analysis checks a snapshot against an
external property as a reference (e.g., content reachability),
cross-snapshot analysis checks a snapshot against another
snapshot, i.e., the reference snapshot, and makes sure the two
are equivalent. This can be defined as s1 ≡EP s2, where s1
and s2 are the two comparable snapshots and EP is the case-
specific equivalence property, i.e., the notion of equivalence
we want to check, by comparing the snapshots provided. We
explain this by way of an example.

Example use case: Producer Mobility Correctness. Mo-
bility is a major feature of NDN. However, especially when it
comes to producer mobility, handling it in a correct way (i.e.,
making sure the producer’s content reachability properties stay
the same after the mobility and network re-convergence) can
be quite challenging [41]. We can use NSA’s Cross-snapshot
Equivalence Check to check this correctness property.

Let us consider two snapshots s1 and s2 of an NDN network,
where s1 and s2 are identical in every way except that the
network point of attachment of producer P is different in the
two snapshots, as depicted in Fig. 9. In other words, state s1
is collected before P’s move and s2 is collected after P has
moved. The state in the network (i.e., FIBs in the routers) has
been re-populated and routing convergence, according to the
protocol, has been partially or completely achieved.

C R1

R2

R3

P

(a) Initial state (s1)

C R1

R2

R3 P

(b) Intermediate (s1.5)

C R1

R2

R3 P

(c) Final state (s2)

Fig. 9. Data plane state changes due to producer mobility (P serves “/a”,
green arrows: FIB entries for “/a”)

Now Let us assume that we want to make sure that P’s name
space reachability in s2 is exactly equal to that in s1. That
would be our desired equivalence property. To check this, we
use the Content Reachability function as described in §V-A. We
produce CRs1

x→P and CRs2
x→P, which provide all names reached

at P (from any starting node x) in s1 and s2 respectively. If
the ranges of CRs1

x→P and CRs2
x→P are equal, then we say s1

and s2 are “equivalent in regard to reachability of P’s name
space”. Thus, the mobility of producer P is handled correctly
with respect to this property. In other words,

EP : Range(CRs1
x→P) = Range(CRs2

x→P)

where EP defines the equivalence property for this case. This
would mean that s1 and s2 are in the same equivalence
class with respect to property EP (it is trivial to see that the
specified EP is an equivalence relation). Differences between
the ranges of CRs1

x→P and CRs2
x→P indicate incorrectness and

will be reported as errors. Examining the non-overlapping parts
of CRs1

x→P and CRs2
x→P, the network manager can infer as to

which forwarding rules are causing the error. Having said that,
deducing the root cause of what aspect of the mobility handling
protocol is causing the error may be difficult in more complex
scenarios (i.e., those which involve many mobility events),
since NSA does not explicitly determine the root cause.

Fig. 9 shows a simple mobility example, where producer
P, which serves name prefix “/a” moves from its initial point
of attachment R2 (initial snapshot, s1, Fig. 9(a)) to R3 (finals
snapshot, s2, Fig. 9(c)). For simplicity, we consider a naive
routing-based mobility handling solution that re-populates all
FIBs with an updated announcement after the new attachment.
An intermediate state (s1.5, Fig. 9(b)) shows the state after P’s
move but before full re-convergence of the network (R3 has
been notified of the update, but R1 and R2 have not yet been
notified). Using the mobility equivalence property EP defined
above, we will have s1 ≡EP s2, but s1 .EP s1.5 since the range
of CRs1

C→P and CRs1.5
C→P do not match; in other words, interests

for “/a” from C that reach P in s1, do not do so in s1.5.
Similarly, s1.5 .EP s2. This example shows that during the
transition, the network is temporarily incorrect. The property
needs to ultimately hold for the initial and final snapshots.
Also, a fast mobility solution, creates erroneous intermediate
snapshots that are fewer and last for shorter durations.

Furthermore, checking two different intermediate snapshots
of two different mobility solutions can be helpful. E.g., suppose
R2 in Fig. 9(b) has received an ‘invalidation’ signal from P
once it moves. NSA gives us the full header space leaving
R2 in the two cases: ‘without invalidation message’ vs. ‘with
invalidation message’ (as two intermediate snapshots). The
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smaller size of the latter shows that fewer interests will be
blackholed by using the invalidation message.

