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Summary 

Data analysis workflows in many scientific domains have become increasingly 

complex and flexible. To assess the impact of this flexibility on functional magnetic resonance 

imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing 

nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that 

no two teams chose identical workflows to analyze the data. This flexibility resulted in 

sizeable variation in hypothesis test results, even for teams whose statistical maps were highly 

correlated at intermediate stages of their analysis pipeline. Variation in reported results was 

related to several aspects of analysis methodology. Importantly, meta-analytic approaches 

that aggregated information across teams yielded significant consensus in activated regions 

across teams. Furthermore, prediction markets of researchers in the field revealed an 

overestimation of the likelihood of significant findings, even by researchers with direct 

knowledge of the dataset. Our findings show that analytic flexibility can have substantial 

effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The 

results emphasize the importance of validating and sharing complex analysis workflows, and 

demonstrate the need for multiple analyses of the same data. Potential approaches to 

mitigate issues related to analytical variability are discussed. 

 

Data analysis workflows in many areas of science have become exceedingly complex, with 

a large number of processing and analysis steps that involve many possible choices at each of those 

steps (i.e., “researcher’s degrees of freedom” 1,2). There is often no unique correct or “gold 

standard” workflow, as different options will reflect different tradeoffs and statistical philosophies. 

Simulation studies have shown that these differences in analytic choices can have substantial 

effects on results 3, but it has not been clear to what degree such variability exists and how it affects 

reported scientific conclusions in practice. Recent work in psychology has attempted to address 

this through a “many analysts” approach 4, in which the same dataset was analyzed by a large 

number of groups, uncovering substantial variability in behavioral results across analysis teams. 

In the Neuroimaging Analysis Replication and Prediction Study (NARPS; www.narps.info), we 

applied a similar approach to the domain of functional magnetic resonance imaging (fMRI), where 

analysis workflows are complex and highly variable. Seventy independently acting teams of 

researchers analyzed the the same functional neuroimaging dataset to test the same nine ex-ante 
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hypotheses. We tested variability in the results across teams and examined the aspects of analysis 

workflows that were related to this variability. We further employed the novel approach of 

prediction markets, where participants traded on the outcomes of these analyses, to assess the 

accuracy of predictions made by researchers in the field 5–7. 

 

Variability of results across analysis teams 

The first aim of NARPS was to assess the real-world variability of results across 

independent analysis teams analyzing the same dataset. The dataset included fMRI data from 108 

individuals, each performing one of two versions of a mixed gambles task previously used to study 

decision-making under risk 8. The two versions of the task were designed to address an ongoing 

debate in the literature regarding the impact of distributions of potential gains/losses on neural 

activity in this task 9,10. A full description of the experimental procedures, validations and the 

dataset is available in a Data Descriptor 11; the dataset is openly available via OpenNeuro at 

DOI:10.18112/openneuro.ds001734.v1.0.4. Fully reproducible code for all analyses of the data 

reported here are available at DOI:10.5281/zenodo.3528171. 

Neuroimaging researchers were solicited via social media and at the 2018 annual meeting 

of The Society for Neuroeconomics to participate in the analysis of this dataset. Seventy analysis 

teams participated in the study. The teams were provided with the raw data, organized according 

to the Brain Imaging Data Structure (BIDS) 12, as well as optional preprocessed data (processed 

with fMRIprep 13). They were asked to analyze the data to test nine ex-ante hypotheses (Table 1), 

each of which consisted of a description of significant activity in a specific brain region in relation 

to a particular feature of the experimental design. They were given up to 100 days (varying based 

on the date they joined) to analyze the data and report for each hypothesis whether it was supported 

based on a whole-brain corrected analysis (yes / no). In addition, each team submitted a full report 

of the analysis methods they had used (following COBIDAS guidelines 14) and created a collection 

on NeuroVault 15 with one unthresholded and one thresholded statistical map supporting each 

hypothesis test. To measure variability of results in an ecological manner, the only instructions 

given to the teams were to perform the analysis as they usually would in their own research groups 

and to report the binary decision based on their own criteria for a whole-brain corrected result for 

the specific region described in the hypotheses. 
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Although teams were not explicitly required to demonstrate expertise in fMRI analysis, 

members for 69 of the 70 teams had prior publications using fMRI. The dataset, as well as all 

reports and collections, were kept private until after the prediction markets were closed. The results 

reported by all teams are presented in Supplementary Table 1. A table describing the methods used 

by the analysis teams is available with the analysis code. NeuroVault collections containing the 

submitted statistical maps are available via the links provided in Supplementary Table 2. 

The fraction of teams reporting a significant result for each hypothesis is presented in Table 

1. Overall, the rates of reported significant findings varied across hypotheses. Only one hypothesis 

(#5) showed a high rate of significant findings, with 84.3% of teams reporting a significant result. 

Three other hypotheses showed consistent non-significant findings across groups, with only 5.7% 

of teams reporting significant findings for hypotheses #7, #8 and #9 (all of which centered on loss-

related activity in the amygdala). For the remaining five hypotheses, the results were more 

variable, ranging from 21.4% to 37.1% of teams reporting a significant result. The extent of the 

variation in results across teams can be measured as the fraction of teams reporting a different 

result than the majority of teams (i.e. the absolute distance from consensus). On average across the 

9 hypotheses, 20% of teams reported a result that differs from the majority of teams. This is a 

sizeable variation across teams on average, given that the maximum possible variation is 50%. 

This implies that the observed fraction of 20% divergent results falls midway between complete 

consistency in results across teams and completely random results, demonstrating that analytic 

choices crucially affect reported results. 

Factors related to analytic variability 

To better understand the sources of the analytic variability found in the reported binary 

results, we analyzed the analysis pipelines used by the teams as well as the unthresholded and 

thresholded statistical maps they provided. There were no two teams with identical analysis 

pipelines. One team was excluded from all analyses since their reported results were not based on 

a whole-brain analysis as instructed. Of the remaining 69 teams, thresholded maps of 65 teams and 

unthresholded (z / t) maps of 64 teams were included in the analyses (see Supplementary Table 3 

for detailed reasons for exclusion of the other teams). 

