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Abstract

Problems in Network Modeling: Estimating Edges and Community Detection

by

Ying Xiang Wang

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Haiyan Huang, Co-chair

Professor Peter J. Bickel, Co-chair

Networks pervade many disciplines of science as a way of analyzing complex systems
with interacting components. The problem of network modeling is often two-fold. First, the
relationships between pairs of nodes, if not directly observed, have to be estimated from data.
Based on the estimated (or given) network topology, various statistical and computational
tools can then be applied to extract interesting patterns such as the presence of communities.
In this thesis we explore studies related to both parts of the problem.

We first discuss two studies in the context of gene regulatory networks, where the goal is
to infer gene interactions using expression data. With the advent of high-throughput tech-
nologies making large-scale gene expression data readily available, developing appropriate
computational tools to infer gene interactions has been a major challenge in systems biology.
The two studies differ in their considerations of how genes behave across the given samples.
The first method applies to the case of large heterogenous samples, where the patterns of
gene association may change or only exist in a subset of all the samples. We propose two
new gene coexpression statistics based on counting local patterns of gene expression ranks
to take into account the potentially diverse nature of gene interactions. In particular, one of
our statistics is designed for time-course data with local dependence structures, such as time
series coupled over a subregion of the time domain. We provide asymptotic analysis of their
distributions and power, and evaluate their performance against a wide range of existing
coexpression measures on simulated and real data. Our new statistics are fast to compute,
robust against outliers, and show comparable if not better general performance.

In comparison, the second study goes beyond pairwise gene relationships to higher level
group interactions, but requiring similar gene behaviors across all the samples. We introduce
a new method for estimating group interactions using sparse canonical correlation analysis
(SCCA) coupled with repeated random partition and subsampling of the gene expression
dataset. By considering different subsets of genes and ways of grouping them, our inter-
action measure can be viewed as an aggregated estimate of partial correlations of different
orders. Our approach is unique in evaluating conditional dependencies when the correct
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dependent sets are unknown or only partially known. As a result, a gene network can be
constructed using the interaction measures as edge weights and gene functional groups can
be inferred as tightly connected communities from the network. Comparisons with several
popular approaches using simulated and real data show our procedure improves both the
statistical significance and biological interpretability of the results. In addition to achieving
considerably lower false positive rates, our procedure shows better performance in detecting
important biological pathways.

Moving onto general networks, we then discuss model selection for the stochastic block
model (SBM), which is a popular tool for community detection. We consider an approach
based on the log likelihood ratio statistic and analyze its asymptotic properties under model
misspecification. We show the limiting distribution of the statistic in the case of underfitting
is normal and obtain its convergence rate in the case of overfitting. These conclusions remain
valid in the regime where the average degree grows at a polylog rate. The results enable
us to derive the correct order of the penalty term for model complexity and arrive at a
likelihood-based model selection criterion that is asymptotically consistent. In practice, the
likelihood function can be estimated by more computationally efficient variational methods,
allowing the criterion to be applied to moderately large networks.
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Chapter 1

Introduction

Network modeling has attracted increasing research attention in the past few decades as the
amount of data on complex systems accumulates at an unprecedented rate. Many complex
systems in science and nature consist of interacting individual components which can be
represented as nodes with connecting edges in a network. Network modeling has found
numerous applications in the studies of friendship networks in sociology, the Internet and
the World Wide Web in information technology, predator-prey interactions in ecology, and
protein-protein interactions, gene regulatory networks and many other biochemical networks
in biology. More examples of networks and their basic properties can be found in [68].

Close examinations of these networks can reveal important knowledge about the nature
of the individual nodes, their connections, and most crucially, interesting connection patterns
such as communities, where groups of nodes exhibit high internal connectivity. Community
structure provides a natural division of the network into subunits with certain traits. In social
networks, they often arise based on people’s common interests and geographic location. The
World Wide Web forms communities or hubs based on the content of the web pages. In
gene networks, communities correspond to genes with related functional groupings, many of
which may operate in the same biological pathway.

The study of community structure relies on knowing the relationships between pairs
of nodes. In some cases, such as social networks, this type of data is directly observable
using online social network services. Also, the availability of fast web search algorithms
means probing web links is relatively inexpensive. However, in many other cases, especially
biochemical networks, direct observation of protein or gene relationships by experimental
approaches is cost-prohibitive given that the typical size of the networks is in the tens of
thousands. The amount of proteins present or the expression level of genes, on the other
hand, is easier to measure and can be regarded as sets of covariates associated with the nodes.
Therefore the analysis of this type of networks is essentially a two-fold problem. First, a
network of relations needs to be learned using the covariates associated with each node. Only
then one can apply community detection methods to identify tightly knit clusters. In this
thesis, we investigate this composite problem. We first present two studies in Chapters 2
and 3 in the context of gene regulatory networks, where the goal is to infer gene interactions
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using expression data. Moving onto general networks, we then discuss the problem of model
selection for the stochastic block model (SBM), which is a popular tool for community
detection, in Chapter 4. The notations used will be chapter-specific.

Inferring gene networks using expression data

Rapid advances in genomic technology have generated an enormous wealth of data on which
mathematical and statistical tools can be applied to infer qualitative and quantitative re-
lationships between DNA, RNA, proteins and other cellular molecules. Such a process of
reconstructing biochemical networks using genomic data, also known as network inference
or reverse engineering, has helped to elucidate the nature of complex biological processes
and disease mechanisms in a variety of organisms, bringing us one step closer to understand-
ing how genetic blueprints combined with non-genetic, environmental factors influence the
characteristics of a living system.

At a high level, genes, proteins or other metabolites can be conceptualized as nodes and
their interactions as edges in a graph. In metabolic networks, reactions are represented as
directed edges pointing from reaction substrates to products. While metabolic networks tend
to focus on proteins or protein-complexes functioning as enzymes, general protein-protein
interaction (PPI) networks are undirected graphs where an edge indicates physical binding
between two proteins.

At a more fundamental level, understanding biological processes requires understand-
ing gene regulatory networks since all proteins are encoded by genes. In such a network,
transcription factors (TFs), RNA and other small molecules act as regulators to activate or
repress the expression levels of genes. Thus gene interactions can occur in the form of direct
physical binding of proteins (TFs) to their target sequences, but in a broader sense also in-
clude indirect interactions when the expression of a gene influence the expressions of others
with regulations caused by one or more intermediaries. Although experimental evidence can
be gathered to search for and verify gene interactions, computational tools utilizing gene
expression data offer a much more time and cost efficient way to reconstruct these networks.
In the past decade, good quality gene expression data have been made readily available in
the form of microarray or RNA-seq data.

Chapters 2 and 3 focus on the problem of reconstructing gene networks using expression
data. Gene expression data has the form of a matrix with p genes and their expression levels
measured under n experimental conditions. A typical feature of this type of data is their
high dimensionality with p much larger than n, posing many estimation and computation
challenges. Depending on the nature of the data given, we discuss two methods with different
modeling paradigms. The method in Chapter 2 applies to the case with reasonably large but
heterogeneous samples, where the patterns of gene association may change or only exist in
a subset of all the samples. We propose new gene coexpression statistics based on counting
local patterns of gene expression ranks to take into account the potentially diverse nature
of gene interactions. This Chapter is based on [100]. In Chapter 3, we discuss a method
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that goes beyond pairwise gene relationships to higher level group interactions, but requires
similar gene behaviors across all the samples. This Chapter is adapted from [101]. We provide
theoretical analyses for both methods and compare them to other popular approaches using
simulated and real data, thus demonstrate they lead to better general performance and
capture important biological features that are missed by the other methods.

Community structures in networks

One important feature of many of the aforementioned networks is the presence of com-
munities, where a number of nodes form a densely connected subgraph and have sparser
connections with the rest of the network. Community or module detection is of great impor-
tance in analyzing detailed architectures of networks. For example, in biochemical networks
identifying groups of molecules performing a specific cellular function is a key issue in sys-
tems biology. In a PPI network, highly connected nodes are often proteins interacting as
part of a complex or other functional modules, which are fundamental in cellular functions
and have been shown to play an important role in disease pathologies ([59, 86]). In gene
networks, genes modules are likely to have related biological functions or participate in the
same biological pathway.

Given communities can be considered as tightly connected subgraphs, numerous heuristic
algorithms have been proposed for community detection. For example, in the context of
gene networks, [10] developed CAST, an algorithm that constructs one cluster at a time by
adding and dropping genes iteratively according to a similarity measure. CLICK, proposed
by [84], assumes edge weights between all pairs of genes follow a mixture normal distribution
with a higher mean for within-cluster edges. The parameters and cluster memberships are
estimated using EM methods. This idea that nodes have different connectivities depending
on their cluster memberships is adopted in a more general random graph model known as
the stochastic block model (SBM).

The SBM, proposed by [38] in social science, is one of the simplest random graph models
incorporating community structures. It assigns each node a latent discrete block variable and
the connectivity levels between nodes are determined by their block memberships. SBMs
and the concept of communities as modularities have been applied in ([35, 40]) to recover
community structures in biochemical networks. However, this model sometimes oversimpli-
fies the structures of real networks, as we also demonstrate in an application in Chapter 3.
Other variants have been proposed, including the degree-corrected SBM [45] relaxing the
within-block degree homogeneity constraint and overlapping SBM [1] allowing a node to be
in multiple blocks. These models have been applied to model real networks in social science
and biology [1, 45].

One important advantage of a generative model is that it allows us to study the problem of
community modeling from a theoretical perspective. Much research effort has been devoted
to the problems of estimating the latent block memberships and model parameters of a SBM,
including modularity [69] and likelihood maximization [11, 4], variational methods [40, 54],
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spectral clustering [79, 30], belief propagation [24] to name but a few. The asymptotic
properties of some of these methods have also been studied [11, 79, 14, 12]. However, these
methods require knowing (or knowing at least a suitable range for) K, the number of blocks,
a priori. Less attention has been paid to the problem of selecting K.

For general networks this corresponds to the issue of determining the number of commu-
nities, which remains a challenging open problem. Recursive approaches have been adopted
to extract [114] or partition [13] one community sequentially, while using optimization strate-
gies or hypothesis testing to decide whether the process should be stopped at one stage. A
more general sequential test for comparing a fitted SBM against alternative models with
finer structures is proposed in [56]. Conceptually these approaches are more appealing for
networks with a hierarchical structure. In other cases, it would be more desirable to be
able to compare different community numbers directly. A few likelihood-based model selec-
tion criteria have been proposed [40, 54, 81]. From an information-theoretic perspective, [72]
proposed a criterion based on minimum length description. These approaches circumvent
the difficulty of analyzing the likelihood directly by using variational approximations or as-
suming the node labels are fixed and using plug-in estimates obtained from other inference
algorithms. Furthermore, the asymptotic studies of these criteria examining their large-
sample performance remain incomplete. Empirically, a network cross-validation method has
been investigated in [17]. Chapter 4 of thesis focuses on developing a likelihood-based model
selection criterion for SBM. Our approach is based on the log likelihood ratio statistic and
its asymptotic properties under model misspecification. We show the criterion is asymptoti-
cally consistent and valid for networks with average degrees growing at a polylog rate. This
Chapter is based on the manuscript [99].
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Chapter 2

Gene coexpression measures in large
heterogenous samples using count
statistics

2.1 Overview

As mentioned in Chapter 1, a major challenge in systems biology is the understanding of
the intricate interactions and functional relationships between genes and their regulation
targets. As advances in high-throughput technologies lead to the generation of enormous
amounts of genomic data, the last decade has witnessed a rapidly increasing effort to develop
computational tools to reconstruct gene relationships based on a wide range of “omic” data
available, in particular transcriptomic or expression data. Coexpression methods are one
of the earliest tools used for such a purpose. Appropriate statistical means assessing the
dependence between the expression levels (e.g. linear coexpression) of two genes provide
a way to identify their potential functional interaction. Coexpression analysis has been
routinely used for functional gene annotation ([117, 32]) and more importantly as a measure
of edge weights for reconstructing gene networks ([89, 112, 9, 111, 21]).

