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ABSTRACT OF THE DISSERTATION

Computational Methods in Drug Discovery: From Molecular Modeling To Library Design

By

Chris Zhang

Doctor of Philosophy in Chemistry

University of California, Irvine, 2024

Professor David Mobley, Chair

Advancements in computational methods have significantly impacted the field of drug discov-

ery by enabling the exploration of complex molecular interactions and the design of diverse

chemical libraries. This dissertation presents a study into various computational approaches

aimed at enhancing the efficiency and efficacy of early stage drug discovery. In Chapter 2,

we explore how machine learning methods can be used to more efficiently select compounds

within large chemical databases. We demonstrate how active learning approaches identify

promising drug candidates with reduced computational cost and how machine learning (ML)

models can be used to filter large chemical databases. We then shift our focus to charac-

terizing discrete binding conformations of T4 L99A using Markov state models (MSMs) in

Chapter 3. Using MSMs, we characterize the dynamic behavior of protein-ligand interac-

tions and provide insights into the binding mechanisms crucial to rational drug design that

need to be addressed in future studies. Chapters 4 and 5 delve into strategies for building

block selection in DNA-encoded library (DEL) design. Leveraging building block-centric

approaches, we provide guidelines to construct libraries under specific design constraints

and develop predictive models to inform prior additional computational and experimental

follow-up. Collectively, we discuss a diverse set of computational techniques which we hope

will lead to more efficient and effective strategies for drug design and library construction in

the future.

xii



Chapter 1

Introduction

Reliable candidate discovery is a major bottleneck in the drug development pipeline. Identi-

fication and validation of compounds in pre-clinical trials span many years with thousands of

potential candidates whittled down to a single approved drug [? 57]. It has been estimated

that in current (at the time of writing) drug discovery efforts, the average cost of developing

a drug is around $2 billion USD [71, 29]. Modern developments to in silico methods seek to

remedy the time and cost drain of early stage discovery, providing information on potential

therapeutic targets and ligand properties without the need for time- and resource-intensive

experiments [91, 33].

The rapidly growing size of chemical libraries in recent years has been spurred on by the

improvement in both experimental and computational methods. Namely, among large virtual

chemical libraries, the Enamine database boasts over 6B readily synthesizable compounds

for purchase [35]. While the growing size of virtual databases provides more potential for

identifying promising drug candidates in early stage screening, managing and navigating

these libraries becomes increasingly challenging [48, 75, 46, 62]. In Chapter 2, we discuss the

growing adoption of machine learning (ML) methods for efficient sampling of large virtual

1



screening databases. We focus on a procedure known as active learning, whereby carefully

selected examples are provided to an ML model to allow for accelerated sampling of an

underlying chemical landscape [129, 136, 118, 103]. We show the synergy between active

learning and current computational tools and demonstrate the relative ease of implementing

an active learning procedure using open-source methods. We also discuss areas in virtual

screening where industry is developing tools and showcase some results as part of work with

Janssen Pharmaceuticals. Lastly, we conclude by outlining practical considerations and

challenges when running an active learning protocol.

Typically, the goal of virtual screening is to identify small molecules that have high binding

affinity to a target protein. However, identifying compounds that bind favorably to a target

is no simple feat. As dynamic structures, proteins are constantly changing shape. This

is an important consideration for current computational methods which initialize proteins

from static starting structures. In particular, binding free energy calculations have been

widely utilized due to their ability to provide thermodynamic information on potential drug

candidates while only requiring simulation data generated from molecular dynamics (MD)

[23, 91, 33]. These calculations serve as a reasonably cheap method to compare the viability of

different ligands to a protein target and have become a staple in computational drug discovery

[89]. However, current implementations fail to account for changes in protein conformation

upon binding to different small molecules, leading to convergence issues in binding free

energy calculations for even the simplest of systems [73, 90]. In Chapter 3, we investigate

the conformational changes in the binding pocket of the L99A mutant of T4 lysozyme,

a model system for binding free energy calculations. We find that we can resolve states

consistent with experiment [87] using the slow dynamics of the system, providing us a new

way to define these conformational states. We estimate that these conformational changes

are far slower than the typical simulation timescales used for binding studies, motivating

the need to further develop and employ enhanced sampling methods to deal with protein

conformational changes in different systems.

2



The improvement of high-throughput experimental techniques has necessitated the develop-

ment of improved computational models. Specifically, DNA-encoded libraries (DEL) are a

rapidly advancing technology with rich opportunities for computational analysis. In DEL, re-

searchers iteratively combine small molecule building blocks (BBs) encoded with short DNA

sequences together to rapidly build up libraries. Each resultant library product is attached to

a unique DNA barcode, allowing for rapid decoding of products powered by next-generation

sequencing methods [13, 20]. As a combinatorial method, DELs are capable of generating

high volumes of binding data in a single experiment. In Chapter 4, we describe how DEL

data can be analyzed at the building block level to inform further library design. Using a

combination of chemical similarity scoring, dimensionality reduction and clustering, we show

that chemically similar building blocks have similar probabilities of forming compounds that

bind to a target. We find that even using simple ML models can vastly improve our ability

to predict whether new compounds are likely to bind to a target. Lastly, we discuss how we

believe informatics-based approaches can be used to improve DEL design in the future.

Building upon the idea of using computational techniques to guide library design, Chapter

5 showcases how cheminformatics can be used to improve building block selection prior to

synthesizing DELs. Using publicly available building block catalogs from Enamine, we enu-

merate various DELs constructed through different design decisions. We introduce different

selection rules that can be used to sample BBs. Furthermore, we vary parameters such as

BB cost and molecular weight to evaluate their impact on products of the resultant library.

We conclude by evaluating our different selection rules on a dataset containing experimental

binding information and show how increased diversity of BBs leads to greater likelihood of

forming products that bind to a target.

In the final chapter, Chapter 6, we conclude by discussing future work. As the DEL field

continues to progress and new methods for analyzing DEL data are being developed, we de-

scribe how establishing a DEL benchmark would benefit the field. We outline a proposal for
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standardizing how to evaluate new DEL x ML-based methods, drawn heavily from Molecu-

leNet [133], an open-source tool for benchmarking machine learning on chemical datasets.

Moreover, we provide an overview of currently available public DEL datasets and describe

the need for more open-access DEL datasets in the future. Lastly, we outline opportunities

to improve ML predictions on DEL data, namely by incorporating more chemically-relevant

data such as 3D docking information [116].

4



Chapter 2

Efficient Selection of Compounds in

Large Virtual Screening Libraries

using Active Learning

Modern chemical databases are vast in size and scope, spurred on by the improvement

in both experimental and computational methods. This has driven forward the need to

develop methods that efficiently screen through large volumes of data and identify promising

candidates for drug discovery. In this chapter, we discuss the growing adoption of machine

learning (ML) methods for efficient sampling of large virtual screening databases. We outline

active learning procedures which allow for accelerated sampling of an underlying chemical

landscape and discuss tools in industry that are being developed in tandem with medicinal

chemistry efforts to drive forward discovery.
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2.1 Introduction

Large virtual screening libraries are valuable for finding starting points for drug development.

In recent years, the size and scope of make-on-demand libraries has grown to encompass

billions of compounds, enabling computationalists to sift through increasingly large, diverse

databases of compounds and propose the most promising candidates for experimental follow-

up [75, 46, 62]. Among large chemical databases, the Enamine REAL database is one of the

most widely used and currently encompasses over 6 billion compounds (at time of writing)

[35]. Apart from spanning diverse regions of chemical space, compounds in the Enamine

REAL database can be synthesized on-demand and all adhere to physicochemical property

(PCP) filters, with the least stringent adhering to Lipinski’s Rule of Five (Ro5) [74] and

Veber criteria [127]. Filtering on properties such as molecular weight, SLogP (a measure of

hydrophobicity) [132], the number of hydrogen bond donors/acceptors and the total polar

surface area of a compound are thought to lead one into regions of chemical space that are

more “drug-like” [74, 11]. Thus, the Enamine REAL database offers advantages in that it not

only boasts a vast selection of compounds that can be feasibly synthesized experimentally,

but that the available compounds are more likely to be pharmaceutically relevant based on

their physicochemical properties.

With the growing size of chemical databases, practically screening through them has become

more computationally difficult. Active learning has been proposed as a way to tackle this

issue [129, 136, 118, 103]. In active learning, researchers strategically select informative

examples from a larger dataset in order to train a machine learning model to serve as a

surrogate for gathering information. This is especially useful when methods of labeling the

data, such as computational techniques or wet lab experiments, may be too impractical or

costly [114, 30]. By learning from carefully chosen examples from a broader dataset, an ML

model acquires the ability to navigate the information landscape more effectively than brute

force approaches. The typical process for active learning is as follows (Figure 2.1):
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Figure 2.1: Schematic of active learning for drug discovery. In our active learning protocol, we
cycle through the following steps: label, learn, predict and select. In the label step, we use an
oracle to retrieve labels for some amount of data. This could be by performing an experiment
or using a computational method such as docking or binding free energy calculations. Then
in the learn stage, we pass our labeled data to a machine learning model so that it can be
trained to approximate the oracle. We apply our ML model on the remainder of the dataset
in the predict stage, in order to estimate how the oracle would label each point. Finally,
we select new points using different selection strategies to pass to the oracle. The process is
typically repeated for several cycles.

(1) We label some amount of data using the method we wish to approximate. Whether

the method is an experimental or computational technique, we assume the method to be a

source of ground truth and refer to it as the oracle. The choice of what the oracle could

be varies for different research goals, but studies in the literature include using molecular

docking [135, 48] or binding free energy calculations [65, 123] as the oracle.

(2) Once the oracle labels the data, we pass the data to a machine learning (ML) model for

training. During this learning step, the ML model is provided more information to improve

its predictions. The goal is that with enough informative examples, the ML predictions are

ultimately able to serve as a reasonable substitute for the oracle on new data points.

(3) After training, we apply the ML model on all the remaining data to generate predictions.
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Once ML models have been trained, we can generate predictions on a large number of data

points with relative ease [134].

(4) Based on the ML model’s predictions, we apply various selection rules to select the

next batch of data to pass to the oracle for labeling. We then add the newly labeled data

points to the previous set of training data to repeat the cycle.

In the literature, it has been reported that choice of selection strategy is one of the most

critical factors impacting active learning performance [125, 65]. Depending on specific re-

search goals, different selection strategies have their respective merits. Broadly speaking,

selection rules tend to fall into one of two categories: exploration and exploitation. In the

exploration-based approaches, the active learning protocol prioritizes selecting data points

that the model is most uncertain about or most dissimilar to what the model has already seen.

The rationale behind exploration-based approaches is to create a more robust model that

better understands characteristics of an entire dataset [103]. On the other hand, exploitation-

based approaches hone in on the top predictions made by the ML model and strive to identify

more instances of similar data points with high performance. While this approach has been

demonstrated to yield high recovery of top compounds with a large reduction in sampling,

it has also been found that the value add of exploitation-based approaches diminishes over

many active learning iterations [65]. Several works in the literature have also reported bal-

ancing both exploratory and exploitative schemes to achieve greater success [123, 49].

In this chapter, we assess how different selection strategies affect how an ML model learns.

We explore the merits of various selection strategies, comparing exploration-focused, exploitation-

focused and balanced schemes in both their ability to improve recall of top docking hits and

the correlation between ML score and docking score. Our study is based on benchmark

study by Schrodinger in which they used their proprietary software known as Active Learn-

ing Glide [135]. We showcase two approaches to reproducing this study. Our first approach

uses OpenEye tools for docking and the open-source Python package chemprop [134] for
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ML training and prediction. In our second approach, we describe tools being developed at

Janssen Pharmaceuticals in conjunction with active learning protocols to further enhance

efficient selection of compounds from chemical libraries. Lastly, we conclude this chapter by

discussing future outlooks on active learning in drug discovery and existing opportunities for

expansion.

2.2 Methods

2.2.1 D4 Receptor Docking

We followed the procedure reported in benchmark by Schrodinger using their Active Learning

Glide method [135] with some modifications. We selected random compounds from Enamine

to dock to the human D4 dopamine receptor (PDB code: 5WIU) using different docking

software. We stored all docking results in a csv file containing the SMILES and docking

score of each compound which we used to create different training and test sets. We refer to

this file as our answer key. In typical active learning challenges, we would not have access

to an answer key because it is not feasible to submit the entire dataset to the oracle for

labeling. However, this was a more computationally tractable experiment where we could

pre-calculate all answers to better assess how well ML models performed. At steps where

we would typically submit compounds to the oracle for labeling – equivalent here to running

docking calculations for those compounds – we instead revealed the answer by looking up the

docking score for those compounds in our pre-computed answer key. Following Schrodinger’s

terminology, we designated the top 0.1% of the compounds in the dataset by docking score

as our docking hits. After each round of active learning, we calculated the percentage

of docking hits we recovered as a function of the percentage of the database screened. We

defined this as our recall at a percentage of the database screened. In addition, we also
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evaluated the correlation between docking score and ML-predicted score after each round of

the active learning protocol.

Open-Source Implementation

We obtained a raw structure file for the human D4 dopamine receptor from the Protein Data

Bank (PDB ID: 5WIU) and prepared the protein for docking using OpenEye’s Spruce toolkit

(v.2023.1.1) [97], first converting the structure into a design unit in order to make a receptor

file. For our ligands, we used a set of 1M randomly selected ligands from Enamine provided

through the “Evaluating Large Ligand Libraries with Active Learning Glide” tutorial from

Schrodinger [115]. We used the OpenEye OMEGA application (v.4.2.2.0) to generate con-

formers for each of the 1M ligands. Having generated both a receptor and ligand file, we

performed docking using OpenEye’s HYBRID (v.4.2.1.0) to dock each ligand to the receptor

and took the pose with the highest docking score as the label for each compound. Although

we ran docking for 1M ligands, due to some complications with the protocol (outlined at the

end of this chapter), we only conducted active learning for 200K docked compounds.

Industry Implementation

To prepare the target protein, we ran the Protein Preparation workflow on Maestro. We

toggled settings to initialize the system with pH 7.4, sample water orientations, remove

non-water solvents, flip side-chains to preserve H-bond networks and adjust for potential

atom clashes. Following these adjustments, we generated a grid file that defined the shape

and properties for the receptor necessary for docking. We used the ligand present in the

5WIU structure to define the region a docked molecule must occupy to satisfy the initial

requirements of docking. We used Schrodinger’s LigPrep to generate 3D conformations for

each ligand and assign protonation states at pH 7.4. We opted to ignore any information
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about chirality reported in the original ligand file and instead determine chirality from the

generated 3D structures.

2.2.2 Selection Rules

We implemented the same four different selection strategies as reported by Schrodinger,

which we refer to as: top, top rand, uncert and top uncert. We considered the top and

top rand approaches to be exploitation-based selection rules, uncert to be an exploration-

based scheme and top uncert to be a balanced approach. In the top selection strategy, the

compounds with predicted docking scores in the highest 0.1% of the data were selected to be

evaluated by the oracle. With top rand, a random 0.1% of the data was randomly selected

from the top 10% of compounds with the highest ML predicted docking score. On the other

hand, as an exploration-focused strategy, uncert selected the most uncertain 0.1% of the

ML predictions. Using our ML tools, we quantified uncertainty as the standard deviation

of the predicted docking scores for the base classifier models in our ensemble. Lastly, in

the top uncert selection rule, the most uncertain 0.1% of compounds was selected from the

top 5% by ML predicted score. We also included an additional selection rule which chose a

random 0.1% of compounds from the dataset regardless of ML predictions to serve as a null

model. In both our active learning implementations, we wrote a series of scripts to select the

next round of ligands given the docking scores and uncertainties for each compound in the

previous round. We exported the results of ML predictions from each round into csv files

and analyzed those using the pandas (v.2.0.1) [102] toolkit. We implemented each selection

rule by sorting the data in a specific order and exporting the relevant structures into new

output files.
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2.2.3 Machine Learning Models

Open-Source Implementation

We used the chemprop package (v.1.6.1) [134] to build and train message passing neural net-

works for predicting docking scores. To build an initial model, we called the chemprop train

function, setting the dataset type to ‘regression’ and the number of training epochs to 100.

Additionally, to get uncertainty estimates on our predictions, we opted for an ensemble of

models. We set the ensemble size parameter to 5 as recommended by the authors. Dur-

ing training, chemprop identified an optimal set of hyperparameters for each model using

bayesian optimization. Once training was completed, we called the chemprop predict func-

tion to generate ML predictions. We referenced our previously trained model by providing

the appropriate file path in the checkpoint directory argument. Furthermore, we set the

uncertainty method to ‘ensemble’, which used the standard deviation among the ensemble

model predictions as the uncertainty value of each ML prediction.

Industry Implementation

We had access to two different ML modeling tools: Schrodinger’s DeepAutoQSAR and an

internal JnJ method (Figure 2.2). Both tools combine a series of base classifier models in an

ensemble to create a model with better performance than any model individually. Referred

to as automated machine learning (AutoML), these methods formulate hyperparameter se-

lection as an optimization problem in order to create off-the-shelf ML workflows [37]. To run

DeepAutoQSAR, we provided an input file containing SMILES strings for each compound

and its docking score to the receptor. We specified a training time of 4 hours as it was

reported by Schrodinger that there were diminishing returns on model performance beyond

this time span [135]. During this specified training time, DeepAutoQSAR iterated through
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combinations of both simple and graph-based architectures (deep neural networks, random

forests and gradient boosted trees) and returned the ensemble model with the lowest error

on a validation set. The final trained model was returned as a file that could be called for

prediction. We provided a similar input for JnJ’s internal AutoML tool, specifying a training

time of 4 hours. AutoML is thought to be an improvement upon DeepAutoQSAR because of

its featurization and final estimation steps (Figure 2.2B). In addition to standard molecular

featurizations such as extended connectivity fingerprints (ECFP) [105] used in DeepAuto-

QSAR, AutoML includes an ADME featurization based on the Design Enablement models

[67, 22, 126, 27, 121].

Figure 2.2: Model architectures for (A) DeepAutoQSAR and (B) AutoML. Both architec-
tures read in compounds as SMILES and generate features for input into a number of base
classifier models. Moreover, AutoML includes a set of more sophisticated features based on
internal compound data and a final blending step to aggregate the prediction of the individ-
ual classifier models.
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2.2.4 Janssen Proprietary Models

Both the features in AutoML and the Design Enablement models were based off underlying

transformer models [67, 22, 126, 27, 121]. Briefly, transformers operate using an “attention”

mechanism, whereby the model learns meaning and context of individual components of data

by tracking the relationships between them [126]. In their commonly used application in text

parsing, transformers learn the semantic context of a word by calculating weights for each

word based on how it relates to every other word [27]. This application can be extended to

drug discovery, where models are trained to learn SMILES syntax and subsequently predict

molecular properties [63]. The Design Enablement models were trained on the absorption,

distribution, metabolism and excretion (ADME) data for all compounds in the internal

Johnson & Johnson (JnJ) databases [67].

2.3 Results

2.3.1 Active learning provides large improvement over brute force

sampling

Open-Source Implementation

We find that regardless of choice of selection rule, active learning provides a significant

advantage to brute force sampling of compounds. To begin the active learning protocol, we

select a random 0.1% of compounds and their associated docking scores to pass to chemprop

in order to build our first ML model. We then use that model to predict the docking

scores on the remaining 99.9% of the dataset. We refer to this as round 0 of our active

learning procedure, since we did not apply any selection rules to pick this initial set of
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compounds. However, even while using a completely random set of training data, we find

that ML predictions far exceed what would be expected from random guessing. At 1% of the

data sampled, we would expect a brute force procedure to identify 1% of the total docking

hits in the data. However, we find that our ML model performs an order of magnitude

better, recalling 12% of the docking hits (Figure 2.3).

Figure 2.3: Recall of docking hits for different active learning selection strategies. Here, we
show the improvement in the recall of docking hits identified after one round active learning.
We initialize all models with the same random 0.1% of the data so the lighter shaded bar
in each group, representing the results from round 0, have the same height. We represent
the result after one round of active learning, round 1, with the darker shaded bar in each
group. Random selection (blue) serves as a null model for reference. Both the top (orange)
and top rand (green) rules are exploitation-focused strategies whereas the uncert selection
rule (red) is an exploration-based approach. The top uncert strategy (purple) is a balance
of both exploitation and exploration. After one round of active learning, the top selection
strategy recalls the greatest number of docking hits with the top 1% of ML predictions.

We observe that differences in the selection rules start to appear following round 1. We apply

our various selection strategies to the ML predictions from round 0 in order to identify new

compounds to add to the existing training set. Since each selection rule is different, we end

up with five distinct training sets for round 1. Each round 1 training set is the concatenation

of the training set from round 0 and the new points chosen by the corresponding selection

rule. Using chemprop, we are able to construct a new model using an existing model as
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the starting point, rather than training a new model from scratch. We create five new ML

models, where each one is built off the round 0 model but trained with a different round 1

training set. We find that one of our exploitation-based approaches, top, experiences the

most appreciable increase in the recall of docking hits, almost doubling from its value in

the previous round to 22% (Figure 2.3). However, the other exploitation-focused approach,

top rand, does not result in a similarly large increase of recall, sharing the same increase as

the exploration-based and balanced approaches uncert and top uncert to 14%. Lastly, we

find that the random selection rule actually results in a decrease in recall compared to its

previous round performance, going from 12% down to 9% (Figure 2.3).

When repeating the same procedure for rounds 2 and 3, we find that all selection rules result

in an increase in recall, but to different extents (Figure 2.4A). While we observe that on

the whole every selection rule results in continued improvement over active learning cycles,

the differences in which compounds are added to the training set result in different jumps

in performance at each round. For example, we find that the top, top uncert and random

methods experience a modest increase in recall compared to their round 1 performances

(4%, 3% and 5% respectively). On the other hand, the recall for the top rand and uncert

methods jump much more significantly compared to their previous round performance (7%

and 11% respectively) (Figure 2.4A). Finally in the last round, we find that while all methods

continue to result in an increase in recall, the uncert selection rule results in the greatest

increase compared to its previous round (a jump of 8%) and results in the highest recall of

docking hits among all the methods (Figure 2.4A).