Variability of reported results. We conducted exploratory analyses of the relation 

between reported hypothesis outcomes and a subset of specific measurable analytic choices and 

image features. There were several primary sources of analytic variability across teams. First, 
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teams differed in the way they modelled the hypotheses tests (i.e. the regressors and contrasts they 

included in the model). Second, there were multiple different software packages used. Third, teams 

differed in the preprocessing steps applied as well as the parameters and techniques used at each 

preprocessing step. Fourth, teams differed in the threshold used to identify significant effects at 

each voxel in the brain and the method used to correct for multiple comparisons. Finally, teams 

differed in how the anatomical regions of interest (ROIs) were defined to determine whether there 

was a significant effect in each a priori ROI. 

 

Table 1. Hypotheses and results. Each hypothesis is described along with the fraction of teams 
reporting a whole-brain corrected significant result and two measures reported by the analysis 
teams for the specific hypothesis (both rated 1-10): (1) How confident are you about this result? 

(2) How similar do you think your result is to the other analysis teams? For these ordinal 
measures, median values are presented along with the median absolute deviation in brackets. 

See Supplementary Materials for analysis of the confidence level and similarity estimation. 

 

 Hypothesis description 
Fraction of teams 

reporting a 
significant result 

Median 
confidence 

level 

Median 
similarity 
estimation 

#1 Positive parametric effect of gains in the vmPFC 
(equal indifference group) 0.371 7 

(2) 
7 

(1.5) 

#2 Positive parametric effect of gains in the vmPFC 
(equal range group) 0.214 7 

(1.5) 
7 

(1) 

#3 Positive parametric effect of gains in the ventral 
striatum (equal indifference group) 0.229 6 

(1) 
7 

(1) 

#4 Positive parametric effect of gains in the ventral 
striatum (equal range group) 0.329 6 

(1) 
7 

(1) 

#5 Negative parametric effect of losses in the 
vmPFC (equal indifference group) 0.843 8 

(1) 
8 

(1) 

#6 Negative parametric effect of losses in the 
vmPFC (equal range group) 0.329 7 

(1) 
7 

(1) 

#7 Positive parametric effect of losses in the 
amygdala (equal indifference group) 0.057 7 

(1) 
8 

(1) 

#8 Positive parametric effect of losses in the 
amygdala (equal range group) 0.057 7 

(1) 
8 

(1) 

#9 
Greater positive response to losses in amygdala 

for equal range group vs. equal indifference 
group 

0.057 6 
(1) 

7 
(1) 
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A set of mixed effects logistic regression models (with data from N = 64 teams) identified 

a number of factors that impacted these outcomes (see Supplementary Table 4). The strongest 

factor was spatial smoothness; higher estimated smoothness of the statistical images (estimated 

based on the unthresholded statistical maps using FSL’s smoothest function) was associated with 

a greater likelihood of significant outcomes (p < 0.001, delta pseudo-R² = 0.04; mean FWHM 9.69 

mm, range 2.50 - 21.28 mm across teams). Interestingly, while estimated smoothness was related 

to the width of the applied smoothing kernel (r = 0.71; median applied smoothing 5 mm, range 0 

- 9 mm across teams), the applied smoothing value itself was not significantly related to positive 

outcomes in a separate analysis, suggesting that the relevant smoothness may have arisen from 

other analytic steps in addition to explicit smoothing on its own. In particular, exploratory analyses 

showed that the inclusion of head motion parameters in the statistical model was associated with 

lower image smoothness (p = 0.014). An effect on decision outcomes was also found for the 

software package used (p = 0.004, delta pseudo-R² = 0.04; N = 23 [SPM], 21 [FSL], 7 [AFNI], 13 

[Other]),  with the FSL package being associated with a higher likelihood of significant results 

across all hypotheses compared to the SPM package; odds ratio = 6.69), and for the effect of 

different multiple test correction methods (p = 0.024, delta pseudo-R² = 0.02: N = 48 [parametric], 

14 [nonparametric], 2 [other]), with parametric correction methods leading to higher rates of 

detection than nonparametric methods. No significant effect on the decision outcomes was 

detected for the use of standardized preprocessed data (with fMRIprep) versus custom 

preprocessing pipelines (48% of included teams used fMRIprep; p = 0.132) or the inclusion of 

head motion parameters in the statistical model (used by 73% of the teams; p = 0.281). 

Variability of thresholded statistical maps. The nature of analytic variability across the 

whole brain was further explored by analyzing the statistical maps submitted by the teams. The 

thresholded activation maps were highly sparse (median number of activated voxels over teams 

ranged from 167 to 9,383 across hypotheses, out of 228,483 voxels in the MNI standard mask). 

Binary agreement between thresholded maps over all voxels was relatively high (median percent 

agreement ranged from 93% to 99% across hypotheses), largely reflecting agreement on which 

voxels were never active. However, when restricted only to voxels showing any activation over 

teams, overlap was very low (median similarity ranging from 0.00 to 0.06 across hypotheses). This 

may have reflected the substantial variability in the number of activated voxels found by each 

team; for every hypothesis, the number of voxels found as active ranged across teams from zero 
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to tens of thousands (Supplementary Table 5). Analysis of overlap between activated voxels was 

consistent with the variability in the reported hypothesis results, with most voxels in the 

thresholded maps showing inconsistent binary values. The maximum proportion of teams with 

activation in any single voxel for a given hypothesis was 0.77 (range 0.23 - 0.77; Figure 1). 

However, a coordinate-based meta-analysis using activation likelihood estimation (ALE) 16,17 

across teams, which imposes additional smoothing, demonstrated convergent patterns of activation 

for all hypotheses (Supplementary Figure 1). Altogether, analysis of the similarity between 

thresholded statistical images suggests that these maps are substantially diverse, but aggregating 

across analyses can yield more consistent results. 