While the toy example above only deals with one mobility
event and only 3 snapshots, it can easily be generalized to more
complex checks. Since the goal is putting different snapshots in
their respective equivalence classes, many possible snapshots
may be checked through NSA’s equivalence checks. Also, mul-
tiple producer mobility events can be supported, e.g., if multiple
producers re-attach in s2. This is possible in NSA’s snapshot-
based data plane verification approach, since the impact of all
the mobility events can be captured in a single snapshot.

Consumer mobility can be checked for correctness in a sim-
ilar manner. Cross-snapshot equivalence check application can
be very useful to check the outcome (not the protocol itself, per
se) of mobility handling protocols on the data plane, especially
with regard to how they re-populate the network FIB or re-direct
requests. This may be complimentary to other protocol verifica-
tion methods used for specific mobility handling protocols [41].

VI. Complexity Analysis

First, we analyze the complexity of transfer function genera-
tion, which is an important step where NSA converts the NDN
FIB table to NSA transfer functions that capture those rules (as
described in §IV-B). We now look at its time complexity. For
a FIB table with e entries, the worst-case complexity of this
conversion would be O(e2D2d): for every entry ei, we need
to check all other entries to find its descendants, i.e., at finer
granularity of ei. For each descendant of ei, which we represent
as e j

i , there would be 2di j corresponding NSA rules that need to
be generated, where di j is the granularity distance between ei

and e j
i . For example, granularity distance of prefixes e1 =“/a”

and e2 =“/a/b/c” is 2, as e2 is a descendant of e1 and has
two additional name components. As a result, corresponding to
e1, NSA would create rules for “/a/b/c/∗”, “/a/b/c/∗”, and
“/a/b/c/∗” for the network transfer functions (so the outcome
would be determined by the intersection of incoming header to
every rule). Also in the complexity formula, D and d denote
the maximum number of descendants, and granularity distance
in the given FIB table, respectively.

Next, we analyze the time complexity of the execution of
the verification procedures on prepared network space, starting
with content reachability (§V-A). Let us assume we have an
injection of a header at one consumer, that leads to one content
provider through a single path. Let us also define d, L, R, and
s as maximum network diameter (number of hops), maximum
header length, maximum number of node rules, and maximum
number of paths in a trie-based content provider name space, re-
spectively. The time complexity of the NSA content reachability
test will then be O(dLR2s). This analysis is based on the linear
fragmentation assumption in [13], which says that typically
very few rules in a node match an incoming packet. On the other
hand, the complexity of a simulation-based test (as well as ping
or traceroute) would be O(daLRs), where a is the maximum
number of values an atom can take; e.g., with byte-based atoms,
a would be 256. NDN headers have no specific upper bound;
however, it is recommended that a reasonable MTU (which can
be thousands of bytes) be conformed to by NDN applications
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Fig. 10. Results for small grid snapshots

[42]. This will make aL very large. This way, the simulation
approach will reach a very large and exponentially growing
complexity. This shows the huge benefit of NSA for a content
reachability analysis with high coverage.

Using the same similar method and the linear fragmentation
assumption, we can analyze other NSA applications as well.
NSA completes loop detection (§V-B), in particular to check if
a header injected at a node A returns to A, in O(max(c, d)×LR2),
where c is the length of the longest cycle (loop, in terms of
number of hops) in the network. Loop detection only checks the
forwarding rules, and not the content available at nodes (hence
the removal of s from the complexity expression). NSA’s name
leakage detection (§V-C), in particular to check if an injected
header at node A in zone Z1 will cause a name leakage at
node B in zone Z2, has the complexity of O(dLR2 × P), where
P is the maximum number of prohibited names per zone. For
multi-snapshot checks (§V-D) with n snapshots, if the check’s
complexity within a snapshot is O( f ), then the total worst-
case complexity is O(n2 f ), as every snapshot will have to be
compared and put in the right equivalence class.

VII. Evaluation

We have implemented NSA, including its main components
and modules, in Java; the source code is available at [25]. We
start by evaluating the performance of NSA using synthetic
grid and ring topologies, and then apply it to the NDN testbed
topology for evaluating a network that is actively used [26]. All
evaluations have been done on a machine with Ubuntu 14.04.6
LTS using Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
dual-socket with 14 cores each with hyper-threading enabled,
and 252GB RAM. We do not utilize the whole RAM capacity
though; we set the maximum memory heap size of our Java
Virtual Machine (JVM) to 10GB only. For each verification ap-
plication, all wildcard headers, i.e., “/∗” is injected to all faces
or nodes. While reporting our evaluation results, we identify and
present optimizations that further improves NSA’s performance.