When analyzing the changes in correlation between docking score and ML-predicted score

across active learning rounds, we find far more variation. Interestingly, we observe that

the random selection rule results in one of the most consistent increases in correlation as

rounds progress, second only to the uncert method, which is focused on exploring the

underlying chemical space (Figure 2.4B). However, none of the selection strategies result in

16



strong correlation, with the highest performing uncert selection rule resulting in a Pearson

correlation of only 0.41 after three rounds of AL (Figure 2.4B).

Figure 2.4: Recall of docking hits and correlation between docking and ML-predicted score
over multiple active learning cycles. We assess both (A) the recall of docking hits as well as
(B) the correlation between docking and ML-predicted docking scores across three rounds
of active learning. For each selection rule, we show the results for successive rounds of
active learning illustrated by bars of the same color with progressively darker shading. We
observe that recall of top docking hits generally increases for each subsequent round, whereas
correlation is more prone to fluctuation.

We believe the results from the data demonstrate the value add of active learning approaches.

After an initialization step and three rounds of active learning, corresponding to 0.4% of the

data sampled, we find that our best performing method is able to rank over 30% of the

docking hits within the top 1% of its predictions. Moreover, even when randomly selecting

compounds for multiple active learning cycles, we find that over 15% of the docking hits

are within the top 1% of the ML predictions – an order of magnitude greater than what

we would expect from a brute force approach (Figure 2.4A). Interestingly, we find that the

uncert selection rule to be best at recalling docking hits, despite being an exploration-based

method. We posit that this may be due to the uncert selection rule resulting in the best

learning of the underlying landscape, as evidenced by its Pearson correlation score compared

to other methods after three AL cycles (Figure 2.4B).

Given the weak correlation results yielded by every selection strategy, we believe our mod-
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els may benefit from longer training times or more training data per cycle. Nonetheless,

it is compelling that potentially under-trained models are still able to recall docking hits

more than an order of magnitude better than brute force. This observation also reinforces

the related but separate nature of exploitation and exploration-based approaches for active

learning [103, 129]. Even while having low correlation between their predictions and docking

scores, models are able to successfully recall many docking hits. Thus, the two tasks seem

related but not dependent on each other. Being able to identify a docking hit does not

require the ML model to perfectly predict docking scores, but being able to better predict

docking scores improves the ability to recover docking hits.

Figure 2.5: Assessment of different active learning selection rules. Here, we demonstrate
the improvement in the fraction of Glide docking hits identified after one round of applying
various selection rules. The lighter color bar for each selection rule indicates the same random
initialization of 0.1% of the data. The two rules based on exploitative approaches, top and
top rand, result in greater recall of hits than random selection after one round of active
learning. On the other hand, the exploration-based approaches, uncert and the balanced
approach, top uncert, result in lower recall than random after one round of active learning.
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Industry Implementation Results

While our industry implementation follows a very similar cadence to the open-source proce-

dure, we find that there are noticeable differences in the performance of AutoML compared

to chemprop across active learning cycles.

In round 0, we select a random 0.1% of the compound SMILES and respective docking

scores to feed to AutoML for training. After training, we predict the docking scores of all

the remaining compounds in the test set. Even though we initialize with random compounds,

we find that AutoML recalls 25% of the docking hits in the top 1% of its predictions (Figure

2.5), doubling that of chemprop (Figure 2.3). We subsequently apply our selection rules for

round 1 of active learning. Similar to with chemprop, we find that the differences in selection

rules emerge during round 1. We observe the exploitation-based strategies perform better

at recovering top docking hits compared to the exploration-based and balanced strategies

(Figure 2.5). The random selection rule results in a recovery of 30% of the docking hits,

whereas the top and top rand strategies recall 32% and 40%, respectively. On the other

hand, the exploration-based and balanced strategies lag behind random selection, both only

recalling 27% of the docking hits.

As we continue our procedure for a total of three rounds of active learning (excluding the

initial random selection), we find that the recall of docking hits improves but with diminishing

returns over AL cycles. As we would naively expect, both exploitation-based strategies result

in more docking hits recall than random selection after three cycles. However, we also find

that the exploration-based strategy performs worse than random (Figure 2.6A). Interestingly,

we observe that the top uncert approach improves more in recalling top docking hits at

each subsequent active learning round with a significant jump between the second and third

rounds.

In addition to looking at the recovery of docking hits, we also evaluate the correlation between
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calculated and ML-predicted docking scores. We posit that exploration-based approaches

may provide more informative examples to help the ML model make generally more accurate

predictions, which we thought would manifest in improved correlation. However, we do not

find this to be the case. The relative performance of the various selection rules in terms of

correlation is almost identical to their performance in terms of recall, with slight difference

that the exploration-based approach outperforms random selection (Figure 2.6B). Consistent

with what was reported by Schrodinger [135], we find the top uncert to have the best

performance both in terms of recall of top docking hits and correlation between calculated

and ML-predicted docking scores after three rounds of active learning. We posit that this

is consistent with the notion of the top uncert approach being a balanced selection rule.

After enabling the ML model to sufficiently explore the landscape by observing informative

examples, the balanced selection rule allows the ML model to become increasingly capable

of identifying top docking hits to the target. In support of this hypothesis, we find that

the top uncert method also results in the highest Pearson correlation between docking and

ML-learned docking scores after three rounds of active learning (Figure 2.6B).

Figure 2.6: Results from active learning over multiple iterations using JnJ’s AutoML. We
assess both (A) the recall of docking hits as well as (B) the correlation between docking and
ML-predicted docking scores across three rounds of active learning. For each selection rule,
we show the results for successive rounds of active learning illustrated by bars of the same
color that get progressively darker. Generally speaking, we observe diminishing returns for
improvements in both recall and correlation over multiple active learning rounds.
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The results from the open-source and industry active learning procedures share some sim-

ilarities but also have major differences. The most notable similarity is the observation

that regardless of selection rule, an ML model’s ability to recall docking hits improves over

successive active learning cycles. While this does not come as a surprising result, it serves

as validation that the overall AL scheme is being designed correctly. However, the results

between using chemprop versus AutoML is striking. Whereas we find the uncert selec-

tion rule results in the most successful model both in terms of recall and correlation using

chemprop (Figure 2.4), it results in a low performing model when using AutoML (Figure

2.6). Conversely, we observe that the top uncert selection rule has lackluster performance

using chemprop (Figure 2.4) but results in the best performance for both recall and cor-

relation using AutoML (Figure 2.6). While part of the discrepancy can be attributed to

the difference in datasets for each protocol (200K with chemprop vs 1M with AutoML), we

believe this should not impact the relative trends of the selection rules. Thus, we attribute

the variation of results to the differences in the underlying ML modeling tools. In particu-

lar, AutoML benefits from features derived from underlying transformer models trained on

absorption, distribution, metabolism and excretion (ADME) property data (see Methods for

more details). We introduce and report on these transformer models, known as the Design

Enablement (DE) models, in the following section. We showcase the potential for these

models to filter the Enamine dataset (and subsequently other large chemical databases) by

their predicted ADME properties.

2.3.2 Machine learning can be used to filter compounds beyond

physicochemical properties

The Enamine REAL database can be divided into subsets, with increasingly stringent physic-

ochemical property filters [35]. A stricter subset of the REAL space is the lead-like space

(3.8B molecules), which enforces more constraints on molecular weight, SLogP, hydrogen
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bond acceptor (HBA) and ring count for compounds. The lead-like space can be further

subset into the even more restrictive 350/3 space (620M molecules), with a more narrow

range of allowed molecular weight and SLogP. In addition, the 350/3 space filters com-

pounds by their heavy atom count and the number of aryl rings they contain (Table 2.1).

While guidelines for physicochemical properties such as Lipinski’s Rule of Five can help

identify compounds with drug-like properties, many approved drugs also violate these rules

[53]. Thus, despite the rationale that more restrictive filtering on physicochemical properties

leads to more pharmaceutically relevant candidates, these filters do not paint a full picture

of the viability of a compound for drug development.

Enamine
subset Property Filters

MW SLogP HBA HBD

REAL ≤ 500 ≤ 5 ≤ 10 ≤ 5
Lead-Like ≤ 460 -4 ≤ x ≤ 4.2 ≤ 9 ≤ 5
350/3 270 ≤ x ≤ 350 -4 ≤ x ≤ 3 ≤ 9 ≤ 5

Rot. Bonds Heavy Atoms TPSA Rings

REAL ≤ 10 N/A ≤ 140 N/A
Lead-Like ≤ 10 N/A ≤ 140 rings ≤ 4
350/3 ≤ 10 14 ≤ x ≤ 26 ≤ 140 rings ≤ 4; aryl rings ≤ 2

Table 2.1: Physicochemical property filters for various subsets of Enamine REAL

As part of work with Janssen, we assess whether internal tools can be used as a means of

filtering the Enamine REAL dataset. Dubbed the Design Enablement (DE) models, these

transformer networks are trained to predict a variety of absorption, distribution, metabolism

and excretion (ADME) properties using assay data from the Johnson & Johnson internal

database (see Methods) [67, 134, 22, 126, 27, 121]. We reason that if the DE models are

sufficiently accurate, they can enable us to filter out compounds from Enamine that do not

match the desired pharmocokinetic properties for hits to a target of interest. Typically,

these properties cannot be ascertained until the compound is experimentally tested. Thus,

using the DE models as a means to pre-filter compounds in Enamine would lower computa-
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tional costs by reducing the number of compounds and subsequently focusing the search to

compounds with more desirable property profiles.

We observe that the increasingly strict physicochemical property filtering implemented for

the Enamine database and its subsets does not necessarily make for more pharmaceutically

desirable compounds, thus motivating the need for accurate ML-based ADME predictions.

As we move from the REAL to lead-like to 350/3 space, we observe a greater density of more

soluble compounds, which is desirable for pharmaceutical candidates (Figure 2.7A). However,

in the case of experimental permeability, we see that there is little difference in its distribution

across the three Enamine subsets (Figure 2.7B). In other words, physicochemical property

filtering alone does not guarantee a higher concentration of compounds with favorable ADME

profiles. Otherwise we would find the highest concentration of experimentally permeable

compounds in the 350/3 set. Therefore, the capacity to predict ADME properties prior

to experimental validation would minimize the risk of selecting compounds that appear

favorable in silico but flounder when tested experimentally. We validate the DE model

predictions to assess whether they can provide an accurate enough means of predicting the

ADME properties of untested compounds.

We find that the distribution of DE model predictions generally matches the distribution of

experimental properties. Searching through the internal JnJ database for compounds with

experimentally measured ADME data sourced from Enamine, we create an 8K compound

validation set. This set of compounds provides us a means of comparison: for every com-

pound in the validation set, there is an experimental measurement we can compare to our

DE prediction. We generate DE predictions for both the solubility and permeability of the

compounds in the validation set and compare to their experimental distributions. We find

that for both properties, DE predictions generally match experimental distributions but are

right-skewed (Figure 2.7C, D). In the case of solubility, the DE predictions capture the bi-

modal distribution of the experimental distributions and correctly identify that the 350/3
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Figure 2.7: Distributions of experimental and DE predicted solubility and permeability on
an 8K compound validation set. We divide compounds in the validation set based on which
subset of Enamine they fall in to based on their physicochemical properties: (blue dotted line)
the REAL space, (orange dashed lines) the lead-like space and (green solid lines) the 350/3
space. We show the distributions for experimental (A) solubility and (B) permeability for
compounds in the validation set. This is contrasted with the distributions for DE-predicted
(C) solubility and (D) permeability of compounds in the validation set. The distributions
of DE model predictions generally match experimental distributions, but are more right-
skewed.

set contains a greater concentration of more soluble compounds compared to the lead-like

and full REAL sets. However, the model overestimates the number of insoluble compounds

and underestimates the number of highly soluble ones (Figure 2.7C). When predicting per-

meability, the DE model has a more pronounced bias towards false negatives, estimating a

higher percentage of compounds to be impermeable (Figure 2.7D).

To quantify the errors made by the DE model, we compare the experimental and DE pre-

dictions for the permeability of each compound. We observe a good amount of agreement

between experiment and prediction evidenced by a Pearson correlation (r) of 0.83 and a coef-

ficient of determination (R2) of 0.64 (Figure 2.8). We then set a cutoff value for permeability
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Figure 2.8: Binary classification of DE permeability estimates. We set a binary cutoff based
on thresholds from previous internal JnJ projects to evaluate the quality of the DE model
predictions of solubility. Compounds that are misclassified are predicted to be permeable
when they are not experimentally (FP) and predicted to be impermeable when they are
experimentally (FN). We observe more instances of the latter, consistent with the theory
that the DE predictions make more conservative predictions.

based on thresholds set by medicinal chemists in previous internal projects to interpret the

DE model predictions as a binary classification problem. We consider compounds with ex-

perimental permeability greater than 10 × 10−6 cm/sec to be “permeable” and those less

than to be “impermeable”. This allows us to calculate the number of true positives (TP),

false positives (FP), false negatives (FN) and true negatives (TN) present. We find that the

precision of the model – defined as TP/(TP + FP ) – is equal to 0.96, meaning that of all

compounds predicted to be “permeable” by the DE model at the selected threshold, 96% of

them have experimental permeability values ≥ 10× 10−6 cm/sec. The recall of the model –

defined as TP/(TP + FN) – is equal to 0.85, meaning that the DE model identifies 85% of

all compounds with experimental values of permeability ≥ 10×10−6 cm/sec as “permeable”.
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As we previously observed in the distribution of DE permeability predictions (Figure 2.7D),

the DE model produces a higher number of false negatives, leading to a reduction in recall

for increased precision (Figure 2.8).

Figure 2.9: R2 scores for selected ADME properties. We evaluated the accuracy of the DE
predictions on 14 different ADME properties, which can be broadly categorized into measure
of partition coefficients (red), permeability (green), plasma-protein binding (blue), clearance
(orange) and solubility (purple). We set a cutoff at a coefficient of determination (R2 score)
of 0.6 or greater to consider that property to be well-predicted by the DE models. Apart
from the efflux rate for MDCK cells, ADME properties are well-predicted by the DE models.

In addition to solubility and permeability, we use the DE model to predict 12 additional

experimental assay values for compounds in the validation set. We group these properties

into measures of logD/logP, MDCK permeability, plasma-protein binding (PPB), clearance

and solubility [67]. Although every compound in the validation set has some experimental

ADME data, not every compound has measurements for all ADME properties. Thus, the

properties we choose to evaluate are also determined by the availability of experimental data.

We ensure that for every property we choose, there is data for N > 30 compounds. For all

properties, we analyze the agreement between DE predictions and experimental values by

calculating the coefficient of agreement, R2. We find that R2 > 0.6 for all properties except

efflux rate using MDCK cells [67, 28], suggesting strong agreement between DE predictions
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and experiment across a variety of ADME properties (Figure 2.9). Based on this finding, we

believe the DE model predictions can be used to as a pre-filtering step to isolate compounds

with specific ADME properties in the Enamine database. While we identify that the model

produces many false negatives, we believe missing some true positives is not deleterious given

the large size of the initial Enamine search spaces.

2.4 Discussion

2.4.1 Value Add of Active Learning for Early Stage Database

Screening

In this chapter, we highlight the advantage of using some form of active learning versus brute

force approaches. We find that even an active learning scheme using random selection of

compounds outperforms brute force approaches by over an order of magnitude (Figure 2.4A,

2.6A). With our potentially under-trained chemprop implementation, we recover over 30%

of our docking hits in the top 1% of ML predictions using the highest performing uncert

strategy for three cycles of AL (Figure 2.4A). Using AutoML, we find that the highest

performing top uncert strategy recovers almost 50% of the docking hits after three cycles

(Figure 2.6A). We again posit that the difference in performance is primarily powered by the

ADME-based features in AutoML, which are developed using assay data from the Johnson

& Johnson internal databases [67, 134, 22, 126, 27, 121]. While both chemprop and JnJ’s

AutoML are related architectures [134], the difference in performance clearly demonstrates

that the “secret sauce” of many industry ML tools lies within the training data.

Although we find that the industry implementation has a noticeable improvement over the

open-source tools, we argue that current open-source tools make it quite accessible to build

out a simple active learning pipeline. In literature, studies have provided open-source tools
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to automate active learning pipelines [48, 62, 117] that are compatible with various dock-

ing software. We imagine future tools automating active learning workflows incorporating

different oracles, such as binding free energy calculations [123, 65, 49].

2.4.2 Challenges in Active Learning

A slew of issues can be encountered while designing an active learning protocol. In the

following section, we highlight three important challenges to consider: (1) issues with data

set size, (2) choice of oracle and (3) ML model training and prediction costs.

Issues with data set size

Having large data sets to work with is almost necessarily an issue with active learning studies

because the purpose of active learning is to efficiently sample from search spaces that cannot

be explored via brute force. In our initial attempts to run an active learning study, our

proposed dataset was the entirety of the Enamine REAL database, which at the time of

writing was over 6 billion compounds [35]. For each of our proposed selection rules, selecting

0.1% of the data to sample and evaluate with the oracle would have required 6 million

docking calculations per active learning cycle. Even at a large pharmaceutical company, this

level of computational cost would be difficult to manage, and furthermore inefficient as a

commercial tool. Our solution to this was to leverage existing internal models to pre-filter

and reduce the original search space by approximately an order of magnitude. However, we

acknowledge that this solution is not one that is typically available.

Even with this potential solution, there is still an issue with data storage. At 6 billion

compounds, even a compressed file takes up multiple GB of storage. While this is not an

unreasonable scale to deal with given advances in modern hardware, the active learning
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workflow requires generating new training and test sets at each round. Likely for repro-

ducibility and tracking purposes, researchers would be interested in keeping all files rather

than rewriting after each round. Since each training/test set combination is just a new per-

mutation of the full dataset, this results in duplicating the original dataset by the number

of active learning rounds multiplied by the number of selection rules being evaluated. These

costs could quickly accrue and become troublesome. Furthermore, the size of the initial

dataset directly impacts the computational cost of downstream operations in the workflow

– the more data points we have, the more we feed to both the oracle and the ML model,

which encounter their own issues with scaling.

Another consideration is the quality of sampling that can be achieved. This means striking a

balance between pruning down data sets to reduce costs while highlighting more productive

regions of chemical space and throwing out potentially useful data. In our benchmark, we

observed a case of this when evaluating our top uncert selection rule. While it appeared to

underperform compared to many of other selection rules in earlier stages of active learning,

it rapidly jumped up to become the best performing method after the third round (Figure

2.6A). We posit this is due to a ruggedness in the chemical space of the starting dataset; the

model was suddenly provided very informative data points in the final round that significantly

boosted its performance. Unexpected changes in performance can be symptoms of underlying

quality issues in the original dataset.

Our recommendation to these problems is to encourage researchers to find methods to reduce

the size of their starting datasets and cluster compounds to draw broader insights. This can

be achieved in a number of ways and does not necessarily require the use of commercial

tools. For example, one could cluster compounds based on their Bemis-Murcko scaffolds

[8, 133, 134] or permanently prune poor-performing compounds from the starting dataset

[47]. Yang et al. defines a metric known as “cluster head recovery”, where docking hits

are first grouped by Tanimoto similarity [135]. A cluster is successfully “recovered” if any

29



ligand in that cluster is identified by the ML model to be a docking hit. Particularly in

cases where the underlying chemical space is diverse and there are many singletons, cluster

head recovery is a way of quantifying the diversity of chemotypes selected by ML. Lastly,

there could potentially be ways to filter the starting data based on known information for

the target of interest. For example, the D4 dopamine receptor is known to preferentially

bind cationic molecules [135]. Similarly, a docking study on carbonic anhydrase [116] filtered

molecules for sulfonamides, a feature present in many known D4 inhibitors [43, 14]. Based

on the specific goals of the active learning study, existing knowledge of the system could be

used to toss out certain ligands and focus the search space.

Choice of oracle

Depending on choice of oracle, computational costs could vastly differ. For example, while it

would be feasible to dock thousands of compounds at each active learning round, it may not

be possible to run free energy calculations at that scale. Studies in the literature have shown

that providing a larger number of data points in earlier rounds of active learning improves

results [123, 125]. Thus, it may be important to select an oracle that is not prohibitive to

run at larger scales, in order to maximize the value add of the active learning protocol.

Furthermore, the crux of active learning is that with sufficient training data, an ML model

will eventually be able to mimic the knowledge of the oracle. In most cases, an ML model

is a much cheaper tool to use for prediction on large data sets. However, it is important to

consider the quality of the underlying oracle predictions. In the case for a tool like docking,

an ML model would only allow the researcher to identify top docking hits, which are not

the same as experimental hits [75, 60, 106]. Thus, an interesting conundrum emerges: it is

easier to create an ML model capable of replicating the predictions of cheaper methods, but

these methods are typically less accurate leading to a final ML model that is not as useful.
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ML model training and prediction costs

While using a trained ML model to predict on data is cheaper than almost any computational

method, the costs can still accrue when predicting on large enough sets of data. An issue we

initially encountered was that model training and prediction times were not trivial, even on

a relatively small scale. We originally tried creating ensembles of base classifier models using

sklearn, but found that sklearn models are only partially parallelizable and offer no GPU

support [100]. We instead turned to chemprop [134], which is built off PyTorch and thus

can be accelerated by GPUs. In performance benchmarks for chemprop, the authors report

that on a dataset of 100K compounds, training should finish within an hour and inference,

as a faster operation, should take less than a few minutes [55]. We found that for a dataset

of 200K compounds, training finished within an hour but inference was much slower, taking

around 15 minutes. Slow prediction times could lead to issues if applied on datasets several

orders of magnitude larger for multiple active learning cycles. However, given there is such

a large discrepancy between our reported prediction times and those found by the authors

– and the fact that in general, inference should be faster than prediction – we acknowledge

that we may need to look into our implementation further.

