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Regional transcriptional architecture of
Parkinson’s disease pathogenesis and
network spread

Benjamin Freeze,1 Sneha Pandya,1 Yashar Zeighami2 and Ashish Raj1,3

Although a significant genetic contribution to the risk of developing sporadic Parkinson’s disease has been well described, the

relationship between local genetic factors, pathogenesis, and subsequent spread of pathology throughout the brain has been largely

unexplained in humans. To address this question, we use network diffusion modelling to infer probable pathology seed regions and

patterns of disease spread from MRI atrophy maps derived from 232 de novo subjects in the Parkinson’s Progression Markers

Initiative study. Allen Brain Atlas regional transcriptional profiles of 67 Parkinson’s disease risk factor genes were mapped to the

inferred seed regions to determine the local influence of genetic risk factors. We used hierarchical clustering and L1 regularized

regression analysis to show that transcriptional profiles of immune-related and lysosomal risk factor genes predict seed region

location and the pattern of disease propagation from the most likely seed region, substantia nigra. By leveraging recent advances in

transcriptomics, we show that regional microglial abundance quantified by high fidelity gene expression also predicts seed region

location. These findings suggest that early disease sites are genetically susceptible to dysfunctional lysosomal a-synuclein processing

and microglia-mediated neuroinflammation, which may initiate the disease process and contribute to spread of pathology along

neural connectivity pathways.
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Introduction
Parkinson’s disease is the second most common neurode-

generative disease (Kowal et al., 2013), causing devastating

motor, neuropsychiatric and visuospatial dysfunction

(Chaudhuri et al., 2006). Numerous genetic factors have

been linked to both hereditary and sporadic forms of

Parkinson’s disease, but the role of genetics in initiating

region-specific pathology and controlling spread of disease

across brain regions is poorly understood. Recent work has

identified a role for genes involved in trans-synaptic trans-

fer of �-synuclein in influencing the regional pattern of
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brain atrophy (Freeze et al., 2018) but because of experi-

mental limitations in humans, most work in this area has

been limited to animal models (Mao et al., 2016). A better

understanding of how genetic factors contribute to the

region-specific risk of developing Parkinson’s disease path-

ology is crucial to identify promising genetic pathways for

therapeutic intervention.

In humans, MRI-derived regional brain atrophy is an

experimentally accessible measure of local pathology

in vivo. Both cortical and subcortical brain regions have

been shown to exhibit atrophy in Parkinson’s disease

(Tinaz et al., 2011; Jia et al., 2015; Yau et al., 2018),

including basal ganglia regions that contribute to cardinal

motor symptoms. Multiple lines of evidence have suggested

that pathology propagates from a small number of early

disease sites along neural connectivity pathways (Desplats

et al., 2009; Luk et al., 2012), ultimately affecting most of

the brain. Previous work using network diffusion modelling

(NDM) has shown that this process can be described by

considering the spread of pathology as a diffusion process

on the structural connectome (Raj et al., 2012; Pandya

et al., 2019), with grey matter atrophy serving as a measure

of local pathology. By seeding NDM pathology at every

possible brain region, and comparing NDM predictions

of atrophy with the true atrophy map, the regional origin

of pathology can be inferred (Torok et al., 2018; Pandya

et al., 2019). In Parkinson’s disease, NDM predicts that

likely seed regions are located in the midbrain and other

subcortical regions, with substantia nigra representing the

most likely seed region (Pandya et al., 2019).

Here we ask whether regional transcriptional profiles of

Parkinson’s disease risk factor genes can predict the path-

ology seed region and pattern of spread derived from the

atrophy map and NDM. Genes that predict the regional

origin of pathology may represent therapeutic targets that

are particularly important in the early disease process and

may therefore be more likely to significantly affect disease

progression. We find that transcriptional profiles of

immune-related and lysosomal Parkinson’s disease risk

factor genes predict the pathology seed region, as well as

the pattern of early disease spread. By exploiting recent

advances in transcriptomics (Kelley et al., 2018), we also

show that regional microglial abundance predicts the re-

gional origin of pathology, suggesting that vulnerable re-

gions may be susceptible to microglial-mediated pathology

in the early disease state.

Materials and methods

Parkinson’s disease regional atrophy

The regional Parkinson’s disease atrophy map was calculated
as in Zeighami et al. (2015). Briefly, high resolution T1-
weighted MRIs were obtained from the prospective multicentre
Parkinson’s Progression Markers Initiative (PPMI,
ClinicalTrials.gov identifier: NCT0114102; Marek et al.,

2011) for healthy control subjects (n = 117 total; n = 74
male, n = 43 female; mean age 59.7 years) and de novo
Parkinson’s disease subjects (n = 232 total; n = 155 male,
n = 77 female; mean age 61.2 years) enrolled between 2010
and 2013. Informed consent and Institutional Review Board
approval were obtained, and HIPAA (Health Insurance
Portability and Accountability Act) compliance was main-
tained. Additional study information is available at www.
ppmi-info.org. Images were pre processed, which included nor-
malization, correction of intensity non-uniformity and denois-
ing. Following linear and non linear registration to the MNI-
ICBM 152 template, regional atrophy was calculated for each
region in a 112 region parcellation using deformation-based
morphometry (Ashburner et al., 1998). Resultant atrophy was
re-scaled with regional atrophy represented as a z-score.
Thirty-four cerebellar regions were excluded, and further ana-
lysis was performed on the remaining 78 cortical and subcor-
tical regions.