A. Synthetic Networks

1) Content Reachability Analysis and Loop Detection: To
evaluate NSA’s content reachability analysis and loop detection
we use customized n×n grid topologies (to allow many branches
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Fig. 14. Propagation graph aggregation example
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TABLE I
Execution Time (ms) for NDN Testbed Verification

Application Best-route Multicast
Content Reachability Analysis 196 2,481
Content Reachability Analysis (w/
header aggregation)

75 342

Loop Detection 190 2,416

in the propagation graph), with n publishers in each case, each
serving one distinct prefix; these prefixes are advertised and
populated in every node’s FIB in the snapshot being verified.
Verification performance results for these grid networks are pre-
sented in Fig. 10, in terms of execution times, in milliseconds.

First, Fig. 10 shows the execution time of content reachability
on the grid networks. This verification, as explained in §V-A,
checks both unreachable and unsolicited names. Typically, NSA
injects all-wildcard headers into all faces, since some node
rules may depend on the incoming faces (‘All faces’ in Fig. 10.
As seen in the Fig., the growth of execution time for ‘All faces’
injection mode is linear with respect to the input network size
growth (note the input growth on x-axis is n2). Since we are
only dealing with FIB rules that do not depend on the incoming
face, we can limit our injection to ‘One face per node’ injection
only. This would not change the outcome of the verification
results. Fig. 10 shows that this optimization significantly im-
proves the performance of NSA, which is due to the fact that its
fewer number of injections leads to smaller propagation graph.

For the full reachability check, we need to go through a
separate propagation graph fragment, built and checked for
each injection, to check both unsolicited and unreachable
names. If our goal is to only check unsolicited names (and not
unreachable names), we can make all injections at once into
a single propagation graph fragment, aggregating the headers
(Fig. 14). This way, we preserve all reached header spaces,

but not their exact paths from origin in the visited list. Fig. 10
also shows the significant performance enhancement of this
optimization, compared to full reachability analysis, if our goal
is only to detect unsolicited names.

The use of wildcards is an important benefit of NSA (and
HSA), compared to simulation-based methods (which have
to generate all possible packets within a range), as shown
asymptotically in §VI. We show the empirical results for the
use of wildcards in Fig. 11. Each simulation scenario (‘Sim’)
is a typical simulation-based content reachability analysis
(using the aggregation optimization with the sole purpose of
detecting misdirected packets) that injects Interests with L
name components, each being a single alphabetical letter. Using
diagnostic tests through ICN/NDN ping and traceroute tools
has the same theoretical complexity as the simulation-based
approach, with the additional disadvantage of using too much
network resources (as every test packet injected will have to
actually traverse the network). Fig. 11 shows the large benefit,
in terms of performance and scalability, of NSA compared to
these simulation-based verifications.

To demonstrate NSA’s performance and scalability, we exam-
ine its utility with larger test cases, with n×n grids. The results
are shown in Figs. 12 and 13. Each node’s FIB is populated with
entries (rules) for all prefixes, with random outgoing faces. We
only show the results for the reachability test with aggregation
optimizations, with all-wildcard injections at all nodes, one
face per node. Fig. 12 shows the execution times (shown in
seconds in log scale) when increasing the grid dimensions.
The largest case (100×100) has a total of 100×100×100×1=1
million rules in the network, which is similar with the largest
test case considered in HSA’s performance evaluation [13].
Thus, NSA’s performance is in the same order of that of HSA,
even though NSA adds the significant feature of checking name-
based (information-centric) reachability. Further, note that our
grid topology yields much higher number of paths compared
to HSA’s simpler backbone topology [13]. The growth rates in
Fig. 12 is reasonable: note that along the x-axis, each scenario
exponentially increases the number of paths, where an n×n grid
has O(n!) paths between two nodes, leading to much higher
length and number of paths in the propagation graph. Next, we
pick a 10×10 grid (with 10 providers), and gradually increase
the per-provider number of prefixes. The largest case (e.g.,
“1000”) leads to a total of 10×10×10×1000=1 million rules in
the whole network. Again, the performance and scalability of
NSA with these large test cases is reasonable (both compared to
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the absolute values for HSA, and comparing the relative growth
in execution time). This is especially compelling, considering
the high complexity of these test cases and how they affect
the runtime, as explained in §VI.