Lastly, we conclude with the perspective that within industry, active learning is being ex-

plored as a tool to accelerate early-stage discovery in conjunction with medicinal chemistry

efforts. Thus, active learning cycles need to not only be fast enough to keep pace with

rapidly changing ideas but accurate enough to properly inform experimental follow-up. The

challenges we outline in this chapter mostly revolve around developing active learning into

a tool that can be integrated in real-time early stage discovery efforts. While the emergence

of automated workflows for active learning are big steps towards this goal, integrating these

tools into real-world drug discovery workflows has yet to be seen. However, as a standalone

tool, active learning has already demonstrated significant value and we are optimistic that

the field will continue to progress rapidly.
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Chapter 3

Characterizing Discrete Binding

Conformations of T4 L99A via

Markov State Modeling

As a model system, the binding pocket of the L99A mutant of the T4 bacteriophage has

been the subject of numerous computational free energy studies. However, previous studies

have failed to fully sample and account for the observed changes in the binding pocket of

T4 L99A upon binding of a congeneric ligand series, limiting the accuracy of their results.

In this work, we establish definitions for the conformational states of the T4 L99A binding

pocket based on the dynamics of the system. We estimate the timescales for the transitions

between states and discuss the need to develop enhanced sampling methods to properly

account for large changes in protein conformation upon small ligand perturbations.
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3.1 Introduction

Reliable candidate discovery is a major bottleneck in the drug development pipeline. Identi-

fication and validation of compounds in pre-clinical trials span many years with thousands of

potential candidates whittled down to a single approved drug [104]. Modern developments

to in silico methods seek to remedy the time and cost drain of early stage discovery, pro-

viding information on ligand properties without the need for time- and resource-intensive

experiments. In particular, relative binding free energy (RBFE) calculations have been

widely adopted due to their ability to provide thermodynamic information on potential drug

candidates while only requiring simulation data generated from molecular dynamics (MD)

[23, 91].

The lysozyme of the T4 bacteriophage serves as an ideal system for binding free energy

calculations. A unique leucine to alanine mutation (L99A) creates a solvent-inaccessible and

virtually apolar binding pocket with high binding rates for small, organic molecules. The

properties of the binding pocket allow simulations of T4 L99A–ligand systems to exclude

the movement of bulk water in and out of the binding pocket, decreasing computational cost

and increasing the ease of performing RBFE calculations [92, 90]. However, when bound

to a congeneric series of alkyl benzenes, the T4 L99A binding pocket adopts three discrete

conformations (Figure 3.1), each with increasingly more area open to bulk solvent [87]. The

emergence of several discrete binding pocket states upon binding of congeneric ligands has

been observed in other systems as well [87], suggesting that many protein binding pockets

may undergo significant changes for even small ligand perturbations. This has complicated

RBFE calculations, as current methods fail to account for protein conformational changes.

Consequently, attempts at calculating binding free energies for a congeneric series of alkyl

benzene ligands bound to T4 L99A have been inaccurate. In a study by Lim et al. [73],

the authors found that the accuracy of RBFE calculations could be significantly influenced
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Figure 3.1: Discrete conformations of the T4 L99A F-helix. The F-helix region (residues
107–115) of T4 L99A is reported [87] to adopt three distinct conformations as observed crys-
tallographically: closed, intermediate and open. Here we show three overlays of the F-helix
region from the crystal structures we use to represent each state in this work. Shown is the
benzene-bound crystal structure (4w52) to represent the experimentally defined closed state
(purple), the butylbenzene-bound crystal structure (4w57) to represent the experimentally
defined intermediate state (cyan), and the hexylbenzene-bound crystal structure (4w59) to
represent the experimentally defined open state (green).

by choice of protein starting conformation. The study demonstrated that improving RBFE

calculations may require knowledge of the conformational changes of a system and their

relative timescales, which is often difficult to define and sufficiently sample in the course of

MD timescales typically used for these calculations [91]. Interconversion between binding

pocket states is slow, requiring significant simulation time to capture even a single event.

However, insufficient sampling of different protein conformational states leads to significant

errors in RBFE calculations [73].

In this study, we capture transitions among the experimentally observed conformational

states of the T4 L99A F-helix and make rough estimates for the timescales of these transi-

tions. We begin by defining the discrete conformational states of the T4 L99A F-helix based

on the slow dynamics of the system. Using Markov state models (MSMs), we estimate the

timescales for transitions between discrete states in MD. Furthermore, we show how defining

metastable states of a system from the slowest motions of the system is preferable to defin-
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Bound
ligand Starting protein structure

closed (4w52) int (4w57) open (4w59)

benzene 4w52–benzene 4w57–benzene 4w59–benzene
butyl 4w52–butyl 4w57–butyl 4w59–butyl
hexyl 4w52–hexyl 4w57–hexyl 4w59–hexyl

Table 3.1: Design matrix of different simulated systems. Entries in bold denote systems in
which the bound ligand is the native ligand of the corresponding starting crystal structure.
Throughout this paper, we refer to the bolded elements as native systems and the others as
mixed systems For the sake of brevity, we reference various systems throughout this work
in the following manner: [PDB ID]–[ligand name]. This should be interpreted as “[ligand]
bound to T4 L99A started from the [PDB ID] structure”. As an example, “4w52–benzene”
should be read as “benzene bound to T4 L99A started from the 4w52 structure”.

ing states based on the RMSD to various crystal structures. Our approach demonstrates

how changes in protein conformation for the T4 L99A system are not observed in the MD

timescales typical for binding studies, supporting the need to apply Markov state modeling to

short, parallel MD simulations of systems to identify potential changes in protein conforma-

tion. We conclude by discussing the need to further develop and employ enhanced sampling

methods to account for potentially large changes in protein conformation in response to small

ligand perturbations.

3.2 Methods

3.2.1 Different simulated systems

We selected different crystal structures in the Protein Data Bank to define the closed, in-

termediate and open structures for this study. We based our selections on the dominant

discrete conformation reported in experiment for each ligand [87]. We arrived at the struc-

ture of benzene bound to T4 L99A (PDB ID: 4w52) as our starting structure for the closed

state, butylbenzene bound to T4 L99A (PDB ID: 4w57) for the intermediate state and
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hexylbenzene bound to T4 L99A bound (PDB ID: 4w59) for the open state. We initialized

systems for all combinations of these three protein structures (4w52, 4w57 and 4w59) and

their three bound ligands (benzene, butylbenzene and hexylbenzene) to generate a total of

nine different systems (Table 3.1). We refer to the three systems where the bound ligand

is the ligand from the crystal structure as native systems. The remaining six systems

where the bound ligand is different from the ligand in the crystal structure are referred to

as mixed systems. We set up simulations for all nine systems based on the procedure out-

lined in subsection 3.2.2. For the sake of brevity, we reference various systems throughout

this work in the following manner: [PDB ID]–[ligand name] (Table 3.1). This should be

interpreted as “[ligand] bound to T4 L99A started from the [PDB ID] structure”. As an

example, “4w52–benzene” should be read as “benzene bound to T4 L99A started from the

4w52 structure”.

3.2.2 Preparation and Parametrization of Proteins and Ligands

The T4 lysozyme protein and ligand structures were prepared as input structures for MD

simulations. The topology and coordinate input files for GROMACS [9, 1] simulations can

be found in the SI. For each protein of interest (4w52, 4w57 and 4w59), we prepared the

structure using OpenEye Spruce[97] to add hydrogens and missing loops. Each protein was

solvated with TIP3P waters and ions were added to achieve a concentration of 150 mM. The

solvated systems were then parameterized with the Amber ff14SB[78] force field.

For each ligand of interest – benzene, butylbenzene, and hexylbenzene – partial charges were

assigned using OpenEye’s AM1-BCC [97] charge engine and the ligands were parameterized

using Open Force Field version 2.0.0[12]. The prepared solvated protein structures and

ligands were combined into native and mixed system complexes as described in subsection

3.2.1 resulting in a total of 9 starting structures (Table 3.1). For each protein-ligand complex
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structure, the crystallographic ligand pose from the native structure was used.

3.2.3 Running molecular dynamics in GROMACS

The protein-ligand complex systems were simulated using GROMACS (v.2021.2). Prior to

production, the systems were energy minimized for 1500 steps using steepest descent. The

systems were then equilibrated in two steps using a 20 ns NVT ensemble followed by a 5 ns

NPT ensemble. Production simulations were run for 100 ns per replicate, with a total of 10

replicates per system. The MDP files for GROMACS simulations can be found in the SI.

3.2.4 Markov state model construction

Markov state models (MSMs) allow for the construction of a transition probability matrix of

a system at equilibrium, which is used to obtain the relative populations of conformational

states and the transition timescales between them [58]. This can be accomplished by running

short MD simulations of a system in replicate, increasing the likelihood that slow transitions

are observed compared to a single long trajectory. To build an MSM, relevant features of

the system are selected and transformed using time-lagged independent component analysis

(TICA) to resolve coordinates corresponding to the slowest motions of the system. From

there, a set of metastable states can be identified by clustering along the TICA space. A

transition probability matrix can be calculated by estimating the number of transitions

between metastable states at some fixed lag time, τ .

For a transition matrix constructed under a specific set of conditions, the eigenvector corre-

sponding to the largest eigenvalue of the transition matrix is equal to one and describes the

stationary distribution of the system. Sorting the remaining eigenvalues of the transition

matrix in descending order, the corresponding eigenvectors describe the subsequent slowest
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motions of the system. The timescale of each slowest motion, also known as the implied

timescales, can be calculated as:

tn =
−τ

lnλn

(3.1)

where is tn is the nth implied timescale of the system, τ is the MSM lag time and λn is the

nth largest eigenvalue of the transition matrix. We evaluate how the timescales for different

processes in a system change as a function of lag time. Processes with timescales shorter

than the lag time cannot be resolved by the MSM. We select a lag time for our system

corresponding to the shortest lag time at which the slowest processes of the system stabilize.

We built all MSMs in this study using the PyEMMA (v2.5.12) [113] Python library. We

started by choosing features along the F-helix region of the protein (residues 107–115) to

characterize the changes in the T4 L99A binding pocket. Using MDTraj (v.1.9.9) [83], we

selected the pairwise distance between all Cα − Cα and Cβ − Cβ pairs for all residues in

the F-helix for a total of 51 distances. We used an implementation of TICA from deeptime

(v0.4.4) [56], selecting a TICA lag time of 0.02 ns (10 frames) to transform the set of features

into coordinates that described the slowest motions of the system. We then applied k-means

clustering on the projection of the trajectory frames onto the two largest TICA components

in order to resolve metastable states for each system. We selected a lag time of τ = 10

ns (500 frames) to construct each MSM; this was the shortest lag time beyond which the

implied timescales for each system plateaued (Figure A.1).
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3.2.5 Calculating RMSD to reference crystal structures

We calculate the root-mean-square deviation (RMSD) between each frame of our trajectories

and the closed (PDB ID: 4w52), intermediate (PDB ID: 4w57) and open (PDB ID: 4w59)

crystal structures using the rmsd function in MDTraj (v.1.9.9). The function centers the

trajectory and then calculates the distance between all atoms in the F-helix for each frame

and the reference crystal structures. RMSD is implemented in MDTraj using a fast matrix

multiplication routine [52] to find the roots of a polynomial equation [122].

3.2.6 Estimating MSM mean first passage time

We estimate timescales between the observed discrete states using the mfpt function from

the deeptime package [56]. The mean first passage time (MFPT) is defined as the expected

time (reported in units of number of simulation frames) to reach one state when starting in

another. To calculate the mean first passage time, we provide the function with a transition

probability matrix for our metastable states as well as the lag time used to construct the

MSM.

3.3 Results

3.3.1 Slowest motion of congeneric ligand systems corresponds to

opening of the F-helix

We combine simulation data from all three native systems together in order to ensure the

slowest motion of our system corresponds to the opening of the F-helix [42] and/or any impor-

tant differences between these native systems. For clarity, these three native systems are
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Figure 3.2: Concatenated trajectory data projected onto a 2D TICA landscape. We concate-
nate six 100 ns parallel trajectories each of benzene, butylbenzene and hexylbenzene bound
to their native crystal structures (4w52, 4w57, 4w59, respectively) to form a concatenated
trajectory (18 trajectories, total 1.8 µs). In this concatenated trajectory, we select the pair-
wise distances between all Cα − Cα and Cβ − Cβ atoms in the F-helix as features. Using
TICA to resolve coordinates along the slowest motions of the system, we show the trajectory
projected onto the top two tICs. We map where the crystal structures for 4w52 (purple
star), 4w57 (cyan star) and 4w59 (green star) fall on this landscape. The arrangement of
the crystal structures suggest that traversing along the first TICA component captures the
discrete changes in the F-helix.

benzene bound to T4 L99A started from the 4w52 structure (4w52–benzene), butylbenzene

bound to T4 L99A started from the 4w57 structure (4w57–butylbenzene) and hexylbenzene

bound to T4 L99A started from the 4w59 structure (4w59–hexylbenzene) (see Section 3.2.1

for more explanation on terminology). Specifically, we expect these native systems to oc-

cupy three distinct states with no or few transitions between them. Thus, a concatenated

trajectory of these native systems would show distinct transitions between states at the end

of each trajectory, turning these state transitions into easily recognizable slow motions. This

allows us to resolve a set of time-lagged independent components (tICs) that can be used
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to categorize the frames of each trajectory into discrete states. To this end, we concatenate

six, 100 ns parallel trajectories each of benzene, butylbenzene and hexylbenzene bound to

their native crystal structures to generate a concatenated trajectory totaling 1.8 µs. In this

concatenated trajectory, we select all the Cα − Cα and Cβ − Cβ pairwise distances within

the protein F-helix (residues 107–115) and apply TICA to resolve a set of tICs. We map all

frames of the concatenated trajectory onto the top two tICs, thus projecting the data onto

a two-dimensional (2D) TICA surface. We find that our 2D TICA surface consists of two

primary regions of density – a larger half-moon region on the left and a smaller oval-shaped

well on the right – with a bridge region connecting them (Figure 3.2).

We find that moving along the first tIC generated by the concatenated trajectory corresponds

to transitioning between the closed, intermediate and open crystal structures (Figure 3.2).

To better understand how regions of the TICA space correspond to different F-helix con-

formations, we project the three native crystal structures (4w52, 4w57 and 4w59) onto our

2D TICA surface. For each native crystal structure, we calculate the relevant Cα − Cα and

Cβ − Cβ pairwise distances and use those features to calculate coordinates in TICA space.

We find that the open crystal structure (4w59) is roughly centered in the larger half-moon

region on the left of the TICA space, the intermediate crystal structure (4w57) is right of

the bridge region between wells and the closed crystal structure (4w52) is centered in the

oval-shaped well on the right (Figure 3.2). Consistent with what was reported in experiment

[87], we find from our TICA projections that the intermediate crystal structure falls between

the closed and open crystal structures. Based on the position of each crystal structure in the

2D TICA surface, we determine that the differences among discrete states is predominately

captured by variation in the first independent component (Figure 3.2).
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Figure 3.3: RMSD of trajectory frames in 2D TICA space relative to experimental crystal
structures. (A–C) On top of the density of the concatenated trajectory (light purple), we
project the frames from simulations of the (A) 4w52–benzene (purple dots), (B) 4w57–
butylbenzene (cyan dots) and (C) 4w59–hexylbenzene (green dots) systems in 2D TICA
space. (D–F) For each frame of the concatenated trajectory, we calculate the RMSD of the
F-helix to different crystal structures. Shown is RMSD to (D) the benzene-bound crystal
structure (PDB ID: 4w52), (E) the butylbenzene-bound crystal structure (PDB ID: 4w57)
and (F) the hexylbenzene-bound crystal structure (PDB ID: 4w59). The heatmap signifies
the RMSD of each frame of the concatenated trajectory to the specified reference crystal
structure. We additionally map where the crystal structures for 4w52 (purple star), 4w57
(cyan star) and 4w59 (green star) fall on this landscape for reference. Frames closer to each
respective crystal structure in TICA space also tend to have lower RMSD to that structure.
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3.3.2 Time-lagged independent component analysis provides an

alternative to RMSD for defining discrete states

We find that our native system trajectories generally occupy distinct regions of the TICA

space. Using the tICs we previously define, we map each native system trajectory onto the

2D TICA surface. We observe that all frames of simulations of the 4w52–benzene system map

to the right side of the oval-shaped well and center around the 4w52 crystal structure (Figure

3.3A). Simulations of the 4w57–butylbenzene system sample all regions of the oval-shaped

well in addition to the bridge region linking the two wells together (Figure 3.3B). Lastly,

simulations of the 4w59–hexylbenzene system exclusively sample the half-moon region on

the left side of the TICA plot (Figure 3.3C). By contrasting the different regions of TICA

space these systems occupy, we posit that the experimentally observed closed conformation

is represented by the right oval-shaped well, the experimentally observed open conformation

is the left half-moon well and the experimentally observed intermediate conformation is the

bridge region between them in the 2D TICA space (Figure 3.3A–C).

We find that using the RMSD to reference crystal structures to define states shows some

agreement with our TICA-based approach but ultimately results in different state catego-

rizations. For each native system trajectory, we calculate the RMSD of each trajectory frame

to one of three reference crystal structures and plot onto our 2D TICA surface, color-coding

by RMSD (see Methods). We observe that generally, frames closer to each crystal structure

in TICA space also tend to have lower RMSD to that crystal. However, we also observe that

state definitions based on RMSD are quite fuzzy. We find that the majority of trajectory

frames with low RMSD to the 4w52 crystal structure fall in the right hand region of the

oval-shaped well. However, we also observe a number of frames right under the 4w52 in

TICA space with relatively high RMSD to the structure. (Figure 3.3D). Frames with low

RMSD to the 4w57 crystal structure generally fall in the bridge region, but we also observe a

number of frames in the closed and open regions within a given RMSD of the 4w57 structure
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(Figure 3.3E). Lastly, we find that frames with low RMSD to the 4w59 crystal mostly fall

in the half-moon shaped well in the left region of the plot. However, we find frames close to

the 4w57 structure with relatively low RMSD to the 4w59 crystal as well as frames in the

upper left corner of the half-moon well with just as high of RMSD to the 4w59 structure as

frames close to the 4w52 crystal (Figure 3.3F).

3.3.3 Choice of protein starting structure affects sampling of pro-

tein conformational states

We proceed to construct Markov state models (MSMs) for each native system to resolve

metastable states based on slow dynamics. As described in the Methods, we project all native

system simulation frames onto the top two tICs resolved using the concatenated trajectory.

We then sample along the TICA space via k-means clustering to identify metastable states.

By analyzing the eigenvectors of the estimated transition probability matrix – corresponding

to the timescales of the slowest motions of the system – we identify macrostates for each

system.

We observe that the 4w52–benzene system undergoes no kinetically meaningful transitions

in the elapsed simulation time frame. We find that the slowest motions of the system decay

faster than the MSM lag time and correspond to random fluctuations (Figure A.1). Based

on these findings, we determine there is only a single state sampled in the simulations of the

4w52–benzene system (Figure 3.4A), which is consistent with the region of TICA space we

identify as the closed region (Figure 3.3A).

In simulations of the 4w57–butylbenzene system, we find the slowest motion to be a transition

resulting in two states within the oval-shaped well of the 2D TICA surface (Figure 3.4B).

While we are not clear on what this transition is, it occurs on a much slower timescale than

other processes and merits investigation (Figure A.1). Interestingly, the third slowest motion
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Figure 3.4: MSM-resolved states for each native system. We construct MSMs to resolve
discrete states based on the slowest processes in each of the three native systems. On top of
the density of the concatenated trajectory (gray), we project the frames of simulations of the
(A) 4w52–benzene, (B) 4w57–butylbenzene and (C) 4w59–hexylbenzene systems. We color
frames based on their MSM-assigned macrostates, keeping macrostate definitions consistent
across the different native systems.In their elapsed simulation time (1 µs), native systems
are mostly confined to their starting protein conformational states.

of the 4w57–butylbenzene system corresponds to changes in density between the bridge and

oval-shaped regions of the TICA space (Figure A.3B) – which we believe correspond to

the closed and intermediate states, respectively (Figure 3.3B). However, this process decays

faster than the MSM lag time and thus we do not consider the intermediate state to be a

discrete state based on this analysis (Figure A.1).

Lastly, we determine there is only a single state sampled in simulations of the 4w59–

hexylbenzene system (Figure 3.4C). While there are motions in the system occurring on

slow timescales (Figure A.1), they correspond to fluctuations within the half-moon shaped

well, and are primarily described by differences in the second tIC (Figure A.4C). Given

we primarily attribute the F-helix opening motion to the first tIC (Figure 3.2), we do not

consider these to be states relevant to our analysis.
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3.3.4 Simulation of mixed protein-ligand systems allows for esti-

mation of discrete state transition timescales

In attempts to observe transitions within our simulation timescales, we also simulate and

build MSMs for a series of mixed systems. These are simulations begun from a crystallo-

graphic state belonging with a different ligand than the one they are simulated with, so we

expect these simulations to transition to a different state while they are run, even if only

once (see Section 3.2.1 for more details). We find that simulations of both the 4w57–benzene

(Figure 3.5A) and 4w59–benzene (Figure 3.5B) systems primarily sample the region of TICA

space we believe corresponds to the closed state. For the 4w57–benzene system, we observe

a single slow motion (Figure A.2B) corresponding to an exchange between two regions of the

oval-shaped well (Figure 3.5A), which appears to be a similar motion as the one we observe

in the 4w57–butylbenzene system (Figure 3.4B).