Figure 1. Voxels overlap. Maps showing at each voxel the proportion of teams reporting 
significant activations in their thresholded statistical map, for each hypothesis (labeled H1 - 

H9), thresholded at 10% (i.e., voxels with no color were significant in fewer than 10% of teams).  
+/- refers to direction of effect, gain/loss refers to the effect being tested, and equal indifference 
(EI) / equal range (ER) refers to the group being examined or compared. Hypotheses #1 and #3, 

as well as hypotheses #2 and #4, share the same statistical maps as the hypotheses are for the 
same contrast and experimental group, but for different regions (see Table 1). Images can be 

viewed at https://identifiers.org/neurovault.collection:6047 

Variability of unthresholded statistical maps. Analysis of correlation between 

unthresholded Z-statistic maps across teams demonstrated that for each hypothesis, there was a 

H1 + H3: +gain, equal indifference

H2 + H4: +gain, equal range

H5: -loss, equal indifference

H6: -loss, equal range

H7: +loss, equal indifference

H8: +loss, equal range

H9: +loss, ER > EI
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large cluster of teams whose statistical maps were strongly positively correlated with one another 

(see Figure 2 for an example with hypothesis 1, and Supplementary Figures 2-7 for other 

hypotheses). Overall correlation (mean Spearman correlation) between pairs of unthresholded 

maps was moderate (mean correlation range 0.18 - 0.52 across hypotheses), with higher 

correlations within the main cluster of analysis teams (range 0.44 - 0.85 across hypotheses) (see 

Supplementary Table 6). Correlations between the unthresholded maps were further assessed by 

modeling the median Spearman correlation of each team with the average pattern across teams as 

a function of analysis method using linear regression. Estimated spatial smoothness of the 

statistical images (averaged across hypotheses) was significantly associated with correlation with 

the mean pattern (p = 0.023, delta r² = 0.07), as was the use of movement modeling (p = 0.021, 

delta r² = 0.08).   

Variability across unthresholded statistical maps was assessed by computing the between-

teams variability using an equivalent of the tau-squared statistic commonly used to assess 

heterogeneity in meta-analysis; in the case where all results are equivalent, this statistic should 

take a value approaching zero. Median tau across teams was well above one (range across 

hypotheses: 1.13-1.85), and visualization of voxelwise tau maps (Supplementary Figure 8) showed 

much higher variability in activated regions, with some voxels showing values greater than 5. As 

a point of comparison, the sampling variability of T-scores over different datasets always has a 

standard deviation of at least 1.0, and thus it is notable that inter-team variability on the same 

dataset is often substantially larger.  

For Hypotheses #1 and #3, there was also a subset of seven teams whose unthresholded 

maps were anticorrelated with those of the main cluster of teams. A comparison of the average 

map for the anticorrelated cluster for Hypotheses #1 and #3 confirmed that this map was highly 

correlated (r = 0.87) with the overall task activation map (averaged across the relevant group for 

these hypotheses) as reported in the NARPS Data Descriptor11. Further analysis of the model 

specifications for the six teams with available modeling details showed that four of them appeared 

to use models that did not properly separate the parametric effect of gain from overall task 

activation; because of the general anticorrelation of value system activations with task 

activations18, this model mis-specification led to an anticorrelation with the parametric effects of 

gain. In the other two cases, the model included multiple regressors that were correlated with the 

gain parameter, which drastically modified the interpretation of the primary gains regressor.  
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Figure 2. Analytic variability in whole-brain statistical results for Hypothesis 1. Top panel: 

Spearman correlation values between whole-brain unthresholded statistical values for each team 
were computed and clustered according to their similarity (using Ward clustering on Euclidean 

distances). Row colors (left) denote cluster membership, while column colors (top) represent 
hypothesis decisions (green: Yes, red: No). Brackets represent clustering. Bottom panel: 

Average statistical maps (thresholded at uncorrected z > 2.0) for each of the three clusters 
depicted in panel A. The probability of reporting a positive hypothesis outcome is presented for 

each cluster.  Images can be viewed at https://identifiers.org/neurovault.collection:6048. 

H1 - cluster 1 (pYes = 0.38)

H1 - cluster 2 (pYes = 0.29)

H1 - cluster 3 (pYes = 0.14)
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The apparent discrepancy between overall correlations of unthresholded maps and 

divergence of reported binary results (even within the highly correlated main cluster) suggested 

that the variability in regional hypothesis test results might be due to procedures related to 

statistical correction for multiple comparisons and anatomical specification of the region of 

interest. To further assess this, we applied a consistent thresholding and correction method and 

anatomical region specification on the unthresholded maps across all teams for each hypothesis. 

This analysis showed that even using a correction method known to be liberal and a standard 

anatomical definition for all regions, the degree of variability across results was qualitatively 

similar to that of the reported hypothesis decisions (Supplementary Table 7 and Supplementary 

Figure 9). 

Meta-analytic approaches that aggregate information across analyses are one potential 

solution to the issue of analytic variability. We assessed the consistency across teams using an 

image-based meta-analysis (accounting for correlations due to common data), which demonstrated 

significant active voxels for all hypotheses except for #9 after false discovery rate correction (see 

Supplementary Figure 10) and confirmatory evidence for Hypotheses 2, 4, 5, and 6. These results 

confirmed the coordinate-based meta-analysis reported above (Supplementary Figure 1) in 

showing that relatively inconsistent results at the individual team level underlie consistent results 

when the team’s results are combined. 

 

Prediction markets 

The second aim of NARPS was to test whether peers in the field could predict the results 

obtained in aggregate by the analysis teams using prediction markets. Prediction markets are 

assumed to aggregate private information distributed among traders, and can generate and 

disseminate a consensus among market participants. Hanson19 first suggested that prediction 

markets could be a potentially important tool for assessing scientific hypotheses. Recent studies 

that used prediction markets to predict the replicability of experimental results in the social 

sciences have yielded promising results5–7,20. Predictions revealed by market prices were correlated 

with actual replication outcomes, although with a tendency towards overestimating the 

replicability of findings in several studies5–7,20.  