We also evaluated the performance of NSA’s loop detection
on the same grid networks, injecting all-wildcard headers.
Fig. 10 shows the results for both cases of ‘All faces’ and
‘One face per node’ injection. The complexities, growth rates
and optimization benefit of face selection in loop detection
are similar to those of full content reachability analysis. Also,
compared to NDN’s built-in loop detection mechanisms, NSA
can prevent all possible loops caused by forwarding rules,
without using network resources, and allowing for hints on
how to resolve the loop errors.

2) Name Leakage Detection: To verify name leakage-
freedom, we use two-ring topologies; where two rings of size n
are connected by one node, i.e., is a gateway between the rings.
Each ring is considered its own zone, and has one publisher
serving (and advertising) two prefixes, one prefix visible to
everyone, and one prefix visible only to the nodes within
the local zone. Thus, each NDN node has rules for the three
prefixes (that are visible to it): two prefixes of its own zone,
and one prefix that is public from the other zone. In each of
its rounds, NSA’s name leakage detection application injects
all-wildcard headers to the faces/nodes of one zone, generates
headers that reach the other zones, and checks whether or
not they violate each zone’s name privacy requirements. The
performance of name leakage on the two-ring topologies are
shown in Fig. 15, indicating its scalability (showing a linear
growth) with the increase in network size.

B. NDN Testbed

To evaluate NSA’s performance on an operational, practical
NDN, we considered the NDN testbed [26]. This is the largest
real-world NDN with publicly available forwarding state, with
relatively large forwarding tables (of the order of hundreds
of entries per node). We captured a snapshot of the testbed
on 2019/03/09 14:43:16 CST. We use the globally available
topology. Each node in the testbed provides its (near-)real-
time local status (FIBs, etc.) through a separate webpage. We
collected the full network status by crawling these individual
local status pages. Some nodes were offline or unresponsive
and we removed them from our analysis.

An important pre-processing step for NSA verification is
generation of the transfer functions. We have implemented these
components in NSA. The topology transfer function generation
is trivial. For network transfer function generation for LPM-
based forwarding rules in NDN nodes, additional processing
needs to be done: for each FIB entry, all other rules (i.e., FIB
entries) have to be visited, as explained and analyzed for asymp-
totically completing the generation of the network transfer func-
tion in §VI. To show this empirically, we picked one particular
node from the testbed, the ‘UCI’ node. It has 214 FIB entries in
our selected snapshot. We randomly pick 50, 100, 150 and 200
FIB rules from it and perform the network transfer function
generation. The execution time (including the case with all 214
entries) is shown in Fig. 16. These results show that NSA’s
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Fig. 17. Name space conflict example (case I:
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the producers in Fig. 17

transfer function generation for this particular real-world case is
reasonably efficient and scales well with number of FIB rules.

We performed content reachability (both full and aggregated)
and loop detection on the snapshot (we did not perform name
leakage detection on it since the name leakage-freedom is not
one of the properties of the NDN testbed) using two forwarding
strategy modes (for all), namely the best-route and multicast,
and found several errors. In the best-route mode, we found 450
content reachability errors, either caused by forwarding state
errors or physically unavailable/offline nodes. For example, the
name “/kr/re/kisti” is reachable only in 31% of injections.
Also, 704 loop-freedom violations were found; note that this
is not the number of loops (cycles) per se, but rather the total
number of looped Interests detected as a result of injections. For
example, for the prefix “/kr/re/kisti”, a loop was found be-
tween the two nodes ‘TNO’ and ‘GOETTINGEN’. In the multi-
cast mode, we found hundreds of errors too. More details of the
errors are omitted here due to lack of space. The performance
results of our verifications (execution times in milliseconds)
are shown in Table I, showing its latency is reasonable.