In mixed systems for the butylbenzene ligand, we find that there are no meaningful slow

motions in the 4w52–butylbenzene system (Figure A.3A) and only identify a single state for

that system (Figure 3.5C). We also find that none of the frames in the 4w52–butylbenzene

trajectories sample the bridge region of the TICA space, which we previously hypothesized

was the intermediate state (Figure 3.3B). However, we observe sampling of the bridge region

in the 4w59–butylbenzene system. In this system, the slowest motion corresponds to an

exchange between the bridge and oval-shaped regions of the TICA space (Figure A.3C). We

subsequently identify two states for the 4w59–butylbenzene system (Figure 3.5D).

Lastly, we find multiple states for both mixed systems containing the hexylbenzene lig-

and. Simulations of hexylbenzene interconvert between the closed and open states when

begun from the 4w52 structure (Figure 3.5E). Interestingly, the slowest motion of this 4w52–

hexylbenzene system is an exchange between those two discrete states, but we do not observe

any sampling of the intermediate state (Figure A.4A). When begun from the 4w57 structure,
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Figure 3.5: MSM-resolved states for each mixed system. We initialize benzene, butylbenzene
and hexylbenzene ligands each in their respective non-native crystal structures to observe po-
tential changes in the F-helix. On top of the density of the concatenated trajectory (gray),
we project the frames corresponding to simulations of the (A) 4w57–benzene, (B) 4w59–
benzene, (C) 4w52–butylbenzene, (D) 4w59–butylbenzene, (E) 4w52–hexylbenzene and (F)
4w57–hexylbenzene systems. We color frames based on their MSM-assigned macrostates,
keeping macrostate definitions consistent across the different native systems. On these
timescales, simulations of benzene in T4 L99A primarily stay in the closed conformation
when simulated beginning from either the (A) 4w57 or (B) 4w59 structures. Simulations
of butylbenzene only sample the closed state when begun from the (C) 4w52 structure but
undergo interconversion with the intermediate state when begun from the (D) 4w59 struc-
ture. Simulations of hexylbenzene interconvert between the closed and open states without
sampling the intermediate state when begun from the (E) 4w52 structure. When begun
from the (F) 4w57 structure, simulations of hexylbenzene sample the closed, intermediate
and open states. We also observe an additional transition pathway (yellow) between closed
and open states not found in any other systems.
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Figure 3.6: Estimates of timescales for discrete state transitions. Using our constructed
MSMs, we estimate the transition timescales between states. Each row corresponds to the
transition estimates for that specific mixed system. Columns denote the starting state of the
transition. The entry in each cell is the estimated transition time from the state in that given
column to the state in the other column. We report estimates in units of ns for transitions
betwen (A) closed and intermediate, (B) closed and open and (C) intermediate and open.

simulations of hexylbenzene sample five distinct states (Figure 3.5E). Four of the five states

are observed in other systems, corresponding to the closed, intermediate and open states as

well as the state observed in both the 4w57–butylbenzene (Figure 3.4B) and 4w57–benzene

(Figure 3.5A) systems. The final discrete state falls between the closed and open states,

similar to the intermediate state. However, it falls lower along the second tIC and is distinct

from the previously established intermediate state.

For each system with multiple MSM-identified states, we estimate the timescales of the

transitions between them by discretizing our trajectories to calculate a mean-first passage

time (see Methods). This is highly approximate, especially given that in many cases we

do not have multiple transitions between states and/or transitions may be unidirectional.

However, these are useful in providing at least order of magnitude estimates of the relevant

timescales. Our estimates of timescales further support the idea that the intermediate state

is a relatively short-lived state. In both the 4w59–butylbenzene system (Figure 3.5D) and
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4w57–hexylbenzene system (Figure 3.5F) where we observe transitions between the closed

and intermediate states, we estimate that the process of going from closed to intermediate

is over an order of magnitude slower than going from intermediate to closed (Figure 3.6A).

Similarly, for the 4w57–hexylbenzene system (Figure 3.5E) where we observe transitions

between the intermediate and open states, we estimate that the process of going from open

to intermediate is also around an order of magnitude slower than going from intermediate

to open (Figure 3.6C).

We also find further evidence supporting the claim that the open state is a more struc-

turally dissimilar state compared to the closed and intermediate states. From the 4w52–

hexylbenzene system (Figure 3.5E) and 4w57–hexylbenzene system (Figure 3.5F), we esti-

mate that the transitions between the closed and open states (Figure 3.6B) are several times

slower than the transitions between either the closed and intermediate (Figure 3.6A) or the

intermediate and open states (Figure 3.6C).

3.4 Discussion

In this study, we resolve the discrete states of the T4 L99A binding pocket observed in

experiment [87] in MD. By selecting a combination of features which capture structural

elements of the F-helix, we design a trajectory where the slowest motion of the system

corresponds to the opening of the T4 L99A binding pocket. In doing so, we are able map a

set of continuous trajectories onto a two-dimensional TICA surface. We find based on the

relative positions of the crystal structures in TICA space that the closed and intermediate

structures are much closer in distance to each other than to the open state, suggesting greater

structural similarity between those two states to each other than to the open conformation.
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3.4.1 Evidence of the intermediate state in MD timescales

We find evidence that the intermediate state is a kinetically distinct but short-lived state in

our MD simulations. When evaluating the native 4w57–butylbenzene system, we find that

the trajectory samples the bridge region of the TICA surface which we believe corresponds

to the intermediate state (Figure 3.4B). However, this bridge region is not identified as a

discrete state by the MSM built from simulations of the native 4w57–butylbenzene system

(Figure 3.4B) but is by the MSM built from simulations of the 4w59–butylbenzene system

(Figure 3.5D). This suggests that while the intermediate state may be observed in our total

MD simulation time of 1 µs, transitions are not significant. However, transitions do become

significant when we attempt to force the transition in simulations of the 4w59–butylbenzene

mixed system. Our estimates of the timescales to and from the intermediate state addi-

tionally corroborate that the intermediate state is short-lived. We find that moving to the

intermediate from either the closed or open states is about an order of magnitude slower

than leaving the intermediate to either of those states (Figure 3.6A, C).

3.4.2 TICA-based state definitions may be preferable to RMSD-

based definitions

We believe using TICA and slow motions to define states may be more robust than RMSD. In

particular, we find that while there is agreement between our TICA-based state definitions

and the RMSD to reference crystal structures (Figure 3.3D–F), definitions based on the

dynamics of the system result in clearer boundaries between states. For example, we observe

that trajectory frames close to the 4w59 crystal structure in TICA space generally have low

RMSD to that structure (Figure 3.3F). However, some of these same frames also have low

RMSD to the 4w57 crystal (Figure 3.3E). Given the 4w57 and 4w59 structures are considered

distinct in experiment, considering a structure to be similar to both states is confusing.
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Additionally, as a distance metric, RMSD does not account for the potential size of states.

As an example, we observe that frames in the top left corner of the half-moon shape well and

frames in the right side of the oval-shaped well are similarly distant to the 4w59 structure

based on RMSD (Figure 3.3F). However, we instead find with our kinetics-based definition

that the entirety of the half-moon shaped well describes the open state (Figure 3.4C). While

the top and bottom portions of the half-moon shaped well can be further separated into

kinetically distinct states (Figure SI), this separation is entirely along the second tIC, which

does not primarily correspond to opening of the F-helix.

One implication of this finding is that previous work looking at the transitions between

states for this system may have used incorrect state definitions and potentially miscounted

transitions [73]. It may be worth revisiting this work and applying these TICA-based state

definitions to evaluate how much enhanced sampling methods are able to accelerate transi-

tions.

Lastly, we believe our approach of using slow system dynamics to define individual states

could be extended to other systems where there are known discrete conformational changes

in response to a congeneric series of ligands. Examples of known systems with such behavior

include the heat shock protein 90 (HSP90) and the human estrogen receptor alpha (ERα)

[87]. This approach could especially be useful in systems where there may not necessarily

be reference crystal structures for each discrete state.

3.4.3 Implications for future binding studies

One caveat of this study is that the procedure presented may not be suitable for many

biological systems. For the T4 L99A system, we have access to crystal structures for all

discrete states, allowing us to effectively reverse engineer a trajectory in which the slowest

motion of the system corresponds to the opening of the F-helix observed in experiment. In
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many cases, it may not be known what prompts conformational changes or whether the

system undergoes any conformational change at all. Furthermore, we find in this study

that even when running MD for timescales much longer than those run for typical binding

studies, our native system trajectories do not sample any protein conformational changes.

Thus, simply running longer simulations may not resolve issues with sampling.

Binding studies, including in L99A, are typically done on much shorter timescales than those

studied here. Thus, it is vital for researchers running such studies to have an idea of the

relevant timescales for protein conformational sampling, and ensure that (a) they are using

the appropriate protein structure(s) for their ligand, or (b) they are somehow enhancing

sampling of protein conformational transitions, or (c) they diagnose the quality of protein

sampling. Given that it is relatively common for structure-based design studies to uncover

multiple distinct protein conformations upon binding of different ligands, it may be possible

to anticipate some of these conformation changes [87, 89]. However, timescales for transitions

between relevant protein conformations might be slow and uncharacterized, in which case

researchers need to be cautious. Thus, we believe it may be necessary to further develop

and employ enhanced sampling methods for dealing with protein conformational changes.

Lastly, we make all files necessary to reproduce our trajectories freely available. We also

include the code used for analysis so that researchers can access our state analyses. Ad-

ditionally, one unexplored avenue of this work is investigation into the structures classified

into the various discrete states. We include snapshots of structures along various points in

the TICA surface should researchers want to analyze this data.
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3.5 Conclusion

Overall, we have demonstrated how Markov state modeling can be combined with short,

parallel MD trajectories in order to define discrete states based on the slow dynamics of

a system. We verify that the discrete states of the T4 L99A binding pocket previously

established in experiment [87] can also be observed in MD, although even longer MD sim-

ulations of native systems do not sample any conformational changes. Thus, we simulate a

series of mixed systems in order to estimate the transition timescales between states. Our

timescale estimates are consistent with previous findings, where it was shown that for the

T4 L99A system, the choice of starting protein conformational state heavily influences which

conformations are sampled through the course of the simulation [73]. For known systems

undergoing discrete conformational changes upon binding of a congeneric ligand series, we

suggest combining short, replicate MD simulations of different bound ligands with MSMs to

resolve biologically-relevant slow motions of the system. We believe the coordinates resolved

from kinetic information offers an alternative to RMSD-based definitions and can be used

to establish more robust state definitions for other biological systems.
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Chapter 4

Building Block-Based Binding

Predictions for DNA-Encoded

Libraries

Reproduced with permission from J. Chem. Inf. Model. 2023, 63, 16, 5120–5132 Copyright

© 2023 American Chemical Society.

DNA-encoded libraries (DELs) provide the means to make and screen millions of diverse

compounds against a target of interest in a single experiment. However, despite producing

large volumes of binding data at a relatively low cost, the DEL selection process is susceptible

to noise, necessitating computational follow-up to increase signal-to-noise ratios. In this

work, we present a set of informatics tools to employ data from prior DEL screen(s) to gain

information about which building blocks are most likely to be productive when designing

new DELs for the same target. We demonstrate that similar building blocks have similar

probabilities of forming compounds that bind. We then build a model from the inference

that the combined behavior of individual building blocks is predictive of whether an overall

54



compound binds. We illustrate our approach on a set of three-cycle OpenDEL libraries

screened against soluble epoxide hydrolase (sEH) and report a performance of more than an

order of magnitude greater than random guessing on a holdout set, demonstrating that our

model can serve as a baseline for comparison against other machine learning models on DEL

data. Lastly, we provide a discussion for how we believe this informatics workflow could be

applied to benefit researchers in their specific DEL campaigns.

4.1 Introduction

Drug discovery campaigns have increasingly adopted DNA-encoded libraries (DELs) in recent

years because they allow for relatively cheap and rapid exploration of diverse areas of chemical

space [45, 39, 5, 7, 32, 137]. In DELs, a concept first introduced by Brenner and Lerner [13],

scientists sequentially couple small molecules known as building blocks via split-and-pool

combinatorial synthesis. The process tags each building block with a unique DNA oligomer

such that each final library member will be covalently attached to a record of its synthesis in

the form of a sequenceable DNA barcode. Researchers then incubate the entire library with a

target of interest and wash away any compounds that do not bind. Finally, experimentalists

amplify and sequence the DNA barcodes of the observed binders and further investigate any

compounds with detected DNA read counts as potential binders [20, 79]. Typically, DELs

incorporate two to four cycles of encoding and chemistry, which can achieve a diversity of

up to billions of unique compounds [112, 40, 31].

Given the large combinatorial scale of DELs, selection data can be quite noisy due to issues

such as variable reaction yields and formation of truncates [69, 111, 10], as well as errors

within experimental procedures and noise during DNA sequencing [66, 44]. These sources of

noise have made it common to analyze selection data with computational models to prevent

wasting time and resources re-synthesizing and evaluating unproductive candidates. Recent
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work suggests how machine learning approaches can denoise DEL data [69, 72, 10] and

identify promising candidates in out-of-sample data [82]. Computational models likely will

yield even further insights as they are applied to DEL selection data [116].

In this paper, we introduce a method for analyzing DEL selection data at the building

block-level, with the goal of gaining insights we can use to design better DELs for subse-

quent screening rounds. First, we introduce an interpretable analysis of individual building

blocks. Second, we quantify how building blocks interact with each other to affect whether a

compound binds to the target of interest. Third, leveraging the idea that similar compounds

have similar properties [59], we demonstrate how we can use similarity scoring methods to

predict the productivity of new building blocks and how similarity metrics differ in their

ability to do so. Finally, we build a model which combines the behavior of building blocks at

each position into a statistical prediction on the probability of an untested molecule binding

to the target of interest.

We note that all the results in this paper come from a pooled set of three-cycle OpenDEL

libraries from HitGen screened against a single target, soluble epoxide hydrolase (sEH). We

release all the data we analyzed in this study, so that interested researchers are able to

reproduce our findings. We emphasize that while the findings presented here are specific to

this set of DELs on sEH, we believe our informatics workflow can be extended to analyze

the results of various DEL campaigns.

4.2 Results and Discussion

We begin by defining the idea of productivity for individual building blocks, which we use

to assess whether an overall compound binds to a target. We demonstrate how quantifying

the productivity of individual building blocks can provide general insights into structures
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that could contribute to binding for a target of interest. We then develop a method to guide

subsequent DEL screens on a target by (1) identifying productive candidates from a list of

proposed building blocks and (2) predicting whether compounds containing those identified

building blocks bind to the target of interest. We demonstrate this concept by splitting our

data into training and holdout sets (where the holdout sets contain building blocks not seen

in training) and provide a workflow for how to incorporate this method in a practical setting.

4.2.1 A building block metric, P(bind), identifies the most pro-

ductive building blocks at each position

This section introduces a metric we call P(bind) to quantify the productivity of building

blocks from a set of DEL selection data.

Notation for building block positions

To aid in interpretation, we establish a bit of notation. For building block positions, we

refer to the position closest to the DNA tag as p1, the middle position as p2 and the position

furthest from the DNA tag as p3 (Figure 4.1). Each of these building block positions is

called a monosynthon. We denote the set of all building blocks for a given position as

BBi, where 1 ≤ i ≤ 3 in this study. Individual building blocks are denoted as bbx, where x

is the identifier, ID, assigned to each unique building block. We refer to two building block

positions considered jointly, also known as a disynthon, using the notation BBiBBj. In our

definition, the two positions considered for a disynthon do not need to be adjacent. Finally,

we denote trisynthons as BB1BB2BB3. To specify a subset, we use a vertical bar from

set-building notation [119] where subset conditions are to the right of the bar. For example,

{BB1BB2 | BB1 = bb1} represents the set of disynthons where position one contains the

building block with ID 1.
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Figure 4.1: A schematic of DEL library members. All DEL library members in this study
are composed of three small molecule building blocks and referred to as trisynthons. The
first added building block is closest to the DNA (position 1) and the last added is furthest
(position 3). Each building block has a corresponding DNA tag encoding its identity, shown
in this figure via color coordination. The combined DNA tags form a unique barcode, which
is amplified and sequenced in experiment to verify the presence of the trisynthon. Pictured
is position 1 (blue), position 2 (orange) and position 3 (green), which we refer to as p1, p2
and p3, respectively.

Each position in the library contains a small number of highly productive build-

ing blocks

Firstly, to compare building blocks quantitatively, we require a metric to characterize a

desirable versus undesirable building block. We define the productivity of a building block,

P(bind), as the fraction of compounds that bind to the target when a given building block

occurs in a particular position. In this study, we defined binders as compounds with a read

count statistically different from 0 at a 95% confidence threshold, making the assumption

that read counts follow a Poisson distribution [66] (see Methods for more details).

To illustrate how we calculate P(bind), we provide the following example. Let S be the

subset of trisynthons such that position p1 contains the arbitrary building block bbx. This

would be expressed as:

S = {BB1BB2BB3 | BB1 = bbx} (4.1)
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If the number of trisynthons in the subset S is N , the P(bind) of the building block bbx is

P (bind) =

∑N
k=1 Ik
N

(4.2)

where Ik is 1 if the kth compound in S binds to the target and 0 otherwise, as defined in

Section 4.4.2. We repeat this calculation by changing the subset represented in eq 4.1 for each

building block in each position of the library. Comparing building blocks by their P(bind)

values then allows us to identify the most productive building blocks for each position.

Figure 4.2: Distributions of P(bind) values for each building block position. Building blocks
at each position are separated into P(bind) bins with the value above each bar indicating the
number of building blocks contained in each interval. Shown are the distributions of P(bind)
values for building blocks in p1 (blue, top), p2 (orange, middle) and p3 (green, bottom).

We identify a small fraction of building blocks in each position with P(bind) values signif-
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icantly higher than average. Splitting building blocks into intervals based on their P(bind)

values, we find that the distribution of P(bind) at every position is heavily right-skewed,

with more than 95% of building blocks at every position having P(bind) values less than

0.20 (Figure 4.2). For positions 1 and 2, the top 1% of P(bind) values are contained in the

P(bind) interval, [0.40, 0.60), whereas for position 3, the top 1% of P(bind) values extends

across the P(bind) interval, [0.80, 1.00]. Given the mean P(bind) value of all building blocks

at each position is on the order of 10−2, this tells us that the top building blocks occur in

binders at a rate about 50 times higher than average.

In this analysis, the difference in the maximum P(bind) value between one position and

another reveals that trisynthons are more sensitive to the building block present in certain

positions. We posit that in this DEL where trisynthons are synthesized linearly (Figure 4.1),

position 3, being the furthest from the DNA barcode and therefore the most exposed, has the

greatest effect on whether the compound binds. Position 1 has the smallest effect on overall

compound binding as the position closest to the DNA tag. Since DELs are typically screened

with DNA tags still attached, we believe the presence of the DNA tag may partially obstruct

interactions with the target. We note that our observation of the importance of position 3

could also be confounded by a larger and more diverse selection of building blocks in that

position. However, with the exception of 10 building blocks in position 3, every building

block in each of the three positions is used in a statistically significant number of compounds

(N > 30) [68] (Figure S1). This suggests our calculation of the P(bind) metric for each

building block should not be highly impacted by small sample sizes. Thus, we believe that

when we observe building blocks with high P(bind) values, these values indicate the building

blocks are truly productive rather than having values which appear high as an artifact of

sampling bias.

It is certainly possible that our finding that building block productivity varies based on

library position also points to an issue with false negatives in DELs. Due to the high
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throughput nature of DEL screens, it has been demonstrated that larger library sizes lead

to high false negative rates [112]. However, we believe that because the P(bind) metric is

aggregated across all the compounds the BB occurs in, the metric should be more robust

to false negatives. Moreover, we observe some alignment between building blocks we find to

be most productive in position 3 and structural motifs of sEH inhibitors in the literature.

Notably, the top two most productive building blocks in position 3 resemble benzhydryl

pharmacophores that have been reported in the literature to form favorable pi-stacking

interactions with residues in the binding pocket of sEH (Figure S2) [34].

When comparing various physicochemical properties of more and less productive building

blocks at each position, we find some commonalities. For example, the most productive

building blocks in all positions have higher calculated logP. The most productive building

blocks in positions 1 and 2 are also characterized by fewer hydrogen bond donors, whereas

the most productive building blocks in position 3 have fewer hydrogen bond acceptors and

more hydrogen bond donors than their less productive counterparts (Figure S3). We note

that our method may be able to broadly detect target-specific architectures that are favored

for binding (as in this case with sEH) based on the differences in productivity for the building

blocks in different positions.

Building block productivity increases the variety of binding disynthon pairs

Having identified productive building blocks at each position, we proceed to investigate what

characterizes a building block with high P(bind) value chemically. To do so, we analyze how

building blocks combine at a disynthon (pairwise) level. We hypothesize that building blocks

with high P(bind) values are compatible with a greater number of other building blocks.

Here, we define two building blocks as compatible if they co-occur in a compound that binds

to sEH.
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To test our hypothesis, we evaluate how the number of compatible partners for a building

block varies with the P(bind) value of the building block. To calculate the number of

compatible partners, we first identify all compounds that bind when a building block is in

a certain position. We then count how many unique building blocks are in the other two

positions from this list of binders. The number of compatible building blocks in position pj

for an arbitrary building block x in position pi can then be expressed as

Nij = |{BBiBBj | BBi = bbx}| (4.3)

where the vertical bars on each side of the subset is the cardinality or number of elements

in the subset [119].

We find that high P(bind) building blocks form binders with a broader range of partners

in both positions. We observe a monotonically increasing relationship between P(bind) and

number of compatible partners for all building block pairs (Figure 4.3). P(bind) tells us how

successful a building block is when it is placed in a certain position, but tells us nothing

about the behavior at other positions that may lead to the success (or lack thereof) at one

position. Hypothetically, a building block could have a high P(bind) value but only form

binders with a very limited selection of partners in one of the other positions. To illustrate

this possibility, imagine a scenario where all binders that contain bbx in p3 only occur if one

or a few specific building blocks are present in p2. This would attribute all the variation

between these compounds to the identity of the building block in p1. Since we find the least

sensitivity to molecule binding in p1 (Figure 4.2), this is a realistic hypothesis to rule out.