In NARPS, we ran two separate prediction markets: one involving members from the 

analysis teams (“team members” prediction market) and an additional independent market for 
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researchers in the field who had not participated in the analysis (“non-team members” prediction 

market). The prediction markets were open for 10 consecutive days approximately 1.5 months 

after all analysis teams had submitted their results (which were kept private and confidential). On 

each market, traders were endowed with tokens worth $50 and traded via an online market platform 

on the main outcome measures of the fMRI analyses, i.e., the fraction of teams reporting a 

significant result for each hypothesis. The prediction market prices serve as measures of the 

aggregate beliefs of traders for the fraction of teams reporting a significant result for each 

hypothesis. Overall, n = 65 traders actively traded in the “non-team members” prediction market 

and n = 83 traders actively traded in the “team members” prediction market. After the prediction 

markets closed, traders were paid based on their performance in the markets. The analysis of the 

prediction markets was pre-registered on OSF (https://osf.io/59ksz/). Note that since most of the 

analyses were performed on the final market prices (i.e., the markets’ predictions), for which there 

is one value per hypothesis per market, the number of observations for each set of prediction 

markets was low (N = 9), leading to very limited statistical power. Therefore, the results should be 

interpreted cautiously. 

The predictions (i.e., the final market prices) ranged from 0.073 to 0.952 (m = 0.599, sd = 

0.325) in the “team members” prediction market and from 0.476 to 0.882 (m = 0.690, sd = 0.137) 

in the “non-team members” prediction market. Except for the prediction of a single hypothesis 

(Hypothesis #7) in the “team members” set of markets, all predictions were outside the 95% 

confidence intervals of the fundamental values (i.e. the proportion of teams reporting a significant 

result for each hypothesis; see Figure 3 and Supplementary Table 8 for details).  

For the “team members” prediction market, the Spearman (rank-order) correlation between 

final market’s predictions and fundamental values was 0.962 (p < 0.001, n = 9). The Spearman 

correlation between the market’s predictions in the “non-team members” set of markets and the 

fundamental values was 0.553 (p = 0.122, n = 9). The Spearman correlation coefficient between 

the market’s predictions in the “team members” and “non-team members” set of markets was 

0.500, but it was not statistically significant (p = 0.170, n = 9). Wilcoxon signed-rank tests suggest 

that both “team members” and “non-team members” systematically overestimated the actual 

fraction of analysis teams reporting significant results for the ex-ante hypotheses (“team 

members”: z = 2.886, p = 0.004, n = 9; “non-team members”: z = 2.660, p = 0.008, n = 9). The 

mean absolute error was 0.323 (sd = 0.203, min = 0.016, max = 0.539) for “team members” and 
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0.449 (sd = 0.146, min = 0.157, max = 0.652) for “non-team members”. The result in the “team 

members” prediction market was not driven by over-representation of teams reporting significant 

results (see Supplementary Materials: Supplementary Figure 11 and Prediction markets 

results/exploratory analyses). Market’s predictions in the “team members” prediction market did 

not significantly differ from those of the “non-team members” prediction markets (Wilcoxon 

signed-rank test, z = 1.035, p = 0.301, n = 9), but as mentioned above, the statistical power for this 

test was limited. Team members generally traded in the direction consistent with their own team’s 

results (Supplementary Table 9), which may explain why the collective market’s predictions were 

more accurate than those of non-team members (see Figure 3). For additional results of the 

prediction markets see Supplementary Materials. 

Figure 3: Prediction market beliefs. The figure depicts final market prices (i.e., aggregated 
market beliefs) for the “team members” (blue dots) and the “non-team members” (green dots) 

prediction markets as well as the observed fraction of teams reporting significant results, i.e., the 
fundamental value (pink dots), and the corresponding 95% confidence intervals for each of the 

nine hypotheses. Confidence intervals were constructed by assuming convergence of the 
binomial distribution towards the normal. 
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Discussion  

The analysis of a single functional neuroimaging dataset by 70 independent analysis teams 

revealed substantial variability in reported binary results, with high levels of disagreement across 

teams of their outcomes on a majority of tested pre-defined hypotheses. Each team used a different 

analysis pipeline. For Hypotheses 7-9 with the lowest rate of endorsement one could still find four 

different analysis pipelines used in practice by research groups in the field that resulted in a 

significant outcome, and for other hypotheses that number was even greater.  As nearly every paper 

in many scientific disciplines (including neuroimaging) currently publishes results based on null 

hypothesis significance testing (NHST), our findings highlight the fact that it is hard to estimate 

the reproducibility of single studies that are performed using one single analysis pipeline. 

Importantly, analyses of the underlying statistical parametric maps on which the inferences were 

based revealed greater consistency than expected from the reported inferences, with significant 

consensus in activated regions across groups via two different meta-analytic approaches. As shown 

in Figure 2, teams with highly correlated underlying statistical maps nonetheless reported highly 

divergent hypothesis outcomes. Detailed analysis of the workflow descriptions and statistical 

results submitted by the analysis teams identified several common analytic variables that were 

related to differential reporting of significant outcomes, including the spatial smoothness of the 

data (which is the result of multiple factors in addition to the applied smoothing kernel), and 

choices of analysis software and correction method. In addition, we identified model specification 

errors for several analysis teams leading to statistical maps that were anticorrelated with the 

majority of teams. Prediction markets demonstrated that researchers generally overestimated the 

likelihood of significant results across hypotheses, even those who had analyzed the data 

themselves, reflecting substantial optimism bias by researchers in the field. 

Given the substantial amount of analytic variability we found to be present in practice, 

leading to substantial variability of reported hypothesis results with the same data, we believe that 

steps need to be taken to improve the reproducibility of data analysis outcomes. First, as a practical 

immediate step in the field of neuroimaging we suggest that unthresholded statistical maps should 

be shared as a standard practice alongside thresholded statistical maps using tools such as 

NeuroVault 15. In the long run, the shared maps will allow the use of image-based meta-analysis, 

which we found to provide robust results across laboratories. Second, the use of pre-registration 21 

or registered reports 22 can minimize researchers’ degrees of freedom and their effect on 
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neuroimaging results. Finally, publicly sharing data and analysis code should become common 

practice, to enable others to run their own analysis with the same data or validate the code used. 