Connectome construction

Structural connectivity was derived from high resolution diffu-
sion-weighted MRI from the IIT Human Brain Atlas v.3
(n = 72 healthy control subjects). Connectivity between two
grey matter regions was defined as: anatomical connection
density (ACD)� the fraction of superficial connected nodes
with respect to total number of superficial nodes (Iturria-
Medina et al., 2007). The connectivity matrix C = fci;jg is
defined as all pairwise values of ACD such that ci;j represents
the connection strength of white matter fibre pathways
between the ith and jth grey matter regions. This measure
intrinsically corrects for variation in brain size as raw
connection strength is divided by the sum of region-pair
surface areas. Bidirectional connections are assumed
(Pandya et al., 2019).

Network diffusion modelling

Parkinson’s disease progression is considered as a diffusion
process on the connectivity matrix C (Raj et al., 2012). A
detailed description of Parkinson’s disease progression as pre-
dicted by NDM is available in Pandya et al. (2019). Briefly,
the transmission of pathology from region 1 to region 2 is
asserted to satisfy the equation

dx1

dt
¼ �c1;2ðx2 � x1Þ ð1Þ

where x1 and x2 are pathology concentrations in each region,
and � is a global diffusivity constant. Extending this relation-
ship to all regions i we define the regional pathology vector
xðtÞ ¼ fxiðtÞg, and the above equation become: dxðtÞ

dt ¼ ��HxðtÞ,
where H is the graph Laplacian H ¼ I �D�

1
2CD�

1
2:

The regional atrophy vector x at time point t may then be
adequately modelled by the equation xðtÞ ¼ eð��HtÞx0 where x0

is the initial state of the model at t = 0 (e.g. initial atrophy or
pathological insult). As in Pandya et al. (2019), the NDM was
separately initialized at all possible seed regions such that x0 is
1 at each of the bilateral seed regions (e.g. left and right sub-
stantia nigra) and 0 at all other regions. The Pearson correl-
ation coefficient (R) of the actual measured atrophy map with
the NDM-predicted regional atrophy vector xðtÞ was calcu-
lated for each timepoint t and for each seed region. The
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maximum R occurring over all model time points t for each
seed region was determined and is considered a measure of
seed region likelihood (SR). Following model initialization,
we also calculate arrival time for each non-seed region, defined
as the time t at which 98% of the maximum theoretical xðtÞ
value in that region is achieved. As SR approaches zero for
unlikely seed regions, the top 20 bilateral seed regions were
considered for joint regional transcriptional analysis. Similarly
the top 20 arrival time regions were analysed to capture the
pattern of early pathology spread.

Regional transcriptional analysis

Sixty-seven putative Parkinson’s disease risk factor genes from
the recent Parkinson’s disease genome-wide association study
(GWAS) meta-analysis by Chang et al. (2017) were identified
for regional transcriptional analysis. For each gene, data were
obtained from the publicly available human Allen Brain Atlas
(ABA) (Hawrylycz et al., 2012). Human ABA data for the
listed gene ‘CDC71’ could not be located. The ABA includes
926 brain regions, with each region having microarray expres-
sion levels from a set of 58 692 probes that correspond to
29 181 distinct genes. All ABA regions were mapped to the
same 78 region atlas used for NDM. Semantic matching was
used as the initial mapping strategy for all regions (i.e. ABA
samples mapping to ‘hippocampus’ on the ABA atlas are
mapped to ‘hippocampus’ in the 78 region parcellation used
in this study). In cases for which semantic matching could not
be used because of differences in region demarcation, atlases
were visually compared, and ABA samples were mapped to the
closest corresponding grey matter region in our 78 region
parcellation. ABA samples spanning more than one region
in our 78 region parcellation were excluded from analysis.
All samples for all probes within the same region were
then averaged for each gene. White matter tracts were
excluded from analysis. Expression for each gene was averaged
for six subject brains (which comprises data for six left hemi-
spheres and two right hemispheres; more information can be
found at help.brain-map.org/download/attachments/2818165/
Normalization_WhitePaper.pdf). The top 10 high differential
stability genes as in Hawrylycz et al. (2015), and the top five
microglial and neuronal high fidelity genes as in Kelley et al.
(2018) were mapped in the same way.

Gene functional classification

Lysosomal, mitochondrial and autophagy-related genes
were initially classified as described previously (Chang
et al., 2017). Immune-related genes were initially classi-
fied according to the ImmPort database (Bhattacharya
et al., 2018). Gene classification was manually reviewed,
and additional genes were added to the relevant functional
class in cases in which literature evidence supports a role in
the class.

Hierarchical clustering of regional
transcription

Unweighted pair group method with arithmetic mean
(UPGMA) agglomerative hierarchical clustering of expression
data across genes and regions was performed using the

MATLAB routine clustergram (Bar-Joseph et al., 2001).
The Euclidean distance metric was used. Colour maps
were defined using the morgenstemning function (M.
Geissbuelher).

L1 regularized regression analysis

L1 regularized regression was performed using the MATLAB
routine lasso (Tibshirani, 2011). Five-fold cross-validation was
used in all cases. Display of regression coefficient and mean
squared error (MSE) curves was performed using the routine
lassoplot.

Permutation analysis

Genetic expression values were permuted across brain regions
104 times for each tested gene set as described in the ‘Results’
section. Correlation coefficients for average permuted gene
class expression and either SR or arrival time were then calcu-
lated. Cumulative probability curves were created using the
MATLAB routine cdfplot.

Data availability

All data used in this study will be made available upon rea-
sonable request.