The problem of finding gene coexpression is closely related to that of detecting bivariate
association between two vectors. Since the work by [27], the Pearson correlation has been
adopted as the most widely used coexpression measure ([89, 107, 92]) for its straightforward
conceptual interpretation and computational efficiency. However, it is also known that the
Pearson correlation is unsuitable for capturing nonlinear relationships and susceptible to high
false discovery rates. Another class of coexpression methods is based on mutual information
(MI) ([91, 22, 9, 64]), which measures general statistical dependence rather than a specific
type of bivariate association. The computation of MI involves discretization of the data and
tuning parameters, and obtaining p-values requires computationally intensive permutation
tests. The practical benefits and shortcomings of MI compared to correlation based meth-
ods are still under investigation ([91, 22, 88]). More comparisons of different coexpression
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measures and the coexpression networks constructed can be found in [51] and [3].
In the broader statistical literature, other methods available for quantifying bivariate

associations include the Renyi correlation ([76]) measuring the correlation between two vari-
ables after suitable transformations; various regression based techniques ([88]); Hoeffding’s
D ([37]) and distance covariance (dCov, [93]) for general statistical dependence. These meth-
ods are not widely adopted in genomic applications yet. More recently, [77] proposed the
maximal information coefficient (MIC) as an extension of MI, but was shown to have inferior
power to dCov ([85]) and MI ([50]) in various simulated scenarios.

Most of the methods mentioned so far, perhaps with the exception of MIC, do not
specifically target dependence relationships that can be local in nature and often assume the
data are random samples from a common distribution in the theoretical analysis. However,
real gene interactions may change as the intrinsic cellular state varies or only exist under a
specific cellular condition. Furthermore, with data integration now being a routine approach
to combat the curse of dimensionality, samples from different experimental conditions or
tissue types are likely to prescribe different gene relationships and thus create more complex
situations for detecting gene interactions. For instance, a protein that positively regulates
expression in one context may act as a repressor in another (e.g., MECP2 ([15])), or a gene
may participate in either neural development or hematopoiesis depending on tissue type (e.g.
EBF1 ([66, 113])). One possible approach to discern local gene interactions is biclustering
([19, 62]), which simultaneously clusters the genes and samples in an expression matrix.
However, most biclustering techniques are restricted to detecting simple subclasses of linear
associations. On the algorithm side, the optimizations of most criteria for measuring the
quality of given biclusters can only be achieved locally and their global behaviors are hard
to characterize. Most algorithms also involve a number of tuning parameters with little
guidance on how to choose them.

Motivated by these observations, we propose two new coexpression measures based on
matching patterns of local expression ranks using count statistics. Our robust statistics
specifically take into account the local nature of gene associations while being general enough
to detect other common types of dependence relationships. In particular, one of our statistics
is designed for time-course data with local dependence structures, such as time series that
are coupled over a subregion of the time domain. This is a unique feature compared to other
popular coexpression measures. The statistics are fast to compute and we provide theoretical
analysis of their asymptotic properties. We demonstrate their applicability via comparisons
to a comprehensive list of existing methods on simulated and real data. Our new methods
show better precision, and have the important ability to detect subtle gene relationships that
are easily missed by other methods.

2.2 Definitions and asymptotic properties

For a heterogeneous set of samples with potentially changing gene interactions, we can define
a general coexpression measure by aggregating the interactions across all subsamples of size
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k ≤ n. For genes x and y with expression levels from n samples x = (x1, . . . , xn) and
y = (y1, . . . , yn), we consider

W =
∑

1≤i1<···<ik≤n

F (xi1 , . . . , xik ; yi1 , . . . , yik), (2.1)

where F (·; ·) is an interaction measure on local expression profiles (xi1 , . . . , xik) and (yi1 , . . . , yik)
from a set of k samples. We choose F (·; ·) to be an indicator function comparing the rank
patterns of the subsequences (xi1 , . . . , xik) and (yi1 , . . . , yik). Depending on the nature of the
expression data studied, we define two corresponding count statistics.

1. When dealing with time-course data, it is sensible to preserve the order of the samples
and consider only interactions within contiguous subsequences. Thus our first measure
W1 is defined as

W1 =
n−k+1∑
i=1

I (φ(xi, . . . , xi+k−1) = φ(yi, . . . , yi+k−1))

+ I (φ(xi, . . . , xi+k−1) = φ(−yi, . . . ,−yi+k−1)) , (2.2)

where I(·) is an indicator function and φ(·) is the rank function. That is, φ(·) returns
the indices of elements in the subvector after they have been sorted in an increasing
order within themselves. W1 counts the number of contiguous subsequences of length k
with matching and reverse rank patterns, indicating positive and negative associations
respectively.

2. When the order of the samples is not particularly meaningful (e.g. non time series
data), we consider a more general count that includes all subsequences of length k.
Define W2 as

W2 =
∑

1≤i1<···<ik≤n

I(φ(xi1 , . . . , xik) = φ(yi1 , . . . , yik))

+ I(φ(xi1 , . . . , xik) = φ(−yi1 , . . . ,−yik)) (2.3)

It is easy to see that W2 is equal to the number of increasing (and decreasing) sub-
sequences of length k in a suitably permuted sequence. Suppose σ is a permutation
that sorts the elements of y in an increasing order. Let z = σ(x) be that permutation
applied to x, W2 can be rewritten as

W2 =
∑

1≤i1<···<ik≤n

I(zi1 < · · · < zik) + I(zi1 > · · · > zik). (2.4)

Here we give a simple example of the two counts. Suppose x = (1, 3, 4, 2, 5), y =
(1, 4, 5, 2, 3), and we are interested in computing W1 and W2 counts for k = 3. For W1, there
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are three possible positions to start a contiguous subsequence of length 3, and only the ones
starting at position 1 and 2 have the same ranks in x and y. There are no pairs of contiguous
subsequences of length 3 with reverse ranks. Hence W1 = 2. To compute W2, first sort y in
an ascending order with permutation σ. Applying σ to x we have σ(x) = (1, 2, 5, 3, 4). The
total number of increasing subsequences of length 3 in σ(x) is 5, and there are no decreasing
subsequences of length 3. Hence W2 = 5.

Both counts are symmetric with respect to x and y and efficient to compute. As shown
in the following lemma, counting W1 has a running time of O(k(log k)n), while counting W2

takes O(kn log n) time using dynamic programing and binary indexed trees.

Lemma 2.2.1. Computing W1 and W2 takes O(k(log k)n) and O(kn log n) time respectively.

Proof. Computing W1 involves ranking and comparing the elements of vectors of length k
O(n) number of times, thus the running time is O(k(log k)n).

W2 counts the total number of subsequences of length k with matching or reverse rank
patterns. For any pair of subsequences with matching rank patterns, permuting the two
subsequences simultaneously to sort one of them in an increasing order will also sort the
other one in an increasing order. Using this observation, let σ be the permutation that sorts
y in an increasing order and z = σ(x) be that permutation applied to x. Then W2 is the
number of increasing (and decreasing) subsequences of length k in z. To compute W2, it
suffices to consider counting the increasing subsequences. One obvious solution is dynamic
programing. Let dp[i,l] be the number of increasing subsequences of length l ending at
position i, then the matrix dp[i,l] can be updated as follows.

Initialize dp[i,l] = 0; dp[i,1] = 1

for i = 2 to n

for j = 1 to i-1

if z[i] > z[j]

for l = 2 to k

dp[i,l] += dp[j,l-1]

The final answer is obtained by summing dp[i,k] over i. It is easy to see this has a running
time of O(kn2). Note that in the second loop the only entries involved in the update are
z[j] whose ranks are smaller than that of z[i]. Therefore by first ranking the elements
in z, a binary indexed tree structure can be implemented to perform the sum and update
efficiently, reducing the running time to O(kn log n) ([29]).

Asymptotic distributions

We can derive the asymptotic distributions of W1 and W2 for different regimes of k assuming
the following.

(I). The two sequences x and y are independent and have no ties.
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(II). At least one of x and y has an exchangeable distribution.

Note that (II) implies the ranks of the expression vector with an exchangeable distribution
is a random permutation of {1, 2, . . . , n}.

The Stein and Chen-Stein approximations ([90, 18]) give us the following two asymptotic
regimes for W1.

Theorem 2.2.2. For n→∞, k ≥ 3 and k/(log n)α → 0 for some α < 1,

T1 :=
W1 − µ1,n

σ1,n

D−→ N(0, 1), (2.5)

where µ1,n = 2(n− k + 1)/k!, σ2
1,n = Var(W1).

For n→∞, log n/k = O(1),
dTV (W1, Z)→ 0, (2.6)

where Z ∼ Poisson(µ1,n) and dTV is the total variation distance.

Throughout the rest of the Chapter C and Ci denote positive constants which may be
different at each appearance. Without loss of generality assume x satisfies the assumption
that it has an exchangeable distribution. Then the ranks of any subsequence of x can be
treated as a random permutation. Denote

I+
i = I(φ(xi, . . . , xi+k−1) = φ(yi, . . . , yi+k−1)),

I−i = I(φ(xi, . . . , xi+k−1) = φ(−yi, . . . ,−yi+k−1)),

Ii = I+
i + I−i . (2.7)

We have

E(I+
i )

=
∑
w

P(φ(xi, . . . , xi+k−1) = w | φ(yi, . . . , yi+k−1) = w)P(φ(yi, . . . , yi+k−1) = w)

=
1

k!

∑
w

P(φ(yi, . . . , yi+k−1) = w)

=
1

k!
(2.8)

by the independence assumption and the fact that there is only one way to arrange a list of
numbers in a given order. Clearly also E(I−i ) = 1/k!. In the next lemma, we characterize
the behavior of the cross terms E(I+

i I
+
j ).

Lemma 2.2.3. 1. When |j − i| ≥ k, I+
i and I+

j are independent. So are (I+
i , I

−
j ) and

(I−i , I
−
j ).
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2. When |j − i| = k − l with 1 ≤ l ≤ k − 1,

1

(2k − l)!
≤ E(I+

i I
+
j ) ≤

(
2k−2l
k−l

)
(2k − l)!

. (2.9)

The same conclusions hold for (I−i , I
−
j ), 1 ≤ |j− i| < k, and (I+

i , I
−
j ), (I−i , I

+
j ), |i− j| =

k − 1.

3. E(I+
i I
−
j ) = E(I−i I

+
j ) = 0 for 1 ≤ |i− j| < k − 1.

Proof. Note that conditioning on the sequence y,

E(I+
i I

+
j ) =

∑
w,v

P(φ(xi, . . . , xi+k−1) = w, φ(xj, . . . , xj+k−1) = v)

× P(φ(yi, . . . , yi+k−1) = w, φ(yj, . . . , yj+k−1) = v). (2.10)

For |j − i| ≥ k, the subsequences (xi, . . . , xi+k−1) and (xj, . . . , xj+k−1) do not overlap. Thus
their local rank patterns are independent, each having probability 1/k! for a given order.

E(I+
i I

+
j ) =

(
1

k!

)2∑
w,v

P (φ(yi, . . . , yi+k−1) = w, φ(yj, . . . , yj+k−1) = v)

=

(
1

k!