These good practices would not prevent analytic variability as demonstrated here, but would 

ensure that analysis variables were not selected in a data-dependent manner. All of the data and 

code for this study are publicly available with a fully reproducible execution environment for all 

figures and results. We believe that this can serve as an example for future studies. 

 Foremost, we propose that complex datasets should be analyzed using multiple analysis 

pipelines, preferably by more than one researcher, who would be blinded to the hypotheses of 

interest23 and to the results obtained using other pipelines. Achieving such “multiverse analysis”24 

at scale will require the development of fully automated configurable statistical analysis tools 

(e.g.25) that can run a broad range of reasonable pipelines and assess their convergence. Different 

versions of such “multiverse” analysis have been suggested in other fields26,27, but are not widely 

used. Analysis pipelines should also be validated using simulated data in order to assess their 

validity with regard to ground truth (as done in the present study for the code used to analyze the 

variability across teams), and assessed for their effects on predictions with new data 28. The present 

investigation was limited to the analysis of a single functional neuroimaging dataset, but it seems 

highly likely that similar variability will be present for fields of research where the data are high-

dimensional and the analysis workflows are complex and varied. Our findings add new urgency to 

similar ecologically valid assessments of analytic variability in those fields as well (for additional 

discussion see Supplementary Discussion). 

Methods 

fMRI dataset 

In order to test the variability of neuroimaging results across analysis pipelines used in 

practice in research laboratories, we distributed a single fMRI dataset to independent analysis 

groups from around the world, requesting them to test nine pre-defined hypotheses. The full dataset 

is publicly available on OpenNeuro (DOI: 10.18112/openneuro.ds001734.v1.0.4) and is described 

in details in a Data Descriptor11. 

Shortly, the fMRI dataset consisted of data from 108 participants performing a mixed 

gamble task, a task often used to study decision-making under risk. In this task, participants are 

asked on each trial to accept or reject a presented prospect. The prospects consist of an equal 50% 

.CC-BY-NC-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/843193doi: bioRxiv preprint 

https://doi.org/10.1101/843193
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

chance of either gaining a given amount of money or losing another, similar or different, amount 

of money. Participants were divided into two groups: in the “equal indifference” group (N = 54), 

the potential losses were half the size of the potential gains8 (reflecting the “loss aversion” 

phenomenon, where people tend to be more sensitive to losses compared to equal-sized gains29); 

in the “equal range” group (N = 54), the potential losses and the potential gains were taken from 

the same scale9,10. The two groups were used to resolve inconsistencies of previous results. 

The dataset was distributed to the teams via Globus (https://www.globus.org/). The 

distributed dataset included raw data of 108 participants (N = 54 for each experimental group), as 

well as the same data after preprocessing with fMRIprep version 1.1.4 [RRID:SCR_016216]13. 

The fMRIprep preprocessing mainly included brain extraction, spatial normalization, surface 

reconstruction, head motion estimation and susceptibility distortion correction. Both the raw and 

the preprocessed datasets underwent quality assurance (described in detail in the Data 

Descriptor11). 

Pre-defined hypotheses 

Previous studies with the mixed gamble task suggested that activity in the vmPFC and 

ventral striatum, among other brain regions, is related to the magnitude of the potential gain8. A 

fundamental open question in the field of decision-making under risk is whether the same brain 

regions also code the magnitude of the potential loss (through negative activation), or rather 

potential losses are coded by regions related to negative emotions, such as the amygdala 8–10. The 

specific hypotheses included in NARPS were chosen to address this open question, using two 

different designs that were used in those previous studies (i.e., equal indifference versus equal 

range). Each analysis team tested nine pre-defined hypotheses (see Table 1). Each hypothesis 

predicted fMRI activation in a specific brain region, in relation to a specific aspect of the task (gain 

/ loss amount) and a specific group (equal indifference / equal range, or a comparison between the 

two groups). Therefore, for each hypothesis, the maximal sample size was 54 participants 

(Hypotheses #1-8) or 54 participants per group in the group comparison (Hypothesis #9). Although 

the hypotheses referred to specific brain regions, analysis teams were instructed to report their 

results based on a whole-brain analysis (and not on a region of interest based analysis, as 

sometimes used in fMRI studies). 
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Analysis teams recruitment and instructions 

 We recruited analysis teams via social media, mainly Twitter and Facebook, as well as 

during the 2018 annual meeting of The Society for Neuroeconomics. Ninety-seven teams 

registered to participate in the study. Each team consisted of up to three members. To ensure 

independent analyses across teams, and to prevent influencing the subsequent prediction markets, 

all team members signed an electronic nondisclosure agreement that they would not release, 

publicize, or discuss their results with anyone until the end of the study. All team members of 82 

teams signed the nondisclosure form. They were offered co-authorship on the present publication 

in return for their participation. 

 Analysis teams were provided with access to the full dataset. They were asked to freely 

analyze the data with their usual analysis pipeline to test the nine hypotheses and report a binary 

decision for each hypothesis on whether it was significantly supported based on a whole-brain 

analysis. While the hypotheses were region specific, we clearly requested a whole-brain analysis 

result to avoid the need of teams to create and share masks of regions. Each team also filled in a 

full report of the analysis methods used (following COBIDAS guidelines 14) and created a 

collection on NeuroVault 15 [RRID:SCR_003806] with one unthresholded and one thresholded 

statistical maps for each hypothesis, on which their decisions were based (teams could optionally 

include additional maps in their collection). For each result (i.e., the binary decision on whether a 

given hypothesis was supported by the data or not), teams further reported how confident they 

were in this result and how similar they thought their result was to the results of the other teams 

(each measure was an integer between 1 [not at all] to 10 [extremely]). These measures are 

presented in Table 1 and Supplementary Table 1. In order to measure variability of results in an 

ecological manner, instructions to the analysis teams were minimized and the teams were asked to 

perform the analysis as they usually do in their own laboratory and to report the binary decision 

based on their own criteria. 

Seventy of the 82 teams submitted their results and reports by the final deadline (March 

15th, 2019). The dataset, as well as all reports and collections, were kept private until the end of 

the study and closure of the prediction markets. In order to avoid identification of the teams, each 

team was provided with a unique random 4-character team ID. 