From a practical standpoint, our experiments and results show
that it is feasible to have NSA integrated into the NDN testbed
(in one of its nodes), and periodically check for data plane
errors, and checking various states of the data plane. Given that
these checks only take seconds in total, including transfer func-
tion generation and the analysis, it would be quite reasonable
to have new NDN snapshots (which can be generated every few
minutes or seconds) be verified. The network administrator can
run NSA on one of the nodes (a controller or any router) on the
testbed, periodically collect snapshots at that node (using meth-
ods such as NDNconf [31]) and provide continuous verification
results of the network. This would be very helpful for the users
of the NDN testbed, and for their research experiments.

VIII. Case Study: Name Space Conflict Detection/Resolution
As an important case study, in this section, we explain name

space conflicts, and how NSA can detect and help resolve it.

A. Name Space Conflicts

NSA can be used to investigate and catch a wide variety
of corner cases that may result in errors. In this section we
explore as an example, property violations caused by name
space conflicts across different content providers. In NDN,
different content providers, potentially with different subsets
of content in the name hierarchy, can use and announce the
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TABLE II
Name Space Conflict Scenarios for Case II

Scenario P1 announcement P2 announcement FIB at R Result Comments
II-1 /news/sports /news /news/sports → f1 fail P2 requests reach P1

/news → f2 (blackhole)
II-2 /news/sports /news/politics /news/sports → f1 success relatively large FIB

/news/economics /news/politics → f2 (4 entries)
/news/sports/xbox /news/economics → f2

/news/sports/xbox → f2
II-3 /news/sports/football /news /news/sports/football → f1 success relatively large FIB

/news/sports/basketball /news/sports/basketball → f1 (4 entries)
/news/sports/baseball /news/sports/baseball → f1

/news → f2
II-4 /news/sports/football /news/politics /news/sports/football → f1 success relatively huge FIB

/news/sports/basketball /news/economics /news/sports/basketball → f1 (6 entries)
/news/sports/baseball /news/sports/xbox /news/sports/baseball → f1

/news/politics → f2
/news/economics → f2
/news/sports/xbox → f2

Prod. ID Name Space
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P2

sports

football basketball baseball

news

* * *
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xbox

news
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(a) Global name space
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P2 “/news”
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Fig. 19. Databases at name registry

same prefixes. This can be true especially when the names
are topic-based. No content provider has sole ownership or
authority to announce a certain prefix. While this allows for the
democratization of content and better efficiency, it can cause
conflicts that can lead to blackholed interests. We illustrate
this using an example. In addition to checking with NSA, we
also ran these scenarios in ndnSIM [43] and observed that the
blackhole effect in question indeed does occur.

Fig. 17 shows a simple network topology. Suppose in the
beginning, there exists only one producer P1 (case (I)), with
the name tree depicted in the Fig. 18(a) and creates a name
announcement for “/news/sports”. The announcement is
used to populate the router R’s FIB in accordance with NDN
policies. Announcing “/news/sports” implies that P1 claims
that it has ‘everything’ under “/news/sports”, which is cor-
rect from the network layer’s perspective. In reality, a producer
may not have ‘everything’ under a particular name prefix it
announces, i.e., there may be a possible suffix not covered in
this announced ‘everything’ set. However, since there is no
other producer to ‘challenge’ P1’s claim, P1’s announcement
stating that requests for anything under “/news/sports” will
be available at P1 does not cause any conflict.

Now let us assume the same network but with two producers
P1 and P2, as shown in Fig. 17 (case (II)), with P2’s name
tree shown in Fig. 18(b). The subset of P2’s name tree that is
interesting for this discussion is “/news/sports/xbox”. Note
that there is no malicious intent on P2’s part; evidently, P1 does
not recognize video games as ‘sport’; however P2 does (with
the sport being ‘xbox’). P2, unaware of this conflict, announces
his prefix also at the coarsest granularity, announcing “/news”
(Scenario II-1 in Table II). Using NSA’s content reachability
test, we can show that this scenario is erroneous: requests for
“/news/sports/xbox/1” reach P1 instead of P2. P2 is this In-
terest’s (most) relevant provider. Formally, header space of form
“/news/sports/xbox/∗” reaching R at f 0, has a non-empty
intersection with R’s FIB rule at f 1 (“/news/sports/∗”)
rather than that of f 2 (“/news/∗”), assuming a best-route
forwarding strategy at R. Thus, “/news/sports/xbox/” will
be a name reaching P1 and not P2:

