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Phase Behavior and Critical Properties of Size-Asymmetric, Primitive-Model Electrolytes 

Yuan Qin and John M. Prausnitz 

Department of Chemical Engineering, University of California, Berkeley, and Chemical Sciences 

Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 

 

Abstract 

The theory of J. Jiang et al. [J. Chem. Phys. 116, 7977 (2002)] for size-symmetric 

electrolytes is extended to size-asymmetric electrolytes. When compared to molecular-simulation 

results, this extension gives the correct trend of critical properties with size asymmetry. 

 

1 Introduction 

 Debye-Hückel theory[1] and the mean-spherical approximation (MSA) theory[2] provide two 

fundamental analytical theories for calculating the equilibrium properties of electrolytes. 

However, because both are linearized theories, they are restricted to large reduced temperatures 

where the kinetic energy is large compared to the electrostatic energy. At low reduced 

temperatures, positive ions and negative ions tend to form clusters; therefore, Bjerrum’s 

ion-association concept is useful for improving a linearized electrolyte theory. While the 

definition of ion-association has some intrinsic arbitrariness, Ebeling[3] has given a definition of 

the ion-association constant that yields the correct equation of state to the 

second-ionic-virial-coefficient term. Gillan[4] has evaluated the contribution of larger ionic 

clusters.  
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In recent years, several theoretical and simulation calculations have been proposed for phase 

equilibria and critical properties of electrolytes[5-12]. Based on Debye-Hückel theory, Fisher and 

Levin[7-8] took into account the formation of dipolar pairs and the subsequent interaction between 

dipolar pairs and free ions. Using the method of associated-fluid theory, Stell and co-workers[9-10] 

incorporated dipolar pairs into MSA theory. By simulation, Shelley and Patey[11] found that the 

phase equilibria for an ionic fluid are similar to those for a charged hard-dumbbell fluid. Jiang et 

al. [12] model an ionic fluid as a fully associated, charged hard-dumbbell fluid and use an ad hoc 

combination of MSA and binding-MSA[13]. Jiang’s theory yields fairly good prediction of the 

critical temperature and critical density when compared with simulations[5, 6]. 

 While most published theoretical work is restricted to size-symmetric electrolytes, for 

application to typical real ionic liquids, it is important to consider size-asymmetric ionic fluids 

where one ion is appreciably larger than the other. When compared with recent simulations[5-6] for 

asymmetric electrolytes, the critical temperatures and critical densities calculated by MSA theory 

[14,15], two theories based on Poisson-Boltzmann theory[14] and Ebeling-Grigo theory[16] are 

qualitatively incorrect. As size asymmetry rises, these theories give the wrong trend. In this work, 

we extend the theory of Jiang et al.[12] to charge-symmetric but size-asymmetric ionic liquids. We 

report a simple theory that gives the correct trend of critical properties with size asymmetry. 

 

2. Theoretical Framework 

The primitive model of electrolytes concerns charged hard spheres in a continuous dielectric 

medium with dielectric constant ε . The number densities, diameters and charges of the hard 
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spheres are designated by iρ ,  and , respectively; here,  is the valence and e is the unit 

charge. The total number density of the ions is 

iσ iz e iz

1 2ρ ρ ρ= + . We consider the charge-symmetric 

case where . The diameter ratio of the positive and negative ions, 1 2z e z e ze= − = λ , gives the 

size asymmetry of the hard spheres: 

1 / 2λ σ σ= .                              (1) 

The collision diameter for a pair of positive and negative ions, 12 1 2( ) / 2σ σ σ= + , provides the 

basic length scale appropriate for defining the reduced temperature and reduced density by 

         ,          (2) *
12 /BT k T z eεσ= 2 2

3         *
12ρ ρσ=            (3) 

where  is the Boltzmann constant and T is the temperature. Bk

In the theory of Jiang et al.[12], the Helmholtz energy density f has four contributions: ideal 

gas, hard-sphere repulsion, electrostatic interactions, and ion association: 

id hs ele assf f f f f= + + +  .         (4) 

The ideal gas contribution is  

ln
2 2 2

idf ρ ρ ρβ = −          (5) 

where 1/ Bk Tβ = . The hard-sphere repulsion contribution is obtained from the theoretical result 

of Mansoori et al. [17] and Boublík[18] for the equation of state of hard-sphere mixtures: 

3 3
2 1 2

0 32 2
3 3

18 66 ln(1 )
(1 ) (1 )

hsf ξ ξ ξβ ξ ξ 2

3 3

ξ
π ξ π ξ πξ

⎛ ⎞
= − − + +⎜ ⎟ − −⎝ ⎠ ξ

        (6)   

with 
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2

16
k

k
i

π
i iξ ρ σ

=

= ∑ .         (7) 

The electrostatic contribution is calculated by MSA theory for the asymmetric, primitive-model 

electrolytes[2]: 