Results

Network diffusion modelling of
Parkinson’s disease pathology

Previous work used NDM as a mechanistic framework to

dissect Parkinson’s disease pathogenesis and network

propagation of pathology. In this context, brain region-spe-

cific pathology is considered to be indirectly but adequately

measurable from the far more accessible surrogate measure

of a deformation based morphometry (DBM) atrophy map,

which is derived from T1-weighted volumetric MRI studies

from 232 PPMI Parkinson’s disease and 117 healthy con-

trol subjects (Zeighami et al., 2015). Spread of pathology

occurs via neural pathways, which are defined by diffusion

MRI-derived structural connectivity. As in a recent article

by Pandya et al., NDM was employed using each region in

the atlas as an initial pathology seed and the likelihood of

each seed was quantified by the correlation of the NDM

regional atrophy prediction with the true atrophy map

(Pandya et al., 2019). As every atlas region is simulated

as a seed region, this method makes no a priori assump-

tions about the importance of seeds; and the correlation of

the NDM prediction with the atrophy map (referred to as

seed region likelihood) thereby represents an unbiased esti-

mate of the propensity of each seed to explain the atrophy

map.

Using this approach, the substantia nigra was determined

to be the most likely seed region (SR = 0.65). Figure 1 il-

lustrates the process by which the NDM prediction for

substantia nigra seeding was derived and the similarity of

Parkinson’s disease transcriptional architecture BRAIN 2019: 0; 1–14 | 3
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the substantia nigra-seeded NDM prediction to the atrophy

map, which demonstrates extensive involvement of subcor-

tical brain regions. The top 20 seed regions with the most

accurate atrophy predictions as quantified by SR are shown

in Table 1. Top seed regions tend to be very atrophic,

suggesting that the role as an early disease site also

allows for time-dependent accumulation of cellular path-

ology, dysfunction, and atrophy. However, there are re-

gions such as putamen, which despite being more

atrophic than subthalamic nucleus (atrophy z-score of 2.8

versus 2.0), is a much poorer seed region (SR 0.30 versus

0.53), which demonstrates the crucial role of interregional

connectivity in determining SR. The spread of pathology

from the most likely substantia nigra seed to subsequent

regions can be quantified by arrival time, which is defined

as the time to achieve 98% of the maximum atrophy. The

top 20 regions with the smallest arrival times from the

substantia nigra seed are also shown (Table 2). In accord-

ance with actual atrophy progression, NDM predicts that

early pathology spreads from the substantia nigra to con-

nected subcortical regions in the basal ganglia and limbic

system.

Increased transcription of Parkinson’s
disease risk factor genes in early
disease sites

The set of putative Parkinson’s disease risk factor genes

from the recent Chang et al. (2017) GWAS meta-analysis

was mapped to the same atlas as that used for network

diffusion analysis. Hierarchical clustering was performed

across all genes (n = 67) and brain regions (n = 39 bilateral

Figure 1 Network diffusion modeling predictions of

Parkinson’s disease atrophy, pathology seed region, and

spread pattern. Schematic of the network diffusion modeling

approach using the top seed substantia nigra as an example. Top:

Interregional connectivity and a single seed at the substantia nigra

are used to initialize the network diffusion model. Bottom: Triplanar

glassbrain comparisons of the atrophy map and NDM predictions.

The radius of the sphere centred on each brain region is propor-

tional to atrophy. See Tables 1 and 2 for seed region likelihood and

arrival time at each brain region, respectively.

Table 1 Best fit atrophy map correlation coefficient

(seed region likelihood) for NDM predicted atrophy

seeded at each brain region

Region SR (R) Atrophy (z)

Substantia nigra 0.65 4.1

Red nucleus 0.58 3.0

Amygdala 0.56 3.2

Subthalamic nucleus 0.53 2.0

Parahippocampal gyrus 0.44 1.9

Hippocampus 0.44 1.5

Anterior middle temporal lobe 0.37 1.4

Lateral occipitotemporal gyrus 0.37 1.0

Anterior inferolateral temporal lobe 0.35 1.0

Anterior superior temporal gyrus 0.34 1.0

Inferior middle temporal gyrus 0.32 1.0

Putamen 0.30 2.8

Thalamus 0.30 0.6

Pallidum 0.28 1.1

Superior central temporal gyrus 0.27 0.8

Insula 0.24 0.5

Nucleus accumbens 0.24 �0.4

Subcallosal area 0.24 �2.6

Anterior orbital gyrus 0.24 2.1

Caudate nucleus 0.24 0.7

R is shown for NDM seeded at the top 20 bilateral regions. Average atrophy (z-score)

is also shown for the top 20 seed regions.
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averaged regions) to determine whether discrete patterns of

transcript abundance are present. The resultant dendro-

gram is shown in Fig. 2A. A striking pattern of differential

expression of Parkinson’s disease genes is observed, with

largely reversed patterns of transcription between primarily

subcortical regions (left) and cortical regions (right). At the

top level of region clustering (two clusters), one cluster

contains only five brain regions, while the other contains

34 regions. Despite containing only five regions, the first

cluster is composed of subcortical regions with SR rank 1

(substantia nigra), 2 (red nucleus) and 4 (subthalamic nu-

cleus), suggesting that there is a relationship between ex-

pression of Parkinson’s disease genes and likelihood of a

region representing an initiation site for pathology as

inferred by NDM. A similar observation is made when

considering the arrival time of pathology to other regions

from the top ranked substantia nigra seed. The same five-

region cluster is composed of the substantia nigra seed

itself, and regions with arrival time rank 1 (red nucleus),

2 (subthalamic nucleus) and 4 (pallidum). The remaining

34-region cluster contains only two of the top five NDM

seeds and two of the top five arrival time regions, despite

containing more than 6-fold more brain regions. This re-

gional distribution of top seed regions and top arrival time

regions is unlikely to be due to chance (Fisher’s exact test,

P = 0.01 in both cases). Further inspection of the larger 34

region cluster reveals that it is composed of a five-region

cluster including the limbic system structures amygdala

(seed rank 3) and hippocampus (arrival time rank 5). The

larger 29-region cluster primarily contains unranked cor-

tical structures, with the exception of the parahippocampal

gyrus (seed rank 5, arrival time rank 3). As expected from

visual inspection of the dendrogram, top five seed regions

exhibit significantly more upregulated and downregulated

genes than all other regions, with relatively more upregu-

lated genes (Fig. 2B).