“/news/sports/xbox/” ∈ Range(CRC→P1)
“/news/sports/xbox/” < Range(CRC→P2)

This undesirable effect can be remedied by changes in the prefix
announcement. In particular, we can change the granularity
of the prefix announced by P1 or P2, or both. While NSA
does not ‘directly’ resolve errors, the counterexamples it
provides can give us guidance on how certain bugs can be
resolved. For scenario II-1, comparing unsolicited names at P1
with unreachable names at P2, e.g., observing that the name
“/news/sports/xbox” is part of NUW

P1 and also NUR
P2 (as given

by Algorithm 1) suggests that with more fine-grained announce-
ments, i.e., announcing names at lower levels in the name tree,
interests have a better chance of reaching their most relevant
producers. Table II shows three examples of these alternative
announcements (which we call scenarios II-2, II-3 and II-4),
making the NSA verification of each example successful. How-
ever, we see their costs, in terms of scalability and FIB size are
different An important takeaway from the results in Table II is
the (possibly) inverse relation between correctness (absence of
name space conflicts) and FIB size. We can say that finer gran-
ularity of prefix announcements, leads to less conflict but larger
FIB sizes. In scenario II-2, P1 announces one prefix at a coarse
granularity of “/news/sports”, while P2 announces three
prefixes at different granularities, namely “/news/politics”,
“/news/economics” and “/news/sports/xbox”. This will
populate R with 4 prefixes, as shown in Table II. Using NSA,
we can see that an Interest of form “/news/sports/xbox/∗”
reaching R at fact f 0 will leave R on face f 2 (rather
than f 1), thus reaching its intended producer, P2. There-
fore, this makes the verification successful. In scenario
II-3, P1 announces three fine-grained prefixes, namely
“/news/sports/football”, “/news/sports/basketball”
and “/news/sports/baseball” and P2 announces one
coarse grained prefix, namely “/news”. NSA in this scenario
shows that “/news/sports/xbox/∗” goes out of face f 2 since
it has an empty intersection with all of the forwarding rules
leading to f 1 (towards P1). In scenario II-4, both P1 and P2
announce prefixes at fine granularity. While R’s FIB size in
scenarios II-2 and II-3 are 4, that for scenario II-4 is 6. All
these three are correct, i.e., absent of name space conflicts.

This case study shows that achieving correctness has a cost.
It may be important to find the most efficient refinement to
the name space announcement so as to keep the FIB size
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manageable. There is a need for an approach to detect and
perhaps resolve conflicts, before they happen. We provide some
guidelines for the design of such an approach next.

B. Name Space Registry Guidelines

The name space conflict observed in the case study in
§VIII-A may be quite common. While NSA is useful in finding
conflicts, an automatic approach, or protocol, for conflict
detection/resolution can be very beneficial in NDN. To prevent
content provider name space conflicts, a Name Registration
protocol may be such a solution. The idea of name registration
in NDN has been suggested in previous works, such as in [23],
mainly to prevent prefix hijacking. Our case study however
shows it is important for non-malicious Scenarios as well.

A name space registry can be implemented as a distributed or
centralized engine to be contacted by producers whenever they
want to announce a prefix. The producer sends his requested
announcement prefix and (a pointer to) his content name tree.
The response data from name registry would be a signed packet
containing the prefix announcement permission result, i.e.,
‘granted’ or ‘denied’, plus possibly new prefix announcements
suggested by the name registry that are conflict-free. The name
registry’s decision is based on an analysis of name spaces
across different providers, which are in its database, called a
global name space (Fig. 19(a)). The name registry may have
another database of global routable prefixes (Fig. 19(b)). Both
databases are indexed by Producer ID which can be a real
ID or a locally generated (but unique) ID. If permission is
granted, the new prefix announced will be added to the global
routable prefix list, and the producer’s name space will be
added to the global name space database. If the request is
denied, the requester needs to pick another high-level name
for the prefix announcement (just as in today’s IP network,
domain names have to be tried one after another, until one is
available) or use suggestions provided by the name registry.
The suggestions for the prefix announcement can be provided
at different granularity levels to help manage the growth of
the FIBs. While we describe it as a logically separate entity,
the name registry can be integrated with possible existing
name resolvers, such as NDNS [10]. An overview of the name
registration procedure is depicted in Fig. 20. Upon receiving
a request for permission to announce a prefix “/p” from a
producer, the name registry performs the following steps:

1) Examine the global routable prefixes list to find potential
conflicts. Two announcements can cause potential conflict if one
is the “prefix” of the other (i.e., their intersection is non-empty).
An example for potential conflicts between names is P2’s

announcement “/news” that is a prefix of P1’s announcement
“/news/sports” in Scenario II-1 in Table II. The name registry
returns the indices, which are producer IDs.

