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A B S T R A C T

Replicating scientific findings is a fundamental aspect of research. However, in studies of discomfort due to
glare, it is difficult to make comparisons between the results of different experiments since the statistical tests
usually reported do not allow independent findings to be directly compared to each other. Here we present an
alternative Bayesian approach that can address this problem. To show how this approach works, we performed a
laboratory test with 55 participants to validate the effect of order bias previously detected in a similar study
evaluating discomfort due to glare but, this time, under a large luminous source. Using the luminance adjustment
procedure, the glare source was varied to meet four sensations of discomfort due to glare. Adjustments were
performed under three different order sequences: ascending, descending, and randomised. Test participants
provided glare settings using a newly proposed evaluation scale. The effect of order bias detected in the original
study was compared to the data obtained with the same methodological procedure in the new experiment using
Bayesian inferential tests. The results showed a close replication, highlighting that the order bias effect found in
the original study was also present in the new experiment. The wide application of Bayesian methods in the
design and analysis of experimental studies may improve the accuracy and validity of glare models.

1. Introduction

Discomfort due to glare is one of the challenges of building façade
design. While studies have found that visual discomfort is a significant
problem in many conventional buildings, occupants have reported glare
five times more often in green-rated buildings [1]. A study based on
2540 occupant responses, collected from 11 countries and 36 different
“sustainable” buildings, has also shown that glare – particularly from
daylit windows – remains a pertinent issue [2]. To minimise the risk of
glare, various models have been developed to provide precise measures
of discomfort from a visual scene, with the objective of quantifying the
perceived levels of glare based on physical measurements [3]. How-
ever, these models often give a low prediction accuracy [4]. Among
many models recommended in the literature and in international
standards, Table 1 presents a selection of key experimental studies used
to derive prediction models of discomfort glare, also illustrating the
subjective criteria that observers used to evaluate the glare sources.

From a methodological perspective, the studies presented in Table 1
[5–7] – together with many others – relied invariably on frequentist

approaches (e.g., null hypothesis significance testing (NHST)) to ana-
lyse the predictive performance of the models proposed. However,
NHST testing has several limitations, such as:

• Statistical significance is dependent on both the size of the sample
and the magnitude of the effect, which cannot be measured using
NHST alone [8,9]. This implies that, when large samples are used,
statistically significant findings can be detected even though the
magnitude of the effect is not practically relevant. For example,
Altomonte and Schiavon [10] showed that even the smallest varia-
tions in occupant satisfaction scores between LEED and non-LEED
rated buildings produced highly significant differences (p≤0.001)
due to a large amount of sample data available (n=21 250).
• NHST tests do not provide any evidence that two or more studies
will produce similar findings (i.e., no reliable information about the
replication of experimental findings). In fact, when replicating an
effect across studies with fixed sample sizes, but with different ob-
servers, statistical significance levels (p-values) can vary con-
siderably [11]. Even small changes to the means, correlation
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coefficients, or regression coefficients can lead to large variations in
the calculated p-values, and therefore on the conclusions that are
drawn from the data [9]. This can be problematic when comparisons
are made between significant and non-significant results [12].
• Since differences in statistical significance (p-values) are not always
statistically significant themselves, the comparisons made when
using NHST analyses can often be misleading [9,13].

These conflicts arise also in discomfort glare research, whereas the
strength of the significant relationships detected between evaluations of
visual discomfort and calculated glare index values can vary con-
siderably across different studies, even when the same prediction model
has been used (e.g. [14–17]). For example, Tuaycharoen and Tregenza
[18] showed that the correlation coefficients (r=0.72–0.86) mea-
suring the relationship between calculated Daylight Glare Index (DGI)
values and the evaluations of discomfort due to glare reported by ob-
servers on Hopkinson's multiple-criterion scale were statistically sig-
nificant (p≤0.01). Conversely, similar studies [19,20], which also
used the DGI and the multiple-criterion scale, reported smaller corre-
lation coefficients (r=0.28–0.56) and did not show a statistically sig-
nificant (p > 0.05) relationship between the same variables. Since
results from separate studies often lead to inconsistent conclusions, we
believe that NHST should not be used as the sole analysis method to
support the statistical inferences derived from discomfort glare ex-
periments.

The use of different statistical tools that can build on the work of
previous studies may lead to a more robust and reliable characterisation
of discomfort due to glare. An alternative approach to NHST is to use a
Bayesian framework, whereby information from previous studies can be
used to inform the analysis of data obtained in a new experiment [21].
Bayes’ rule describes the probability of the occurrence of an outcome
based on the conditions that might be related to it [22], positing how a
degree of belief from previous knowledge should change once ac-
counting for new evidence [23]. Bayesian inference treats data as fixed
and model parameters as random variables [24]. A Bayesian approach
is, thus, distinctly different from frequentist statistics, since it assumes
that each unknown parameter has a posterior probability distribution
that describes the uncertainty about population parameter values. The
aim of the analysis is to estimate the posterior distribution given the
data. The posterior density is the normalised product of a prior dis-
tribution, reflecting initial beliefs, and the likelihood from the data [25].
Once new data are collected, the prior is combined with the likelihood
to produce a posterior distribution. In so doing, Bayesian models of
analysis can deal with the complexity of real-world settings and over-
come some of the limitations of controlled laboratory studies [26].
Clearly, since the Bayesian approach relies on knowledge from previous
research, for it to be applied to inform new experimental studies there is
a need to make data publicly available along with the original study
findings. For example, in a recent article, Bayesian inferences were
applied to analyse the effect of personalised control systems on the
levels of visual satisfaction in daylit offices [27]. Using this analytical
approach, previous knowledge of human visual preferences was com-
bined with newly collected information to develop personalised visual
satisfaction profiles within private workstations. Another important
application of a Bayesian approach is to examine whether a new

experiment can successfully replicate the results found in earlier re-
search [13].