Expression of immune-related and
lysosomal gene classes predicts
pathology seed region

Consistent with the overall pattern of gene expression

visualized in Fig. 2A, average expression across all 67

Parkinson’s disease-related genes is positively correlated

with SR (n = top 20 bilateral NDM seed regions; r = 0.36,

P = 0.02; Fig. 3A). As a control, we performed a similar

analysis using the expression of the top 10 high differential

stability genes (Hawrylycz et al., 2015). These genes have

differential regional expression patterns that are highly con-

served across individuals. In contrast to the Parkinson’s

disease risk factor genes, average expression of high differ-

ential stability genes is not significantly correlated with SR,

demonstrating that this effect is not a general feature of

transcription in high likelihood seed regions (r = �0.30,

P = 0.059, Supplementary Fig. 1).

The set of Parkinson’s disease risk factor genes was sub-

sequently subdivided according to functional classes impli-

cated in Parkinson’s disease: immune-related, lysosomal,

autophagy-related, and mitochondrial. Average expression

of immune-related genes is highly correlated with SR (Fig.

3B, r = 0.72, P = 3.5 � 10�4), while average lysosomal gene

expression demonstrates correlation similar to that of the

Parkinson’s disease gene set as a whole (Fig. 3C, r = 0.40,

P = 0.01). Average expression of autophagy-related and

mitochondrial genes was not correlated with SR (Fig. 3D

and E). Interestingly, expression of SNCA, which encodes

�-synuclein, is also uncorrelated with SR (r = �0.14,

P = 0.38, Supplementary Fig. 2).

To determine whether the observed significant correlation

coefficients were likely to be observed because of random

structure within the set of gene expression values, we per-

formed 104 permutations of expression values across brain

regions and calculated the resultant correlation coefficients

for SR and average permuted gene expression. As shown in

Fig. 3F, the actual correlation coefficients obtained for the

entire gene set, and the lysosomal and immune-related gene

subsets, are located in the rightmost region of the cumula-

tive probability curve, distant from the mean r of �0 for

permuted datasets. Together, these results suggest that

likely seed regions are enriched in transcripts for

Parkinson’s disease risk factor genes, and that immune-

related and lysosomal genes are specifically related to this

effect.

Table 2 Top 20 arrival time regions for NDM seeded at

the top seed region, substantia nigra

Region Arrival time, substantia

nigra (AU)

Red nucleus, R 10.1

Red nucleus, L 12.1

Subthalamic nucleus, L 12.1

Subthalamic nucleus, R 12.1

Parahippocampal gyrus, R 14.1

Pallidum, R 14.1

Hippocampus, R 16.1

Parahippocampal gyrus, L 18.1

Thalamus, L 18.1

Hippocampus, L 20.2

Amygdala, L 20.2

Thalamus, R 20.2

Nucleus accumbens, R 24.2

Putamen, R 24.2

Pallidum, L 24.2

Amygdala, R 28.2

Caudate nucleus, R 28.2

Nucleus accumbens, L 28.2

Subcallosal area, R 28.2

Caudate nucleus, L 32.3

Smaller arrival times reflect earlier involvement in Parkinson disease pathology.

AU = arbitrary units; L = left; R = right.
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Transcription of specific lysosomal
and immune-related genes predicts
pathology seed region

To determine whether transcriptional profiles of individual

lysosomal genes predict SR we performed cross-validated

L1 regularized regression with expression profiles of the

classified lysosomal genes as independent variables and

SR as the dependent variable. At the value of the tuning

parameter � commonly used to choose a sparse regression

model [i.e. that which achieves a MSE one standard error

larger than that for the minimum MSE (Hastie, 2015)],

coefficients for GBA and TMEM175 expression profiles

remain non-zero, indicating that these are the most import-

ant predictor variables (Fig. 3G). The remaining expression

Figure 2 Hierarchical clustering of Parkinson’s disease risk factor regional transcription. (A) Hierarchical clustering of regional

transcript abundance of 67 GWAS Parkinson’s disease risk factor genes. Clustering was performed for both regions (n = 39 bilateral averaged

regions) and genes. Gene functional class (immunity, lysosome, mitochondrial and autophagy) is colour-coded. Top five seed, top five arrival time,

and top five seed and arrival time, regions are colour-coded. Top seed and arrival time regions demonstrate similar expression patterns, and

cluster together along the left aspect of the region axis. (B) Average number of differentially expressed genes for top five seed regions (left) and all

other regions (right). Top seed regions demonstrate significantly more upregulated and downregulated genes (z-score threshold of �2), with

relatively more upregulated genes.
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Figure 3 Prediction of seed region by immune-related and lysosomal gene transcription. (A–E) Scatterplots of seed region like-

lihood (R) and average regional expression (n = top 20 bilateral seed regions) across gene classes. Expression across all Parkinson’s disease-risk

factor genes (n = 67) (A), as well as immune-related (n = 8) (B) and lysosomal (n = 5) (C) subsets is positively correlated with SR. Autophagy-

related gene expression (n = 3) (D) and mitochondrial gene (n = 5) (E) expression is not significantly correlated with SR. (F) Cumulative

probability distributions of correlation coefficients for expression and SR (Seed Rscrambled) obtained by permutation of expression values across

regions (n = 104 permutations per tested gene class). (G and J) Cross-validated L1 regularized regression coefficient curves for individual

lysosomal (G) and immune-related (J) gene expression plotted against the logarithm of the tuning parameter �. Genes that maintain non-zero

coefficients at the value of � one standard error greater than the value of � that achieves minimum cross-validation MSE are considered important

predictor variables for SR. Lysosomal genes GBA and TMEM175; and immune-related genes HLA-DQA1, IL1R2 and HLA-DRB6 are important

predictor variables. (H and K) Mean squared error (MSE) curves corresponding to coefficient curves in (G) and (J), respectively. (I and L)