)2

= E(I+
i )E(I+

j ). (2.11)

For j− i = k− l < k (assuming WLOG j > i), (xi, . . . , xi+k−1) and (xj, . . . , xj+k−1) form
a contiguous subsequence xi, . . . , xj, . . . , xj+k−1. Suppose φ(xi, . . . , xj+k−1) = (u1, . . . , u2k−l),
then

φ(u1, . . . , uk) = (w1, . . . , wk),

φ(uk−l+1, . . . , u2k−l) = (v1, . . . , vk),

φ(uk−l+1, . . . , uk) = φ(wk−l+1, . . . , wk) = φ(v1, . . . , vl)

:= (o1, . . . , ol), say. (2.12)

Focusing on the overlapping part (uk−l+s) for 1 ≤ s ≤ l, the numbers of elements smaller
than uk−l+s in the subsequences (u1, . . . , uk), (uk−l+1, . . . , u2k−l) and (uk−l+1, . . . , uk) are
wk−l+s − 1, vs − 1, and os − 1, respectively. Given the overall rank uk−l+s in the sequence
(u1, . . . , uk−l+1, . . . , uk, . . . , u2k−l), we have

uk−l+s − 1 = (wk−l+s − 1) + (vs − 1)− (os − 1), (2.13)

since the elements in the overlapping part are counted twice. In other words, the overlapping
part (uk−l+s) for 1 ≤ s ≤ l is fixed, and there are at most

(
2k−2l
k−l

)
ways of arranging the rest

2k − 2l numbers. Thus we arrive at the upper bound in (2.9). The lower bound is trivial.
The same arguments hold for (I−i , I

−
j ), 1 ≤ |j − i| < k, and (I+

i , I
−
j ), (I−i , I

+
j ), |i− j| = k − 1.

Lastly, for 1 ≤ |i− j| < k− 1, E(I+
i I
−
j ) = E(I+

i I
−
j ) = 0 since no such arrangements of the

elements are possible.
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Let Ni denote the dependency neighborhood of Ii, the next lemma tries to bound a key
quantity in the variance calculation.

Lemma 2.2.4. For all k ≥ 3,

4(n− 2k + 2)

(
k−1∑
l=2

1

(2k − l)!
+

2

(2k − 1)!

)
≤

n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj) ≤
C(n− k + 1)

(k + 1)!
(2.14)

for some C > 0.

Proof. First note that

n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj) = 2
n−k+1∑
i=1

∑
j∈Ni\{i}

E(I+
i I

+
j ) + 2

n−k+1∑
i=1

∑
|j−i|=k−1

E(I+
i I
−
j )

≤ 8(n− k + 1)
k−1∑
l=1

γl (2.15)

by (2.9), where

γl =

(
2k−2l
k−l

)
(2k − l)!

. (2.16)

It remains to bound
∑k−1

l=1 γl. Taking the ratio of successive terms,

rl =
γl+1

γl
=

(
2k−2l−2
k−l−1

)
(2k − l − 1)!

· (2k − l)!(
2k−2l
k−l

)
=

(k − l)2(2k − l)
(2k − 2l)(2k − 2l − 1)

=
(k − l)(2k − l)
2(2k − 2l − 1)

, l = 1, . . . , k − 2.

(2.17)

For all k ≥ 3, there exists positive constant C1 and C2 (independent of k) such that

C1k ≤ rl ≤ C2k, l = 1, . . . , k − 2. (2.18)

Therefore
∑k−1

l=1 γl is upper bounded by

k−1∑
l=1

γl ≤ γk−1

k−2∑
l=0

(
1

C1k

)l

= γk−1 ·
1−

(
1
C1k

)k−1

1− 1
C1k

≤ C

(k + 1)!
(2.19)
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for some C > 0. Equations (2.19) and (2.15) give the required upper bound.
For the lower bound, it is easy to see

n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj) = 2
n−k+1∑
i=1

∑
j∈Ni\{i}

E(I+
i I

+
j ) + 2

n−k+1∑
i=1

∑
|j−i|=k−1

E(I+
i I
−
j )

≥ 2 [2(n− k + 1)− 2(k − 1)]

(
k−1∑
l=1

1

(2k − l)!
+

1

(2k − 1)!

)

≥ 4(n− 2k + 2)

(
k−1∑
l=2

1

(2k − l)!
+

2

(2k − 1)!

)
(2.20)

by the lower bound in (2.9).

With the above bounds we can now prove Theorem 2.2.2.

Proof of Theorem 2.2.2. In order to use Stein’s method for normal approximation, we first
give a lower bound of the variance. Note that

σ2
1,n =

n−k+1∑
i=1

∑
j∈Ni

(E(IiIj)− (EIi)(EIj))

=
n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj) +
2(n− k + 1)

k!
−

n−k+1∑
i=1

∑
j∈Ni

E(Ii)E(Ij)

≥ 4(n− 2k + 2)

(
k−1∑
l=2

1

(2k − l)!
+

2

(2k − 1)!

)
+

2(n− k + 1)

k!
− 4(n− k + 1)(2k − 1)

(k!)2
.

(2.21)

by (2.14). For k such that k/n → 0, when n is sufficiently large, σ2
1,n is lower bounded by

the dominating terms

σ2
1,n ≥ C1

(
4n

(
k−1∑
l=2

1

(2k − l)!
+

2

(2k − 1)!

)
+

2n

k!
− 4n(2k − 1)

(k!)2

)

=
2C1n

k!

(
2

(
1

k + 1
+

1

(k + 2)(k + 1)
+ · · ·+ 2

(2k − 1) · · · (k + 1)

)
+ 1− 2(2k − 1)

k!

)
≥ C2n

k!
(2.22)

for some C1, C2 > 0 and all k ≥ 3. One version of Stein’s method gives the following error
bound for normal approximation ([80]),

dW (T1, Y ) ≤ D2

σ3
1,n

n−k+1∑
i=1

E|Ii − 2/k!|3 +

√
26D3/2

√
πσ2

1,n

√√√√n−k+1∑
i=1

E|Ii − 2/k!|4 (2.23)
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where dW is the Wasserstein metric (minimal L1-metric), Y ∼ N(0, 1) and D = maxiNi =
2k − 1. This can be further bounded by

C1 ·
D2µ1,n

σ3
1,n

+ C2 ·
D3/2µ

1/2
1,n

σ2
1,n

≤C · D
2µ1,n

σ3
1,n

≤C · k
2
√
k!√
n
→ 0 (2.24)

using (2.22) for k/(log n)α → 0, α < 1.
The Chen-Stein method yields the following error bound for Poisson approximation,

dTV (W1, Z) ≤ min{1, µ−1
1,n}

n−k+1∑
i=1

∑
j∈Ni

E(Ii)E(Ij) +
n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj)


≤

n−k+1∑
i=1

∑
j∈Ni

E(Ii)E(Ij) +
n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj)

≤ 4(n− k + 1)(2k − 1)

(k!)2
+
C(n− k + 1)

(k + 1)!

≤ C(n− k + 1)

(k + 1)!
(2.25)

for some C > 0 and k sufficiently large. For k growing fast enough such that µ1,n = O(1),
the above bound goes to 0. In particular, using Stirling’s approximation one can show in
the regime log n/k = O(1) this condition is satisfied.

While the properties and asymptotic distribution of the longest increasing subsequence
in a random permutation have been much studied and the statistic itself has been used in
a number of applications ([60, 7, 2, 6]), not so much attention has been paid to increasing
subsequences of length k. Here we use the results in [74] and the Stein approximation to
derive a central limit theorem for W2 for k growing sufficiently slowly. The key of the proof
lies in obtaining a good upper and lower bound on the variance of W2.

Theorem 2.2.5. For n→∞, k ≥ 3 and k/(log n)α → 0 for some α < 1,

T2 :=
W2 − µ2,n

σ2,n

D−→ N(0, 1), (2.26)

where µ2,n = 2
(
n
k

)
/k! and σ2

2,n = Var(W2).
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Again assuming x has an exchangeable distribution, the permuted sequence σ(x) also has
an exchangeable distribution, and its ranks can be treated as a random permutation. For
notational simplicity, take z as a random permutation of {1, . . . , n}. For integers {i1, . . . , ik}
satisfying 1 ≤ i1 < · · · < ik ≤ n, define indicators I+

i1,...,ik
(z) such that

I+
i1,...,ik

(z) =

{
1 (i1, . . . , ik) is a subsequence of z,

0 otherwise.
(2.27)

Similarly define

I−i1,...,ik(z) =

{
1 (ik, . . . , i1) is a subsequence of z,

0 otherwise.
(2.28)

Then W2 can be written as the sum of

W2 =
∑

1≤i1<···<ik≤n

Ii1,...,ik(z), (2.29)

where
Ii1,...,ik(z) = I+

i1,...,ik
(z) + I−i1,...,ik(z). (2.30)

It is easy to see that if {i1, . . . , ik} ∩ {j1, . . . , jk} = ∅, Ii1,...,ik(z) and Ij1,...,jk(z) are inde-
pendent. The variance of W2 becomes

Var(W2)

=
∑

{i1,...,ik}∩{j1,...,jk}6=∅

{E(Ii1,...,ik(z)Ij1,...,jk(z))− E(Ii1,...,ik(z))E(Ij1,...,jk(z))}

=2
∑

{i1,...,ik}∩{j1,...,jk}6=∅

E(I+
i1,...,ik

(z)I+
j1,...,jk

(z))

+ 2
∑

{i1,...,ik}∩{j1,...,jk}6=∅

E(I+
i1,...,ik

(z)I−j1,...,jk(z))−
4D
(
n
k

)
(k!)2

, (2.31)

since E(I+(zi1 , . . . , zik)) = 1/k!. Here D is the size of the dependency neighborhood and
equals

(
n
k

)
−
(
n−k
k

)
.

The sum of the first cross terms can be written as (Proposition 2 in [74])∑
{i1,...,ik}∩{j1,...,jk}6=∅

E(I+
i1,...,ik

(z)I+
j1,...,jk

(z))

=
k∑
j=1

(
n

2k − j

)
1

(2k − j)!
A(k − j, j), (2.32)
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where

A(N, j) =
∑

∑j
r=0 lr=N∑j
r=0mr=N

j∏
r=0

(
(lr +mr)!

lr!mr!

)2

. (2.33)

We will be using the following fact about the constants A(N, j) from Lemma 3 in [74].

Fact 2.2.6. For sufficiently large k, there exists C > 0 such that

A(k − 1, 1) ≥ Ck1/2

(
2k − 2

k − 1

)2

. (2.34)

It is easy to see for all k ≥ 2, A(k − 1, 1) >
(

2k−2
k−1

)2
.

The sum of the second cross terms reduces to∑
|{i1,...,ik}∩{j1,...,jk}|=1

E(I+
i1,...,ik

(z)I−j1,...,jk(z)),

since when the size of the intersection is greater than one, it is impossible to find a permu-
tation z satisfying both conditions specified by the indicators. Using arguments similar to
the proof of Proposition 2 in [74], we can show∑

|{i1,...,ik}∩{j1,...,jk}|=1

E(I+
i1,...,ik

(z)I−j1,...,jk(z)) =

(
n

2k − 1

)
1

(2k − 1)!
B(k), (2.35)

where

B(k) =
∑

l0+l1=k−1
m0+m1=k−1

(
l0 +m0

l0

)(
l1 +m1

l1

)(
l0 +m1

l0

)(
l1 +m0

l1

)
(2.36)

Now we can obtain a lower bound on the variance and use the Stein method to prove
Theorem 2.2.5.

Proof of Theorem 2.2.5. From equations (2.31), (2.32) and (2.35), we have

σ2
2,n

µ2
2,n

≥
(

n
2k−1

)
(k!)2

2
(
n
k

)2
(2k − 1)!