One further critical aspect of any scientific investigation is to verify
whether the conclusions drawn from an original study were not the
result of an experimental or analytical bias (i.e., a random error). In the
context of discomfort glare research, we previously identified a sub-
stantive effect of order bias (i.e., the sequence in which the magnitude
of discomfort glare was evaluated using a multiple-criterion scale and a
luminance adjustment task) in the procedure used by Petherbridge and
Hopkinson [6] to obtain the Glare Constant, which is at the basis of
many successive glare models [28]. To ensure that our previous con-
clusions – based on an experimental setup using a small glare source –
were not the result of a random error, a new experiment was designed.
We applied a Bayesian approach to validate the previously detected
effect of order bias, using a Hopkinson-like luminance adjustment task
but under slightly modified experimental conditions. Informing the
alternative hypothesis with the data from the earlier experiment [28],
we used the same procedure in a new experimental setting with a large
artificial window and a different sample of test participants. On this
basis, in this paper we aim to: (1) demonstrate how a Bayesian ap-
proach can be used as a suitable alternative to NHST when analysing
experimental findings derived from independent glare studies; (2) re-
plicate the detection of the order bias effect when using a luminance
adjustment procedure to evaluate the subjective degrees of discomfort
due to glare from a large glare source. Therefore, while the effect of
order bias is of relevant interest to this study, it was used primarily to
illustrate how a Bayesian approach can reinforce the experimental
conclusions derived from independent discomfort glare studies.

2. Method

2.1. Experimental setting

The new experiment was carried out in a test room located at the
Berkeley Education Alliance for Research in Singapore (BEARS) centre,
within the SinBerBEST testbed (Fig. 1). The room contained an artificial
window (known as Daylight Emulator (DLE)), backlit by an array of
cool and warm LEDs, capable of emitting light with a spectral compo-
sition approximate to daylight. The DLE provided a variable luminance
in the range between 952 and 10 005 cd/m2.

The artificial window featured three separate panes of glass, each of
0.98×2.15m2, surrounded by metal sill frames of 0.08m in width and
depth. Behind each glass pane, a fabric sheet membrane was mounted
in front of the DLE. The membrane had uniform transmission properties
allowing direct light from the DLE to be evenly distributed across the
area of the window. Each window pane was equipped with a fabric
roller blind, which remained fully retracted during the experiment. The
room surfaces had reflectance properties of: ρwall=0.56, ρfloor=0.72,
ρceiling=0.72 (these were estimated using the Munsell system). A
workstation (chair, desk, and desktop computer) was placed inside the
room at a position parallel to the window. This arrangement was in-
formed by the study from Osterhaus and Bailey [29] and was preferred
over an internal spatial organisation where the workstation was or-
thogonal to the artificial window. Since a parallel arrangement pro-
duced higher glare index values, we believed this would have increased
the likelihood of detecting an order bias effect. The surface of the desk
had a reflectance of ρdesk=0.56, dimensions of 1.80× 0.75m2, and a
height of 0.74m from the floor. We used a flat 24” liquid crystal display
computer screen (hp zdisplay z24i, mean self-luminance= 150 cd/m2)
to present visual tasks to test participants. The screen was mounted on
the desk top.

2.2. Photometric measurements

We used a Charged Coupled Device (CCD) Canon EOS 7OD camera
with a 4.5mm f/2.5 EX DX GSM 180° sigma fish-eye-lens, a luminance

Table 1
Key studies of discomfort due to glare.

Study Prediction Model Evaluation Criteria

Petherbridge and Hopkinson
(1950)

Glare Constant/IES-GI Multiple-Criterion
Scale

Hopkinson and Bradley (1960) Daylight Glare Index
(DGI)

Multiple-Criterion
Scale

Wienold and Christoffersen
(2006)

Daylight Glare
Probability (DGP)

4-Point Glare Scale
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Fig. 1. Plan view of the experimental setup showing the position of the experimenters and of the participant (top left). Note: Both entrance doors to the test room were
kept closed during the experiment; Image of the DLE showing an array of warm and cool LEDs with a cooling system used to prevent the DLE from overheating (top
right); A test participant sat at the viewing position performing a visual task (bottom left and right).

Fig. 2. Example of HDRI constructed from the seven LDRIs captured using the CCD camera (left); False colour Photosphere luminance map with Radiance image
formatting (centre); Evalglare image with a blue circle at the centre of the screen representing the point of visual fixation. Pixels highlighted in pink surrounding the
screen represent identified glare sources (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)

M.G. Kent et al. Building and Environment 146 (2018) 258–267

260



meter (LS-100, Minolta, Japan – with an accuracy±2% cd/m2) and an
illuminance chromameter (CL-200a, Minolta, Japan – with an accu-
racy±2% lux) to obtain photometric measurements. The luminous
conditions were captured using a series of Low Dynamic Range Images
(LDRI) with varying exposure values and vertical illuminance mea-
surements taken from the viewing position.