Overall, 180 participants were part of NARPS analysis teams. Participating teams were 

located in 17 countries/regions around the world: Australia (3 participants), Austria (3), Belgium 
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(9), Brazil (3), Canada (16), China (2), Finland (1), France (4), Germany (21), Italy (13), the 

Netherlands (8), Spain (4), Sweden (4), Switzerland (3), Taiwan (3), UK (7) and the USA (76). 

Out of 70 analysis teams, five teams consisted of one member, 20 teams consisted of two members 

and 45 teams consisted of three members. Out of the 180 team members, there were 62 principal 

investigators (PIs), 43 post-doctoral fellows, 53 graduate students and 22 members from other 

positions (e.g. data scientists or research analysts). 

Data and code availability 

Code for all analyses of the reports and statistical maps submitted by the teams is openly 

shared in GitHub (https://github.com/poldrack/narps). Image analysis code was implemented 

within a Docker container, with software versions pinned for reproducible execution 

(https://cloud.docker.com/repository/docker/poldrack/narps-analysis). Python code was 

automatically tested for quality using the flake8 static analysis tool and the codacy.com code 

quality assessment tool, and the results of the image analysis workflow were validated using 

simulated data. Imaging analysis code was independently reviewed by an expert who was not 

involved in writing the original code. Prediction market analyses were performed using R v3.6.1; 

packages were installed using the checkpoint package, which reproducibly installs all package 

versions as of a specified date (8/13/2019). Analyses reported in this manuscript were performed 

using code release v1.0.1 (DOI: 10.5281/zenodo.3528171).  

Reviewers may obtain anonymous access to the data and run the full image analysis stream 

by following the directions at: 

https://github.com/poldrack/narps/tree/master/ImageAnalyses.  

Access to the raw data requires specifying a URL for the dataset, which is: 

https://zenodo.org/record/3528329/files/narps_origdata_1.0.tgz  

Results (automatically generated figures, results, and output logs) for imaging analyses are 

available for anonymous download at DOI:10.5281/zenodo.3528320.   

Although not required to, several analysis teams also publicly shared their analysis code. 

Supplementary Table 10 includes these teams along with the link to their code. 

Factors related to analytic variability 

In order to explore the factors related to the variability in results across teams, the reports 

of all teams were manually annotated to create a table describing the methods used by each team. 

.CC-BY-NC-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/843193doi: bioRxiv preprint 

https://doi.org/10.1101/843193
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

We performed exploratory analysis of the relation between the reported hypothesis outcomes and 

several analytic choices and image features using mixed effects logistic regression models 

implemented in R, with the lme4 package 30. The factors included in the model were: Hypothesis 

number, estimated smoothness (based on FSL’s smoothest function), use of standardized 

preprocessing, software package, method of correction for multiple comparisons and modeling of 

head movement. The teams were modeled as a random effect. One team submitted results that 

were not based on a whole brain analysis as requested, and therefore their data were excluded from 

all analyses. 

In addition, we performed exploratory analyses to explore the variability across statistical 

maps submitted by the teams. The unthresholded and thresholded statistical maps of all teams were 

resampled to common space (FSL MNI space, 91x109x91, 2mm isotropic) using nilearn31 

[RRID:SCR_001362]. For unthresholded maps, we used 3rd order spline interpolation; for 

thresholded maps, we used linear interpolation and then thresholded at 0.5, to prevent artifacts that 

appeared when using nearest neighbor interpolation. Of the 69 teams included in the analyses, 

unthresholded maps of five teams and thresholded maps of four teams were excluded from the 

image-based analyses (see Supplementary Table 3 for details). Since some of the hypotheses 

reflected negative activations, which can be represented by either positive or negative values in 

the statistical maps, depending on the model used, we asked the teams to report the direction of 

the values in their maps for the relevant hypotheses (#5, #6, and #9). Unthresholded maps were 

corrected to address sign flips for reversed contrasts as reported by the analysis teams. In addition, 

t values were converted to z values with Hughett's transform32. All subsequent analyses of the 

unthresholded maps were performed only on voxels that contained non-zero data for all teams 

(range across hypotheses: 111062 - 145521 voxels). 

We assessed the agreement between thresholded statistical maps using percent agreement, 

i.e. the percent of voxels that have the same binary value. Because the thresholded maps are very 

sparse, these values are necessarily high when computed across all voxels. Therefore, we also 

computed the agreement between pairs of statistical maps only for voxels that were nonzero for at 

least one member of each pair. To further test the agreement across teams, we performed a 

coordinate-based meta-analysis with activation likelihood estimation (ALE) 16,17. This analysis 

was performed with the NIMARE software package [RRID:SCR_017398] using peak locations 
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identified from thresholded maps for each team. Correction for multiple tests was applied using 

false discovery rate at the 5% threshold33. 

We further computed the correlation between the unthresholded images of the 64 teams. 

The correlation matrices were clustered using Ward clustering; the number of clusters was set to 

three for all hypotheses based on visual examination of the dendrograms. A separate mean 

statistical map was then created for the teams in each cluster (see Figure 2 and Supplementary 

Figures 2-7). Drivers of map similarity were further assessed by modeling the median correlation 

distance of each team from the average pattern as a function of several analysis decisions (e.g. 

smoothing, whether or not the data preprocessed with fMRIprep were used, etc.).  

To assess the impact of variability in thresholding methods and anatomical definitions 

across teams, unthresholded Z maps for each team were thresholded using a common approach.  Z 

maps for each team were translated to p-values, which were then thresholded using two 

approaches: a heuristic correction (known to be liberal34), and a voxelwise false discovery rate 

correction. Note that it was not possible to compute the commonly-used familywise error 

correction using Gaussian random field theory because residual smoothness was not available for 

each team. We then identified whether there were any suprathreshold voxels within the appropriate 

anatomical region of interest for each hypothesis. The regions of interest for the ventral striatum 

and amygdala were defined anatomically based on the Harvard-Oxford anatomical atlas. Since 

there is no anatomical definition for the ventromedial prefrontal cortex, we defined the region 

using a conjunction of anatomical regions (including all anatomical regions in the Harvard-Oxford 

atlas that overlap with the ventromedial portion of the prefrontal cortex) and a meta-analytic map 

obtained from neurosynth.org35 for the search term “ventromedial prefrontal”. 