Cumulative probability curves for regional expression of important lysosomal (I) and immune-related (L) predictor genes. Each gene is highly

expressed in the top seed region, substantia nigra, as indicated on the curve.
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profile coefficients for GALC, CTSB, and ATP6V0A1 are

zero at this value of �. Analysis of the distribution of these

genes across all brain regions shows that GBA and

TMEM175 are highly expressed in substantia nigra (Fig.

3I), compatible with a causal role for lysosomal dysfunc-

tion in Parkinson’s disease pathogenesis in the most likely

seed region. We performed a similar L1 regularized regres-

sion analysis for the set of immune-related genes. Notably,

transcriptional profiles of two major histocompatibility

complex class II genes, HLA-DQA1 and HLA-DRB6, are

important predictors of pathology seed region. The other

important predictor gene is IL1R2, a complex regulator of

IL1 signalling (Fig. 3J). These genes are also highly ex-

pressed in substantia nigra (Fig. 3L).

Enrichment in risk factor transcripts
is uncorrelated with the overall
atrophy pattern

Although SR is correlated with regional atrophy (r = 0.70,

P = 4.0 � 10�7, Fig. 4A), average expression across all

Parkinson’s disease genes is not correlated with the magni-

tude of atrophy across top seed regions (Fig. 4B, n = 40

regions for top 20 bilateral NDM seeds, r = 0.08,

P = 0.61) or across all regions in the full brain parcellation

(Fig. 4C, n = 78 regions, r = 0.07, P = 0.56). This result sug-

gests that enrichment in Parkinson’s disease-risk factor

transcripts is more related to disease initiation than control

of the overall regional atrophy pattern.

Transcription of immune-related and
lysosomal genes predicts the early
pattern of spread from the substantia
nigra

We next sought to determine whether Parkinson’s disease

risk factor transcription also predicts the pattern of

pathology spread from substantia nigra, the most likely

seed region. To this end, we calculated the correlation be-

tween regional average transcript abundance and NDM-pre-

dicted arrival time from substantia nigra (defined as the

model time needed to achieve 98% of the maximum theor-

etical x(t) at that region, after seeding x0 at the substantia

nigra only) across regions. Given that pathology originates

in the substantia nigra in this model, the substantia nigra

itself has arrival time 0 by definition. Arrival times for sub-

sequently affected brain regions become progressively

greater as regions achieve near maximal xðtÞ. Average tran-

scription of all genes is negatively correlated with arrival

time (Fig. 5A, r = �0.62, P = 3.5 � 10�3, n = 20 smallest

arrival time regions, excluding substantia nigra itself) sug-

gesting that regions most likely to be affected early in the

disease process are enriched in Parkinson’s disease risk

factor transcripts. Expression of immune-related and lyso-

somal genes is negatively correlated with arrival time

(r = �0.73, P = 2.6 � 10�4; and r = �0.59, P = 5.7 � 10�3,

respectively), while expression of autophagy-related and

mitochondrial genes is not significantly correlated with ar-

rival time (Fig. 5B–E). L1 regularized regression analysis was

again used to determine whether important lysosomal and

immune-related genetic predictors of the spread pattern

from substantia nigra overlap with those predictive of the

pathology seed region. Indeed, all of the genes identified as

predictive of the seed region were also identified as predict-

ive of the early spread pattern as quantified by arrival time.

Other genes were also identified as important predictors,

including the lysosomal gene ATP6V0A1 and multiple

immune-related genes including CRHR1 and MAPT

(which encodes tau) (Fig. 5G–J).

Microglial abundance predicts seed
region location

We observed that several of the immune-related genes iden-

tified as important predictors of the seed region and early

Figure 4 Regional transcription of Parkinson’s disease risk factor genes does not predict the overall atrophy pattern.

(A) Scatterplot of SR and regional atrophy (n = top 20 bilateral seed regions), showing positive correlation. (B) Scatterplot of regional atrophy and

average Parkinson’s disease risk factor gene expression for top seed regions, demonstrating absence of significant correlation. (C) Regional

atrophy and average Parkinson’s disease risk factor gene expression are also uncorrelated across all regions, including top seed and non-top seed

regions (n = 78).
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Figure 5 Prediction of spread pattern by regional transcription of immune-related and lysosomal genes. (A–E) Scatterplots of

NDM arrival time from top seed region substantia nigra and average regional expression (n = top 20 bilateral seed regions) across gene classes.

Expression across all Parkinson’s disease-risk factor genes (n = 67) (A), as well as immune-related (n = 8) (B) and lysosomal (n = 5) (C) subsets is

positively correlated with arrival time. Autophagy-related gene expression (n = 3) (D) and mitochondrial gene (n = 5) (E) expression is not

significantly correlated with arrival time. (F) Cumulative probability distributions of correlation coefficients for expression and arrival time

(Arrival time Rscrambled) obtained by permutation of expression values across regions (n = 104 permutations per tested gene class). (G and I)

Cross-validated L1 regularized regression coefficient curves for individual lysosomal (G) and immune-related (I) gene expression plotted against

the logarithm of the tuning parameter �. Important predictor variables have non-zero coefficients at � one standard error from that achieving

minimum MSE. (H and J) Mean squared error (MSE) curves corresponding to coefficient curves in (G) and (I), respectively.