The artificial window luminance could be gradually increased or
decreased using a Digital Multiplex (DMX) controller, which was op-
erated by the experimenters via a customised software on a laptop. To
achieve precise photometric measurements in repeated procedures, the
luminance output of the window needed to be calibrated with the
software. To do this, the DMX controller was increased at evenly ad-
justed intervals at which seven LDRIs were captured using the CCD
camera, while several spot-point luminance measurements and a single
vertical illuminance and correlated colour temperature (CCT) readings
were also collected [30]. The seven LDRIs taken at each DMX interval
were combined into a Radiance-formatted High Dynamic Range Image
(HDRI) using the software Photosphere, which merged several LDRIs
into a single HDRI [31]. The HDRI images could then be evaluated
using the Evalglare software. The glare search algorithm adopted by
Evalglare used a task definition criterion whereby a visual fixation area
covering the screen was outlined within the image (Fig. 2). This cor-
responded to the test participants’ point of visual focus during the ex-
periment [7].

Based on a chosen sensitivity parameter, any pixel with a luminance
value that was five times greater than the average luminance of the
fixation area was treated as a glare source [7]. This implied that the
luminance of the window did not necessarily correspond to the only
glare source in the evaluations made by Evalglare under different DMX
settings (i.e., other glare sources could also appear in different areas of
the visual scene, for example the ceiling, walls, table surfaces, etc., as
shown in Fig. 2).

Table 2 presents, at each DMX interval, the illuminance entering the
lens of the CCD camera, the illuminance and CCT reaching the sensor of
the chromameter, the average luminance of the glare sources, and the
DGI values calculated from the HDRIs evaluated by Evalglare. For each
DMX interval, the illuminances received at the CCD camera lens and at
the sensor of the chromameter showed only minor differences (≤2%).
Therefore, we concluded that the measurements collected from the CCD
camera were reliable for further analysis.

As shown in the measurements presented in Table 2, if no back-
ground illumination was provided by the suspended ceiling luminaries,
the CCT of the visual scene remained relatively constant when varying
the luminance of the artificial window. Therefore, to avoid any po-
tential confounding influence of colour temperature on glare evalua-
tions, these lights were turned off during the experiment.

Since the DGI index was originally derived from experiments that
had also varied the luminance of a large artificial window [5], we used
this glare model to verify the presence of an order bias effect on the
subjective glare evaluations. In addition, considering that adjustments

were performed on a large area glare source, the background luminance
of the visual scene (i.e., the walls, ceiling, table, floor, etc.) was no
longer independent from the luminance of the artificial window. Since
this had an impact on the adaptation level, the DGI – designed speci-
fically to evaluate discomfort due to glare from large area sources [5] –
was considered to be the most suitable index to analyse the order bias
effect. Although the DGI was calculated from the CCD camera images
evaluated using Evalglare, its values were based on Equation (1) [5]:

=
+=

L
L L

DGI 10 log 0.478
(0.07 )

s

i 1

n 1.6 0.8

b
0.5

s (1)

whereby, Ls= source luminance (cd/m2), Ω=solid angle of the source
modified by its position index (sr), Lb= background luminance (cd/
m2), and ω=solid angle of the source (sr).

2.3. BEARS glare scale

Although the DGI features four predefined thresholds of glare sen-
sation – namely: “just perceptible”, “just acceptable”, “just un-
comfortable”, and “just intolerable” [5] – in our experiment, partici-
pants were asked to make judgments of visual discomfort using a newly
developed scale: the “BEARS scale of subjective glare evaluation”
(Fig. 3).

In fact, when reviewing existing glare scales in the literature (i.e.
[6,7,32]), we found that response labels used to define the perceived
magnitude of discomfort glare contained terminology that could be
misinterpreted by participants or could even bias the aim of our ex-
periment. As an example, on the original multiple-criterion scale on
which the DGI is based [5], the second and third response labels refer to
the borderline criteria of “just acceptable” and “just uncomfortable”,
respectively. When reporting these criteria in a luminance adjustment
procedure using an ascending order of discomfort, this implies that a
glare source judged as “acceptable” would be increased until reaching
the threshold of “just uncomfortable”, before becoming “un-
comfortable”. However, when reversing the order of presentation of the
glare stimulus (i.e., when using a descending luminance adjustment
sequence), it would not be logical to transition from an “un-
comfortable” to an “acceptable” glare sensation by a threshold that is
labelled “just uncomfortable”. In this case, in fact, a decreasing “un-
comfortable” glare sensation would start to become “acceptable” at the
threshold, hence it might be expected that some participants would
rather use the “just acceptable” criterion at the borderline between
these two levels of glare sensation. Another problem is related to
overlapping semantic terminology. For example, it is reasonable to
assume that something that is uncomfortable may be, at the same time,
acceptable. Unclear response labels found on glare scales may be an-
other reason why large inconsistencies are often found due to un-
certainty over the meaning of magnitude descriptors [33]. We believe
that a detailed analysis on the use of glare scales is urgently needed.
However, for this study, we developed a new scale featuring alphabe-
tical thresholds (borderline criteria) and numerical classifications
(“regions” of glare sensations with time-based descriptors) instead of
response labels for participants to report their perceived levels of dis-
comfort due to glare.