An image-based meta-analysis was used to quantify the evidence for each hypothesis 

across analysis teams (see Supplementary Figure 10), accounting for the lack of independence due 

to the use of a common dataset across teams. While there are different meta-analysis-inspired 

approaches that could be taken (e.g. a random effects meta-analysis that penalizes for inter-team 

variation), we sought an approach that would preserve the typical characteristics of the teams’ 

maps. In particular, the meta-analytic statistical map is based on the mean of teams’ statistical 

maps, but is shifted and scaled by global factors so that the mean and variance are equal to the 

original image-wise means and variances averaged over teams. Under a complete null hypothesis 

of no signal anywhere for every team and every voxel, the resulting map can be expected to 
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produce nominal standard normal z-scores, and in the presence of signal will reflect a consensus 

of the different results.  

The coordinate-based meta-analysis method is as follows. Let N be the number of teams, 

μ be the (scalar) mean over space of each team’s map, averaged over teams, σ2 likewise the spatial 

variance averaged over teams, and let Q be the N⨉N correlation matrix, computed using all voxels 

in the statistical map. Then let Zik be the z-value for voxel i and team k, and Mi the mean of those 

N z-values at voxel i. The variance of Mi is σ21⊤Q1/N2, where 1 is a N-vector of ones. We center 

and standardize Mi, and then rescale and shift to produce a meta-analytic Z-map with mean μ and 

variance σ2: 

Zi = (Mi − μ)/√(σ2 1⊤Q1/N2) ⨉ σ + μ. 

Voxelwise correction for false discovery rate (5% level) was performed using the two-stage linear 

step-up procedure 36. 

 The random-effects variance across teams was estimated using an analog to the tau-squared 

statistic used in meta-analysis. We used the following estimator to account for the interstudy 

correlation and provide an unbiased estimate of the between-team variance, 

𝜏$%= Yi’RYi / tr(RQ), 

where Yi is the vector of T statistics across teams at a given voxel i, Q is the correlation matrix 

across teams (pooling over all voxels), and R is the centering matrix (R = I - 11⊤/N); this is just 

the usual sample variance except N−1 is replaced by tr(RQ). 

Prediction markets 

The second main goal of the Neuroimaging Analysis Replication and Prediction Study 

(NARPS) was to test the degree to which researchers in the field can predict results, using 

prediction markets 5–7,37. We invited team members (researchers that were members of one of the 

analysis teams) and non-team members (researchers that were neither members of any of the 

analysis teams nor members of the NARPS research group) to participate in a prediction market 
5,38 to measure peer beliefs about the fraction of teams reporting significant whole-brain corrected 

results for each of the nine hypotheses. The prediction markets were conducted 1.5 months after 

all teams had submitted their analysis of the fMRI dataset. Thus, team members had information 

about the results of their specific team, but not about the results of any other team.  

Similar to previous studies5–7,20, participants in the prediction markets were provided with 

monetary endowments (100 Tokens, worth $50) and traded on the outcome of the hypotheses via 
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a dedicated online market platform (see Supplementary Figure 12). Each hypothesis constitutes 

one asset in the market, with asset prices predicting the fraction of teams reporting significant 

whole-brain corrected results for the corresponding ex-ante hypothesis examined by the analysis 

teams using the same dataset. Trading on the prediction markets was incentivized, i.e., traders were 

paid based on their performance in the markets. 

Recruitment. For the “non-team members” prediction market, we invited participants via 

social media (mainly Facebook and Twitter) and e-mails. The invitation contained a link to an 

online form on the NARPS website (www.narps.info) where participants could sign up using their 

email address. 

Participants for the “team members” prediction market were invited via email, after all 

teams submitted their results, directing them to an independent registration form (with identical 

form fields) to separate participants for the two prediction markets already at the time of 

registration. Note that team members initially were not aware that they would be invited to 

participate in a separate prediction market after they had analyzed the data. The decision to 

implement a second market, consisting of traders with partial information about the fundamental 

values (i.e., the team members) was made after the teams got access to the fMRI dataset. Thus, 

team members were only invited to participate in the market after all teams had submitted their 

analysis results. Once the registration for participating in the prediction markets had been closed, 

we reconciled the sign-ups with the list of team members to ensure that team members did not 

mistakenly end up in the “non-team members” prediction market and vice versa. 

In addition to their email addresses, which were used as the only key to match registrations, 

accounts in the market platform, and the teams’ analysis results, registrants were required to 

provide the following information during sign-up: (i) name, (ii) affiliation, (iii) position (PhD 

candidate, Post-doctoral researcher, Assistant Professor, Senior Lecturer, Associate Professor, Full 

Professor, Other), (iv) years since PhD, (v) gender, (vi) age, (vii) country of residence, (viii) self-

assessed expertise in neuroimaging (Likert scale ranging from 1 to 10), (ix) self-assessed expertise 

in decision sciences (Likert scale ranging from 1 to 10), (x) preferred mode of payment 

(Amazon.de voucher, Amazon.com voucher, PayPal payment), and (xi) whether they are a team 

member of any analysis team (yes / no). The invitations to participate in the prediction markets 

were first distributed on April 9, 2019; the registration closed on April 29, at 4pm UTC. Upon 

close of the registration, all participants received a personalized email containing a link to the web-
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based market software and their login-credentials. The prediction markets opened on May 2, 2019 

at 4pm UTC and closed on May 12, 2019 at 4pm UTC. 

Information available to participants. All participants had access to detailed information 

about the data collection, the experimental protocol, the ex-ante hypotheses, the instructions given 

to the analysis teams, references to related papers, and detailed instructions about the prediction 

markets via the NARPS website (www.narps.info).  