2 32

1 31 2(1 )
ele i i i n

i
i i

z Pe
3
Γf z Γ

Γ
ρ πσββ

ε σ ξ=

⎡ ⎤
= − + +⎢ ⎥+ −⎣ ⎦

∑ π
      (8) 

with Γ  and  calculated from the following two coupled equations: nP

222 2
2

2
1 3(1 ) 2(1 )

i i
i

i i

PeΓ z
Γ

ρ πσπβ
ε σ ξ=

n⎡ ⎤
= −⎢ ⎥+ −⎣ ⎦

∑ ,      (9) 

32 2

1 13

1
1 2(1 ) 1

i i i i i
n

i ii i

ρ z σ ρπP
σ Γ ξ σ Γ= =

σ⎡ ⎤
= +⎢ ⎥+ − +⎣ ⎦

∑ ∑ .          (10) 

Compared with those for the size-symmetric case, the MSA theory for the size-asymmetric case is 

complicated. If we approximate the asymmetric mixture by a symmetric mixture with effective 

diameter , the formulas are much simplified. Equation (8) becomes: 12σ

2 2 3

12(1 ) 3
ele z e ρβΓ Γβf

ε σ Γ π
= − +

+
             (11) 

with calculated by Γ

1/ 2
12 12(1 2 ) 1 / 2Γ σ κ σ⎡= + −⎣ ⎤⎦

κ

/

        (12) 

where is the inverse Debye screening length: 

2 2 24κ πz e ρβ ε= .         (13) 

We call equations (8), (9) and (10) full-MSA, and equations (11), (12) and (13) simplified-MSA. The 

ion-association contribution is evaluated from first-order thermodynamic perturbation theory: 
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2 2

12 12
12

ln ( )exp( )
2

ass z ef gρ ββ σ
εσ

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
        (14) 

where 12 12(g )σ  is the radial distribution function for the positive and negative ions at contact. 

We use the exponential (EXP) approximation for 12 12(g )σ [12]: 

2 2
hs

12 12 12 12 2
12 12

( ) ( ) exp
(1 )B

z e βg σ g σ
εσ σ Γ

⎡ ⎤
= ⎢ ⎥+⎣ ⎦

        (15) 

where hs
12 12(g )σ is the radial distribution function for a hard-sphere mixture [18]: 

2 2
hs 1 2 2 1 2 2
12 12 2

3 1 2 3 1 2 3

1( ) 3 2
1 (1 )

σ σ ξ σ σ ξg σ
ξ σ σ ξ σ σ ξ

⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟− + − + −⎝ ⎠ ⎝ ⎠

3(1 )
,      (16)              

   

and BΓ  is calculated from binding-MSA theory[13]: 

       B B 3 2
12 124 (1+ )Γ Γ σ κ σ= .        (17) 

In equations (15) and (17), we also use the assumption that an asymmetric mixture can be 

approximated by a symmetric mixture with effective diameter . 12σ

 

3. Results and Discussion 

Table 1 lists reduced critical temperatures and densities for full-MSA (fMSA), 

simplified-MSA (sMSA) and the generalized Jiang theory based on simplified-MSA (gJiang). 

Figure 1 shows reduced critical temperature and critical density as a function of size-asymmetry 

λ . Full-MSA gives a qualitatively incorrect trend. While the simulated critical temperature and 

density both decrease with rising size-asymmetry, full-MSA shows the opposite. However, 

simplified-MSA gives the correct trend. Taking into account the ion-association effect, the 
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generalized Jiang theory based on simplified-MSA gives much better prediction. Figure 2 shows 

phase diagrams calculated by the generalized Jiang theory based on simplified-MSA. 

Qin et al.[19] found that for the thermodynamics properties of the size-asymmetric, dipolar 

hard-dumbbell fluids at high temperatures, the situation is similar: while full-MSA is qualitatively 

incorrect, simplified-MSA gives good prediction. Why is simplified-MSA better than the 

full-MSA? First, it is reasonable to approximate the asymmetric mixture by a symmetric mixture 

with effective diameter . For the asymmetric mixture, there are three length scales: 12σ 1σ , 2σ  

and 12σ . Scales 1σ and 2σ determine interactions between similarly charged ions; however, 12σ  

determines interactions between oppositely charged ions. As the latter contribute much more to 

the configurational integral than the former, to a first approximation, we can regard the 

three-length-scale problem as a one-length-scale problem. The thermodynamic properties are 

mainly determined by 12σ . Based on this argument, Reiss et al. [20]  proposed a 

corresponding-states theory for molten salts. Harvey et al.[21] found that at reduced temperatures 

corresponding to aqueous electrolyte solution, simplified-MSA introduces little error when 

compared with MC simulations. Second, we consider the ion distribution around a fixed ion. Due 

to size asymmetry, there are zones around ions where only the smaller ions can exist and the 

larger ions are excluded. Zuckerman et al.[22] have pointed out that it is these “charge-unbalanced” 

zones that lead Debye-Hückel theory to fail and give qualitatively incorrect results at low reduced 

temperatures. Because MSA theory is similar to Debye-Hückel theory, this argument can also 

explain why full-MSA fails at low temperatures. However, for simplified-MSA, where the 

asymmetric mixture is approximated by a symmetric mixture, the “charge-unbalanced” zones are 
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excluded. This may explain why simplified-MSA gives better results. 