The new scale was based mainly on Petherbridge and Hopkinson's
multiple criterion scale [6]. Since Hopkinson [34] proposed that ob-
servers should only be requested to describe their degree of visual
discomfort with a limited number of glare criteria, we followed the
same 4-point level of measurement structure used in most glare scales,
e.g. Refs. [6,7,35]. The 4-points on the BEARS scale correspond to
borderline alphabetical criteria (A, B, C, and D), which participants
were instructed to refer to when making glare settings in a luminance
adjustment procedure – similar to the study by Hopkinson and Bradley
[5]. Test participants were asked to imagine these criteria as the
change-over points between glare “regions” (e.g., criterion A refers to

Table 2
Photometric conditions measured for each DMX setting.

DMX
Setting

Camera
Illuminance
(lux)

Chromameter
Illuminance
(lux)

Chromameter
CCT (K)

Average
Luminance of
Glare Sources
(cd/m2)

DGI

10 412 415 5001 535 12
40 1628 1594 4995 2581 16
70 2562 2597 4996 3402 21
100 3516 3558 4996 4159 23
130 4526 4517 5006 5842 24
160 5497 5429 5003 6871 25
190 6371 6368 5008 7524 27
220 7158 7147 5030 8645 29
250 8102 8153 5018 10 082 29
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the point when the discomfort transitions from 0 to 1 on the glare
scale). Time-based descriptors were used to define five numerical “re-
gions” of discomfort (0, 1, 2, 3 and 4) on the scale. These descriptors
were largely based on previous studies of glare [29,36]. Throughout the
experiment, a paper-based version of the BEARS scale was placed on the
desk and an electronic version was always displayed at the top right
corner of the computer screen. This allowed participants to refer to the
descriptors at any point needed.

2.4. Experimental procedure

Since the study primarily sought to replicate the effect of order bias
detected in our previous study, the same experimental procedure found
in Kent et al. [28] was utilised. The influence of order bias on subjective
glare evaluations was analysed using a luminance adjustment proce-
dure with three different sequences of borderline discomfort criteria:

• Ascending: A, B, C, and D
• Descending: D, C, B, and A
• Randomised: e.g., A, D, C, and B
At the beginning of the experiment, participants were asked to sit on

the chair so that their head was at the correct viewing position. The
experimenters provided a set of instructions, including a definition of
discomfort glare, the meaning of the borderline criteria and of the
numerical classifications on the BEARS glare scale, and a description of
how the test would run. To help reinforce the participants’ under-
standing of the glare scale, they were asked to perform a trial of the
experimental procedure without data being recorded.

At the start of the experiment, the luminance of the window was
adjusted to an initial setting (anchor) corresponding to a DGI of 16, this
describing the glare source on the Hopkinson scale as “just perceptible”
[37]. Since previous research established that the initial setting influ-
ences the final glare setting given in a luminance adjustment task [15],
only one anchor was used at the start of each block of trials. The anchor
was used only when providing the first alphabetical glare criterion.
Once the source was adjusted to the next alphabetical glare criterion,
the luminance set by the participant became the new anchor.

During each block of trials, the experimenters adjusted the lumi-
nance of the window at a controlled pace according to the instructions
given by the participant. Participants were asked whether they would
like the luminance of the window to be increased, decreased, or kept at
its current brightness to reach each of the four alphabetical criteria of
discomfort. When participants vocally indicated that the glare source
had reached the requested discomfort sensation, the corresponding
DMX value was recorded. DGI values for each DMX setting were ob-
tained from a polynomial fit calibration line based on measurements
shown in Table 2. The test procedure was repeated until the participant
had provided all four criteria of glare sensation under each of the three
different sequences (ascending, descending, and randomised). To mask
unwanted procedural effects, the sequences were presented to partici-
pants under a randomised order [38].

While making glare evaluations, participants were instructed to
perform a visual task as adjustments were made to each borderline

criterion of visual discomfort [30]. For this experiment, an alpha-nu-
merical pseudo-text task was presented on the computer screen and had
to be manually typed by the participant into a space provided on the
display. The use of randomised pseudo-text characters was preferred to
other visual tasks in order to minimise the risk of learning or experi-
ence, which could have occurred if normal text (i.e., newspaper arti-
cles) had been used [30]. Coherent with our previous work [39], the
text was set to an Arial font, 12 points, double line spacing, and each
character was separated using triple spacing.

A total of 55 participants (24 female and 31 male) took part to the
experiment. Subjects varied in nationality and cultural background but
were all fluent in English, 53 were right-handed and two left-handed,
the mean age was 31.6 (SD=9.7), 29 wore glasses, all were self-cer-
tified as having no other eye problems. Test subjects were paid for their
participation to the study. The UC Berkeley Committee for Protection of
Human Subjects approved the research protocol (CPHS #2017-03-
9758), and all subjects signed an informed consent form before the
experiment.

2.5. Statistical analyses

Graphical (Quantile plots) and statistical (Shapiro-Wilk) tests re-
vealed that the data distributions were normal about the mean para-
meter [38]. A Bayesian repeated-measures Analysis of Variance (BRM-
ANOVA) was ran to compare against each other the mean DGI values
for each borderline criterion of glare sensation across the three different
order sequences. These tests used the data from both the original study
[28] and from the new experiment to determine whether the same
order bias effect could be detected when both datasets were considered
in the same analysis.