2) Retrieve every individual name space associated with the
previously found producer IDs. These are potentially conflicting
name spaces. 3) The name registry compares the requester’s
name space against any other potentially conflicting name
space. If a conflict is found, it will follow the steps outlined
in step (4) onwards; otherwise follow step (6) onwards. A
conflict is found if starting from the root on any of the two
name spaces, the announcement prefix exists on any of the
other name spaces, but at least one descendant does not. For
example, in Scenario II-1 in Table II, “/news/sports” on
P2’s name space exists in P1’s as well, but it leads to the
name “xbox” that does not exist on P1’s name space. The
condition for announcement prefixes pr1 and pr2 (associated
with producers P1 and P2 respectively) to be conflict-free, can
be specified by the following assertion:

(pr1 is a prefix of pr2)
∧

(pr2 ⊆ NS P1)
=⇒ ∀ non-wildcard sequence of name components X :

“/pr2/X′′ ⊆ NS P1 ⇐⇒ “/pr2/X′′ ⊆ NS P2

4) Generate conflict-free announcement prefixes for the
requester. This can be done by checking finer granularities
on the name space; e.g., Scenario II-2 in Table II. A more
fine-grained prefix includes more detail about a category of
content items, and has a lower chance of conflicting with other
prefixes. Conflict-freedom of alternatives that are found can
be checked using the assertion in (3). Note that a conflict-free
alternative may not exist; in that case the requester has to
pick another, different, high-level name. Otherwise, some of
previous producer announcements need to change, which can
lead to much more complexity.

5) Respond to the requester with a signed data stating
‘denied’; possibly together with prefix suggestions. Stop.

6) Send a signed response to the requester stating ‘granted’.
7) Add the requester’s announced prefix and name space to

the associated local databases at the name registry.
Our case study shows, that having a conflict detection and

resolution engine (name registry) in NDN is necessary to
prevent the occurrence of name space conflicts, and subsequent
blackholing of Interests. NSA can be used to analyze the
correctness of the outcome of such a mechanism. While we
outlined design guidelines and principles of such an engine,
space limitations preclude a detailed specification.

IX. Limitations
While NSA answers several important questions about the

network, it has its limitations. These limitations of NSA are
quite similar to those of other notable data plane verification
systems, such as HSA [13]. Regarding the discovery and
reporting of errors, while NSA can give us hints about the
details associated with errors, it cannot definitively assert why
such error occurred or how it can be resolved. Additional
external information, as well as refinement procedures, are
required to achieve this. NSA is not well-suited for network-
wide dynamic analysis that involves “churning” in the network’s
forwarding state. This is due to the fact that NSA is of the class
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of data plane verification tools, “mainly” optimized for static
checking (i.e., checking a data plane with regards to operations
and properties that do not change the state of the network).
Having said that, it is still feasible to check multiple states of
the network, represented by multiple snapshots, by successively
running NSA on them. However, this feature is limited for NSA
and would only work if errors of a dynamic-nature stay longer
than the “sampling period”, i.e., the interval between collecting
two snapshots. Nonetheless, we believe NSA is a valuable tool
for verifying key NDN-specific data plane properties.

X. Conclusion

We proposed Name Space Analysis (NSA), a data plane
verification framework for NDN, based on the theory of Header
Space Analysis. NSA (available at [25]) includes essential
NDN-specific verification applications of content reachability
test (to detect name space conflicts, content censorship-freedom,
etc.), name-based loop detection, and name leakage detection.
We also design a name registry method to detect and resolve
name space conflicts in the data plane. Applied to the NDN
testbed, we found a number of data plane errors through NSA’s
automatized verification. Our evaluation results on various test
cases show the effectiveness, efficiency, and scalability of NSA.
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