Parkinson’s disease transcriptional architecture BRAIN 2019: 0; 1–14 | 9

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article-abstract/doi/10.1093/brain/aw

z223/5540363 by U
C

SF Library and C
enter for Know

ledge M
anagem

ent user on 06 August 2019



pattern of spread are selectively expressed by microglia, such

as HLA-DQA1. Recent work has identified genes with re-

gional transcriptional levels highly predictive of the regional

abundance of the cell type. The first principal component of

regional expression of even a small number of such ‘high-

fidelity genes’ is nearly perfectly correlated (r4 0.99)

with regional cell type abundance (Kelley et al., 2018).

To determine whether regional microglial abundance pre-

dicts pathology seed region and pattern of spread, we

mapped expression of the top five high fidelity microglial

genes to the same 78 region atlas used before. Similar to

our analysis of all Parkinson’s disease risk factor genes,

Figure 6 Microglial abundance predicts seed region location. (A) Hierarchical dendrogram with expression (transcript abundance) of

the top five microglial high fidelity genes, clustered by both region (n = 39 bilateral averaged regions) and gene. Top seed regions cluster together

at high expression values. (B) Scatterplot of relative microglial abundance (quantified by the first principal component of high fidelity gene

expression) versus SR (n = top 20 bilateral seed regions). Relative microglial abundance is positively correlated with SR. Average microglial high

fidelity gene expression is similarly positively correlated with SR. (C) Scatterplots of relative neuronal abundance and average neuronal high

fidelity gene expression demonstrate that neither measure is correlated with SR.
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hierarchical clustering was applied to regional expression of

the top five high fidelity microglial genes. At the top level of

clustering (two clusters), a four-region cluster was identified

that contained the regions with highest expression of the

microglial high-fidelity genes (Fig. 6A). This region con-

tained the pallidum, substantia nigra, subthalamic nucleus,

and red nucleus. Three of the top five seed regions and

three of the top five arrival time regions were represented

in this cluster. The remaining 35-region cluster contained

only two each of the top seed and arrival time regions.

Enrichment of top five seed regions and arrival time regions

is unlikely to be due to chance (Fisher exact test,

P = 4.2 � 10�3).

Given the correspondence between high fidelity gene ex-

pression and cell type abundance, we computed the first

principal component (PC1) of high fidelity gene expression

as a proxy measure of regional microglial abundance

(Kelley et al., 2018). Interestingly, microglial abundance

was significantly correlated with SR (Fig. 6B, r = 0.38,

P = 0.016), suggesting that regions enriched in microglia

at baseline may be more susceptible to neuroinflammatory

processes. Average expression was equally correlated with

SR (r = 0.38, P = 0.016), with similarity between average

expression and PC1 driven by highly correlated expression

across these genes. A trend towards a negative correlation

between microglial abundance and arrival time from the

substantia nigra seed was not statistically significant

(r = �0.34, P = 0.14). As a control, we calculated the cor-

relation between PC1 of the top five neuronal high fidelity

genes (NSF, SNAP25, TRIM37, APT2A2, and MAPK9)

and SR. There was no correlation between these measures

(Fig. 6C, r = �0.02, P = 0.89), suggesting that neuronal

abundance is unrelated to Parkinson’s disease pathology

initiation. Similarly, average neuronal high fidelity average

expression was also uncorrelated (r = �0.03, P = 0.86).

Discussion
Despite great effort investigating the genetic features of

Parkinson’s disease, the role of risk factor genes in deter-

mining sites of Parkinson’s disease pathogenesis and pat-

terns of spread remains largely unknown in humans. Here

we have uncovered some of the molecular mediators of

Parkinson’s disease seeding propensity and quantify, for

the first time, the contribution of innate molecular factors

in mediating the regional vulnerability of certain brain re-

gions to act as pathology seeding loci. By combining state

of the art neuroimaging, computational modelling and

transcriptional analysis we show that likely Parkinson’s dis-

ease initiation sites are enriched in risk factor transcripts,

specifically related to immune and lysosomal function.

High levels of expression in seed regions may make them

more susceptible to the effects of genetic variation, thereby

explaining the increased risk for developing Parkinson’s

disease observed in GWAS studies. As we specifically exam-

ined genetic expression in healthy subjects, this suggests

that there is a pattern of regional genetic vulnerability

which promotes early Parkinson’s disease pathology in

the presence of an inciting event.

Transcriptional profiles of lysosomal genes GBA and

TMEM175 are important predictors of SR and pattern of

spread, with high levels of expression in top seed regions

such as substantia nigra. GBA encodes the lysosomal pro-

tein glucocerebrosidase, which has been implicated in

Parkinson’s disease pathogenesis by multiple experimental

approaches in addition to GWAS. Both levels and activity

of glucocerebrosidase are decreased in Parkinson’s disease

patients, with the most pronounced effects occurring in

substantia nigra (Gegg et al., 2012). Loss of function mu-

tations affecting GBA enzymatic activity interfere with lyso-

somal protein degradation, leading to �-synuclein

accumulation and neurodegeneration in animal models

(Mazzulli et al., 2011). Decreased levels of GBA also en-

hance intercellular transmission of �-synuclein (Bae et al.,

2014), suggesting that transcription of GBA can contribute

to both initiation and spread of Parkinson’s disease

pathology.

TMEM175 is a lysosomal K + channel, serving as the

primary lysosomal K + conductance, with major roles in

maintaining the lysosomal pH gradient and regulating lyso-

some fusion with other organelles (Cang et al., 2015).