To determine if the same order bias effect was present in the data
from the new experiment, we compared how much more likely the data
fell under the alternative hypothesis (close replication of an order bias)
than the null hypothesis (no replication of an order bias). Since these
hypotheses are typically denoted by H1 (alternative) and H0 (null), the
outcome of the Bayesian analysis was interpreted by the Bayes Factor
(BF10), whereby “10” indicates the ratio of probabilities between the
alternative and null hypotheses calculated according to Equation (2)
[40]:

=BF p data alternative
p data null

( | )
( | )10 (2)

whereby, p (data|alternative) is the probability that the data is likely to
fall under the alternative hypothesis containing effect sizes measuring
the order bias from the original study, and p(data|null) is the prob-
ability that the data is likely to fall under the null hypothesis with an
effect size equal to zero [13]. Therefore, any data supporting the null
hypothesis would show no evidence of an order bias effect.

When the data in a new experiment shows that a similar effect size
to an original study is detected, the outcome of the analysis will favour
the alternative hypothesis, i.e., a close replication [41]. Therefore, a
BF10 > 1 shows that the data support a close replication, while values
of BF10 < 1 show that the data do not support a replication of the
effect previously detected [42]. The replication Bayes Factor method

Fig. 3. BEARS scale of subjective glare evaluation.
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was applied to the BRM-ANOVA model by utilising Equation (3), which
– when rearranged – gives Equation (4) [41]:

=BF data data BF data BF data data( , ) ( )· ( | )10 original new 10 original 10 new original

(3)

=BF data data
BF data data

BF data
( | )

( , )
( )10 new original

10 original new

10 original (4)

whereby, dataoriginal denotes the original data found in Kent et al. [28]
and datanew is the new data generated from the experiment herein de-
scribed.

Since the BRM-ANOVA only provided information that a close re-
plication of the order bias effect was detected in at least one of the
comparisons made between the three order sequences, post-hoc testing
was performed using Bayesian paired-samples t-tests to determine if a
close replication was present in all, or only in some, of the comparisons.
To derive the prior probability distributions informing the alternative
hypothesis, an initial Bayesian t-test with default priors (i.e., distribu-
tions containing no previous knowledge of the order bias) was ran using
the data obtained from Kent et al. [28]. To provide a measure of the
order bias, the distributions were based on the effect size (i.e., Cohen's
δ=population mean difference/population standard deviation) [43].
While the prior is a distribution that contains knowledge from an ori-
ginal study, when this information is combined with the data from a
new experiment this gives a posterior distribution, i.e., an updated es-
timate of the effect of interest [23,44]. To specify the prior distributions
in the new analysis, the mean average effect size ( ¯) and the standard
deviation of the posterior distributions derived from our original study
data [28] were used. This created prior distributions that closely re-
sembled the shape of the posterior distributions found in the previous
analysis [45].

Since the prior distribution under the alternative hypothesis in a
Bayesian paired-samples t-test provides a relative range of effect size
values, an integral is used to estimate a weighted average value for the
effect size across its distribution [13]. Therefore, the Bayes Factor
shows the extent to which the observed data are more likely to have
occurred under the alternative hypothesis rather than under the null (5):

=BF
p data alternative p alternative

p data null
( | , ) ( | )d

( | )10 (5)

whereby, δ=Cohen's effect size.
To account for the uncertainty about the effect size under the al-

ternative hypothesis, typically a prior distribution is created instead of
relying on a single absolute estimate. This contains the relative range of
plausible effect sizes and usually reflects the anticipated magnitude of
the effect of interest [13]. To remind again, the prior distribution under

the null hypothesis simply states that the effect size is equal to zero. It is
important to note that the Bayes Factor only provides a probabilistic
evaluation of the relative support between two competing hypotheses
and no real indication of the actual effect size [46].

Therefore, we also used the effect size found in the posterior dis-
tribution combining both the original and the new datasets to interpret
the order bias effect. The effect sizes appeared as a posterior distribu-
tion under the alternative hypothesis with values seen as regions along a
probability density curve calculated according to Equation (6) (Gronau
et al., 2017):

=p data
p data p p

p data
( | )

( | , ) ( ) ( )
( )

0
2 2 2

(6)

whereby, p(δ|data)=marginal probability of the posterior distribution
(i.e., the probability of obtaining the parameter (δ) based on the ob-
served data [47]) and σ=the variance.

The mean values for each posterior distribution were used to in-
terpret the differences across the two groups. Since the prior distribu-
tions from the original data were derived from a probability distribu-
tion curve with an effect size centred on a Cohen's δ=0 (in fact, no
available data could be used to inform the prior before the original
study), this could have resulted in posterior distributions containing
effect sizes underestimating the true magnitude of the differences.
Therefore, the less conservative benchmarks proposed by Cohen for
effect sizes denoted as small, moderate, and large(δ≥0.20, 0.50 and
0.80, respectively) were used to interpret the outcome [48].

3. Results

In Fig. 4, we compare the mean DGI values for each criterion of
glare sensation given on the BEARS scale (A, B, C and D) under the
three different order sequences (ascending, descending, and rando-
mised) for the data collected in the new experiment. The x-axis presents
the mean DGI values calculated from the captured HDRI images. At
specific intervals along the x-axis, the interpretation of the DGI is given
based on the criteria used in the original Hopkinson's multiple-criterion
scale [37], whereby benchmarks are provided for Just Imperceptible,
Just Acceptable, Just Uncomfortable, and Just Intolerable (DGI≥ 16,
20, 24, 28, respectively). The y-axis shows the alphabetical discomfort
glare sensations reported by test participants distributed according to
the order sequences. The interpretation of the glare settings using the
window luminance as the main outcome variable can be found in
Appendix B.