On the contrary, we see that building blocks which are successful in one position are com-

patible with a broader diversity of building blocks in all other positions. We note that this

could partially be attributed to variations in coupling reactions present in our library, which

we address later in our discussion. Previous work has shown that in DELs, reactions are
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Figure 4.3: Number of compatible partners as a function of P(bind) for each building block.
Building blocks are called compatible if they are present together in a compound that binds.
Each column shows how as the P(bind) of the building block in one position changes (filled
shape), so does the number of compatible building blocks in the other two positions (dotted
shapes). Shown are the results when building blocks in p1 (left column), p2 (middle column)
and p3 (right column) are taken as reference.
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more or less prevalent based on their compatibility with the available building blocks rather

than their perceived robustness in traditional settings [81]. However, what this analysis

determines is that we can be generally be more confident that a compound containing an

untested building block is more likely to bind to sEH if it contains a high P(bind) building

block in any position (Figure 4.4A–C, Table S1–S3).

4.2.2 Evaluating the P(bind) of building blocks jointly predicts

the binding of trisynthons

In the following section, we transition to analyzing DEL selection data at the trisynthon

level. We quantify the probability of forming binders by combining building blocks of varying

P(bind) values. We note here that while we only demonstrate this analysis on 3-cycle DEL

data in this work, we believe our methodology can be applied to DELs of various cycle

numbers in order to identify productive BBs at each position. For 2-cycle DELs, we would

only need to consider the interaction between a single pair of positions, which we believe

would simplify the analysis.

Higher P(bind) in individual positions leads to higher probability of molecule

binding

To understand how varying the P(bind) values of building blocks at each position affects

the probability of forming a trisynthon that binds, we calculate joint probabilities for pairs

of building block positions, using the P(bind) bins shown in Figure 4.2. We refer to bin

positions numerically, where 1 is the lowest bin of P(bind) values, [0.00, 0.20), and 5 is the

highest bin of P(bind) values, [0.80, 1.00]. The subset of compounds where the building

block in pi is a member of binx (denoted by the set membership symbol ∈) [119] and the
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Figure 4.4: Joint probability of forming a binder using P(bind) bins. The P(bind) bins for
each position are the same, but p3 has more bins because its building blocks span a wider
range of P(bind) values. Pictured are the joint probabilities of forming binders from building
blocks in bins of (A) p1 and p2, (B) p1 and p3, and (C) p2 and p3.

building block in pj is a member of biny is

S = {BB1BB2BB3 |

BBi ∈ binx, BBj ∈ biny}
(4.4)

where 1 ≤ x, y ≤ 5. We calculate the number of elements in eq 4.4, N , and then use eq 5.2

to find the joint probability of forming binders for pairs of building block positions (Figure

4.4).

The joint probabilities reveal that typically for disynthon combinations, or a pair of build-

ing block positions, increasing the P(bind) of either building block increases the probability

of forming a binder (Figure 4.4A–C, Table S1–S3). Furthermore, we find that high P(bind)

building blocks can be used to rescue binding when combined with building blocks with

lower P(bind). The higher the P(bind) of a building block in one position is, the lower the

P(bind) in another needs to be to achieve the same probability of forming a binder. There

is a noticeable increase in the probability of forming a binder when the building blocks in

both positions have P(bind) values greater than 0.20 (bin 1) (Figure 4.4A–C, Table S1–S3).
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We find additional evidence that the building block in position 3 has the greatest effect

on trisynthon binding. When the building block in position 3 has P(bind) value in the

range [0.80, 1.00] (bin 5), the probability of forming an binder is never less than 93% (Figure

4.4B, C, Table S2, S3). Building blocks in positions 1 and 2 exhibit far less influence and

subsequently do not rescue binding to the same extent that building blocks in position 3 can

(Figure 4.4A, Table S1).

Despite variations in the extent to which each building block position contributes, the gen-

eral trend is clear: introducing a high P(bind) building block in any position increases the

probability of forming a compound that binds to sEH. We find that on average combin-

ing monosynthons constructively increases P(bind) (Figure 4.4). This means that building

blocks that are good independently are still good together on average. While this finding

is true on the aggregate, we note that we cannot necessarily propose a specific combination

of building blocks which includes a high P(bind) building block and expect them to form a

binder without considering the chemistry used to form the DEL. For example, the DEL might

have used different reactions for linking different categories of building blocks, so that one

part of the DEL might contain productive building blocks which simply cannot be linked to

other building blocks that would require linking via a different reaction. Or, certain building

blocks might be hindered from linking due to steric constraints or other reasons – in other

words, the linkage is not synthetically accessible. Thus, we raise an important caveat: the

results presented are conditional on the fact that a product is and can be formed, i.e. that

the product is a result of what we call compatible building blocks.

Training on building block P(bind) values yields precise predictions for the bind-

ing of trisynthons

To determine how much signal P(bind) value alone has in predicting the whether a trisynthon

binds, we design a simple test. We randomly split our total dataset into a training set
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Figure 4.5: Decision tree based on the P(bind) values at each building block position. Each
node, shown as boxes, of the decision tree indicates a split of the data on the condition
specified in the first line of text in each box. If the condition is true, the data is split
into the lower left node, otherwise the data is split to the lower right node. Darker orange
nodes indicate a higher proportion of non-binders and darker blue nodes indicate a higher
proportion of binders. On the bottom of each node is the value of the number of [non-binding,
binding] compounds.

containing 90% of the data and a test set with the remaining 10%, while ensuring that all

building blocks in the training set are sampled in the test set. This means all the trisynthons

in the test set are strictly new combinations of already tested building blocks, allowing us

to evaluate whether P(bind) values can be used to predict if a trisynthon binds when the

P(bind) values for each building block can be calculated. In later sections, we tackle the

issue of predicting whether trisynthons composed of untested building blocks are binders.

We find that we can identify trisynthons that bind reliably solely using the P(bind) values

of their constituent building blocks. We construct a simple decision tree which splits the

data based on the P(bind) value at one of the building block positions (Figure 4.5) and

evaluate the performance of the model using the metrics precision and recall (see Methods).

Of the 10,302 binders in the test set of 443,380 trisynthons, the decision tree model identifies

9432 true positives and incorrectly predicts 364 false positives, resulting in a test precision

of 0.963 ( 9432
9432+364

) and a test recall of 0.916 ( 9432
10302

). The area under the curve (AUC) of

the precision-recall curve is 0.961, which is significantly higher than the AUC for a random
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guessing model, which is equal to the hit rate of the test set ( 10302
443380

≈ 0.0232). Given

the AUC of a perfect classifier is equal to 1.0, this demonstrates that using building block

P(bind) to predict whether a trisynthon binds is highly reliable for this DEL data. A similar

analysis can be performed for other DELs and targets to verify the fidelity of this analysis

for alternative systems.

We note that our analysis ignores singletons, cases in which species are only enriched in a

single selection, and could improve upon this by analyzing the results from replicate selections

[77, 140]. As been shown in the literature, some apparent nulls from a single selection have

turned out to be high-affinity hits when multiple selections were performed [66] or when the

binding affinity of singletons have been further assessed [20, 61]. Thus, we acknowledge that

failing to account for singletons in our analysis could potentially result in an increased false

negative rate [66], a shortcoming accounted for in other existing methods in the literature

[4]. However, DEL practitioners have also leaned towards investigating compounds whose

neighboring structures show similar behavior [120], with the goal of identifying families of

related ligands and gaining general insights into structure-activity relationships (SARs) for

a target of interest [20]. Thus we believe that in spite of its inability to address singletons,

our method provides a systematic and reproducible way of elucidating general SARs, and

offers value as a better alternative than manually evaluating DEL selection data [120].

4.2.3 Clustering based off chemical similarity estimates the P(bind)

of untested building blocks

In this section, we discuss how to use similarity scoring to predict the P(bind) value of

building blocks that have not been tested, allowing us to extend the applicability of our

method to new data.
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Figure 4.6: (A–C) UMAP projection of chemical space for each library position. The relative
chemical distance between building blocks at each position is represented by the distance
between points in the UMAP projections. The size and transparency of each point is scaled
by the P(bind) of the building block, with larger, solid color dots indicating building blocks
with higher P(bind) values. Pictured are the building blocks in (A) p1, (B) p2 and (C) p3.
(D–F) Distributions of distances in UMAP space between the top 10 building blocks by
P(bind) and randomly selected building blocks. Pictured are the distances between top 10
to top 10 (solid line) and top 10 to random (dotted line) building blocks for (D) p1, (E) p2
and (F) p3.
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Building blocks with similar P(bind) are close to each other in projections of

chemical space

We hypothesize that by the similar property principle [59], building blocks that are

similar to each other will have similar P(bind) values [94, 80]. In this study, we elect to

use a combination of 3D shape and color Tanimoto, otherwise known as Tanimoto combo

as our similarity metric [54, 95]. For each position, we calculate the Tanimoto combo scores

between all building blocks and transform these scores into 2D coordinates via Uniform

Manifold Approximation and Projection (UMAP), a dimensionality reduction technique [85,

86]. Using the UMAP coordinates, we create an approximation of chemical space, where

each building block is represented by a point and the Euclidean distance between points is

inversely proportional to the chemical similarity of the respective building blocks (Figure

4.6A–C). We emphasize that no information regarding the P(bind) value of building blocks

is introduced in this process.

We find that high P(bind) building blocks generally are much closer (and therefore more

similar) to one another than they are to random building blocks (Figure 4.6D–F, Table S4).

Here, we define high P(bind) building blocks as the top 10 by descending P(bind) value. On

average, the Euclidean distance from a high P(bind) to a randomly selected building block

is twice as large as the distance from one high P(bind) building block to another (Figure

4.6D–F, Table S4). This supports our hypothesis that similar building blocks have similar

P(bind) values and motivates our next step: to predict the P(bind) value of an untested

building block based on the P(bind) values of the building block(s) most similar to it.

We also test if 2D or 3D Tanimoto similarity results in clearer separation of clusters. We

observe more random separation between building blocks of similar P(bind) value when using

2D Tanimoto similarity instead of 3D Tanimoto combo (Figure S4). The UMAP projections

from 2D Tanimoto show building blocks with similar P(bind) value scattered throughout
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Figure 4.7: HDBSCAN clusters on UMAP projection of each library position. (A–C) We
apply HDBSCAN to the UMAP projections of each library position in order to group similar
building blocks into clusters. Each cluster is identified visually by a different color and
assigned a numeric cluster ID. Pictured are the cluster assignments for (A) p1, (B) p2 and
(C) p3. (D–F) Joint probability of forming binders using HDBSCAN clusters. Aggregating
trisynthon data by cluster ID allows us to identify which combinations of building blocks
have high and low probability of forming binders. We also indicate combinations of building
blocks that are never observed in the data. Shown are joint probabilities when combining
clusters from (D) p1 and p2, (E) p1 and p3 and (F) p2 and p3.

chemical space with less structure (Figure S4, Table S5). A potential explanation for this

is because 3D Tanimoto takes into account multi-conformer overlays of 3D structures, it is

able to better relate the binding ability of molecules compared to 2D Tanimoto.

Groupings by chemical similarity are predictive of building block binding

We find that we can form clusters to estimate the P(bind) value of untested building blocks.

To do so, we first apply HDBSCAN [17, 84] to the UMAP coordinates of building blocks (Fig-

ure 4.6A–C), resulting in a set of clusters for each position in projected chemical space (Fig-

ure 4.7A–C). After assigning clusters, we compare the full width at half maximum (FWHM)
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Figure 4.8: Distribution of P(bind) values for clusters. We visualize the distribution of
P(bind) values for clusters formed via HDBSCAN (left) and clusters formed from randomly
selecting compounds (right). The color of each cluster matches with the color assignments
in Figure 4.7. To better visualize each distribution, we remove all building blocks where
P(bind) = 0 and plot P(bind) values on a log scale. Empty grids indicate clusters where all
members have P(bind) = 0. Shown are results for (A) p1, (B) p2 and (C) p3.

[130] of the distribution of P(bind) values for HDBSCAN-generated clusters to randomly-

generated clusters. We find that the average FWHM of the P(bind) distributions from

HDBSCAN-generated clusters is less than that for random clustering (Figure S5), showing

that compounds tend to be grouped into clusters of somewhat similar P(bind) values. Thus,

we conclude that using a building block’s cluster assignment to predict its P(bind) value

(Figure 4.8) improves accuracy compared to random guessing.

Beyond predicting the P(bind) of untested building blocks, clusters can also be used to

identify groups of building blocks that are compatible. After assigning each building block

to a cluster, we join the cluster results on the trisynthon data in order to get a list of

three cluster IDs (corresponding to the cluster assignment for the building block at each

position) for each trisynthon. Grouping by the cluster ID at each position then allows us
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to calculate the probability of forming compounds that bind to the target for every distinct

cluster combination (Figure 4.7D–F, Table S6–S8). We can describe the subset of compounds

where the building blocks in positions pi and pj are members of the xth cluster of pi and the

yth cluster of pj as

S =
{
BB1BB2BB3 |

BBi ∈ clusterix, BBj ∈ clusterjy

} (4.5)

As before, we calculate the joint probability for disynthons by calculating the number of

entries in S, N , and then we apply eq 5.2.

Moreover, we also identify certain combinations of clusters that are not observed in the

experimental data (Figure 4.7D–F, Table S6–S8). While the analysis does not indicate why

these combinations of building blocks are not observed, we believe characterizing these gaps

could be useful. For example, gaps could be new combinations of building blocks that might

be desirable to test. On the other hand, these gaps could also indicate that the combination

cannot not be made (e.g. due to a DEL being formed using several different reactions, so

that certain building blocks cannot be cross-linked given the reactions employed) or that

something went wrong experimentally so that even though the combination was thought

to be tested, no data was collected. Thus, in some cases, gaps in the data may represent

building blocks or combinations of building blocks to avoid and in others, areas to test in

further rounds of experimentation.

4.2.4 Application to Holdout Data

In this final section, we demonstrate how we would apply this method in a practical setting,

where we would work to guide design of a new DEL using information available from a prior

screen. Here, we model this design process by testing performance of our model using a
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holdout set (using building blocks not seen previously) to mimic a new set of building blocks

to test.

Building block level analysis predicts whether trisynthons containing untested

building blocks bind to sEH

To simulate an experimental setting in which we would like to choose promising new building

blocks to study after performing an initial set of DEL screen(s), we randomly select 5% of the

building blocks at each position and remove all trisynthons containing any of those building

blocks and place them into a holdout set. The training set, now composed of the remaining

compounds, represents the information we might have after an initial experimental screen

that had used only a limited set of building blocks. The holdout set represents a set of

proposed follow-up candidates that all contain at least one untested building block.

Our workflow proceeds as follows: (1) Calculate the P(bind) values for all the building

blocks in our training set (Figure 4.9A). This P(bind) information is used to train a decision

tree classifier to predict whether compounds bind to the target of interest. We can also

visualize the most productive building blocks at each position to get a sense of what sorts

of chemistries may be favored for binding to the target of interest. (2) Compute the 3D

Tanimoto combo among all the building blocks at each position (Figure 4.9B). (3) Apply

UMAP to each similarity matrix to create a mapping of chemical space for the building

blocks at each position and cluster with HDBSCAN to resolve groups of similar building

blocks with similar P(bind) values (Figure 4.9C). Peeking into the building blocks in each

cluster can further elucidate structures that are potentially favorable for binding to the target

and aggregating by cluster ID can identify combinations of building blocks at each position

that are more and less likely to result in a binder. (4) Identify a new set of building blocks to

mix in combination with already tested ones (Figure 4.9D). (5) Calculate the 3D Tanimoto

combo between all the training set building blocks and a new set of building blocks (Figure
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Figure 4.9: Overview of protocol to predict the productivity of out-of-sample building blocks.
(A-C) Protocol for processing existing DEL selection data. (A) We calculate the P(bind)
metric for all the building blocks in the library. (B) We compute the 3D Tanimoto combo
between all the building blocks at each position in the library. (C) We transform similarity
scores among building blocks into a mapping of chemical space via UMAP and resolve clusters
with HDBSCAN. (D-F) Protocol to apply our methodology to new proposed building blocks.
(D) We propose a set of building blocks that have not been tested experimentally. (E)
For each position separately, we calculate the 3D Tanimoto combo between the new set of
building blocks and the existing ones. (F) We map the new building blocks onto the existing
UMAP projections and assign each one to a cluster.
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4.9E). (6) Map new building blocks onto the existing UMAP embedding and classify them

into the existing clusters (Figure 4.9F). (7) Predict the P(bind) of each building block in

the holdout set using the building blocks in its cluster. We explore four different methods

of approximating the P(bind) value of each building block in the holdout set:

• the median P(bind) of the cluster

• the mean P(bind) of the cluster

• P(bind) of randomly selected BBs from the cluster

• P(bind) of most similar BBs in the cluster

We train a decision tree classifier using the P(bind) and cluster information of every building

block in the training set as input (training precision: 0.960, training recall: 0.926) and then

apply the classifier to our holdout set. We find that every method outperforms random

guessing by at least an order of magnitude (Figure 4.10). In addition, using the cluster

nearest neighbor to approximate untested building block P(bind) gives the best result for

predicting the binding of trisynthons to sEH (AUC: 0.799; averaged over 50 random trials)

(Figure S6). This finding further supports the argument that on average, chemically similar

compounds have greater probability of similar productivity [94, 80].

4.2.5 Building block analysis identifies productive regions of chem-

ical space to probe for subsequent screening rounds

Compared to existing methods in the literature such as the tagFinder [4] and deldenoiser [69],

one distinct advantage of our method is the ability to take pooled DEL data screened against

a particular target of interest and identify new combinations of building blocks that are more

or less likely to form binders for this target. We imagine this can greatly inform subsequent
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Figure 4.10: Comparison of the AUC of the precision-recall curves for different prediction
methods. We evaluate four different ways to estimate the P(bind) of untested building blocks
from HDBSCAN clusters. Predictions are made on a test set where each compound contains
at least one building block not seen in the training set. The random guessing benchmark is
equal to the hit rate of the holdout set, which is approximately 2%.
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screening rounds, empowering researchers to either exploit combinations of building blocks

that are conducive to forming binders or explore different regions of chemical space to build

up a diverse assortment of compounds that bind a target of interest. While we only predict

the behavior of building blocks that are similar to existing ones, we imagine that because

we combine these building blocks in new combinations, we can build up a diverse set of final

products that are likely to bind to the target. As an illustrative example, we showcase a

diverse set of compounds that our method successfully determined bind to sEH (Figure S7).

Using similarity scoring and a decision tree model, we predict binders from a set of com-

pounds containing building blocks not seen in the training set at a rate more than an order of

magnitude greater than random. The performance of this approach demonstrates that even

relatively simple models can estimate whether new trisynthons containing building blocks

similar to previously tested ones will bind to sEH. As the intersection between machine learn-

ing and DELs grows, we challenge researchers to pay attention to straightforward models

like the one employed here and evaluate whether more complex machine learning methods

perform significantly better.

4.3 Conclusion

In this work, we applied computational modeling to understand the productivity of building

blocks in a set of DELs and predicted how individual building blocks can be combined to

form compounds that are likely to bind to a single target, soluble epoxide hydrolase (sEH).

We developed a simple and interpretable method to predict the behavior of new building

blocks, their interactions with known building blocks, and whether compounds consisting of

holdout set building blocks would bind to sEH.

Our model can be an effective baseline for future studies due to its high accuracy and
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relative simplicity. In the future, it may be interesting to explore the relative merits of

more complex deep learning architectures versus similarity-based methods. For example,

approaches employed here may have similar performance to more complex neural networks

if out-of-sample data resembles existing data, such as during medicinal chemistry efforts or

when only small numbers of building blocks and compounds have been explored. On the

other hand, when the amount of available data becomes large, it seems likely that deep

learning models perform better.

Given the promise of DEL screens for high throughput testing of ideas for drug discovery

[82, 72, 69, 10], the refinement of subsequent DEL screens to minimize cost and enhance

follow-up on promising structures is likely to improve outcomes in drug discovery. While

the ability to gather a vast variety of data in a DEL screen is an experimental advantage,

the volume of data poses challenges for interpretation. Improved computational methods

are pertinent to aid the experimental workflow. Our method and open-source software [24]

can be applied to experimental DEL screens in the future to guide building block selection,

identify essential features needed to bind the target of interest, and reduce the search space

when following up on potential binders.

4.4 Methods

4.4.1 Data Collection

The dataset was generated from in-house screening of several commercially available DEL

libraries (OpenDEL from HitGen) against soluble epoxide hydrolase (sEH). The DEL screen

was performed as previously described in Clark et al. [20]. Briefly, N-term his-tagged

human Soluble Epoxide Hydrolase (sEH) protein (1 uM, N-term His-tagged) was incubated

with pooled DEL libraries in a 100 uL reaction (50 mM HEPES (pH 7.4); 150 mM NaCl;
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0.01% Tween-20; 10 mM Imidazole; 1 mM TCEP; 0.1 mg/mL ssDNA). Post-incubation,

the protein was captured by magnetic beads (Invitrogen Dynabeads His-Tag, and Pierce

Ni-NTA magnetic beads), and the samples washed with buffer. Each round of selection was

completed by a heat elution (95°C, 10 min) to separate protein from bound molecules. A new

round was initiated by introduction of fresh protein and the process repeated for a total of

3 rounds. In parallel, a matrix-binding only sample was included to account for non-specific

binding. Post-selection, samples were PCR amplified and sequenced on a next-generation

sequencing platform.

4.4.2 Data Curation

We compiled input files after experiment as comma-separated values (CSVs) containing the

SMILES of each composite structure, its experimentally determined read count and the

SMILES of its constituent building blocks. In some cases, the SMILES strings for building

blocks included the protecting groups used during synthesis which would be removed in the

process of constructing full compounds.