Implementation of prediction markets. To implement the prediction markets, we used a 

newly developed web-based framework dedicated for conducting continuous-time online market 

experiments, inspired by the trading platform in the Experimental Economics Replication Project 

(EERP7) and the Social Sciences Replication Project (SSRP6). Similar to these previous 

implementations, there were two main views on the platform: (i) the market overview and (ii) the 

trading interface. The market overview showed the nine assets (i.e., one corresponding to each 

hypothesis) in tabular format, including information on the (approximate) current price for buying 

a share and the number of shares held (separated for long and short positions) for each of the nine 

hypotheses. Via the trading interface, which was shown after clicking on any of the hypotheses, 

the participant could make investment decisions and view price developments for the particular 

asset (see Supplementary Figure 12). 

Note that initially, there was an error in the labelling of two assets (i.e., hypotheses) in the 

trading interface and the overview table of the web-based trading platform (the more detailed 

hypothesis description available via the info symbol on the right hand side of the overview table 

contained the correct information): Hypotheses 7 and 8 mistakenly referred to negative rather than 

positive effects of losses in the Amygdala. One of the participants informed us about the 

inconsistency between the information on the trading interface and the information provided on 

the website on May 6. The error was corrected immediately on the same day and all participants 

were informed about the mistake on our part via a personal email notification (on May 6, 2019, 

3:28pm UTC), pointing out explicitly which information was affected and asking them to double-

check their holdings in the two assets to make sure that they are invested in the intended direction. 

Trading and market pricing. In both prediction markets, traders were endowed with 100 

Tokens (the experimental currency unit). Once the markets opened, these Tokens could be used to 

trade shares in the assets (i.e., hypotheses). Unlike prediction markets on binary outcomes (e.g., 

the outcomes of replications as in previous studies6,7), for which market prices were typically 
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interpreted as the predicted probability of the outcome to occur 39(though see40 and41 for caveats), 

the prediction markets accompanying the team analyses in the current study were implemented in 

terms of vote-share-markets. Hence, the prediction market prices serve as measures of the 

aggregate beliefs of traders for the fraction of teams reporting that the hypotheses were supported 

and can fluctuate between 0 (no team reported a significant result) and 1 (all teams reported a 

significant result). 

Prices were determined by an automated market maker implementing a logarithmic market 

scoring rule42. At the beginning of the markets, all assets were valued at a price of 0.50 Tokens per 

share. The market maker calculated the price of a share for each infinitesimal transaction and 

updated the price based on the scoring rule. This ensured both that trades were always possible 

even when there was no other participant with whom to trade and that participants had incentives 

to invest according to their beliefs43. The logarithmic scoring rule uses the net sales (shares held - 

shares borrowed) the market maker has done so far in a market to determine the price for an 

infinitesimal trade as 𝑝	 = 	 𝑒*/,	/	(𝑒*/, 	+ 	1). The parameter b determines the liquidity provided 

by the market maker and controls how strongly the market price is affected by a trade. We set the 

liquidity parameter to b = 100, implying that by investing 10 Tokens, traders could move the price 

of a single asset from 0.50 to about 0.55.  

Investment decisions for a particular hypothesis were made from the market’s trading 

interface. In the trading overview, participants could see the (approximate) price of a new share, 

the number of shares they currently held (separated for long and short positions), and the number 

of Tokens their current position was worth if they liquidated their shares. The trading page also 

contained a graph depicting previous price developments. To make an adjustment to their current 

position, participants could choose either to increase or decrease their position by a number of 

Tokens of their choice. Supplementary Figure 12 depicts screenshots of the web-based software 

implementation. The trading procedures and market pricing are described in more detail in 

Camerer et al.7. 

Incentivization. Once the markets had been closed, the true “fundamental value” (FV) for 

each asset (i.e., the fraction of teams that reported a significant result for the particular hypothesis) 

was determined and gains and losses were calculated as follows: If holdings in a particular asset 

were positive (i.e., the trader acted as a net buyer), the payout was calculated as the fraction of 

analysis teams reporting a significant result for the associated hypothesis multiplied by the number 
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of shares held in the particular asset; If a trader’s holdings were negative (i.e., the trader acted as 

a net seller), the (absolute) amount of shares held was valued at the price differential between 1 

and the fraction of teams reporting a significant result for the associated hypothesis. 

Any Tokens that had not been invested into shares when the market closed were voided. 

Any Tokens awarded as a result of holding shares were converted to USD at a rate of 1 Token = 

$0.5. The final payments were transferred to participants during the months May to September 

2019 in form of Amazon.com giftcards, Amazon.de giftcards, or PayPal payments, depending on 

the preferred mode of payment indicated by the participants upon registration for participating in 

the prediction markets. 

Participants. In total, 96 “team members” and 91 “non-team members” signed up to 

participate in the prediction markets. N = 83 “team members” and N = 65 “non-team members” 

actively participated in the markets. The number of traders active in each of the assets (i.e., 

hypotheses) ranged from 46 to 76 (m = 56.4, sd = 8.9) in the “team members” set of markets and 

from 35 to 58 (m = 47.1, sd = 7.9) in the “non-team members” set of markets. See Supplementary 

Table 11 for data about trading volume on the prediction markets. 

Of the participants, 10.2% did not work in academia (but hold a PhD), 34.2% were PhD 

students, 43.3% were post-docs or assistant professors, 7.5% were lecturers or associate professors, 

and 4.8% were full professors. 27.8% of the participants were female. The average time spent in 

academia after obtaining the PhD was 4.1 years. The majority of the participants resided in Europe 

(46.3%) and North America (46.3%). 

Pre-Registration. All analyses of the prediction markets data reported were pre-registered 

at https://osf.io/pqeb6/. The pre-registration was completed after the markets opened, but before 

the markets closed. Only one member of the NARPS research group, Felix Holzmeister, had any 

information about the prediction market prices before the markets closed (as he monitored the 

prediction markets). He was not involved in writing the pre-registration. Only two members of the 

NARPS research group, Rotem Botvinik-Nezer and Tom Schonberg, had any information about 

the results reported by the 70 analyses teams before the prediction markets closed. Neither of them 

were involved in writing the pre-registration either.  

For additional details on the prediction markets, see the Supplementary Materials.  
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