Fig. 4 suggests that the experimental order sequence influenced the
mean DGI values. For the same criterion of glare sensation, a tendency
for higher mean DGI values can be observed when adjustments were
performed in a descending sequence. In fact, upon completing the block
trials, one participant wrote: “When the brightness of the window is in-
creasing [ascending sequence], the perception of brightness is different
compared to when the brightness is being decreased [descending sequence].
The tolerance is higher when it is coming down from a brighter light than
increasing it from a darker one”. This would imply that, when using the
descending order sequence, if the first glare setting had been over-
estimated (i.e., when adjusting the window luminance to criterion D),
the following settings would be biased towards this point (anchored),
thereby influencing subsequent evaluations made to the other criteria
on the scale. Interestingly, for glare settings made under the rando-
mised sequence, the mean DGI values generally fell between the set-
tings given under the ascending and descending orders. These trends
support previous findings from our original study [28]. When com-
paring the mean DGI values across the three order sequences, the lar-
gest variations produced a difference of approximately two DGI units.
Although these differences, at first glance, may wrongly give the im-
pression that the order bias had an irrelevant impact on the resultant
glare evaluations made by test participants, these differences were large

Fig. 4. Mean DGI values for the three sequences and the four glare criteria on
the BEARS scale. The error bars show the standard deviations.
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enough to change the interpretation of the outcome using Hopkinson's
glare criteria for two out of the four glare criteria (i.e., B and C).

Table 3 presents the results of the BRM-ANOVA. This shows, for
each borderline criterion on the BEARS scale, the Bayes Factors corre-
sponding to the original data (Dataoriginal), the Bayes Factors for the
combined data (Dataoriginal, Datanew), and the Bayes Factors with in-
formed prior distributions (Datanew | Dataoriginal).

The results of the analysis reported in Table 3 show that the evi-
dence supporting a close replication of the order bias (i.e., the alter-
native hypothesis) is extreme (BF10≥100) for the glare criteria B and C,
strong (10≤ BF10 < 30) for the glare criterion D, and anecdotal
(1≤ BF10 < 3) for the glare criterion A. Since a high Bayes Factor gives
supportive evidence that the new data detected the same order bias
found in the original study, we can conclude that we obtained a close
replication and that the order bias was present both when discomfort
due to glare was evaluated using a small (original study) and a large
(new experiment) luminous source.

A post-hoc analysis was then performed using Bayesian paired-
samples t-tests, whereby all combinations between the sequences for
each level of glare sensation were compared against each other to de-
tect the variations found in the BRM-ANOVA. Directionality of the
hypotheses was informed by inspecting the central tendencies from
graphical displays of the data [49]. Since there was no convincing
evidence of a prevailing relationship between the sequence of glare
criteria and mean DGI values, two-tailed hypotheses were applied [50].

Table 4 presents the results of the Bayesian paired-samples t-tests.
This shows, for each criterion on the BEARS scale, the comparison
(sequences) under examination, the mean and standard deviation of the
effect size ( ¯prior) values used to inform the prior distribution, the Bayes
Factor (BF10), the average mean effect size ( ¯posterior) extracted from the
posterior distribution, and the 95% upper (CIU) and lower (CIL)

confidence intervals about the effect size.
The results of the analysis reported in Table 4 show that the evi-

dence supporting a close replication of the order bias (i.e., the alter-
native hypothesis) is extreme (BF10≥100) in two cases, strong
(10≤ BF10 < 30) in two cases, moderate (3≤ BF10 < 10) in two cases,
anecdotal (1≤ BF10 < 3) in two cases, while no evidence
(0.33≤ BF10 < 1) was detected in three cases. Evidence supporting no
replication of the order bias (i.e., the null hypothesis) is anecdotal in
one case (0.10≤ BF10 < 0.33). In this context, a higher Bayes Factor
shows that the posterior distribution effect size closely resembles the
prior distribution effect size. The largest Bayes Factors appeared when
comparisons were made between the ascending and descending order
sequences (e.g., for criteria B and C). This shows a high degree of evi-
dence supporting a close replication of the order bias effect in the new
experiment. The lowest discomfort glare criterion (A) showed smaller
Bayes Factors for each of the three comparisons with respect to the
other borderline glare criteria. While this was anticipated considering
that the initial analysis (Table 3) concluded there was only anecdotal
evidence to support a close replication of the order bias effect for this
criterion, we suspect that this might be due to differences in the re-
sponse labels and semantic descriptors found on the glare scales across
the two studies. In fact, since the original study [28] used the lowest
response label of “just imperceptible” found on Hopkinson's multiple-
criterion scale [6], the interpretations made by observers may have
differed.

The average effect sizes of the posterior distributions generally have
a substantive influence ranging from moderate (Cohen's ¯ absolute
value: 0.50 ≤ ¯posterior <0.80) in two cases, to small (0.20 ≤
¯posterior <0.50) in eight cases, and negligible ( ¯posterior <0.20) in two
cases. When comparing the ascending and descending order sequences,
the effect size was always above the negligible threshold, and its sign
was consistently negative. Supporting our previous observations, the
effect sizes suggest that, under the descending order sequence, glare
settings were made by participants to higher luminance values and,
therefore, lower levels of discomfort due to glare were perceived when
adjustments were made under this sequence.

4. Discussion

In this experiment, we obtained statistically significant and practi-
cally relevant evidence of an effect of order bias in the discomfort glare
evaluations made by test participants under a large artificial window.
These findings verify the conclusions made from the results of our
previous work having detected the order bias effect when a small ar-
tificial glare source was used to evaluate subjective degrees of

Table 3
Results of the BRM-ANOVA with informed priors.