As a first step in curation, we classified compounds into binary categories of either “non-

binder” or “binder” – with respective labels of 0 and 1 – based on whether their NGS

sequencing counts (which we call read counts) were statistically different from 0 at a 95%

confidence threshold. We assumed read counts were drawn from a Poisson distribution, a

treatment used across several studies in the literature [66, 72, 69]. Using this definition, we

selected the top 10K binders by read count value and a random selection of 10M non-binders

from the total collection of DEL data screened against sEH. The end result of this is that the

lowest read count for any compounds classified as a “binder” was 81, which means we only

analyze very clear binders from this dataset (Figure S8). We note that sEH is a particularly

rich target for DELs [7] and there may not always be such a clear delineation between
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binders and non-binders for other targets. In view of this, we include data reporting how

the distribution of compounds classified as either a “non-binder” or “binder” to the target

changes as we vary the minimum read count threshold (Table S9). We emphasize that our

analysis is not on a complete set of DEL selection data, but rather a subset of a larger

dataset.

We further curated input files using pandas (v.1.2.1) [102, 131] to remove duplicate com-

pounds and lines containing fields with null entries. In cases where we had building blocks

reported in duplicate with both unspecified and specified stereochemistry, we elected to re-

move all compounds containing the building block with unspecified stereochemistry. This

was the case for fewer than 5% of the building blocks in any of the positions of the library.

We also removed compounds with building blocks containing boron because we could not

generate conformers for them due to force field limitations; this library initially had many

boron-containing compounds. Furthermore, some building blocks were reported with pro-

tecting groups still present. We used ChemDraw (v.17.0) to generate SMIRKS reactions

and used the OEChem toolkit (v.2021.1.1) [97] to deprotect Fmoc, nBoc, methyl ester and

ethyl ester groups on those relevant building blocks. We did this to ensure that the presence

of protecting groups would not bias our similarity calculations and because the protecting

groups were not present in the final products. After applying the deprotecting functions,

we saved all the unique building blocks at each library position to separate files. Associated

code for these steps can be found at https://github.com/MobleyLab/DEL analysis.

4.4.3 2D Tanimoto

We calculated 2D Tanimoto scores using RDKit (v.2020.09.1.0) [70] by first converting com-

pounds into Morgan fingerprints [93] with the radius parameter set to 3 bonds.
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4.4.4 3D Tanimoto Combo

We calculated 3D Tanimoto combo using the FastROCS toolkit (v.2021.1.1) [97] from Open-

Eye. The 3D Tanimoto combo score takes into account both volume (shape) and pharma-

cophore (color) overlap between two molecules to produce an aggregated similarity score.

Both the shape and the color scores range from 0 to 1, so the 3D Tanimoto combo has a

maximum value of 2.

We first generated up to 200 conformers for each of the building blocks in the library us-

ing the Omega toolkit (v.2021.1.1) [97]. We maintained the same settings as the defaults

in the Classic OMEGA floe on Orion (Spring 2020), but restricted the stereochemistry of

input molecules. For building blocks with unspecified stereochemistry, we used the OE-

Flipper function in Omega to enumerate all possible stereoisomers and generated up to 200

conformers for each of them.

Next, we used FastROCS to generate an all-by-all matrix of 3D Tanimoto combo scores

for all the building blocks (including enumerated stereoisomers) in each library position.

We iterated over each conformer of each building block to identify the highest possible

shape and color overlap between every pair of compounds. Thus, each entry (i, j) of

the 3D Tanimoto combo matrix represented the largest possible overlap in both shape

and color between any conformer of compound i and any conformer of compound j. For

compounds with multiple stereoisomers, we identified a single stereoisomer that gave the

highest similarity to other compounds. To do so, we first enumerated all stereoisomers

for the compound and evaluated the similarity of a given stereoisomer to all other com-

pounds. We then selected the stereoisomer that gave the highest average similarity to all

other compounds and discarded the rest. Associated code for these steps can be found at

https://github.com/MobleyLab/DEL analysis
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Computational Considerations

It was infeasible to calculate all-by-all similarity matrices for libraries on the order of 106

molecules, as the task would require performing 1012 similarity scoring operations. We in-

stead calculated all-by-all similarity matrices for building blocks at each position individually

and then evaluated combinatorial effects at a later step in the analysis. This was a much

more computationally tractable approach. Additionally, it mimics considerations involved

in library design, one of our key interests, where one might want to use knowledge about

current building blocks to help design libraries for screening.

4.4.5 Generating Clusters

We formed clusters based on the 3D Tanimoto combo score of building blocks at each posi-

tion. First, we transformed 3D Tanimoto combo scores into distances by subtracting each

similarity score from 2, the maximum value for the Tanimoto combo. Due to slight variations

in the conformer overlay process, distance matrices were not perfectly symmetric and some

diagonal elements (a compound to itself) had distances slightly greater than zero. To sym-

metrize the distance matrix, we averaged it with its transpose and set the diagonal elements

to zero.

We then used Uniform Manifold Approximation and Projection (UMAP) (v.0.5.3) [85, 86]

to perform a dimensionality reduction of our dataset from 3D to 2D space, both to help

with visualization and because we wanted to pick a coordinate space to use for subsequent

prediction of properties for new building blocks. This resulted in converting the set of 3D

distance matrices into 2D coordinates for each building block. We inputted these coordinates

into HDBSCAN (v.0.8.28) [17, 84] to generate clusters for each library position.

We designed and minimized an objective function to determine the optimal number of clus-
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ters. Specifically, we arrived at an objective function, L

L = nnoise + 10 ∗ ICD (4.6)

where nnoise was the number of points classified as noise and ICD was the average intracluster

distance between clustered points for each HDBSCAN run. We performed a grid search over

HDBSCAN hyperparameters and calculated the value of the objective function for each set

of clusters. We selected the hyperparameters corresponding to the global minimum of the

objective function to use for clustering (Figure S10). More information on the design of the

objective function can be found in the Supporting Information.

Following cluster assignment, we predicted the cluster assignment for new building blocks

by projecting points onto existing UMAP embeddings and applying approximate predict

function in HDBSCAN. We elected to use UMAP because it was reported to have better

performance and reproducibility than other commonly used methods [6] and was demon-

strated to improve the results from clustering algorithms [3]. Associated code for these steps

can be found at https://github.com/MobleyLab/DEL analysis

4.4.6 Model Construction and Evaluation

We used Scikit-Learn (v.0.23.2) [100] to build a decision tree model and assess the quality of

model predictions. To reduce the chance of overfitting to the training data, we performed 5-

fold cross validation to determine the maximum depth of the decision tree (Figure S11). For

our evaluation criteria, we elected to use precision and recall because of the imbalance of class

labels in our dataset. Recall evaluates the fraction of all true binders that are correctly iden-

tified by a classifier and precision evaluates the fraction of true binders from all compounds

classified as binders [26]. For a given imperfect classifier, tuning to yield an increase in preci-

sion (better prediction of binders) results in a decrease in recall (fewer binders identified) and
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vice versa. The quality of a classifier can be described by the extent of this trade-off, which is

quantified by the area under the curve (AUC) of the precision-recall curve (PRC)[26, 98]. As-

sociated code for these steps can be found at https://github.com/MobleyLab/DEL analysis.
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Chapter 5

A Building Block Centric Approach

to DNA-Encoded Library Design.

Combining small molecule building blocks (BBs) to generate diverse chemical structures,

DNA-encoded libraries (DELs) are a means to quickly explore chemical space. With so

many potential options for building DELs, it becomes useful to establish general guidelines

on how different design decisions affect the character of a final output library. In this chapter,

we investigate different ways of selecting building blocks for DEL and the impacts of various

considerations such as BB cost and physicochemical properties. We provide a means of

picking BBs based on various selection strategies and computationally enumerating sample

libraries to evaluate different DEL designs.

5.1 Background

DELs have played an increasingly important role in modern day drug discovery, allowing for

a vast number of novel compounds to be synthesized and tested against targets of interest
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in a single experiment [13, 20, 45, 39]. The high throughput nature of DELs lends itself to

an incredibly high degree of flexibility and modularity, empowering experimentalists to not

only discover probable hits, but potentially elucidate structure-activity relationships along

the way [7, 82, 116]. However, with so many options for building DELs, it becomes useful to

establish potential design guidelines. A unique facet of DEL chemistry is that all products

are derived from the starting set of selected building blocks (BBs) – thus to an extent,

controlling for the properties of BBs impacts the character of the final output library.

In this chapter, we begin by exploring several avenues for computationally culling BBs for

DEL synthesis using building block catalogs from the Enamine. Among chemical databases,

the Enamine collection is one of the most widely used and currently encompasses over 6

billion compounds (at time of writing) [35]. We use building block catalogs from Enamine

because the Enamine collection boasts a wide diversity of compounds that are all readily

synthesizable. Given the relative ease to acquire compounds from Enamine, we believe using

building block lists from Enamine would be most practical and reproducible for this study.

Upon providing various options for selecting BBs, we demonstrate different means by which

researchers can explore different concepts for the “quality” of the final output DEL. The

focus of this chapter is to provide examples of considerations when designing DELs and

to provide a computational framework and open source code for implementing these design

decisions. We emphasize that there is no single correct way to build a DEL and the examples

we provide are illustrative of how computational modeling can (and should) be integrated

in designing DELs. The goals and definition for “success” may vary vastly for each research

group.
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5.2 Methods

5.2.1 Building Block List Acquisition

We acquired separate building block catalog files (in .sdf format) for purchasable Fmoc-

protected amino acid BBs, primary amine BBs and carboxylic acid BBs directly through

correspondence with a representative at Enamine. Updated BB lists can also be downloaded

by creating an account on the Enamine website or through the database search feature on

DataWarrior (v5.5.0) [109]. Each catalog file contains information regarding basic physico-

chemical properties, cost, IUPAC name, catalog information and RDKit molecule rendering

for BBs. We provide the exact raw structure files we used on our GitHub, denoted with the

file name following the format: "[functional group] stock.sdf".

5.2.2 Building Block Truncation

For each Enamine BB stock file, we used the OELibraryGen function from OpenEye’s

OEChem module (v.2021.1.1) [97] to generate truncated versions of each BB via reaction

SMIRKS. For Fmoc-protected amino acid BBs, we replaced the -Fmoc, -NH2 and -COOH

groups with -H. For amine BBs, we replaced -NH2 groups with -H. Lastly for carboxylic acid

BBs, we replaced -COOH groups with -H (Figure 5.1).

5.2.3 Building Block Filtering

We applied a SMIRKS filter to remove BBs containing secondary amines, secondary amino

acids, and aniline nitrogens. To filter BBs by cost, we used pandas (v.1.2.1) [102] to write

queries based on our established cost thresholds. For physicochemical property (PCP) filter-

ing, we calculated the relevant properties for each BB before writing queries to filter based
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on RO3 (MW < 300, cLogP ≤ 3, HBD ≤ 3, HBA ≤3) or RO5 (MW < 500, cLogP < 5,

HBD ≤ 5, HBA ≤ 10) specifications. We exported files containing the canonical SMILES,

Enamine ID, cost and PCP of each BB as well as the canonical SMILES of its corresponding

truncate as .csv files for further analysis. We provide these cleaned structure files in our

GitHub and denote each file as "[functional group] df.csv"

5.2.4 Similarity Calculation

We used RDKit (v.2020.09.01) [70] to calculate the 2D Tanimoto similarity among all trun-

cates. Our rationale was that by stripping the functional groups off each BB, we could

directly compare the similarity of the resultant truncates to each other, even if they origi-

nated from different BB classes. We used the canonical SMILES for each truncate to generate

an RDKit Molecule object and transformed the Molecule into a Morgan fingerprint with ra-

dius of 3 bonds and 2048 bits. For each truncate, we calculated its similarity to all other

truncates, yielding an all-by-all similarity matrix. We provide a script for this procedure on

our GitHub.

5.2.5 Chemical Space Projections

To visualize the coverage of chemical space of different truncate selections, we used a dimen-

sionality reduction technique known as Uniform Manifold Approximation and Projection

(UMAP) (v.0.5.3) [85]. UMAP assigns coordinates to each truncate based on the truncate’s

chemical distance to other truncates. We converted the calculated all-by-all similarity ma-

trix into an all-by-all distance matrix and input this into the UMAP algorithm. Here, we

define chemical distance by subtracting the 2D Tanimoto similarity from 1, leading to dis-

tance values ranging from 0 (very similar) to 1 (very dissimilar). The resultant output of

UMAP was a set of 2D coordinates for each truncate, where chemically similar BBs were
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closer together in the UMAP projection and more dissimilar BBs were further away from

each other, providing a depiction of chemical space. We combined these projections with a

Gaussian kernel density estimate from scipy (v.1.5.3) to illustrate coverage of chemical space

in this work.

One nuance to note is that we observe instances where multiple distinct BBs result in the

same truncate. To deal handle this situation, we de-duplicate redundant truncates before

calculating all-by-all similarity matrices. This prevents the similarity matrix from becoming

skewed, as all duplicate truncates would have a similarity of 1 to each other. We then run

UMAP on the all-by-all truncate similarity matrix, giving us a set of (x, y) coordinates for

each truncate in UMAP space. We then join these coordinates back on the original list of

BBs. Thus, distinct BBs that reduce to the same truncates are given the same coordinates

in UMAP space.

5.2.6 Building Block Selection Strategies

We investigated three different BB selection strategies in this work: random, diversity and

uniform. For random selection, we used pandas (v.1.2.1) [102] to randomly sample a specified

number of BBs. In diversity selection, we used the MinMaxPicker function from RDKit to

select a maximally diverse set of compounds given an initial seed and a specified number of

compounds to select. The algorithm performs similarity calculations based on the underlying

Morgan fingerprints. Lastly, in uniform selection, we sample from the density of the UMAP

projection. In this final selection strategy, we establish a minimum distance threshold in

UMAP space and given an initial truncate, identify truncates that are at least the specified

distance away in UMAP space.
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5.2.7 Library Enumeration and Analysis

Once we had selected a set of BBs for each library cycle, we performed a library enumeration

using the OELibraryGen function from OpenEye’s OEChem module (v.2021.1.1) [97]. In this

work, we limited our analysis to two-cycle libraries where BBs in cycle 1 contain an amine

group and BBs in cycle 2 contain a carboxylic acid group. Thus, our only BB linking reaction

was a reductive amination, which we represented as a SMIRKS reaction string. Once we

enumerated all library products, we calculated various physicochemical properties (PCP)

using OpenEye’s OEMolProp module (v.2021.1.1) [97]. We provide code to reproduce our

specific library enumerations as well as a script to generate custom libraries in our GitHub.

5.3 Results

5.3.1 Proper treatment of building blocks is important for com-

putational studies

To accurately assess the overlap of chemical structures across different BB sets, we generate

truncated versions of all building blocks prior to calculating Tanimoto similarity. Otherwise,

the presence of the functional groups involved in linking reactions would affect our similarity

calculations. For example, the same chemistry found across two different BB classes would be

considered as different compounds. In particular, the relative bulk of the Fmoc protecting

group compared to the size of our amino acid BBs affect our similarity calculations. For

example, we find the 2D Tanimoto similarity of the selected primary amine and primary

amino acid BBs to be 0.11 (Figure 5.1 left column). However, after removing their respective

functional groups involved in the linking reaction (-NH2 and -NHFmoc), the 2D Tanimoto

similarity between the resultant truncates is 0.09 (Figure 5.1 middle column). While not a

91

https://github.com/MobleyLab/DEL_BB_design


significant change, comparing the similarity of truncates allows us to compare the similarity

of strictly the atoms which will contribute to the new compound being formed.

Figure 5.1: Schematic of BB truncates. To compare the chemistries conferred by different
BB sets, we analyze the truncates for each BB. From the original building block sourced
from Enamine (left column), we replace the functional group involved in the linking reaction
in each BB (-NH2, -NHFmoc, -COOH) with -H to get a truncate (middle column). These
truncates are distinct from scaffolds such as Bemis-Murcko scaffolding (right column), which
we found reduced structures too much. We elect to use truncates to focus similarity scoring
only on the atoms that would comprise the resultant compound following linking reactions.

Moreover, we find that Bemis-Murcko scaffolding is not suitable for reducing the BBs in our

datasets (Figure 5.1 right column). Bemis-Murcko scaffolding, which strips a compound to

only its rings and any linking atoms connecting ring structures [8], is commonly applied to

generalize the chemistries found in large datasets [134, 135]. However, given most compounds

in our BB sets are small molecules with few rings and linking atoms, we find that Bemis-

Murcko scaffolding reduces BB structures down too much. In our set of example BBs, three

chemically distinct building blocks all reduce down to the same scaffold (Figure 5.1). The

over-simplification of structures via Bemis-Murcko scaffolding causes structures to appear

more similar to each other. Thus, we elect to use truncates and not building blocks nor

Bemis-Murcko scaffolds for our similarity calculations in this study. After calculating the
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Tanimoto similarity of all truncates across all BB sets to each other, we use the similarity

matrix to generate UMAP coordinates that can be used for all three BB sets.

5.3.2 Building block availability and linking reactions are impor-

tant considerations for library construction

We restrict our analysis to the collection of publicly available and synthesizable on-demand

building blocks from the Enamine database. While there are countless places to source BBs

for DEL construction, the diversity and accessibility of BBs from the Enamine database

serves as a great starting point. For reference, using the BBs available from Enamine, our

analysis considers 1396 amino acid BBs, 21109 primary amine BBs and 31091 carboxylic

acid BBs. We refer to each of these groups of building blocks (amino acid, primary amine

and carboxylic acid) as a BB set.

Furthermore, for the scope of this work, we only consider 2-cycle libraries. Previous works

in the literature have demonstrated that products from 2-cycle libraries are more likely to

possess drug-like physicochemical properties than libraries with additional cycles due to the

large size of resulting compounds in the latter [41, 138]. The Paegel group at UCI has

also built libraries using Fmoc-amino acid BBs in position 1 of 2-cycle libraries [21, 51,

38]. In this work, we expand upon this previous library design and additionally evaluate

the value of replacing cycle 1 primary amino acid BBs with primary amines. We propose

that constructing two-cycle DELs with primary amines instead of primary amino acids has

multiple advantages.

Firstly, using amines in place of amino acids yields an easier scheme for DEL synthesis.

Previously reported two-cycle DELs incorporating Fmoc-amino acid BBs [21, 51, 38] require

many synthetic manipulations. On the other hand, the proposed library design using primary

amine BBs takes fewer synthetic steps and links BBs together with a single amide, reducing
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the number of atoms involved in bond synthesis [88].

Secondly, amides are reported to be one of the most common functional groups in bioactive

molecules [36], suggesting that resultant libraries are likely to be productive. Amide bond

formation is also one of the most prominent reactions in medicinal chemistry hit optimization

campaigns, due in part to the increasing availability of unique amines [124]. Furthermore,

there is precedent in the literature for DEL selections incorporating compounds of similar

design [96, 108, 128].

Finally, we find that the chemical diversity covered by the selection of primary amine BBs in

the Enamine database is significantly greater than the diversity covered by primary amino

acid BBs (Figure 5.2). We find that all areas covered by the truncates of primary amino acid

BBs (Figure 5.2A) are also covered by the truncates of primary amine BBs (Figure 5.2B),

also due in part to the fact that there are more than an order of magnitude more primary

amine BBs than primary amino acid BBs available in the Enamine database. Moreover,

the truncates of primary amine BBs sample many regions of UMAP space not covered by

primary amino acid truncates. We believe the availability of primary amine BBs compared

to primary amino acid BBs also makes it easier to explore more chemical diversity with our

proposed DEL design.
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Figure 5.2: Chemical space occupied by primary amino acid, primary amine, and carboxylic
acid truncates from Enamine. Density plots arranged by chemical similarity are compared for
(A) primary amino acid, (B) primary amine, and (C) carboxylic acid truncates. Grayscale
intensity denotes the probability density of points. BB truncate counts in each pool are
indicated in the top right of each plot. (D) Example BBs from primary amino acid, primary
amine, and carboxylic acid sets are depicted for specific regions of UMAP space (colored
points/rectangular outlines in A–C), and their truncates are indicated (bold). Truncates of
primary amino acids cover a limited portion of UMAP space relative that of primary amines
or carboxylic acids.

95



5.3.3 Combinatorial libraries should be cheaply available and sam-

ple diverse regions of chemical space

When considering the cost of building a DEL, we want to consider the trade-off in how

much chemical space coverage we lose when restricting BBs by cost. Costs for building a

library can rapidly scale due to the number of BBs that need to be purchased to produce a

reasonably sized chemical library. However, restricting BB choices too much may lead to a

less productive library. For each BB, we set its cost as the price of the largest purchasable

unit quantity (250 mg) listed in its respective Enamine catalog. We represent thresholds

for cheap, intermediate and expensive BBs at three different values: ≤$100, ≤$250 and

≤$500 per 250 mg. We find that the availability of BBs across all different BB classes

(primary amino acid, primary amine, carboxylic acids) seems to scale roughly linearly with

cost (Figure 5.3). However, more costly BBs of the same class seem to mostly be in regions

of chemical space that are already covered by cheaper BBs. This suggests that opting to

choose a cheaper set of BBs does not severely impact the chemical diversity sampled by the

final output library. We also observe additional evidence that primary amine BBs should

be preferred over primary amino acid BBs. If filtering only for BBs that cost ≤$100 per

250 mg, only 104 primary amino acid BBs are available from Enamine, compared to 1614

primary amine building blocks.
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Figure 5.3: Availability of BB truncates following cost filtering. UMAP analyses are shown
for three different cost thresholds (≤$100, ≤$250, and ≤$500 per 250 mg) for (A) primary
amino acids, (B) primary amines, and (C) carboxylic acids. Grayscale intensity denotes the
probability density of points. BB truncate counts in each pool are indicated on the top
right of each plot. Primary amines and carboxylic acids cover more diverse chemical space
compared to primary amino acids at all cost points, especially at the lowest cost cutoff.
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5.3.4 Physicochemical property profiles of individual building blocks

can be adjusted to yield a library with generally Ro5 com-

pliant compounds

Lipinski’s Rule of Five is widely regarded as a general guideline for designing promising

drug candidates [74]. The rule states that a compound should have a molecular weight no

greater than 500 Da, partition coefficient less than 5 (cLogP), and fewer than 5 hydrogen

bond donors and 10 hydrogen bond acceptors. In enumerating different virtual libraries, we

evaluate how selecting BBs under different constraints affects the fraction of Ro5 compliant

compounds in the resultant library. While the Ro5 is not a hard and fast rule for what

makes a drug, we believe this still provides a useful lens by which to evaluate a library.