(A(k − 1, 1) +B(k))− D(
n
k

)
≥ k2

2n
·
(

1− k − 1

n− k + 1

)k−1(
2k − 1

k − 1

)−2

(A(k − 1, 1) +B(k))− D(
n
k

) .
(2.37)



CHAPTER 2. GENE COEXPRESSION USING COUNT STATISTICS 16

For k →∞ and k = o(n1/2), it is easy to check D/
(
n
k

)
= O(k2/n). Applying Fact 2.2.6,

σ2
2,n

µ2
2,n

≥ C · k
5/2

2n

(
1− k − 1

n− k + 1

)k−1 [
(2k − 2) · · · k

(2k − 1) · · · (k + 1)

]2

+O(k2/n)

= C · k
5/2

2n
(1 +O(k2/n))

(
k

2k − 1

)2

+O(k2/n)

≥ C · k
5/2

n
(2.38)

for some C > 0 and sufficiently large k and n. Applying the bound from the Stein method
as in equation (2.23), we have

dW (T2, Y ) ≤ C1 ·
D2µ2,n

σ3
2,n

+ C2 ·
D3/2µ

1/2
2,n

σ2
2,n

≤ C1 ·
k1/4(k!)2

n1/2
+ C2 ·

k1/2(k!)3/2

n1/2
→ 0 (2.39)

for k/(log n)α → 0.
For k fixed, D/

(
n
k

)
≤ k2/(n− k + 1) + o(1/n). (2.37) becomes

σ2
2,n

µ2
2,n

≥ k2

2n
(1 +O(1/n))

(
2k − 1

k − 1

)−2

(A(k − 1, 1) +B(k))− k2

n− k + 1
+ o(1/n)

=

{
1

2
(A(k − 1, 1) +B(k))

(
2k − 1

k − 1

)−2

− 1

}
k2

n
+ o(1/n)

:= C(k) · k
2

n
+ o(1/n), say. (2.40)

When k = 3, we can check that C(3) > 0 and thus σ2
2,n/µ

2
2,n ≥ C/n. For other fixed k, the

same order lower bound holds. Applying (2.23),

dW (T2, Y ) ≤ O(n−1/2)→ 0. (2.41)

Asymptotic power

Next we analyze the power of T1 and T2 under specific alternative distributions. The first
scenario we consider is related to time-course data, where the temporal order of x and y are
preserved in subsequence analysis.

Theorem 2.2.7. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two time series with n observa-
tions, m of which are perfectly coupled in the sense that φ(xi, . . . , xi+m−1) = φ(yi, . . . , yi+m−1).
As n→∞, m→∞,
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1. T1 goes to infinity in the following regimes:

• For fixed k, if m ∼ a1n, a1 > 2/k!, then T1 = Ω(
√
n).

• For k →∞ and k/(log n)α → 0, α < 1,

– if m ≥ a2 · nk!
, a2 > 2, then T1 = Ω(

√
n/k!);

– if m ∼ a3n, a3 ∈ (0, 1], then T1 = Ω(
√
nk!).

2. T2 goes to infinity in the following regimes:

• For fixed k, if m ∼ b1n, bk1 > 2/k!, then T2 = Ω(
√
n).

• For k →∞ and k/(log n)α → 0, α < 1,

– if m ≥ en
k

, then T2 = Ω(
√
n/k3/2);

– if m ∼ b2n, b2 ∈ (0, 1], then T2 = Ω(bk2k!
√
n/k5/2).

Here Ω(·) denotes asymptotic lower bound.

Remark 2.2.8. In the regimes above, using T1 and T2 as statistics both lead to rejection of
the null hypothesis with probability one. We also observe that for both T1 and T2, large k leads
to better power in the sense that i) the statistics have a better convergence rate when m grows
as a fraction of n; ii) a smaller lower bound on m can be achieved, consequently tolerating
more noise in the data, while maintaining the power of the tests going to 1. Comparing T1

and T2, T1 has better power in the sense that i) T1 has a better rate of convergence in the
regime of k →∞ and m growing as a fraction of n; ii) T1 allows for a smaller lower bound
on m in the other regimes while maintaining the power going to 1.

The next scenario we consider is when x and y follow a perfect functional relationship with
d strictly monotonic pieces. This is a reasonable subclass of general functional relationships
to study since most smooth function can be approximated by piecewise strictly monotonic
functions. In this case the order of the data does not have to be preserved, making T1 a less
suitable statistic than T2. We only analyze the power of T2.

Theorem 2.2.9. y = f(x) for x
iid∼ Unif(0, 1), f can be decomposed into a fixed number of

d strictly monotonic pieces which have lengths `1, . . . , `d when projected on to the x-axis. As
n→∞,

• For fixed k, if dk−1 < k!/2, then P(T2 ≥ C
√
n)→ 1;

• For k →∞ and k/(log n)α → 0, α < 1, then P(T2 ≥ C
√
n/k5/2k!/dk−1)→ 1

for some constant C > 0.

Remark 2.2.10. In the regimes above, the power of the statistic T2 approaches 1. Large k
and smaller d lead to better convergence rates and thus better power. Having fewer monotonic
pieces implies there are more uninterrupted counts in each piece contributing to W2.
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To prove Theorems 2.2.7 and 2.2.9, first we prove a lemma upper bounding the variances
of T1 and T2.

Lemma 2.2.11. • σ2
1,n = O(n) for fixed k; σ2

1,n = O(n/k!) for k →∞ and k/(log n)α →
0.

• σ2
2,n = O(n2k−1) for fixed k; σ2

2,n = O(µ2
2,nk

5/2/n) for k →∞ and k/(log n)α → 0.

Proof. By the upper bound in (2.14),

σ2
1,n =

n−k+1∑
i=1

∑
j∈Ni\{i}

E(IiIj) +
2(n− k + 1)

k!
−

n−k+1∑
i=1

∑
j∈Ni

E(Ii)E(Ij)

≤ C(n− k + 1)

(k + 1)!
+

2(n− k + 1)

k!

=

{
O(n) for fixed k;

O(n/k!) for k →∞, k/(log n)α → 0.
(2.42)

To bound σ2
2,n, first note that B(k) ≤ A(k − 1, 1) for all k ≥ 2. This holds because for

every pair of (l0, l1) and (m0,m1) such that l0 + l1 = k − 1 and m0 +m1 = k − 1, we have(
l0 +m0

l0

)2(
l1 +m1

l1

)2

+

(
l0 +m1

l0

)2(
l1 +m0

l1

)2

≥ 2

(
l0 +m0

l0

)(
l1 +m1

l1

)(
l0 +m1

l0

)(
l1 +m0

l1

)
.

By equations (2.31), (2.32) and (2.35),

σ2
2,n = 2

k∑
j=1

(
n

2k − j

)
1

(2k − j)!
A(k − j, j) + 2

(
n

2k − 1

)
1

(2k − 1)!
B(k)−

4D
(
n
k

)
(k!)2

≤ 4
k∑
j=1

(
n

2k − j

)
1

(2k − j)!
A(k − j, j)−

4D
(
n
k

)
(k!)2

= O

(
µ2

2,nk
5/2

n

)
(2.43)

by Theorem 1 in [74]. The first part of the lemma holds since µ2,n = O(nk) for k fixed.

Proof of Theorem 2.2.7. It is easy to see the count W1 is bounded below by m− k + 1. By
the first part of Lemma 2.2.11,

T1 ≥
m− k + 1− µ1,n

σ1,n

≥ C
√
n

(
m

n
− 2

k!

)
, (2.44)
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for some C > 0, fixed k and m, n sufficiently large. In this case, m has to grow at the same
rate as n, that is m ∼ a1n and a1 > 2/k!. It follows then T1 = Ω(

√
n).

When k →∞ and k/(log n)α → 0, for n large enough,

T1 ≥ C

√
n

k!

(
k!(m− k + 1)

n− k + 1
− 2

)
≥ C

√
n

k!

(
a2n− k! · k + k!

n− k + 1
− 2

)
= Ω

(√
n

k!

)
(2.45)

for m ≥ a2n/k!, a2 > 2. If m grows at the rate of a3n, a3 ∈ (0, 1],

T1 ≥ C
√
nk!

(
m− k + 1

n− k + 1
− 2

k!

)
≥ C
√
nk!a3 = Ω(

√
nk!). (2.46)

Similarly, the count W2 is lower bounded by
(
m
k

)
, using the second part of Lemma 2.2.11,

for fixed k,

T2 ≥ C ·
(
m
k

)
− 2
(
n
k

)
/k!

nk−1/2

= C
√
n

(
m · · · (m− k + 1)

n · · · (n− k + 1)
− 2

k!

)
≥ C
√
n

((m
n

)k
− 2

k!

)
(2.47)

for sufficiently large m and n. m has to grow at the rate of b1n for the lower bound to go to
infinity, and bk1 > 2/k!. We have T2 = Ω(

√
n).

When k →∞ and k/(log n)α → 0, again by Lemma 2.2.11,

T2 ≥ C

√
n

k5/2

(
k!
m · · · (m− k + 1)

n · · · (n− k + 1)
− 2

)
≥ C

√
n

k5/2

(
k!
(m
n

)k
− 2

)
≥ C

√
n

k3/2
, (2.48)

for m ≥ en/k. When m ∼ b2n, b2 ∈ (0, 1],

T2 ≥ C

√
n

k5/2

(
k!
(m
n

)k
− 2

)
≥ Cbk2k!

√
n

k5/2
. (2.49)



CHAPTER 2. GENE COEXPRESSION USING COUNT STATISTICS 20

Proof of Theorem 2.2.9. Let n1, . . . , nd denote the number of points in (x,y) falling on to
each monotonic piece, then W2 is lower bounded by

∑d
t=1

(
nt
k

)
. For fixed d and k, ,∑d

t=1 nt · · · (nt − k + 1)

n · · · (n− k + 1)

P−→
d∑
t=1

`kt (2.50)

Since by Lemma 2.2.11,

T2 ≥ C
√
n

(∑d
t=1 nt · · · (nt − k + 1)

n · · · (n− k + 1)
− 2

k!

)
(2.51)

for some C > 0, it follows

P
(
T2 ≥ C

√
n(d−(k−1) − 2/k!)

)
→ 1 (2.52)

using Hölder’s inequality and the fact
∑d

t=1 `t = 1. Thus T2 is lower bounded by C
√
n with

probability tending to 1 when dk−1 < k!/2.
When k →∞ and k/(log n)α → 0, it is easy to check

nt · · · (nt − k + 1)

n · · · (n− k + 1)
·
(
n

nt

)k
P−→ 1. (2.53)

Also,

P

(∣∣∣∣∣
(
nt
n`t

)k
− 1

∣∣∣∣∣ ≥ ε

)

≤P
(
nt
n`t
− 1 ≥ (1 + ε)1/k − 1

)
+ P

(
nt
n`t
− 1 ≤ (1− ε)1/k − 1

)
≤ exp(−2n`2

t ((1 + ε)1/k − 1)2) + exp(−2n`2
t ((1− ε)1/k − 1)2)→ 0 (2.54)

by Hoeffding’s inequality. It follows then

d∑
t=1

nt · · · (nt − k + 1)

n · · · (n− k + 1)
·

(
d∑
t=1

`kt

)−1

P−→ 1. (2.55)

Now noting that

T2 ≥ C

√
n

k5/2

(
k!