BEARS scale
criteria

BF10 (Dataoriginal) BF10 (Dataoriginal,
Datanew)

BF10 (Datanew |
Dataoriginal)

A 31 63 2
B 2 1083 547
C 0.67 998 1490
D 0.24 5 21

Bayes Factor (BF10): 0.10≤ BF10 < 0.33 is Anecdotal evidence for H0;
0.33≤ BF10 < 1 is No evidence; 1≤ BF10 < 3 is Anecdotal evidence for H1;
3≤ BF10 < 10 is Moderate evidence for H1; 10≤ BF10 < 30 is Strong evi-
dence for H1; 30≤ BF10 < 100 is Very strong evidence for H1; BF10≥100 is
Extreme evidence for H1.

Table 4
Results of the Bayesian t-tests with informed priors and effect sizes ( ¯).

BEARS scale criteria Comparison ¯prior Standard Deviation BF10 ¯posterior CIU, CIL

A Asc. vs. Des. −1.15 0.36 0.47 −0.33 −0.61, −0.06
Asc. vs. Ran. −0.50 0.32 1.66 −0.30 −0.54. −0.04
Des. vs. Ran. 0.56 0.30 0.30 0.20 −0.08, 0.45

B Asc. vs. Des. −0.72 0.33 842 −0.60 −0.86, −0.33
Asc. vs. Ran. −0.34 0.28 28 −0.39 −0.64, −0.15
Des. vs. Ran. −0.09 0.13 0.65 0.05 −0.14, 0.23

C Asc. vs. Des. −0.27 0.29 1131 −0.53 −0.79, −0.27
Asc. vs. Ran. 0.24 0.34 2.11 −0.26 −0.51, 0.00
Des. vs. Ran. 0.59 0.29 5 0.38 0.13, 0.62

D Asc. vs. Des. −0.02 0.28 3 −0.25 −0.49, 0.00
Asc. vs. Ran. 0.31 0.27 0.43 0.13 −0.10, 0.37
Des. vs. Ran. 0.27 0.27 16 0.35 0.11, 0.60

Note: Asc.=Ascending, Des.=Descending, Ran.=Randomised.
Bayes Factor (BF10): 0.10≤ BF10 < 0.33 is Anecdotal evidence for H0; 0.33≤ BF10 < 1 is No evidence; 1≤ BF10 < 3 is Anecdotal evidence for H1; 3≤ BF10 < 10
is Moderate evidence for H1; 10≤ BF10 < 30 is Strong evidence for H1; 30≤ BF10 < 100 is Very strong evidence for H1; BF10≥ 100 is Extreme evidence for H1.
Effect Size: ¯ <0.20 is negligible; 0.20 ≤ ¯ <0.50 is small; 0.50 ≤ ¯ <0.80 is moderate; ¯ ≥ 0.80 is large. Values in bold denote a substantive and practically
relevant effect size ( ¯ ≥ 0.20).
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discomfort due to glare.
While the main purpose of our analysis was to evaluate how much

evidence favoured a close replication between the new experimental
data and our original study, the posterior distributions derived from the
analysis can also be used to give a more robust evaluation of the order
bias. Since this outcome can be expressed as a distribution containing
effect sizes that are composed from the data derived from both the
original study and the replication experiment, the final parameter es-
timates are considered as combined values from the two sets of data.

Fig. 5 shows the effect sizes under the prior and posterior dis-
tribution curves for the glare criterion B on the BEARS scale (see
Appendix C for the distribution curves relative to the other criteria on
the scale). Since the three comparisons between the order sequences
provided statistical evidence to support a close replication corre-
sponding to, respectively, “extreme”, “moderate” and “no evidence”
outcomes, this glare criterion was selected to illustrate the prior and
posterior distributions.

For each comparison, the plots show how the prior distributions
containing information from our original study [28] are updated in
consideration of the new data from the replication experiment in order
to create posterior distributions. Therefore, the effect sizes under the
posterior distributions are based on the data from both studies.

For the “ascending vs. descending” and “ascending vs. randomised”
comparisons, the mean effect sizes under the prior and posterior dis-
tributions appear to be relatively similar. This indicates equivalent
differences in the glare settings made to the same criterion using dif-
ferent order sequences from both the original and the replication study.
In fact, for both cases, the Bayes Factors (Table 4) show supportive
evidence favouring the alternative hypothesis, which suggests that the
same order bias was detected in both studies.

For the “descending vs. randomised” comparison, the mean average
effect sizes for the prior and posterior distributions do not appear to be
as closely related as seen in the previous comparisons made. In fact, the
Bayes Factor did not provide as much supportive evidence towards the
alternative hypothesis (Table 4). This suggests that, while replication
was successful for most comparisons made across both studies, in this
instance the same influence of order bias could not be detected.

It must be noted that, since the original study used a smaller sample
size (n= 20) than the new experiment (n= 55), some results may have
occurred simply due to chance. Therefore, when reproducing the same
order bias using a larger number of observations, it should be expected
that a more reliable approximation of the true effect is found [47]. In
fact, comparing the effect sizes under the distributions could provide an
opportunity to determine whether similar findings can be detected,
hence offering some validation to the conclusions drawn in the original
study [21].