While forming some products outside of Ro5 space is not deleterious, libraries where the

majority of compounds do not comply with these guidelines may be less productive.

We explore how filtering by physicochemical properties at the BB-level affects the charac-

teristics of the products in the output library, using molecular weight (MW) as an example.

We select three different molecular weight thresholds, MW ≤ 200 Da, ≤ 250 Da and ≤ 300

Da, representing cases in which all enumerated products of the output library would be well

under the Ro5 MW threshold, right at the threshold, or not necessarily under the thresh-

old, respectively. While this is not an essential criteria to adhere to, we refer to the 500

Da threshold as a guideline for what a potentially desirable MW for a drug-like compound

should be. We find that across all BB classes, the jump in diversity between MW ≤ 200

Da to MW ≤ 250 Da BBs is the most significant (Figure 5.4). Not only does this jump

numerically increase the number of available BBs in each class the most, but particularly for

the carboxylic acid BBs, it brings in BBs that cover new regions of chemical space (Figure

5.4C). While the jump between MW ≤ 250 Da to MW ≤ 300 Da BBs also results in an

appreciable increase in the number of available BBs from Enamine, there appears to be more
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redundancy in the chemical space covered, at the price of no longer guaranteeing that all

final library members have MW ≤ 500 Da.
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Figure 5.4: Availability of BB truncates following molecular weight filtering. UMAP analyses
are shown for three different MW thresholds (≤200 Da, ≤250 Da, and ≤300 Da) for (A)
primary amino acids, (B) primary amines, and (C) carboxylic acids. In cases where the
purchasable BB included a bulky protecting group, such as Fmoc-protected amino acids, we
calculated the molecular weight of the BB with the protecting group removed. Grayscale
intensity denotes the probability density. BB truncate counts in each pool are indicated on
the top right of each plot. Filtering at these MW thresholds does not substantially alter the
accessibility of chemical diversity for any of the BB sets.
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5.3.5 Different selection strategies for building blocks

We propose three different strategies to select from a filtered list of building blocks. Two

of the methods are fairly standard – selecting either randomly or based on minimizing the

Tanimoto similarity of all selected compounds – while the last leverages the UMAP embed-

dings that we use for visualization throughout this work. We test out these various strategies

because we believe they each provide a different framework for building out a DEL.

Random selection is used as a baseline for comparison. A random selection simply samples

across the distribution of available BBs, without accounting for any potential experimental

biases. Commercially available BBs sets are all likely to have some degree of experimental

bias, the source of which could range from certain BBs being more commonly used or easier

to synthesize. In any case, it is likely that certain structures are represented more than

others. We observe this being the case with the Enamine BB sets across all classes, as all the

UMAP projections have areas of more and less density (Figure 5.2). Not surprisingly then,

we find more BBs selected from regions of high density than low ones when implementing a

random selection strategy (Figure 5.5A).

A common way to ensure one samples diverse regions of chemical space is to minimize the

Tanimoto similarity between selected compounds [15]. This is what we hope to achieve with

the diversity selection strategy. We observe that with the goal of minimizing the similarity

among compounds, the diversity method picks more compounds that appear to be singletons

on the periphery of the density map (Figure 5.5B).

Lastly, we introduce the uniform selection method which uses the UMAP projection as a

basis for sampling. Both the random and diversity methods do not require UMAP – we only

use UMAP for those methods to visualize the selected compounds. However, we design the

uniform strategy specifically to select compounds that are spread evenly along UMAP space.

We propose this method to evaluate how effective UMAP is as a dimensionality reduction
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method for chemical similarity and not just as a visualization tool. We find that the uniform

strategy samples more from regions of low density and less from regions of high density

compared to the random and diversity based methods (Figure 5.5C).

Figure 5.5: Impact of different BB selection strategies on chemical space sampling. Density
plots of primary amine truncates arranged by chemical similarity are overlaid with BB se-
lections (colored points) generated by random, diversity, and uniform methods. Grayscale
intensity denotes the probability density of points. Random selection is biased toward dense
UMAP regions. Diversity selection improves sampling of sparsely populated regions, but
remains biased towards densely populated regions. Uniform selection maximizes coverage of
UMAP space.

5.3.6 Properties of different enumerated libraries

Having established ways of filtering and selecting building blocks for DEL design, we now de-

fine potential metrics to evaluate the “quality” of a library and explore the impact of different

design decisions. We propose a set of metrics which look at the physicochemical properties

of products, chemical similarity of selected BBs to each other and total cost of building

the library. We believe this offers a set of starting considerations that cover a number of

potential use cases. Specifically, for physicochemical properties, we look at the distributions

of molecular weight, predicted water/octanol partition coefficient (a measure of lipophilic-

ity), total polar surface area and number of hydrogen bond donors – all considerations for

Lipinski’s Rule of Five – for the enumerated compounds of the proposed library. In our
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plots, we also show where the Ro5 threshold is for each specific property to provide a sense

of the fraction of compliant compounds in the library. For chemical similarity, we choose to

evaluate the nearest neighbor Tanimoto for each selected BB in both cycle 1 and cycle 2. In

our library designs, this corresponds to primary amine BBs for cycle 1 and carboxylic acid

BBs in cycle 2. While we acknowledge that an alternative analysis would be to evaluate the

similarity of enumerated products, this quickly becomes computationally intractable due to

the combinatorial nature of DEL. Furthermore, nearest neighbor similarity for each library

cycle provides insight into the chemical diversity of the BBs sampled. Lastly, we show the

total cost of purchasing all the selected BBs for each library cycle. While this is more of a

pragmatic consideration than anything else, it could be useful to consider trade-offs in cost

with any of the aforementioned qualities of a library.

In the following examples, we conduct an analysis of how different BB filters impact the

compounds in a final library. To reiterate, we have three dimensions we can adjust along

in this study: BB cost, BB molecular weight and BB selection strategy. We examine how

changing one of these three variables while keeping the other two constant affects the output

library. For the sake of simplicity (since 33 library designs are possible here), we select

defaults to be: cost ≤ $250 per 250 mg, MW ≤ 250 Da and random selection when holding

properties constant.

Our first example looks at changing the BB cost filter while holding the MW filter constant

(at MW ≤ 250 Da) and implementing a random selection strategy (Figure 5.7). We find

virtually no difference in the PCP among these libraries with the exception of a slight left

skew in the MW and TPSA for the library built with the cheapest BBs (Figure 5.7A, D).

Differences become more pronounced when evaluating the nearest neighbor Tanimoto for

cycle 1 and 2 BBs. Again, the difference occurs in the library built from the cheapest

BBs, with the distribution of BB similarity more skewed towards one (Figure 5.7E, F). This

suggests that a cheaper BB set limits the available chemical diversity, resulting in more BBs
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Figure 5.6: Average nearest neighbor (NN) Tanimoto for randomly selected building blocks
at different cost thresholds. After filtering BBs at a given cost threshold, we randomly select
192 BBs and calculate the average NN Tanimoto. Generally, more restrictive cost thresholds
yield BB selections that are more similar. However, the difference in NN Tanimoto between
budget and expensive selections is not significant.

that are similar to each other (Figure 5.6). Lastly, there is an obvious difference in total

library cost because we have different BB cost filters. With BB costs restricted at ≤ $100,

≤ $250 and ≤ $500 per 250 mg, we find the total cost to be roughly $10,000, $25,000 and

$50,000, respectively for both cycle 1 and cycle 2 BBs (Figure 5.7G, H). A potential takeaway

from this analysis is that filtering BBs by cost yields improvements, but only to a certain

extent. We observe that the cost ≤ $100 per 250 mg threshold results in a less diverse library

with some small polar surface area and low molecular weight compounds. However, there

is virtually no difference in the PCP or BB similarities of the compounds produced by the

cost ≤ $250 per 250 mg versus cost ≤ $500 per 250 mg filters, apart from the latter costing

twice as much to synthesize.
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Figure 5.7: Selected properties for three sample libraries differentiated by BB cost thresh-
old. Libraries were enumerated from the condensation product of 192 primary amines and
192 carboxylic acid BBs. Shown are distributions of various properties for the enumerated
products of each library (from left to right, top to bottom): molecular weight, predicted oc-
tanol/water partition coefficient, total polar surface area, number of hydrogen bond donors,
nearest neighbor Tanimoto similarity of selected primary amine BBs, nearest neighbor Tan-
imoto similarity of selected carboxylic acid BBs, cost of selected primary amine BBs and
cost of selected carboxylic acid BBs.
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In our next example, we evaluate the effect of changing the BB MW filter while holding

cost constant (at cost ≤ $250 per 250 mg) and implementing a random selection strategy

(Figure 5.8). Not surprisingly, culling BBs by molecular weight affects the MW of the final

products. We observe that the vast majority of compounds fall well under the maximum

possible molecular weight allowable based on how the BBs are filtered. The lowest MW filter

(MW ≤ 200 Da) results in a steep drop in compounds with weights approaching 400 Da,

suggesting the filter primarily yields small, low molecular weight BBs. Most notably, we find

that despite allowing for BBs at each cycle to be up to 300 Da – thus allowing for compounds

to weigh up to 600 Da – the MW ≤ 300 Da filter results in very few compounds that violate

the MW Ro5 constraint (MW ≤ 500 Da) (Figure 5.8A). However, this observation could

be due in part to features of the Enamine BB set. For example, in BBs sets where MW

distributions may be skewed, this may not necessarily be the case. It may be worth applying

this analysis on different datasets to see if this conclusion generally holds true. Filtering BBs

by molecular weight also results in differences in the other PCP for the enumerated products.

The lowest MW filter generally results in compounds with lower XLogP, TPSA and fewer

hydrogen bond donors; compounds resulting from higher MW filters trend higher for each of

those respective properties (Figure 5.8B–D). Higher MW filters lead to slightly less similar

BBs, which can be explained as lower MW filters reducing the number of BB options more

than higher MW filters (Figure 5.8E, F). Lastly, there is no noticeable difference in cost

between the intermediate and high MW filters, although the lowest MW filter seems to

result in not only smaller but also cheaper BBs (Figure 5.8G, H). This analysis suggests that

filtering BBs by molecular weight has some effect on the PCPs of the downstream library.

Researchers should be careful in determining size cutoffs for BBs during library design based

on the desired properties for compounds in their projects.
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Figure 5.8: Selected properties for three sample libraries differentiated by BB MW thresh-
old. Libraries were enumerated from the condensation product of 192 primary amines and
192 carboxylic acid BBs. Shown are distributions of various properties for the enumerated
products of each library (from left to right, top to bottom): molecular weight, predicted oc-
tanol/water partition coefficient, total polar surface area, number of hydrogen bond donors,
nearest neighbor Tanimoto similarity of selected primary amine BBs, nearest neighbor Tan-
imoto similarity of selected carboxylic acid BBs, cost of selected primary amine BBs and
cost of selected carboxylic acid BBs.
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Lastly, we evaluate the effect of holding the BB MW filter and the cost filter constant

(MW ≤ 250 Da and cost ≤ $250 per 250 mg, respectively) while changing the BB selection

strategy. We find that across all library properties, random and diversity selection are on

opposite ends with uniform selection in between them. Diversity selection results in heavier,

more hydrophilic compounds with larger polar surface area and greater number of hydrogen

bond donors than uniform selection (Figure 5.9A–D, gray). Random selection results in

lighter, more lipophilic compounds with smaller polar surface area and fewer number of

hydrogen bond donors than uniform selection (Figure 5.9A–D, orange). Not surprisingly,

diversity selection yields a set of dissimilar BBs and random selection identifies areas of high

density containing structures more similar to each other. We find that diversity selection

results in a narrow distribution centered around low nearest neighbor Tanimoto similarity

and random selection results in a more right-skewed distribution, with uniform between

them (Figure 5.9E, F). Lastly, diversity selection results in slightly more expensive BBs than

uniform selection whereas random selection results in slightly cheaper BBs (Figure 5.9G, H).

One takeaway from this analysis is that diversity selection significantly outperforms both

random and uniform selection when it comes to sampling different regions of chemical space.

However, it bears warning that researchers should carefully examine the structures that are

being selected prior to any actual experimentation. Furthermore, this analysis suggests that

uniform selection could be a more balanced approach to early stage library design. We find

that uniform selection sits in the middle of random and diversity selection across numerous

properties, making a potentially viable alternative for research campaigns that wish to add

more BB diversity.
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Figure 5.9: Selected properties for three sample libraries differentiated by BB selection strat-
egy. Libraries were enumerated from the condensation product of 192 primary amines and
192 carboxylic acid BBs. Shown are distributions of various properties for the enumerated
products of each library (from left to right, top to bottom): molecular weight, predicted oc-
tanol/water partition coefficient, total polar surface area, number of hydrogen bond donors,
nearest neighbor Tanimoto similarity of selected primary amine BBs, nearest neighbor Tan-
imoto similarity of selected carboxylic acid BBs, cost of selected primary amine BBs and
cost of selected carboxylic acid BBs.
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5.3.7 Evaluation of BB selection rules for sEH binders

To evaluate the relative merits of our proposed selection rules, we extend our analysis to

experimental binding data. An alternate way to define the “quality” of BB selection methods

is to determine how well they lead to the recovery of experimental binders. We are unable to

evaluate this for the Enamine datasets without first synthesizing the proposed libraries and

running binding assays – which is well outside the scope of this work. Instead, we analyze

analyze a subset of the Hitgen OpenDEL library published as part of our work in Chapter

4 [139]. Briefly, this data comes from pooled three-cycle DEL data screened against soluble

epoxide hydrolase (sEH). In this library, cycles 1 and 3 mostly consist of primary amine

BBs, and cycle 2 mainly consists of carboxylic acid BBs. For each compound in the library,

we assign a binary label for whether the compound binds to sEH based on experimentally

determined DNA-read count values. More detailed information regarding the sEH dataset

can be found in the Methods section of Chapter 4.

We modify our sEH data to correspond to the two-cycle library design scheme we present

for the Enamine BB sets earlier in this chapter. We only evaluate the first two cycles of the

sEH library and select BBs so that cycle 1 only consists of primary amine BBs and cycle 2

only consists of carboxylic acid BBs. Although the sEH dataset is a three-cycle library, we

are able to quantify the activity of two-cycle disynthons by aggregating BB data in the first

two positions. Known as disynthon aggregation [82, 72], this method allows us to quantify

the productivity of a pair of BBs. Using the notation we establish in Chapter 4, we define S

to be the set of trisynthons where an arbitrary building block bbx is in the first position in

the library and an arbitrary building block bby is in the second position of the library. We

express this as:

S = {BB1BB2BB3 | BB1 = bbx, BB2 = bby} (5.1)
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The productivity, or P(bind), for a given disynthon pair (bbx, bby) can then be calculated

by the following equation:

P (bind) =

∑N
k=1 Ik
N

(5.2)

where N is the number of compounds in S and Ik is 1 if the kth compound in S binds to

the target and 0 otherwise, as defined in Section 4.4.2. Thus, the P(bind) value we calculate

tells us the fraction of compounds that bind to the target for all compounds with a given

pair of building blocks in the first two positions.

We identify a set of primary amine BBs for cycle 1 and carboxylic acid BBs for cycle 2 from

the sEH dataset to use for our selection rule evaluation. One aspect of the sEH dataset

that makes it challenging to analyze is that it consists of pooled DEL data and is a subset

of a larger dataset. Thus, it is not guaranteed that we have binding data for all possible

enumerated products in the library (see Section 4.2.2 for more details). However, using our

approach of similarity scoring combined with dimensionality reduction and clustering, we

determine combinations of building blocks that are all synthetically compatible with each

other (Figure 4.7). Specifically, we identify 267 primary amine BBs for cycle 1 and 110

carboxylic acid BBs for cycle 2. We verify that we have binding data for all 29370 possible

products (267 BB1 × 110 BB2).

We design a set of experiments to assess the quality of our BB selections. In each experiment,

we first sample a specified fraction of BBs from each position using each of our three selection

rules: random, diversity and uniform. We then enumerate all possible library products and

calculate three different metrics: the average P(bind), the maximum P(bind) and the recall

of top binders. We define top binders as the top 1% of disynthon pairs by P(bind) value from

our 29,370 possible products. To account for the variation across random seeds, especially

for lower fractions of BBs sampled, we repeat each selection across 50 trials.
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Figure 5.10: Productivity of enumerated libraries from different selection strategies. We
apply our three different BB selection methods – random, diversity and uniform – to a
subset of the sEH dataset. For each BB selection we enumerate all possible products of the
library and measure quality of the BB selections. We evaluate selections across three metrics,
the average P(bind), the maximum P(bind) and the fraction of top binders identified from
the enumerated products. Shown are the results across 50 random trials for each selection
method. We set the fraction of BBs sampled from each position to be (A) 5% (B) 25%
and (C) 50% of the total BBs. While differences in selection strategy are not pronounced
at lower fractions of BBs sampled, the diversity selection strategy yields more productive
libraries when sampling a larger number of BBs.
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We find that the differences between selection rules are minimal when sampling only 5% of

the BBs at each position (Figure 5.10A). All three selection rules result in a set of compounds

with a similar distribution of average P(bind) values. Furthermore, the distribution of max-

imum P(bind) for each set of compounds basically spans from 0 to 1, suggesting the sample

size may be too small for high P(bind) compounds to be found consistently. However, we do

observe that the distribution of maximum P(bind) for the diversity selection rule is shifted

towards higher values compared to the other two methods. Lastly, we find that the recall

of top binders is fairly consistent between all three approaches with the majority of trials

resulting in no top binders being found. We observe a couple trials for all three selection

strategies where a few top binders are recalled. At such a small sample size of BBs (13 BB1

× 5 BB2; 65 possible products), it appears that the differences in selection strategies are

minimal and that the effects of randomness dominate.

The differences in the library products resulting from various selection rules become more

evident when we increase the fraction of BBs sampled at each position to 25% (Figure

5.10B). At this threshold, we observe that the distribution of average product P(bind) for

diversity selection has smaller variance but also a lower median value than both the random

and uniform strategies. In terms of max P(bind), all methods perform similarly, but we

notice that the distribution for diversity selection is a little lower. We also find that the

distribution for the recall of top binders follows a similar trend among the three selection

strategies. Both random and uniform selection outperform diversity selection, but the latter

has smaller variance. At a more significant fraction of the available BBs sampled, we find

that generally random or uniform strategies would be preferable to diversity selection.

We observe that the improved performance of the diversity selection rule becomes more pro-

nounced when sampling 50% of the BBs at each position (Figure 5.10C). At this much larger

sample size (133 BB1 × 55 BB2; 7315 possible products), the different selection rules lead to

libraries with far more contrast. Here, the distribution of average product P(bind) for the
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diversity selection has smaller variance and a higher median value, suggesting that diversity

selection consistently produces libraries containing compounds that are more productive on

average. We observe in the distribution of max P(bind) that diversity selection identifies at

least one binder with the maximum P(bind) value of 1 in every trial. The performance of the

other two methods is not nearly as consistent, with uniform selection in particular suffering

from several trials with lower performance. Lastly, differences in the distributions for the

recall of top binders is also consistent with previous findings, where diversity selection yields

the most consistent and best results. We find that the uniform method leads to libraries that

fall behind even random selection in terms recall of top binders. At large fractions of the

library sampled, diversity selection delivers most consistently across all performance metrics.

5.4 Conclusion

With myriad ways to approach DEL design, it becomes imperative to develop computa-

tional tools to guide experimental planning. In this chapter, we demonstrated a way to take

a publicly available dataset and design a variety of libraries based on different desired ex-

perimental outcomes. We explored various ways in which experimentalists could try to slice

data (e.g. cost, PCP, chemical similarity) and provided some metrics to define the “quality”

of a library. Moreover, we showed how certain design considerations such as the choice of BB

class has a significant effect on the final products of a library whereas considerations such

as cost have a much more diminished effect. While this work is by no means a catch-all for

DEL design, we believe it can serve as a useful reference which other scientists can adapt to

fit their own research goals.
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Chapter 6

Future Directions

6.1 Development of a benchmark for DEL x ML

In recent years, there has been growing adoption of DNA-encoded libraries (DELs) for early

stage drug discovery with some candidates making it as far as clinical trials [20, 7, 45]. While

experimental DEL technology continues to improve, there is a growing need to develop better

computational models to extract signal from inherently noisy DEL selection datasets. The

DEL field has seen the expansion of many different computational DEL frameworks, ranging

from the generation of synthetic DEL data [69, 111, 110] to mathematical modeling of DNA

sequencing counts for noise reduction [66, 72] to different interpretations of modeling DEL

data [10, 18]. Most notably in 2020, McCloskey et al. introduced a computational framework

for training machine learning (ML) models with experimental DEL data to identify binders

for the targets sEH, ERα and c-KIT [82]. As one of the first demonstrations of how ML

models can be trained on DEL data to identify out-of-sample binders, the work has paved

the way for many other DEL x ML studies [72, 139, 2, 18, 10]. With the rise of so many

different methods of integrating ML with DEL data, a system of benchmarking different
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procedures on a standardized set of publicly available DEL datasets would allow the field

to compare new methods against each other moving forward. Following the Pande Group’s

prior work on MoleculeNet [133], we envision a similar framework being developed in the

future to assess the quality of new ML models on DEL data. The benchmark would focus on

standardizing several major pillars which we outline below: (1) public DEL dataset curation,

(2) featurization of DEL data, (3) DEL de-noising approaches and (4) DEL modeling choices

and (5) evaluation of model performance.