Mutations of TMEM175 have been shown to decrease glu-

cocerebrosidase activity by destabilizing lysosomal pH,

leading to �-synuclein accumulation (Jinn et al., 2017).

GBA and TMEM175 therefore represent two lysosomal

proteins in the same potential mechanistic pathway, pos-

itioned to modulate early �-synuclein-related pathology.

Interestingly, SNCA expression itself does not predict SR

or regional atrophy, in accordance with other results

(Freeze et al., 2018). This may suggest that levels of �-

synuclein are less important than pathways that promote

the stochastic production of even small amounts of patho-

logical species, which may then increase in concentration

by prion-like templating and aggregation mechanisms

(Iljina et al., 2016), possibly involving dysfunctional lyso-

somal processing.

Increased expression of Parkinson’s disease immune-

related genes also predicts SR and spread pattern. One of

these genes, IL1R2, is a complex regulator of IL1-mediated

inflammation (McMahan et al., 1991; Lang et al., 1998).

Intriguingly, two MHCII genes also predict SR, including

HLA-DQA1, which plays an important role in antigen

presentation. As microglia are the primary antigen present-

ing cells in the brain (Hickey and Kimura, 1988), we

sought to determine whether microglia are enriched in

likely seed regions. Indeed, microglial high fidelity gene ex-

pression shows increased microglia abundance in likely

seed regions. This finding is concordant with neuropatho-

logical studies in normal subjects showing larger numbers

of microglia in areas related to Parkinson’s disease path-

ology. For instance in humans, substantia nigra, putamen

and pallidum contain �2-fold more microglia than frontal

grey matter (Mittelbronn et al., 2001). The relative
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distribution of microglia is similar in mice, suggesting that

anatomic variability in microglial density may be conserved

across species. As in humans, substantia nigra, putamen

and pallidum also contain �2-fold more microglia than

cortical grey matter (Lawson et al., 1990). Although re-

gional enrichment of microglia in normal brains does not

prove that such regions are more susceptible to microglia

mediated pathology in Parkinson’s disease, there is corres-

pondence between areas of high microglial density in

Parkinson’s disease patients. For example, histopathological

analysis has shown that the substantia nigra in Parkinson’s

disease subjects contains 4-fold more activated microglia

than cortical regions (Imamura et al., 2003). Improved ima-

ging of different microglial species in vivo may provide in-

sight into the relationship between baseline numbers of

microglia and activated subtypes in Parkinson’s disease.

Further work on high fidelity gene expression may also

allow resolution of these subtypes in Parkinson’s disease

patients by transcriptomic methods, an area of active

investigation.

It is possible that microglia-mediated pathology may re-

quire additional disease initiation events, such as accumu-

lation of pathological �-synuclein species. Microglia have

been shown to interact with �-synuclein in numerous stu-

dies. For instance, �-synuclein acts as a microglial chemo-

attractant (Wang et al., 2015) and �-synuclein aggregates

trigger a microglial pro-inflammatory response that causes

neuronal toxicity (Zhang et al., 2005). Together our find-

ings suggest a model in which early pathology sites are

vulnerable to dysfunctional lysosomal �-synuclein process-

ing as well as microglia mediated neuroinflammation that

may directly cause neuronal damage and also promote �-

synuclein spread, similar to the spread of tau in Alzheimer

disease (Asai et al., 2015).

We emphasize that our findings primarily relate to dis-

ease initiation and patterning of early disease spread, with

connectivity patterns playing a critical role in determining

the overall atrophy map as disease progresses throughout

the brain. Other local factors may also play an important

role in determining the regional pattern of disease, although

findings from our own group suggest that trans-synaptic

models of disease spread are more predictive than purely

distance-based spread models (Pandya et al. 2019). As pos-

ited by other groups, there may be cell-type specific vulner-

ability to �-synuclein pathology, or other types of

pathological insult mediated by the immune system.

Downstream effects from cell death in connected regions

may also be relevant. For example, the striatum is affected

by substantia nigra pathology not only due to transmission

of pathological �-synuclein, but also by dopamine depriv-

ation itself.

There are several limitations of this study that warrant

discussion. We use MRI-derived atrophy as a marker of

regional neurodegeneration. This provides a measure of

local effective pathology, as regional atrophy largely reflects

neurodegeneration in the form of cellular atrophy and

death. For instance, substantia nigra dopaminergic cell

death has been shown to correlate with disease duration

and progression of neurodegeneration (Damier et al.,

1999). In mice and non-human primates, substantia nigra

injection of human Lewy body extracts induces progressive

death of substantia nigra dopaminergic neurons and con-

comitant reduction in striatal dopaminergic terminals

(Recasens et al., 2014), suggesting that there is a close re-

lationship between cell death and �-synuclein pathology.

Indeed, highly atrophic top seed regions in this study,

such as substantia nigra and amygdala, have been shown

to exhibit Lewy pathology in all patients in a cohort stu-

died by Jellinger (2003). However, we acknowledge that

there are regions in which Lewy pathology can frequently

occur without marked atrophy on MRI. For instance, cin-

gulate cortex exhibits Lewy pathology in 34% of patients

in the same study, and yet is not significantly atrophic in

our dataset. Certain brain regions may be more resistant to

�-synuclein pathology, possibly due to cell-type specific

mechanisms. Further research in this area is likely to pro-

vide important insight into additional mechanisms that con-

trol the regional pattern of disease.