 

Acknowledgment 

For financial support, the authors are grateful to the Office for Basic Sciences of the US 

Department of Energy. 

 

 7



References: 

[1] P. W. Debye and E. Hückel, Phys. Z. 24, 185 (1923). 

[2] L. Blum, in Theoretical Chemistry: Advances and Perspective, edited by H. Eyring and D. 

Henderson (Academic, New York, 1980), vol. 5, 1. 

[3] W. Ebeling, Z. Phys. Chem. (Leipzig) 238, 400 (1968). 

[4] M. J. Gillan, Mol. Phys. 49, 421 (1983). 

[5] J. M. Romero-Enrique, G. Orkoulas, A. Z. Panagiotopoulos and M. E. Fisher, Phys. Rev. Lett. 

85, 4558 (2000). 

[6] Q. Yan and J. de Pable, Phys. Rev. Lett. 86, 2054 (2001).  

[7] M. E. Fisher and Y. Levin, Phys. Rev. Lett. 71, 3826 (1993). 

[8] Y. Levin and M. E. Fisher, Physica A 225, 164 (1996). 

[9] Y. Q. Zhou, S. Yeh and G. Stell, J. Chem. Phys. 102, 5785 (1995). 

[10] S. Yeh, Y. Q. Zhou and G. Stell, J. Phys. Chem. 100, 1415 (1996).  

[11] J. C. Shelley and G. N. Patey, J. Chem. Phys. 103, 8299 (1995). 

[12] J. Jiang, L. Blum, O. Bernard, J. M. Prausnitz and S. I. Sandler, J. Chem. Phys. 116, 7977 

(2002). 

[13] O. Bernard and L. Blum, J. Chem. Phys. 104, 4746 (1996). 

[14] A. K. Sabir, L. B. Bhuiyan and C. W. Outhwaite, Mol. Phys. 93, 405 (1998). 

[15] E. González-Tovar, Mol. Phys. 97, 1203 (1999). 

[16] F. O. Raineri, J. P. Routh and G. Stell, J. Phys. IV France 10, 99 (2000). 

[17] G. A. Mansoori, N. F. Carnahan, K. E. Starling and T. W. Leland, Jr., J. Chem. Phys. 54, 1523 

 8



(1971). 

[18] T. Boublík, J. Chem. Phys. 53, 471 (1970). 

[19] Y. Qin, K. Zhao, H. L. Liu and Y. Hu, Mol. Simulat. 29, 743 (2003). 

[20] H. Reiss, S. W. Mayer and J. L. Katz, J. Chem. Phys. 35, 820 (1961). 

[21] A. H. Harvey, T. W. Copeman and J. M. Prausnitz, J Phys. Chem. 92, 6432 (1988). 

[22] D. M. Zuckerman, M. E. Fisher and S. Bekiranov. Phy. Rev. E. 64, 011206 (2001). 

 9



Table 1 Reduced critical temperatures and densities of size-asymmetric, primitive-model 

electrolytes calculated by full-MSA (fMSA), simplified-MSA (sMSA) and the generalized Jiang 

theory based on simplified-MSA (gJiang).  

 

Tc
*  ρc

*

λ  
fMSA sMSA gJiang  fMSA sMSA gJiang 

1.0 0.0786 0.0786 0.0526  0.0145 0.0145 0.0645 
0.9 0.0787 0.0786 0.0526  0.0145 0.0145 0.0643 
0.8 0.0790 0.0785 0.0523  0.0147 0.0144 0.0636 
0.7 0.0796 0.0784 0.0519  0.0150 0.0142 0.0624 
0.6 0.0806 0.0782 0.0512  0.0154 0.0138 0.0604 
0.5 0.0822 0.0778 0.0502  0.0162 0.0134 0.0576 
0.4 0.0847 0.0774 0.0488  0.0174 0.0128 0.0539 
0.3 0.0887 0.0768 0.0469  0.0192 0.0120 0.0493 
0.2 0.0952 0.0760 0.0445  0.0219 0.0110 0.0439 
0.1 0.1063 0.0749 0.0416  0.0264 0.00987 0.0380 

0.05 0.1151 0.0743 0.0398  0.0299 0.00926 0.0348 
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Figure Captions 

 

Fig 1. Reduced critical parameters for size-asymmetric primitive-model electrolytes. (a) Reduced 

critical temperature as a function of size-asymmetry. (b) Reduced critical density as a function of 

size-asymmetry. Solid circles: Monte Carlo simulations by Yan and de Pablo[6]. Dotted lines: 

Calculations by full-MSA. Dashed lines: Calculations by simplified-MSA. Solid lines: 

Calculations by generalized Jiang theory based on simplified-MSA.  

 

Fig. 2 Phase diagrams for size-asymmetric primitive-model electrolytes. Dots: Monte Carlo 

simulations by Yan and de Pablo[6]. Triangle, 1λ = ; Diamond, 0.5λ = ; Sphere, 0.25λ = .  

Lines are calculated by Jiang theory based on simplified-MSA.
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Fig. 1(a) 
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Fig. 1(b)  
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Fig. 2 
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