6.1.1 Dataset curation

Overview of current publicly available DEL datasets

There is currently no alignment on how DEL data should be reported and what experimental

information is best suited for training an ML model. Our proposed standardization is that all

datasets should be reported with the SMILES of all enumerated products and the SMILES

of the building blocks used at each cycle. As we demonstrated in Chapters 4 and 5, there are

various ways to treat BBs computationally such as removing protecting groups or creating

truncates, but reporting the actual BBs purchased makes the data additionally reproducible

at an experimental level. For each compound, both pre- and post-selection DNA read counts

should also be provided, and in replicate if possible. This availability of this data would make

it possible to test and compare a variety of DEL-denoising methodologies. Both pre- and

post-selection DNA read counts can also be converted into binary labels for classification

tasks or a numeric output label for regression tasks. An ideal benchmark would contain

DEL datasets screened against a wide array of targets which are standardized and prepared

for evaluation. Furthermore, there are clear distinctions between solid and solution phase

DELs [39], and data for both should be included in the benchmark in the future. However,

the current availability of public DEL datasets is limited. There are few options available in
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the literature, which we now discuss.

DOS-DEL Currently, the most widely adopted data for testing new computational DEL

methods is the DOS-DEL dataset from Gerry et al. [43]. The set is a three-cycle library

consisting of 8 scaffolds in cycle 1, 114 BBs in cycle 2 and 118 BBs in cycle 3 for a total of

107,616 products. While the library is designed to maximize chemical diversity and many

of the products are shown to have “drug-like” properties, the size of the library is still

orders of magnitude smaller than what is feasible for many DELs. Products of the library

are screened against two well-studied protein targets: carbonic anhydrase IX (CA-IX) and

horseradish peroxidase (HRP). The value of the library is that it reports replicates of the

DNA abundance counts for both post-screening and no-target control experiments. This data

provides researchers an opportunity to evaluate the quality of computational DEL models

which consider both pre- and post-selection DNA read counts.

OpenDEL As part of the work presented in Chapter 4, we released portions of the HitGen

OpenDEL dataset containing over 10M compounds screened against soluble epoxide hydro-

lase (sEH) [139]. The released data contains 617 BBs in cycle 1, 338 BBs in cycle 2 and

4529 BBs in cycle 3, but is only a subset of a larger dataset, so not all enumerated products

are present. Furthermore, the data also comes from pooled DEL selections, meaning not all

BBs are compatible given specific linking reactions. We believe this makes for a challenging

dataset and discuss this more in Chapter 4. Lastly, the DNA read counts reported in the

dataset are already adjusted using a Poisson treatment [66, 72, 69], so no raw and control

values for read counts are provided. This could be a potential downside for researchers

looking to evaluate DEL de-noising approaches.

Triazine library Clark et al. [20] presents two libraries built around a triazine scaffold:

DEL-A is a three-cycle library with 192 BBs at each position (7M possible products) and
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DEL-B is a four-cycle library with 192 BBs in cycle 1, 32 BBs in cycle 2, 340 BBs in cycle 3

and 384 BBs in cycle 4 (802M possible products). Both libraries have been experimentally

synthesized and screened to identify inhibitors for the enzymes Aurora A kinase and p38

MAP kinase. However, screening results for only around 3K compounds are provided by

the authors. Satz [111] has developed code to model the three-cycle triazine library using

random probabilities to simulate BB reaction yields and generating equilibrium association

constants for each product from a half-normal distribution.

Simulated DEL data Simulated DEL design has been explored as a way to generate data

for ML training. Komar and Kalinic [69] developed a framework allowing for the simulation

of two- to six-cycle libraries spanning from 1M to 1B compounds with a default size of 100M.

Product reaction yields were sampled from a beta distribution and association constants were

drawn from a half-normal distribution. Parameters for density (fraction of strong binders),

DNA sequencing depth (the average number of reads per DNA tag) and tag imbalance are

all adjustable as well.

6.1.2 Dataset splitting

We propose offering a few dataset splitting strategies to ensure prediction tasks are fairly as-

sessed. Methods include random, stratified, scaffold and time splits [134, 133]. Additionally,

unique to DEL data is the ability to split on building block cycles [72].

6.1.3 Data featurization

A researcher’s choice on how to represent molecular information heavily impacts the resulting

output of an ML model. We suggest a number of featurization choices to assess differences in
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the characteristics of a molecule an ML model learns. Feature choices include one-hot encod-

ing [19], extended connectivity fingerprints (ECFP) [105] and graph-based representations

[64, 22].

6.1.4 DEL de-noising approaches

A heavy emphasis of current computational treatments of DELs is determining how to adapt

raw sequencing read counts into experimentally accurate enrichment values. Approaches cur-

rently reported in the literature include disynthon aggregation [82, 139], Poisson enrichment

ratios [72], sparse learning [69], negative binomial regression models [76] and partial product

modeling [10]. Implementing all these various de-noising procedures on the set of standard-

ized datasets should be feasible using the open-source package, DeepChem [101].

6.1.5 Machine Learning Models

A variety of models have been used in the literature for DEL, many of which can already

be implemented using sklearn [100] and DeepChem [101]. Approaches include decision

tree/random forest [82, 139], graph convolutional neural networks (GCNN) [82, 10], feed-

forward neural networks (FFNN) and directed message-passing networks (D-MPNN) [72].

6.1.6 Metrics for Model Performance

We propose using mean absolute error (MAE) and root mean squared error (RMSE) to

evaluate model performance on regression-based tasks and also include the negative log-

likelihood (NLL) loss from Lim et al [72]. Metrics for classification tasks can area under the

curve (AUC) of the receiver operator characteristic (ROC) curve and precision recall curve
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(PRC), similar to classification tasks in MoleculeNet [133].

We believe that while not a complex idea, this benchmark could be extremely useful for the

nascent DEL x ML field. As new computational methods for modeling DEL data, de-noising

DEL counts and predicting activity from DEL data continue to emerge, having some degree

of standardization would allow for more clear assessments of the advantages of different

methods. In particular, we extensively outline the current publicly-available DEL datasets

to demonstrate how sparse the landscape is. We assert that not only does this make it more

difficult for new players to enter into the domain if they do not have an ability to generate

experimental DEL data, but it also reduces the degree of collaboration currently present in

the field. We hope that in the future, researchers will publish DEL datasets (or portions of

them) for public use when introducing new computational techniques for analysis.

6.2 Incorporating 3D information to analyze DEL data

The concept of integrating 3D structural information for DEL prediction tasks was first

introduced by Shmilovich et al. in 2023 [116]. In their work, the authors demonstrate

how combining molecular-level descriptors with spatial information from docking resulted

in better performance than models built from either method alone. They show how their

approach could be used to de-noise DEL data and subsequently predict top scoring docked

poses for sulfonamides, a known feature of many carbonic anhydrase inhibitors [43, 14].

We propose that docking could also be used to serve as a first pass filter for DEL screening

efforts and be utilized to incorporate a sense of “chemical intuition” into existing ML models.

While docking is not a reliable predictor of binding affinity [75, 60], it can be used to filter

out obviously bad compounds prior to subsequent analysis [99, 50]. This could help address

the tendency for ML models to overfit to noise in the data.
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Within the context of chemical property prediction, an ML model overfitting to the data

could have the effect where certain features that are correlated with the predicted property

are over-emphasized [19]. For example, in the DEL-Dock paper [116], the authors evaluated

their model on a subset of the data in a specific molecular weight range. They found that

molecular weight was somewhat correlated with binding and without this filtering, models

could more effectively differentiate binders from non-binders. We imagine a scenario in which

this manual filtering of molecular weights was not performed. Should we train a model with

no sense of 3D structural information on this data, the model may learn that higher molecular

weight correlates with binding. Thus, when the model is used to predict on out-of-sample

compounds, it may suggest that bulky compounds – which may not even fit into the binding

pocket of the target – make for favorable binders.

Thus, we suggest exploring an approach where, rather than combining both molecular de-

scriptors and docked pose information together to generate a prediction, the two could be

run in sequence. This was not an approach that was explored in the DEL-Dock paper. This

would allow docking to potentially serve as a “sanity check”, potentially reducing the number

of false positives from the ML predictions.
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A.1 Additional Results

A.1.1 Implied Timescales Plots for all systems

Figure A.1: Implied timescales plots for all systems.
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A.1.2 Slowest motions for benzene-bound systems

Figure A.2: Top three slowest motions for all benzene-bound systems. Shown are the slowest
motions for (A) 4w52–benzene, (B) 4w57–benzene and (C) 4w59–benzene. Darker pink
indicates flux out, darker green indicates flux in.
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A.1.3 Slowest motions for butylbenzene-bound systems

Figure A.3: Top three slowest motions for all butylbenzene-bound systems. Shown are
the slowest motions for (A) 4w52–butylbenzene, (B) 4w57–butylbenzene and (C) 4w59–
butylbenzene. Darker pink indicates flux out, darker green indicates flux in.
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A.1.4 Slowest motions for hexylbenzene-bound systems

Figure A.4: Top three slowest motions for all hexylbenzene-bound systems. Shown are
the slowest motions for (A) 4w52–hexylbenzene, (B) 4w57–hexylbenzene and (C) 4w59–
hexylbenzene. Darker pink indicates flux out, darker green indicates flux in.
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B.1 Additional Results

B.1.1 Effect of Sampling on Calculation of P(bind) metric

Figure B.1: P(bind) value and number of observations for each building block in the library.
With the exception of 10 building blocks in position 3, every building block occurs in a
statistically significant number of compounds (N>30) [68].
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B.1.2 Structural Similarities between Productive Fragments and

Known sEH Inhibitors

Figure B.2: Structure of a known potent inhibitor of sEH from experiment [34] (top) and the
structures of the top two most productive building blocks in position 3 identified through
P(bind) analysis (bottom).
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B.1.3 Physicochemical Properties of Productive Building Blocks

Figure B.3: Distribution of physicochemical properties for top building blocks by P(bind)
value to all other building blocks at each position. We defined the top building blocks at
each position as the top 20 by P(bind) value.
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B.1.4 Tables of values for pairwise analysis of building block bins

p2 P(bind)
bin p1 P(bind) bin

[0.00, 0.20) [0.20, 0.40) [0.40, 0.60)

[0.40, 0.60) 0.4452 0.9451 0.9771
[0.20, 0.40) 0.2946 0.9104 0.9697
[0.00, 0.20) 0.0100 0.1706 0.2930

Table B.1: Matrix entries for pairwise analysis of building block bins in positions p1 and p2

p3 P(bind)
bin p1 P(bind) bin

[0.00, 0.20) [0.20, 0.40) [0.40, 0.60)

[0.80, 1.00] 0.9417 0.9973 1.0000
[0.60, 0.80) 0.6412 0.9813 1.0000
[0.40, 0.60) 0.4329 0.9403 0.9768
[0.20, 0.40) 0.2579 0.9037 0.9815
[0.00, 0.20) 0.0036 0.1666 0.2922

Table B.2: Matrix entries for pairwise analysis of building block bins in positions p1 and p3

p3 P(bind)
bin p2 P(bind) bin

[0.00, 0.20) [0.20, 0.40) [0.40, 0.60)

[0.80, 1.00] 0.9301 0.9994 0.9989
[0.60, 0.80) 0.4631 0.9953 0.9981
[0.40, 0.60) 0.2261 0.9769 0.9908
[0.20, 0.40) 0.1185 0.9301 0.9827
[0.00, 0.20) 0.0012 0.1325 0.2630

Table B.3: Matrix entries for pairwise analysis of building block bins in positions p2 and p3
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B.1.5 UMAP Projection using 2D Tanimoto Similarity

Figure B.4: (A–C) UMAP projections of chemical space for each library position using 2D
Tanimoto. Pictured are building blocks in (A) p1, (B) p2 and (C) p3. (D–F) Distributions
of distances in UMAP space between the top 10 building blocks by P(bind) and randomly
selected building blocks. Pictured are the distances between top 10 to top 10 (solid line)
and top 10 to random (dotted line) building blocks for (D) p1, (E) p2 and (F) p3. Some
separation between high and low P(bind) building blocks still occurs for 2D Tanimoto, but
is decreased compared to when using 3D Tanimoto combo.
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B.1.6 Distances Between Building Blocks in UMAP space

Position top - top distance top - random distance
1 3.4877 6.0072
2 1.2091 4.7872
3 4.6037 8.2252

Table B.4: Distance between top P(bind) building blocks to other top P(bind) building
blocks and to random building blocks using 3D Tanimoto

Position top - top distance top - random distance
1 1.7771 4.0865
2 3.7956 4.8249
3 5.3657 5.1005

Table B.5: Distance between top P(bind) building blocks to other top P(bind) building
blocks and to random building blocks using 2D Tanimoto
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B.1.7 Table of values for pairwise analysis of building block clus-

ters

p1 cluster id p2 cluster id

0 1 2 3 4 5 6 7 8 9

0 0.0001 0.0016 0.0000 0.0066 0.0000 0.0600 0.0001 0.0001 0.0261 0.0024
1 N/A N/A N/A 0.0230 N/A 0.1493 N/A N/A 0.1469 0.0227
2 N/A N/A N/A 0.0264 N/A 0.0836 N/A N/A 0.0383 0.0050
3 N/A N/A N/A 0.0343 N/A 0.1051 N/A N/A 0.0595 0.0101
4 0.0000 0.0001 0.0000 0.0011 0.0000 0.0151 0.0000 0.0000 0.0090 0.0004
5 0.0003 0.0004 0.0000 0.0011 0.0000 0.0241 0.0002 0.0002 0.0186 0.0018
6 0.0001 0.0001 0.0000 0.0011 0.0002 0.0414 0.0001 0.0001 0.0327 0.0074

Table B.6: Matrix entries for pairwise analysis of building block clusters in positions p1 and
p2
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p1 cluster id p3 cluster id

0 1 2 3 4 5 6 7 8 9

0 0.0340 0.0002 0.0003 0.0002 0.0002 0.0077 0.0000 0.0002 0.0082 0.0001
1 0.1039 N/A N/A N/A N/A N/A N/A 0.0238 0.0366 N/A
2 0.0482 N/A N/A N/A N/A N/A N/A 0.0000 0.0088 N/A
3 0.0628 N/A N/A N/A N/A N/A N/A 0.0048 0.0153 N/A
4 0.0106 0.0000 0.0000 0.0000 0.0000 0.0013 0.0000 0.0000 0.0002 0.0000
5 0.0190 0.0001 0.0001 0.0001 0.0000 0.0028 0.0000 0.0000 0.0000 0.0000
6 0.0291 0.0003 0.0001 0.0000 0.0003 0.0007 0.0000 0.0000 0.0138 0.0001

p1 cluster id p3 cluster id

10 11 12 13 14 15 16 17 18

0 0.0003 0.0163 0.0185 0.0025 0.0001 0.0001 0.0250 0.0715 0.0058
1 N/A N/A 0.1154 0.0583 0.0000 0.0000 0.0908 0.2967 0.0483
2 N/A N/A 0.0359 0.0130 0.0000 0.0000 0.0401 0.1075 0.0065
3 N/A N/A 0.0546 0.0229 0.0000 0.0000 0.0563 0.1630 0.0133
4 0.0000 0.0018 0.0030 0.0001 0.0000 0.0000 0.0033 0.0076 0.0000
5 0.0007 0.0031 0.0029 0.0005 0.0000 0.0001 0.0076 0.0101 0.0000
6 0.0001 0.0012 0.0196 0.0052 0.0000 0.0001 0.0176 0.0554 0.0117

Table B.7: Matrix entries for pairwise analysis of building block clusters in positions p1 and
p3

147



p1 cluster id p3 cluster id

0 1 2 3 4 5 6 7 8 9

0 0.0000 0.0000 0.0001 0.0000 0.0000 0.0004 0.0000 0.0000 N/A 0.0000
1 0.3013 0.0002 0.0008 0.0009 0.0006 0.0027 0.0000 0.0000 N/A 0.0001
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 N/A 0.0000
3 0.0292 0.0006 0.0003 0.0000 0.0000 0.0378 0.0000 0.0011 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.0007 0.0002 0.0000 0.0000 N/A 0.0002
5 0.0875 N/A N/A N/A N/A N/A N/A 0.0069 0.0216 N/A
6 0.0000 0.0001 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 N/A 0.0002
7 0.0000 0.0003 0.0001 0.0000 0.0000 0.0003 0.0000 0.0000 N/A 0.0000
8 0.0464 N/A N/A N/A N/A N/A N/A 0.0170 0.0158 N/A
9 0.0102 N/A N/A N/A N/A N/A N/A 0.0000 0.0010 N/A

p1 cluster id p3 cluster id

10 11 12 13 14 15 16 17 18

0 0.0005 0.0000 0.0000 0.0002 0.0002 0.0002 0.0000 N/A 0.0000
1 0.0001 0.0089 0.0000 0.0000 0.0001 0.0003 0.0000 N/A 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 N/A 0.0000
3 0.0013 0.0696 0.0064 0.0000 0.0000 0.0000 0.0082 0.0094 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 N/A 0.0000
5 N/A N/A 0.0731 0.0300 0.0000 0.0000 0.0736 0.2044 0.0147
6 0.0000 0.0005 0.0001 0.0005 0.0000 0.0000 0.0027 N/A 0.0000
7 0.0002 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 N/A 0.0000
8 N/A N/A 0.0538 0.0241 0.0000 0.0000 0.0514 0.1503 0.0220
9 N/A N/A 0.0030 0.0010 0.0000 0.0000 0.0013 0.0027 0.0002

Table B.8: Matrix entries for pairwise analysis of building block clusters in positions p2 and
p3
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B.1.8 Full Width at Half Maximum Values

Figure B.5: Boxplot of FHWM values for the distribution of P(bind) values in clusters at
each building block position. The blue boxplot indicates the FWHM for the P(bind) dis-
tributions in each cluster generated using HDBSCAN. The boxplot in orange is the average
FWHM of 50 different random initializations of each cluster P(bind) distribution. We ob-
serve no statistically significant difference between the FWHM of the P(bind) distributions
from HDBSCAN and random clustering in (A) position 1, but do for (B) position 2 (p-
value=0.0395) and (C) position 3 (p-value=1.20e-3).
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B.1.9 Area Under the Curve Across Multiple Random Trials

Figure B.6: Performance of different prediction methods across 50 random trials.
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B.1.10 Diversity of Holdout Set Compound Predictions

Figure B.7: Examples of holdout set trisynthons predicted to bind to sEH. We trained a
decision tree model to predict whether compounds containing at least one out-of-sample
building block would bind to sEH. Cluster ids are given as a triplet of values, corresponding
to the cluster ID for each position in the library. We did not provide read count values
when training our model, but show them here to demonstrate that all the following model
predictions are correct.
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B.1.11 Distribution of Read Count Values for Binders

Figure B.8: Distribution of NGS sequencing counts (read counts) for compounds designated
as binders. From a complete set of DEL selection data screened against sEH, we selected
the top 10K compounds based on read count to analyze, giving us a set of highly enriched
binders. The minimum read count in our set of binders is 81 and the maximum is 4712.

Read count threshold Fraction of binders Fraction of non-binders

1 0.0233 0.9767
50 0.0233 0.9767
100 0.0198 0.9802
500 0.0043 0.9957
1000 0.0013 0.9987

Table B.9: Fraction of compounds classified as binders and non-binders with varying read
count threshold
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B.2 Additional Methods

B.2.1 HDBSCAN Objective Function

We devised an empirical objective function to evaluate the performance of the HDBSCAN

algorithm. We tried using three different metrics to evaluate clustering quality – silhouette

score [107], calinski-harabasz score [16] and davies-bouldin score [25] – and found that for

every metric, there was either not enough cluster resolution, too many noise points, or too

many small clusters formed (Figure B.9). Thus, we created our own objective function that

would score any HDBSCAN run by the number of noise (unclustered) points and the average

intracluster distance. The goal was to find a set of hyperparameters that would generate

compact groups of highly similar compounds, but not overfit such that many points would

be left unclassified. We arrived at an empirical formula for the objective function, L

L = nnoise + 10 ∗ ICD (B.1)

We found that there was a global minimum value for the objective function across the

sampled hyperparameters, meaning we could use those values as the best initialization for

each HDBSCAN run (Figure B.10). We selected the set of HDBSCAN parameters which

would minimize the objective function.
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Figure B.9: Cluster results for UMAP projections using different metrics. We compare
clustering results when optimizing via various metrics. From left to right, (A) silhouette
score, (B) calinski-harabasz score, (C) davies-bouldin score and (D) our empirical objective
function. Our objective function results in the greatest number of building blocks clustered
(fewest noise points) for each building block position.
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Figure B.10: Relationship between the number of noise points and intracluster distance
for HDBSCAN initializations. (A–C) For a given HDBSCAN initialization, we count the
number of noise points and calculate the average distance between points within a cluster
(intracluster distance). There is no discernable correlation between the number of noise
points and intracluster distance for (A) p1 (B) p2 or (C) p3. (D–F) We construct an objective
function which accounts for both the number of noise points and the intracluster distance of
a cluster. The index variable on the x-axis represents a distinct set of hyperparameters for
HDBSCAN. We observe that the objective function has a global minimum for (D) p1 (E)
p2 and (F) p3. For each position, we take the set of hyperparameters corresponding to the
global minimum to be the optimal set of parameters for that position.
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B.2.2 Selecting Decision Tree Parameter

Figure B.11: Hyperparameter selection for the decision tree model. We used 5-fold cross
validation to find the best choice for the depth of the decision tree. For each value of tree
depth, we trained a model on 4/5ths of the training data and evaluated the precision and
recall of the model on the remaining 1/5th. This process was repeated 5 times to include
all training points once in the validation set. We report the mean and standard deviation
of both (A) precision and (B) recall across the 5 cross validation folds for each value of
tree depth. We selected depth=5 as our optimal tree depth – beyond this point, the model
appears to overfit, indicated by the gradual drop in model precision.
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