∑d
t=1 nt · · · (nt − k + 1)

n · · · (n− k + 1)
− 2

)
, (2.56)

we have

P
(
T2 ≥ C

k!

dk−1

√
n

k5/2

)
→ 1 (2.57)

again by Hölder’s inequality.
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2.3 Simulations

Numerical experiments supporting the asymptotics

We will first show the behaviors of the statistics conform to their derived asymptotics.
Throughout the rest of the Chapter, the variances of W1 and W2 were estimated by Monte
Carlo experiments. Figure 2.1 shows the convergence of the empirical quantiles of T1 and
T2 toward the theoretical standard normal quantiles as n increases. Note due to the fact
that T1 can only take n − k + 2 possible values, it is easy to produce ties. To examine the
asymptotic power of the two statistics under alternative distributions described previously,
we generated data that i) were partially coupled time series with the length of dependence
m = n/10; ii) followed an exact functional relationship with six monotonic pieces, and
computed the average power at 5% significance level over 500 iterations. The results for
different k and n are shown in Table 2.1. As predicted by the theoretical analysis, larger k
results in better power and T1 is more powerful than T2 on the time-course data. In all the
cases, as n increases the power tends to 1. The table also displays the average power for
the corresponding null distributions of i) and ii) when the two data vectors are independent.
The values are centered around 0.05 as expected.
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Figure 2.1: Empirical quantiles for the standardized counts (a) T1 and (b) T2 for n = 50,
500 and 1000, k = 5, from 105 simulated random permutations.
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k/n 100 200 300 400 500
3 0.332 0.562 0.690 0.812 0.902
4 0.636 0.976 1 1 1
5 1 1 1 1 1
6 1 1 1 1 1

(a) Power of T1

k/n 100 200 300 400 500
3 0.070 0.050 0.056 0.038 0.036
4 0.060 0.044 0.030 0.054 0.052
5 0.038 0.074 0.064 0.058 0.060
6 0.052 0.042 0.064 0.046 0.076

(b) Power of T1

k/n 100 200 300 400 500
3 0.302 0.504 0.658 0.796 0.848
4 0.340 0.568 0.726 0.844 0.908
5 0.360 0.650 0.798 0.892 0.952
6 0.392 0.734 0.882 0.924 0.982

(c) Power of T2

k/n 100 200 300 400 500
3 0.048 0.054 0.076 0.052 0.050
4 0.068 0.060 0.044 0.072 0.040
5 0.042 0.056 0.040 0.070 0.038
6 0.050 0.068 0.056 0.046 0.046

(d) Power of T2

k/n 100 200 300 400 500
3 0.516 0.784 0.884 0.952 0.972
4 0.710 0.952 0.996 1 1
5 0.866 0.992 1 1 1
6 0.946 1 1 1 1

(e) Power of T2

k/n 100 200 300 400 500
3 0.058 0.048 0.062 0.044 0.052
4 0.058 0.062 0.044 0.060 0.052
5 0.078 0.040 0.060 0.062 0.030
6 0.070 0.060 0.064 0.062 0.054

(f) Power of T2

Table 2.1: Power at 5% significance level for different choices of k and n when x and y are:
(a), (c) two independent AR(1) time series (with coefficients 0.1 and -0.2 respectively) but

(x1, . . . , xm) = (y1, . . . , ym) with m = n/10; (e) xi
iid∼ Unif(0, 1), yi = cos(6πxi). The right

panel shows the power under the corresponding null distributions: (b), (d) x and y are two
independent AR(1) time series (with coefficients 0.1 and -0.2 respectively); (f) x and y are
iid Unif(0, 1).

Numerical examples examining statistical power

To investigate the power of our statistics in more realistic settings, we considered four types
of bivariate relationships, all of which are illustrative of gene coexpression relationships likely
to exist in an expression dataset. It is essential to include a linear type of relationship since
pairwise gene relationships detected by current analyses are still predominantly linear. As an
example of non-monotonic associations, we considered a quadratic relationship. The cross-
shaped relationship may occur when two genes switch from activators to repressors across
different tissue types or treatment conditions, or simply due to the changes in intrinsic
cellular state ([58]). These relationships have also been used as illustrative scenarios in [77]
and [50] in the context of general statistical dependence. An important additional example
we considered here pertains to the case of genes with time-course data. We simulated two
time series which were coupled over subregions of the time domain. The robustness of the
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statistics was tested against outliers – a ubiquitous feature of biological data. Descriptions
of the parameters used for each type of relationship are provided in Table 2.2.

xi yi ηi
Linear xi

iid∼ N(0, 1) yi = xi + 2ei ηi
iid∼ N(0, 5)

Quadratic xi
iid∼ N(0, 1) yi = x2

i + 2ei ηi
iid∼ N(0, 5)

Cross xi
iid∼ N(0, 1)

yi ={
1
2

+ xi + ei with probability 1
2
,

3
2
− xi + ei with probability 1

2
.

ηi
iid∼ N(0, 3)

Partially
coupled
time series

xi ∼ AR(1)
with
coefficient 0.1

yi =
xi + ei, i ∈ [1, 30]

−xi + ei, i ∈ [101, 120]

AR(1) with coefficient -0.2,

independent of xi, otherwise.

ηi
iid∼ N(0, 3)

Table 2.2: Parameters for generating the four types of relationships. 2000 datasets were

generated for every scenario with i ∈ {1, . . . , 220}, ei
iid∼ N(0, 1) for the first three relation-

ships and ei
iid∼ N(0, 0.5) for the time-course relationship. Outliers were created by randomly

choosing a fraction of the data and replacing ei with ηi.

We compared the power of T1 and T2 to seven other popular measures of dependence (the
Pearson, Spearman, Renyi correlations, Hoeffding’s D, dCov, MI and MIC). We chose k = 5
for T1 and T2 guided by the log value of the sample size 220. The results from other values of
k are provided in Figure 2.3. We note that the influence of k on the power of T2 is negligible.
While the choice of k has a bigger effect on the power of T1 due to a smaller number of
possible values for the counts, the conclusions we draw from qualitative comparisons with
the other measures do not change.

The power values of various statistics computed under four types of dependence rela-
tionship are shown in Figure 2.2. Unsurprisingly, the Pearson and Spearman correlations
can only detect the linear relationship, with the Pearson correlation being more sensitive to
outliers. Across the first three types of dependence, T2, Hoeffding’s D, MI, dCov and Renyi
are the only statistics maintaining reasonable power throughout. Of these statistics, Renyi
and MI have the best performance on the quadratic relationship, but are underpowered
on the linear relationship. For the linear scenario, we also computed a variant of T1 and T2

counting only the matching rank patterns (omitting the reverse patterns), which are denoted
T+

1 and T+
2 in the plot. These unidirectional counts provide a way to significantly improve

the power when the monotonicity of the relationship is known. In fact, T+
2 demonstrates

the best power while remaining robust to outliers. We note that T2 has a higher power than
all the other statistics on the cross relationship. T1 does not perform well on the first three
types of relationship as it is designed for data with a temporal order.
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T1 and T2 are the only statistics showing significant power on the time-course data.
Without respecting the order of the data points, the scatter plot shows no obvious association
pattern, making it difficult for the other measures to detect the dependence structure. T1

demonstrates a slightly better power than T2.
We remark here that although other dependence relationships were tested in [77] and

[50], most of these are rarely observed in real gene coexpression patterns. Such examples
include sinusoidal, circular and checkerboard relationships. For the former two examples, we
expect the power of T2 to be affected by the noise level and the frequency of the sinusoidal
wave. As discussed in Theorem 2.2.9, the power of T2 is boosted by having uninterrupted
counts from monotonic pieces of the association pattern. Since the checkerboard pattern is
not piecewise monotonic, we do not expect T2 to detect this type of relationships.

2.4 Real Data Examples

In this section we evaluate the performance of our new statistics on two gene expression
datasets: i) the classic yeast gene expression dataset from [89] and ii) a collection of mi-
croarray data for Arabidopsis tissues downloaded from NCBI GEO.

Yeast cell cycle data

The yeast expression data was accessed from http://genome-www.stanford.edu/cellcycle/
and contains the expression levels of 6178 genes from four reasonably long time-course ex-
periments: alpha factor release (18 time points), cdc 15 (24 time points), cdc 28 (17 time
points) and elutriation (14 time points). We linearly interpolated some missing data if a
point had the two adjacent time points belonging to the same experiment with no missing
values. We focused on the coexpression of 133 transcription factors (TFs) with no miss-
ing data after interpolation. Using all the statistics discussed in simulations, we computed
133 × 133 coexpression matrices and compared them to a total of 428 curated genetic and
physical interactions from BioGrid. Since the data has a number of ties, we added small
random perturbations for the computation of T1 and T2 and took the final results as the
maximum counts over 50 iterations.
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Figure 2.2: The power of various statistics rejecting at 5% significance level as level of
contamination by outliers increases when the bivariate data follow (a) a linear relationship;
(b) a quadratic relationship; (c) a cross-shaped relationship; (d) two partially coupled time
series. The heat map in (d) shows the absolute values of the Pearson correlations calculated
at each time point including its neighboring 15 points.
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Figure 2.3: The power of T1 and T2 for various k values rejecting at 5% significance level as
level of contamination by outliers increases when the bivariate data have (a) a linear rela-
tionship; (b) a quadratic relationship; (c) a cross-shaped relationship; (d) are two partially
coupled time series.
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As we expected T1 to be more suitable for time-course data than T2, we examined the in-
teractions identified by T1 more closely. These interactions reveal the ability of T1 to capture
important bivariate associations missed by the other methods. Figure 2.4 shows two pairs
of TFs (BAS1 vs GCN4; MSN2 vs YAP1) whose coexpression strengths were consistently
ranked among the top 10 and top 20 by T1 with k = 7, but assigned very low rankings by
all the other methods. Both pairs correspond to previously reported genetic interactions
curated in BioGrid. However, their scatter plots show no obvious trends or dependence
patterns, highlighting the importance of preserving the temporal order of the data. More
specifically, [43] showed in gene deletion studies that Gcn4p and Bas1p are involved in co-
operative transcriptional regulation of the ADE3 gene, which encodes an essential regulon
enzyme for the biosynthesis of several amino acids. They were also able to confirm direct
binding and occupancy of the promoter region of ADE3 by these two TFs. MSN2 and YAP1
are both activators required for oxidative stress tolerance and there is a partial overlap be-
tween their H2O2-inducible regulons ([36]). Studies using epistatic miniarray profiles ([115,
8]) have shown double mutations in MSN2 and YAP1 lead to severe fitness defect.

Table 2.3 shows the number of known interactions between TFs among strongly coex-
pressed pairs as ranked by various statistics. As T1 led to many ties, the cutoffs were chosen
to include the entire stretches of gene pairs with the same statistic values. Overall T1 (with
various choices of k) and the Pearson correlation have the largest number of overlap with the
known interactions, with T1 being the better of the two at most cutoffs. These are followed
by T2 and the Renyi correlation.

k = 6 k = 7 k = 8 k = 9
Top rank 4 7 16 31 4 11 22 5 14 44 3 11 37
Pearson 0 2 2 3 0 2 2 1 2 6 0 2 4
Spearman 0 1 2 2 0 1 2 0 1 2 0 1 2
Hoeffding’s D 1 1 1 2 1 1 2 1 1 2 0 1 2
MI 0 1 1 1 0 1 1 1 1 1 0 1 1
MIC 1 1 1 1 1 1 1 1 1 2 1 1 2
dCov 1 1 1 2 1 1 1 1 1 2 1 1 2
Renyi 0 0 2 2 0 2 2 0 2 3 0 2 2
T1 0 1 3 3 1 3 4 1 3 6 0 1 5
T2 0 1 2 3 0 2 2 0 2 3 0 2 3

Table 2.3: Number of known interactions in highly ranked coexpression pairs by various
statistics. A range of k values were tested for T1, and k = 7 for T2.
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Figure 2.4: Expression levels of (a) BAS1 and GCN4; (b) MSN2 and YAP1 in four time-
course experiments (boundaries indicated by the dashed lines). The solid lines highlight
regions contributing to the counts in T1.