The two experiments from where the data for this study were
drawn, conducted respectively in Nottingham (UK) and in Singapore,
were both following the same method of luminance adjustment, which
is a fundamental procedure first used by Hopkinson [35] to evaluate the
degrees of discomfort due to glare. Changes in experimental settings or
materials are common in repeated studies, this hypothetically

introducing variables that could confound the results. In our study,
however, the adoption of the same luminance adjustment procedure in
both experiments enabled the use of the Bayesian analysis. The main
differences between the two experiments were the type of glare source
(small vs large), the glare scale used (multiple-criterion scale vs
BEARS), and the sample of test subjects (one group recruited at the
University of Nottingham and one at BEARS in Singapore). The results
of our study confirmed the same effect of order bias, signalling that the
differences between the two experimental settings did not mask the
ultimate finding; an order effect can bias the evaluation of discomfort
due to glare in a luminance adjustment task, and is also resilient to
changes in the experimental procedure.

Since little attention has been placed on the semantic descriptors
found in response labels used in past studies, we proposed a new scale
for evaluating subjective degrees of discomfort due to glare. While
further investigation is needed to ensure that the participants' under-
standing of response label descriptors matches the experimenter's in-
tended interpretation, we believe that our new (BEARS) scale avoided
the use of the misleading semantics found in other glare scales.
However, the development of a more robust scale that can be used to
evaluate the sensation of discomfort due to glare still requires urgent
consideration.

4.1. Limitations

Before any conclusions on the practical applications of these results
can be made, some methodological limitations need to be acknowl-
edged. Similar to the original study's experimental procedure, it should
be considered that, within each block trial, the tests began the adjust-
ments with the glare source set to a low luminance anchor. Since glare
evaluations have been found to be influenced by the initial anchor [15],
we believe that participants could have given different settings if a
higher luminance anchor had been used (i.e., the artificial window
would have been set to higher luminance values for the same degree of
glare sensation).

The literature shows that many different glare scales have been used
and, while these are closely related to the multiple-criterion scale [6],
their response labels used to describe glare sensation have varied con-
siderably [28]. There are some studies that have applied response labels
to prediction models that had been originally derived using a different
set of glare criteria [51]. Based on such inconsistencies, we proposed a
new glare scale. While we have avoided the use of semantics to directly
describe a given threshold of discomfort, variations in the response
labels from our original study may have influenced the participants’
understanding of the descriptors used on the scale [52]. Since the glare
scales were not identical across both studies, this might have influenced
the magnitude of evidence supporting a close replication of the order
bias effect.

Finally, it should be noted that, under the luminance adjustment
procedure, the calculated DGI values were consistently lower than the
thresholds provided by Hopkinson (Fig. 4). It could also be postulated
that, if the glare source had contained visual content – for example, a

Fig. 5. Prior and posterior distributions for the effect size for glare criterion B.
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view to an exterior environment – test participants might have given
different glare settings. This is coherent with studies that have shown
that observers became more tolerant to discomfort due to glare when a
daylit (window) glare source contained pleasant information [17,18].
Furthermore, one participant reported that they would have provided
higher glare settings if the maximum luminance of the glare source had
been known prior to giving their adjustments. This might be associated
to a range bias effect [53] and will be the focus of future experiments.

5. Conclusions

In a test room equipped with a large artificial window, we per-
formed a laboratory test with 55 participants to validate the effect of
order bias on subjective degrees of discomfort due to glare. This effect
had been previously detected in a similar experiment using a small
luminous source. The results confirmed the presence of an order bias
effect, hence supporting the conclusions drawn from our previous
study. Moreover, we used a Bayesian approach to statistically verify the
level of replication and quantify the magnitude of its effect. The
Bayesian approach gave us the following advantages: (1) we were able
to identify the same order bias when evaluating discomfort due to glare
with a small and a large source; (2) estimates of the order bias from our
original study and from the new experiment were combined to provide
a more precise evaluation of the effect of interest. The posterior esti-
mates derived in this study can also be used to inform prior distribu-
tions in further analyses; (3) conclusions drawn from the new data
supported those derived in our previous study. This ruled out the pos-
sibility that the order bias effect detected in the original study had
occurred simply due to a random error.

We estimated the magnitude of the order bias to cause at least a
two-unit change in the DGI, which is large enough to change the in-
terpretation of the outcome as described by Hopkinson's glare criteria.
Even if these results may not have an immediate application to building
practice, we believe it is essential to consider more robust analytical
approaches to support the conclusions drawn when comparing the re-
sults from different glare studies. Despite the inconsistencies that have
been identified between glare models, these are still recommended by
international lighting design standards [54–56]. We believe that the
new research approach proposed in this paper will benefit the lighting
research community and, consequently, the building standardization
and design industries.

Since many replication studies report poor levels of predictive
power when evaluating glare models using NHST, as a research com-
munity, we need to move beyond the conventional null hypothesis
significance testing approach and encourage the wider use of Bayesian
methods (or at least to publish the original data with any paper pub-
lication). Although in our study we used a Bayesian analysis to replicate
the detection of an order bias effect, this approach can also serve as a
method for evaluating multiple sets of data to provide robust evalua-
tions of certain statistical parameters (i.e., correlation or regression
coefficients). The use of such approaches when analysing experimental
data may lead to more reliable comparisons between different glare
studies. Furthermore, when multiple studies use the same subjective
glare criteria, the Bayesian approach could also be applied to update
parameter estimates that are used to describe the thresholds of dis-
comfort. These thresholds can be adopted by building designers to
minimise the risk of discomfort due to glare from large light sources,
such as in the case of a window, hence leading to more reliable pre-
dictions when using glare models.
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