We used a DBM approach to quantifying regional atrophy

on a 78 region parcellation of the brain. Although some other

commonly used parcellations contain more brain regions, we

chose to sacrifice some spatial resolution for improved signal

to noise ratio in the atrophy map, which was derived from a

large PPMI Parkinson’s disease subject cohort. The high pre-

cision of the atrophy map is relevant, as conflicting results in

other studies may be in part due to lack of statistical power

and precision. For example, while substantia nigra volumetric

change in Parkinson’s disease has been analysed in several

other studies, there have been discrepant results. While

some groups have reported volume loss, others have reported

no change (Péran et al., 2010) or even increased volume of

the substantia nigra (Kwon et al., 2012). Our study is notable

for containing many more subjects (232) than the studies by

Péran et al. (30 subjects) and Kwon et al. (10 subjects); sug-

gesting that this may be an important consideration in add-

ition to other methodological differences.

Although DBM has been shown to be more sensitive to

subcortical atrophy in other work (Scanlon et al., 2011), it

remains difficult to determine atrophy in the brainstem and

certain other brain regions due to technical limitations of

MRI including lack of spatial resolution and tissue con-

trast. Such regions include olfactory cortex and brainstem

structures such as the dorsal motor nucleus of the vagus

nerve and locus coeruleus, which have been posited to serve

as early pathology sites in Parkinson’s disease (Braak et al.,

2003). Olfactory cortex and the dorsal motor nucleus of

the vagus nerve specifically have also been suggested to act

as accumulation sites for extra-CNS �-synuclein trans-

mitted by cranial nerve I and visceral afferents. While our

findings cannot address these claims, in the future these

structures may be more amenable to analysis with im-

proved atlas construction (Bianciardi et al., 2015) and

T2* imaging at high field strength. Even if there are add-

itional early sites of disease, we suggest that the top seed
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regions in this study likely still serve as important medi-

ators of the regional atrophy pattern; possibly by accumu-

lating subthreshold levels of pathology from other

connected early disease sites.

In this study we used gene expression data derived from

a relatively small number of healthy control subjects. The

creation of the Allen Brain Atlas was extremely resource

intensive, and a similar dedicated gene expression atlas for

Parkinson’s disease subjects is not yet available. There may

be differences in Parkinson’s disease and healthy control

regional transcription that we cannot address with our cur-

rent approach, but this will likely be a fruitful area of

future research. We also note that our analysis of genetic

factors is limited to transcript abundance. Although this is

an informative measure, protein levels may not scale lin-

early with transcript abundance. Importantly, protein levels

and activity are known to often be more relevant to cellular

function. Additional factors such as protein folding, post-

translational modification, and subcellular localization and

trafficking, are also highly relevant to the ultimate impact

of gene expression on cellular dynamics. These reasons may

explain why autophagy-related and mitochondrial gene ex-

pression does not predict SR and pattern of spread, despite

evidence for their importance from GWAS. Advances in

proteomics may provide further insight into these issues,

although most of this work is currently being performed

in model organisms (Sharma et al., 2015).

In summary, we demonstrate that lysosomal and immune-

related molecular pathways are likely critical contributors to

Parkinson’s disease initiation and early disease propagation,

and may be particularly relevant in designing disease-mod-

ifying treatments that are not reliant on dopamine replace-

ment or ablation/DBS-based circuit modulation.

Importantly, we are able to deduce these genetic effects

from non-invasive MRI and computational analysis, which

may facilitate future development of combined genetic/ima-

ging biomarkers. Further work on techniques to image vari-

ous �-synuclein species, and microglial distribution and

activity, may provide further insight into early disease states.
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Villalba A, et al. Lewy body extracts from Parkinson disease brains
trigger �-synuclein pathology and neurodegeneration in mice and

monkeys. Ann Neurol 2014; 75: 351–62.

Scanlon C, Mueller SG, Tosun D, Cheong I, Garcia P, Barakos J, et al.
Impact of methodologic choice for automatic detection of different

aspects of brain atrophy by using temporal lobe epilepsy as a model.

Am J Neuroradiol 2011; 32: 1669–76.

Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N,
Manrique-Hoyos N, et al. Cell type- and brain region-resolved

mouse brain proteome. Nat Neurosci 2015; 18: 1819–31.

Tibshirani R. Regression shrinkage and selection via the lasso: a retro-

spective. J R Stat Soc Series B Stat Methodol 2011; 73: 273–82.
Tinaz S, Courtney MG, Stern CE. Focal cortical and subcortical atro-

phy in early Parkinson’s disease. Mov Disord 2011; 26: 436–41.

Torok J, Maia PD, Powell F, Pandya S, Raj A. A method for inferring
regional origins of neurodegeneration. Brain 2018; 141: 863–76.

Wang S, Chu C-H, Stewart T, Ginghina C, Wang Y, Nie H, et al. �-

Synuclein, a chemoattractant, directs microglial migration via H2O2-

dependent Lyn phosphorylation. Proc Natl Acad Sci 2015; 112:
E1926–35.

Yau Y, Zeighami Y, Baker TE, Larcher K, Vainik U, Dadar M, et al.

Network connectivity determines cortical thinning in early

Parkinson’s disease progression. Nat Commun 2018; 9: 12.
Zeighami Y, Ulla M, Iturria-Medina Y, Dadar M, Zhang Y, Larcher

KM-H, et al. Network structure of brain atrophy in de novo

Parkinson’s disease. Elife 2015; 4. Available from: https://elifes-
ciences.org/articles/08440.

Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, et al.

Aggregated �-synuclein activates microglia: a process leading to dis-

ease progression in Parkinson’s disease. FASEB J 2005; 19: 533–42.

14 | BRAIN 2019: 0; 1–14 B. Freeze et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article-abstract/doi/10.1093/brain/aw

z223/5540363 by U
C

SF Library and C
enter for Know

ledge M
anagem

ent user on 06 August 2019

https://elifesciences.org/articles/08440
https://elifesciences.org/articles/08440