Arabidopsis microarrays

We integrated data from 13 microarray experiments to create a meta-data with 220 samples
for 22810 Arabidopsis genes. The samples were harvested from shoot tissues and different
regions of root tissues subject to various stress experiments including salt, low pH, and sulfur
deficiency treatments. From [49], we downloaded a list of genes involved in the glucosinolates
biosynthesis pathway in addition to the 30 pathways in [51] to comprise a total of 510 unique
pathway genes. We computed the pairwise coexpressions between these pathway genes and
all the genes available to test the performance of various measures on distinguishing genes
in the same pathway. Our selection of k was guided by the log value of the total sample size
which is approximately 5. The results presented here were obtained by setting k = 5 for T1

and k = 9 for T2. As expected, T2 is not sensitive to the choice of k and the results below
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remain stable for a range of k.
Figure 2.5 shows the proportions of gene pairs i) in the same pathway; ii) in two different

pathways and iii) containing one non-pathway gene among the top 50 and 80 pairs as ranked
by all the methods. T2 achieves the best pathway enrichment followed by MI, the Spearman
correlation, Hoeffding’s D and T1. As the samples are not composed of long time-course
data, it is not surprising that T1 is a less ideal statistic than T2. dCov and Renyi are among
the worst performing methods with almost no pairs in the same pathway, despite their good
performance in simulations. Extending the cutoffs to examine more highly ranked pairs, in
Figure 2.6 the same trend continues for the best four methods until around the top 700 pairs,
after which they start to become indistinguishable. dCov remains the bottom of the list.
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Figure 2.5: Number of gene pairs in the same pathway (green), in different pathways (red)
and containing a non-pathway gene (blue) among (a) the top 50 pairs and (b) the top 80
pairs as ranked by each method.

Figure 2.7 shows two examples where the gene pairs are in the same pathway, but their
coexpression values remain significant at 5% level after Bonferroni correction only under T2.
Some of the sample points are color coded according to their tissue types or treatments to
highlight the different patterns of association they exhibit and the lack of a consistent global
structure. T2 is more powerful in this situation due to its definition.
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Figure 2.6: Proportion of gene pairs in the same pathway as a function of the number of
highly ranked pairs chosen.

A closer look at the types of relationships detected by T2 and its closest competitor MI
reveals MI is underpowered on linear relationships with outliers, an issue also reported by
[88]. Examples shown in Figure 2.8 for two pairs of genes in the same pathway, where the bulk
of the samples follow a linear trend but they failed to be identified by MI at an unadjusted
significance level of 5%. On the other hand, both pairs were assigned significant p-values by
T2 and other statistics including the Pearson and Spearman correlations.

2.5 Discussion

Statistically, the problem of discovering gene coexpression boils down to detecting bivariate
associations between gene expression profiles. In this Chapter we propose two new statistics
capable of detecting local dependence structures within expression data, motivated by the
observation that real gene relationships may have disparaging behaviors in large heteroge-
neous samples. The statistics are fast to compute, and their asymptotic distributions under
the null assumption of independence and exchangeable sample distribution can be derived.

As demonstrated in both simulation and the yeast cell cycle data, T1 specializes in de-
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Figure 2.7: Expression levels of two gene pairs in the same pathway with some samples color
coded according to their tissue types or treatments: 1) shoot tissues under salt stress; 2)
stele and protophloem cells under salt stress; 3) columella root cap under salt stress, low pH
and sulfur deficiency; 4) whole root under salt stress; 5) whole root under low pH; 6) other
root cells under low pH.

tecting local associations in time-course data. In particular, when such associations are
not visible within the global association pattern, T1 offers an attractive alternative to other
commonly used coexpression measures. The statistic T2, which considers more general local
patterns of dependence, is effective on a variety of functional and nonfunctional relationships.
However, as T2 relies on counts from monotonic sub-patterns, it is sensitive to noise on high
frequency sinusoidal relationships.

Both statistics involve a tuning parameter k. Some discussions regarding its choice have
been given, but more thorough studies investigating how it affects the performance of the
statistics in relation to the structure of data would be desirable.

Our definitions and asymptotic analyses of the two unnormalized counts W1 and W2

naturally open room for further investigation. Modifying the current definitions to account
for ties in the data would be an important extension to pursue. At a more fundamental level,
other choices of the interaction measure F (·; ·) in (2.1) would be interesting to explore. For
instance, we can consider relaxing the exact pattern matches to fuzzy matches, or replacing
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Figure 2.8: Expression levels of two gene pairs in the same pathway showing a linear rela-
tionship with outliers which were not identified as statistically significant by MI.

the indicator function itself with a correlation-based statistic. In terms of asymptotics, it
would be of theoretical interest to study the limiting distribution of W2 for k beyond the
log regime. In practice, there often exist inherent dependence structures among the gene
samples, especially in time-course data. Thus removing the exchangeability assumption
in the analysis of the null distributions would improve computational accuracy of the p-
values. In particular, it would be interesting to consider an autoregressive model for W1

and examine the relationship between the model coefficients and the co-occurrence of rank
patterns. Alternatively, it would also be interesting to study the sample dependence directly
by reversing the roles of genes and samples and applying a similar technique.
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Chapter 3

Inferring gene-gene interactions and
functional modules using sparse
canonical correlation analysis

3.1 Overview

The coexpression measures discussed in Chapter 2 estimate marginal dependencies only
considering pairwise relationships. However, in a real biological pathway, a gene can interact
with a group of genes but their marginal relationships may remain weak. Such higher-level
interactions (i.e. gene group interactions) are better modeled by Gaussian graphical models
(GGM) due to its interpretation in terms of conditional correlations. Under the assumption
of multivariate normality of gene expression vectors, the GGM uses the inverse of the gene
covariance matrix (or precision matrix), as a measure for gene associations. This approach
is closely related to the concept of partial correlations: the (i, j)-th element in the precision
matrix is proportional to the partial correlation between gene i and j conditional on the rest
of the genes. To address the “curse of dimensionality” (the number of genes being much
larger than the number of samples) in estimating the precision matrix, one can exploit the
belief that gene networks are inherently sparse and reframe the problem of estimating partial
correlations in a penalized regression setting ([65, 73]). More studies on estimating sparse
precision matrix in high dimensional GGMs can be found in e.g. [82], [31] and [116].

Despite their attractive theoretical properties, these partial correlation based methods
still have limitations in their estimation methods. In the current literature, partial correlation
is usually calculated conditioned on either all of the available genes or a more or less arbitrary
subset of them that may contain noisy (biologically unrelated) genes. [33] reported that
conditioning on all genes simultaneously can introduce spurious dependencies which are
not from a direct causal or common ancestors effect. To alleviate this concern, there are
alternative approaches using lower order partial correlations ([58, 33, 63, 103, 104]) which
condition on one or two other genes. However, these methods come at a cost of lowering the
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sensitivity for inferring higher level gene associations and do not necessarily eliminate the
effect of noisy genes. [49] proposed to minimize the impact of noisy genes by conditioning
on a small set (3-5 genes) of “seed genes” (i.e. known pathway genes). However, such prior
biological information is not always available, especially in exploratory studies.

In this Chapter we tackle the problem of estimating gene relationships when the correct
conditional set for partial correlation is unknown. Compared to the type of data considered
in Chapter 2, we require similar gene behaviors across all the samples. We introduce a new
method of inferring the strength of gene group interactions using sparse canonical correlation
analysis (SCCA) with repeated random partition and subsampling of the gene expression
dataset. There has been a growing interest in applying SCCA to genomic datasets ([98, 71,
105, 55]) in the context of studying relationships between two or more sets of variables, such
as gene expression levels, copy numbers and other phenotype variations, with measurements
taken from the same sample. One novelty of our method lies in the application of SCCA
to a single dataset facilitated by a random partition scheme. By randomly separating the
genes into two groups, SCCA searches for a strong linear relationship between a small set of
genes, e.g. 5-20 genes, from both groups of genes (e.g. 500-2000 genes in total). Through
multiple rounds of random partition, this SCCA approach, reframed in a linear regression
setting, gives estimates proportional to partial correlations conditioned on different sets of
signal genes (with noisy genes eliminated through sparsity). The subsampling procedure
analyzes different subsets of the genes at a time and enables simultaneous identification of
multiple interacting groups with different signal strengths. Using this construction, we build
an edge weight matrix for the whole gene network whose interaction measure reflects an
aggregated estimate of partial correlations of different orders. Our approach is flexible and
can be adapted to work with or without prior biological knowledge.

3.2 Methods

As mentioned in the Overview, the conditional correlation interpretation of partial correla-
tion suggests it is a more appropriate framework for modeling higher level interactions in
gene networks, provided the conditional computation is carried out properly. In this section,
we discuss some of the limitations of the partial correlation approach that arise due to its
reliance on the correct selection of conditional sets of genes and how our SCCA based ap-
proach circumvents this difficulty. We then give a detailed description of our new method of
estimating an edge weight matrix using SCCA with subsampling.
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Method motivation

Recall that when the gene expression levels follow a multivariate normal distribution, for a
set of genes W , the partial correlation between genes i and j can be expressed as

ρij = cor(i, j|W\{i, j}) =

{
− ωij√

ωiiωjj
, i 6= j

1, i = j,
(3.1)

where ωij are elements in the precision matrix (ΣG)−1 with ΣG being the gene covariance
matrix of the set W (see e.g. [26]). Genes i and j being conditionally independent is
equivalent to the corresponding partial correlation and element in the precision matrix being
zero.

As pointed out in [33] and [49], the selection of a proper set of genes on which the
correlation in (3.1) is conditioned determines the effectiveness of using partial correlation to
measure gene interactions. The inclusion of noisy (biologically unrelated) genes in the set
W\{i, j} may introduce spurious dependencies and consequently false edges in the estimated
network. The use of partial correlation may also prove problematic whenW contains multiple
pathways. Here is a minimal example: suppose the set W has two pathways {x, y, z} and
{u, v} and two independent noisy genes p and q, with expression relationships

z = x+ y + ε1u+ ε2v + ε3p, u = δ1x+ δ2y + δ3z + δ4q + v, (3.2)

where εi and δj are small constants so that the dependencies between the two pathways are
negligible, and gene v is independent of genes x and y. Computing the partial correlations,
we have the desired dependencies:

cor(z, x|W\{z, x}) = cor(z, y|W\{z, y}) = 1,

cor(u, v|W\{u, v}) = 1,

but also some spurious ones:

cor(u, x|W\{u, x}) = cor(u, y|W\{u, y}) = cor(u, z|W\{u, z}) = 1.

Using these partial correlations to construct an edge weight matrix would imply the two
pathways are fully connected. The proper calculation should condition only on genes in the
same pathway, but such information is usually hard to obtain in practice. Alternatively, a
more appropriate edge weight measure can take into account the magnitude of the linear
coefficients in (3.2) so that it reflects the amount of contribution each gene makes to a
pathway and the two-block nature of the network. Recall that in a regression setting, the
regression coefficients are multiplicative functions of the corresponding partial correlations.
In this sense, the coefficients encompass more information and provide a better resolution
on gene relationships than the partial correlations alone.

Motivated by these observations, we propose a new way to assess gene group interactions.
In particular, we aim to identify strong linear relationships possessed by a small subset of the
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candidate genes. We make direct use of the linear coefficients found by SCCA when applied
to two randomly partitioned gene groups. With repeated random partition on subsampled
gene sets, an edge weight matrix built by the average SCCA coefficients over iterations
reflects an aggregated level of direct or partial gene interactions. Sparsity is imposed to
reduce dimensionality and in particular in the example above, ensures the mixing of the two
pathways is negligible on average.

Review of sparse canonical correlation analysis and its
implementation

Let X ∈ Rn×q1 be a matrix comprised of n observations on q1 variables, and Y ∈ Rn×q2 a
matrix comprised of n observations on q2 variables. CCA introduced by [39] involves finding
maximally correlated linear combinations between the two sets of variables. More explicitly,
one seeks to find α ∈ Rq2 and β ∈ Rq1 that solve the optimization problem

max
α,β

αTΣY Xβ subject to αTΣY Yα = 1,βTΣXXβ = 1, (3.3)

where Σ(·,·) represent the correlation matrices. Note that provided the variables in X and
Y have nonzero variances, this is equivalent to the usual CCA formulation in terms of
covariance matrices.

In practice the population correlations are replaced with their sample counterparts. That
is, SY X = Y TX/(n − 1), SXX = XTX/(n − 1) and SY Y = Y TY /(n − 1), assuming the
columns of X and Y have been centered and scaled. Let a and b be the weight vectors
solving the optimization problem

max
a,b

aTSY Xb subject to aTSY Y a = 1, bTSXXb = 1 (3.4)

for sample correlations.
For high throughput biological data, q1 and q2 are typically much larger than n. It is thus

natural to impose sparsity on a and b, and this can be done by including (typically convex)
penalty functions in (3.4). A number of studies ([98, 106, 71]) have proposed various methods
for formulating the penalized optimization problem and obtaining sparse solutions. Here we
adopt the diagonal penalized CCA criterion given by [106], which treats the covariance
matrices in (3.4) as diagonal and relaxes the equality constraints for convexity:

max
a,b

aTY TXb subject to aTa ≤ 1, bTb ≤ 1, p1(a) ≤ c1, p2(b) ≤ c2, (3.5)

where p1 and p2 are convex penalty functions. In this paper, we consider an L1 penalty and
solve the above optimization using the modified NIPALS algorithm proposed by [55], which
is reported to yield better empirical performance than Witten et. al. (2009)’s algorithm.
The modified NIPALS algorithm performs penalized regressions iteratively onX and Y with
the penalty functions pλ1(·) = λ1 ‖·‖1 and pλ2(·) = λ2 ‖·‖1. This is an equivalent formulation
to iteratively optimizing (3.5) using the bounded constraints.
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It is important to note that one more complication arises when SCCA is applied to gene
expression data. In CCA, the estimation of the correlation matrix using sample correlations
requires the data matrices X and Y have independent rows. However, given a gene expres-
sion matrix with genes in columns and experiments in rows, it is often the case that row-wise
and column-wise dependencies co-exist. Row-wise dependencies, or experiment dependen-
cies, can be defined as the dependencies in gene expression between experiments due to the
similar or related cellular states induced by the experiments ([95]). When unaccounted for,
they can introduce redundancies that overwhelm the important signals and lead to inaccu-
rate estimates of gene correlation matrix. To decouple the effect of experiment dependencies
from the estimation of gene correlations, we apply the Knorm procedure from [95]. The
Knorm model assumes a multiplicative structure for the gene-experiment interactions, and
iteratively estimates the gene covariance matrix and experiment covariance matrix through
a weighted correlation formula. In addition, row subsampling and covariance shrinkage are
used to ensure robust estimation.

Constructing edge weight matrix by SCCA with repeated random
partition and subsampling

Suppose an observed dataset contains measurements of the expression levels of p genes in n
experiments, where each experiment has a small number of replicates. We next describe our
new procedure of computing edge weights that reflect gene group interactions in the gene
network.

Summary of procedure

Step (i): Data normalization by Knorm. A gene expression matrix Zb of dimension n× p
can be generated from the full dataset by sampling one replicate from each experiment.
Using the Knorm model in [95], we normalize Zb as

Z∗b = (Σ̂E)−1/2(Zb − M̂), (3.6)

where M̂ is the estimated mean matrix and Σ̂E is the estimated experiment correlation
matrix.
Step (ii): Subsampling. For each normalized expression matrix Z∗b , sample (without re-
placement) a fixed fraction s, say 70%, of the genes to obtain an n× sp submatrix Zsub

b .
Step (iii): SCCA with random partition on the subsampled matrix. For each partition t,
randomly split the columns (genes) of Zsub

b into two groups of equal size (more explanation
given in the remarks below) to form Xsub

b,t and Y sub
b,t . Run SCCA on Xsub

b,t and Y sub
b,t : find

sparse weight vectors asub
b,t and bsub

b,t using the modified NIPALS algorithm ([55]) with the
L1 penalty and tuning parameters λ = (λ1, λ2), the choice of which will be discussed in
Section 3.3.
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Let cb,t be the list of the absolute values |asub
b,t | and |bsub

b,t | ordered according to the gene
list. For the genes not included in the subsampled matrix, the corresponding values in cb,t
are set to 0. Average over all the partitions to obtain the average weights c̄b. Define edge
weight matrix Ab = c̄bc̄

T
b , setting diag(Ab) = 0 to exclude self loops.

Step (iv): Repeat steps (ii) and (iii) B times. Define Ā = 1/B
∑B

b=1Ab and normalize by
the maximum value in Ā.

As will be demonstrated in Section 3.3, Ā defined above exhibits a natural block structure
when there is one or multiple functional groups. Here are more remarks on our procedure
to construct Ā:

1. Step (i) can be skipped when dependencies between experimental conditions are weak
and not of concern.

2. Step (ii) subsampling is necessary if we aim to identify multiple functional groups (that
may overlap) simultaneously. As there will be multiple groups with strong interactions,
not all of them can be detected unless different subsets of genes are considered. More
discussion about the subsampling step and the choice of subsampling levels is given
below.

3. During the random partition in step (iii), the two sets of genes do not have to be
exactly equal in size, but they need to be comparable in order to maximize the chance
of separating any gene functional group of interest into two sets.

4. Through multiple rounds of random partition, SCCA gives estimates in a regression
setting proportional to partial correlations conditioned on different sets of signal genes.
Overall subsampling and random partition enable us to consider different subsets of
the genes and ways to group them. Thus the elements in Ā can be interpreted as an
aggregated measure of partial correlations of different orders as the algorithm steps
through different conditional sets of genes.

5. As we search through different subsets of genes, different signal groups are identified
depending on the strengths of linear associations in the subset. As will be shown
empirically in Section 3.3, the averaged result leads to the formation of a distinct
block structure with different connectivities in the matrix.

Our procedure is flexible and can be modified easily to incorporate the following variants:

1. If prior knowledge is available on a pathway of interest, e.g. it is known in advance that
some genes are actively involved in that pathway, one may focus on the identification
of the gene group related to this pathway first and incorporate the prior knowledge
by lowering the penalties associated with those known pathway genes in the SCCA
algorithm. Examples involving using prior knowledge of pathway genes can be found
in Section 3.3.
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2. If the interest is to identify disjoint gene groups and running time is not a concern,
we can run the whole procedure iteratively with no subsampling, each time identifying
one dominating signal group and removing it from the subsequent analysis.

Asymptotic behavior of our procedure

Here we first show asymptotically the validity of our procedure by considering a simple
case where there exists only one functional group and all the other genes are uncorrelated.
Due to this simplification, no subsampling is needed, and the use of CCA without sparsity
suffices since in the asymptotics we consider the regime of n (number of experiments) going
to infinity with p (number of genes) fixed. Without loss of generality, in the entire gene set
G = {1, 2, . . . , p} let the first k genes K = {1, 2, . . . , k} form one pathway.

For every partition t, let at and bt be the solutions to (3.4) and ct be the list of the absolute
values |at| and |bt| ordered according to the gene list. Assuming Z follows a multivariate
normal distribution and the inverse covariance matrix has a diagonal block structure, we
have the following proposition regarding the asymptotic difference between the values of
{ci,t, i ∈ K} and {cj,t, j /∈ K} averaged over t. For convenience suppose p is even and denote
q = p/2.

Proposition 3.2.1. Let c̄ =
∑N

t=1 ct/N , where N is the number of partitions, then given
1 < k < q,

lim
N→∞

lim
n→∞

(min
i∈K

c̄i −max
j /∈K

c̄j) = D (3.7)

for some positive constant D.

We give the proof of proposition 3.2.1 with a lower bound on D that quantifies the
asymptotic difference in the assigned weights between functional group genes and noisy
genes. The separation in c̄ implies the genes in the graph characterized by the edge weight
matrix Ā = c̄c̄T can be grouped into different clusters based on their connectivity.

We first present the assumptions and proofs needed to establish Proposition 3.2.1. Let
Z ∈ Rn×p represent an expression matrix with p genes and n experiments, with centered
and scaled columns. We have the following assumptions regarding the distribution of Z.

Assumption 3.2.2. Z = (z1, . . . ,zn)T , where zi are iid p−dimensional normal random
variables with mean 0 and correlation matrix Σ that is invertible.

Assumption 3.2.3. The matrix Ω = Σ−1 is a diagonal block matrix,

Ω =

(
Ω1 0k×(p−k)

0(p−k)×k Ω2

)
, (3.8)

where Ω2 = diag(1, . . . , 1).
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Remark 3.2.4. Note that the diagonal block structure of Ω in Assumption 3.2.3 is mirrored
in its inverse Σ, that is

Σ =

(
Σ1 0k×(p−k)

0(p−k)×k Σ2

)
, (3.9)

where Σ1 = Ω−1
1 and Σ2 = diag(1, . . . , 1). The structure of the correlation matrix implies

dependencies only exist among pathway genes.

Partition the index set G into two sets J1 and J2 of equal size. Let I1 = J1 ∩ K and
I2 = J2∩K, that is, I1 and I2 represent the corresponding partition on the pathway gene set.
For convenience, assume the indices in J1, J2, I1 and I2 are ordered. Compose submatrix X
by selecting columns of Z whose indices lie in the set J1. Similarly compose submatrix Y
based on the index set J2. In the population case CCA requires finding (α,β) that solves the
optimization problem (3.3). Note that when ΣY X is a nonzero matrix, α and β are uniquely
determined up to a sign. To eliminate this indeterminacy we require α1 > 0, β1 > 0.

We also assume the following is true regarding the singular value decomposition of ΣI1,I2

for every partition.

Assumption 3.2.5. For any partition, the nonzero singular values of ΣI1,I2 are all distinct.

Remark 3.2.6. Assumption 3.2.5 is equivalent to requiring the corresponding submatrix
ΣY X has distinct nonzero singular values. This assumption is common in literature for the
purpose of establishing asymptotic theory for PCA or CCA.

Since in practice one always aims to solve the sample case (3.4), we first need to establish
the asymptotic properties of a and b for a given partition.

Lemma 3.2.7. As n→∞,
(i) If I1 = ∅, then ai ≤ 1 + oP (1) for k + 1 ≤ i ≤ q and bi ≤ 1 + oP (1) for 1 ≤ i ≤ q.

Similar conclusions hold for the case I2 = ∅.
(ii) If I1 6= ∅ and I2 6= ∅, we have a

P−→ α and b
P−→ β.

Proof of Lemma 3.2.7. We first show the constraints on a and b imply they are bounded
with probability one. Let λ̂i be the eigenvalues of SY Y and λi be the eigenvalues of ΣY Y ,
then

λ̂i
a.s.−→ λi (3.10)

follows from the fact that
SY Y

a.s.−→ ΣY Y . (3.11)

Writing SY Y = Udiag(λ̂i)U
T , where U is an orthogonal matrix,

aTSY Y a = aTUdiag(λ̂i)U
Ta

=

q∑
i=1

λ̂i(a
′
i)

2 = 1, (3.12)
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with (a′1, . . . , a
′
q)
T = UT (a1, . . . , aq)

T . Noting that ‖a′‖2 = ‖a‖2 and λi > 0, one can conclude
that a = OP (1). Thus

aTSY Y a = aTΣY Y a+ oP (1) = 1, (3.13)

and (i) follows from the structure (3.9) of Σ. The same argument applies to b.
In the case I1 6= ∅ and I2 6= ∅, rank(ΣY X) ≥ 1. One can show the convergence holds

using Assumption 3.2.5, the fact that
√
n(S(·,·) − Σ(·,·)) has a limiting normal distribution

and following the arguments in [5].

We then proceed to prove Proposition 2.1.

Proof of Proposition 2.1. Consider the following possible partition configurations. (For con-
venience, the dependency of the coefficients on partition t is suppressed.)

Case (i) I2 = ∅.
The probability of this configuration is

P0 = P({I2 = ∅}) =

(
p−k
q

)(
p
q

) · 1

2
(3.14)

with q = p/2. By Lemma 3.2.7, ci ≤ 1 + oP (1) as n→∞ for i /∈ K.
Case (ii) |I2| = 1, |I1| = k − 1.
This happens with probability kq

q−k+1
P0. Assume without loss of generality I1 = {1, . . . , k−

1}, I2 = {k}. Partition the pathway correlation matrix Σ1 and its inverse Ω as

Σ1 =

(
ΣI1,I1 ΣI1,k

Σk,I1 1

)
,Ω =

(
ΩI1,I1 ΩI1,k

Ωk,I1 ωk,k

)
. (3.15)

It is easy to see in the population case the solution to (2.3) has the form α = (α1,α2) with
α1 ∈ R,α2 = 0 and β = (β1,β2) with β1 ∈ Rk−1,β2 = 0. Furthermore, α1 and β1 solve the
optimization problem

(α1,β1) = arg max
α1,β1

α1Σk,I1β1 subject to α2
1 = 1,βT1 ΣI1,I1β1 = 1. (3.16)

The above condition implies α1 = 1, β1 = (1/ρ)Σ−1
I1,I1

ΣI1,kα1 and ρ2 = Σk,I1Σ
−1
I1,I1

ΣI1,k, where
ρ is the maximal correlation. Noting that

ΩI1,k = −Σ−1
I1,I1

ΣI1,kωk,k (3.17)

and
ωk,k = (1− Σk,I1Σ

−1
I1,I1

ΣI1,k)
−1, (3.18)

we can write β1 as

β1 = − ΩI1,k√
ω2
k,k − ωk,k

. (3.19)
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Generalizing this to any partition resulting in |I2| = 1 and using the convergence in Lemma 3.2.7,
as n→∞, ci = oP (1) for i /∈ K and ci = C1 + oP (1) for i ∈ K, where

C1 =

{
1 if I2 = {i}
|ωi,j |√
ω2
j,j−ωj,j

if I2 = {j}, j 6= i.
(3.20)

Case (iii) |I1| > 1 and |I2| > 1.
By the same argument as in Case (ii), ci = oP (1) for i /∈ K, and ai = αi + oP (1) and

bi = βi + oP (1) for i ∈ K with α1 and β1 solving the sub-problem

(α1,β1) = arg max
α1,β1

α1ΣI2,I1β1

subject to αT1 ΣI2,I2α1 = 1,βT1 ΣI1,I1β1 = 1. (3.21)

Combining results from the above discussion,

lim
N→∞

lim
n→∞

c̄i ≤ 2P0, i /∈ K; (3.22)

lim
N→∞

lim
n→∞

c̄i ≥

1 + (k − 1) min
1≤j 6=i≤k

 |ωi,j|√
ω2
j,j − ωj,j




× q

q − k + 1
2P0, i ∈ K. (3.23)

The proposition holds with

D ≥ 2P0

 k − 1

q − k + 1
+ (k − 1) min

1≤j 6=i≤k

 |ωi,j|√
ω2
j,j − ωj,j

 q

q − k + 1

 > 0 (3.24)

To further understand the asymptotic behavior of our procedure in general cases when
multiple functional groups exist, we present an example that consists of two (disjoint) groups
of interacting genes and other unrelated genes. We show a theoretical derivation of Ā =
1/B

∑B
b=1Ab = 1/B

∑B
b=1 c̄bc̄

T
b for this example in detail to highlight and explain the role of

subsampling. We can see that with subsampling, the limiting Ā (when n → ∞) exhibits a
natural block structure corresponding to the two gene groups, thus extending the validity of
proposition 3.2.1. The ideas underlying the analytical derivation in this simple example are
straightforward and directly applicable to general cases, though the computations involved
would be very tedious. Note that the analytical computations look tedious even in this small
example.
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Suppose there are 20 genes in total with two independent functional groups of size 3
each. Let Z = (z1, . . . ,zn)T ∈ Rn×20 represent an expression matrix with zi ∼ iid normal
variables with mean 0 and correlation matrix Σ, where Σ = diag(Σ1,Σ2, 1, . . . , 1) with

Σ1 =

 1 1/
√

2 1/
√

2

1/
√

2 1 0

1/
√

2 0 1


and

Σ2 =

 1 0.4 0.8
0.4 1 0.3
0.8 0.3 1

 .

Note that the genes in the first group have a perfect linear relationship zi,1 = 1√
2
zi,2 + 1√

2
zi,3

while the second group does not.
We first compute the asymptotic value of A with no subsampling as the number of

partitions goes to infinity using the population correlation matrix Σ (i.e. assuming we have
infinite observations). Since no subsampling is involved, there is only one such edge weight
matrix. The asymptotic values of the edge weight matrix can be calculated by summing
the weights from CCA under different partition configurations, weighted by their respective
probabilities. Here are more algebraic details for the computation of A. For every possible
partition, split the index set {1, 2, . . . , 20} into two sets J1 and J2 of equal size. Let α and
β be weight vectors solving

(α,β) = arg max
α,β

αTΣJ1,J2β subject to αTΣJ1,J1α = 1,βTΣJ2,J2β = 1.

When ΣJ1,J2 is a zero matrix, we adopt the convention which randomly chooses one gene
in J1 and one gene in J2 and assigns them weight 1. As in the paper, suppose c is the list
of the absolute values |α| and |β| ordered according to the gene list. For example, for the
partition placing the 20 genes in J1 and J2 with genes 1, 4, 5, 6 in J1 and genes 2, 3 in J2,
c = (1, 1/

√
2, 1/
√

2, 0, . . . , 0). Now define the average weight vector c̄ = 1/N
∑N

t=1 ct, where
N is the number of random partitions. c̄ → E(c) as N → ∞ and E(c) can be computed
explicitly from the four cases listed in the calculation part below. Then asymptotically,

A = c̄c̄T → E(c)E(c)T . (3.25)

The asymptotic values (setting the diagonal to 0, without normalization) are plotted in Fig-
ure 3.1 (a). We see that without subsampling, the second group is completely overwhelmed
by the first group (as demonstrated in configurations of type (iv)). Note also the signal
strength within the second group is weaker than that of the interaction between the two
groups. When agglomerative clustering is applied, the genes in group two will be merged
with group one before merging among themselves, making it very difficult to identify the
second group.
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With the help of subsampling, we hope to create more subsamples in which the second
group dominates the first, thus enhancing its signal strength in Ā when the averages are
taken over different subsamples. In this small example, it is possible to compute the asymp-
totic value of Ā as the number of random partitions and the number of subsamples go to
infinity, again assuming we have infinite obeservations which allow us to use the population
correlation matrix. Averaging over all subsamples b,

Ā = 1/B
B∑
b=1

c̄bc̄
T
b (3.26)

= 1/B
B∑
b=1

(
1/N

N∑
t=1

cb,t

)(
1/N

N∑
t=1

cb,t

)T

→ Eb (Etc̄b) (Etc̄b)T ,

as N →∞ and B →∞, where Et and Eb denote expectation taken with respect to random
partition and subsampling, respectively. The asymptotic values of Ā (setting diagonal to
zero, without normalization) are plotted in Figure 3.1 (b). We have set the subsampling
level to 70% and more details of the calculations can be found below. The comparison with
Figure 3.1 (a) demonstrates theoretically subsampling helps the identification of the weaker
group.
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Figure 3.1: Asymptotic values of Ā with (a) no subsampling and (b) 50% subsampling.

The theoretical analysis of the role of subsampling for multiple pathways under general
settings can be carried out in a similar fashion. However, since one needs to consider all the
possible subsamples and their corresponding partition configurations, the process is rather
tedious even when the gene groups are very small as shown by the toy example above. We
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deem the full proof out of scope of the current paper. We remark here that subsampling is
only necessary when we would like to identify multiple functional groups simultaneously. In
practice, if running time is not a concern, we can always run the whole procedure iteratively
with no subsampling, each time identifying one dominating signal group and removing it
from the subsequent analysis.

Detailed Calculations

We first show the calculations for the case with no subsampling. Let K1 = {1, 2, 3}
and K2 = {4, 5, 6} denote the indices of the genes in these two functional groups. For each
partition, let Ii,j = Ki ∩ Jj for i, j = 1, 2. Consider the following scenarios:

(i) |I1,j| = 3 and |I2,l| = 3, j, l ∈ {1, 2}. This happens with probability

2 ·
(

14
10

)
+ 2 ·

(
14
7

)(
20
10

) ,

and since the cross correlation matrix is zero in this case, we randomly choose two genes to
assign weight 1.

(ii) |I1,j| = 1 and |I2,l| = 3, j, l ∈ {1, 2}. The probability of this type of partition is

2 · 3 ·
(

14
6

)
+ 2 · 3 ·

(
14
9

)(
20
10

) .

Clearly ci = 0 for 4 ≤ i ≤ 20. Depending on which gene is grouped into I1,1 (or I1,2),

(c1, c2, c3) =


(1, 1/

√
2, 1/
√

2) if gene 1 is chosen,

(
√

2, 1, 1) if gene 2 is chosen,

(
√

2, 1, 1) if gene 3 is chosen,

all of which are equally likely.
(iii) |I1,j| = 3 and |I2,l| = 1, j, l ∈ {1, 2}, which has probability

2 · 3 ·
(

14
6

)
+ 2 · 3 ·

(
14
9

)(
20
10

) .

In this case, ci = 0 for 1 ≤ i ≤ 3 and 7 ≤ i ≤ 20. Depending on which gene is selected by
I2,1 (or I2,2),

(c4, c5, c6) =


(1, 0.215, 0.914) if gene 4 is chosen,

(1.107, 1, 0.138) if gene 5 is chosen,

(1.012, 0.030, 1) if gene 6 is chosen,

all of which are equally likely.
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Type of subsample Probability

|S1| = 3, |S2| = 3 0.0775
|S1| = 3, |S2| = 2 0.1550
|S1| = 2, |S2| = 3 0.1550
|S1| = 3, |S2| = 1 0.0775
|S1| = 2, |S2| = 2 0.2324
|S1| = 1, |S2| = 3 0.0775
|S1| = 3, |S2| = 0 0.0094
|S1| = 2, |S2| = 1 0.0845
|S1| = 0, |S2| = 3 0.0094
|S1| = 2, |S2| = 0 0.0070
|S1| = 1, |S2| = 1 0.0211
|S1| = 0, |S2| = 2 0.0070
|S1| = 1, |S2| = 0 0.0011
|S1| = 0, |S2| = 1 0.0011
|S1| = 0, |S2| = 0 0.0000

Table 3.1: Different subsamples created

(iv) |I1,j| = 1 and |I2,l| = 1, j, l ∈ {1, 2}, which has probability

2 · 3 · 3 ·
(

14
8

)
+ 2 · 3 · 3 ·

(
14
7

)(
20
10

) .

Both functional groups have been split up by the partition, resulting in the cross correlation
matrix having two non-zero diagnal blocks. It is easy to see the genes in the first group are
collinear, thus possessing a stronger linear relationship than the second group. The non-zero
block associated with the first group produces the largest singular value, and it follows that
the values in c are the same as in case (ii).

Combining the above four cases gives the values in Figure 3.1 (a).
With subsampling, let S denote the indices of the selected genes. Further denote S1 =

K1 ∩ S and S2 = K2 ∩ S. We can create subsamples listed in Table 3.1. For each type of
subsample listed, one can carry out the same computation for E(c̄b) by considering all the
possible partitions for a subsample b.

Identify community structures given the edge weight matrix Ā

To demonstrate that Ā possesses advantages over traditional approaches in identifying gene
functional modules, subsequent analysis of Ā based on community detection tools is needed.
Many methods are available in this field. In particular, clustering has been a popular and well
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studied technique. [46, 96, 41] provide general reviews of various clustering techniques, and
reviews with more specific focus on gene expression data can be found in [25, 42, 47]. Variants
of spectral clustering are also widely explored for detecting communities in sparse networks
([75]). Viewing gene relationships as edges in a graph, a natural approach is to consider
functional modules as tightly connected subgraphs. Genes with related functionalities are
expected to have dense connections, whereas biologically unrelated (noisy) genes may be
only sparsely connected. The Stochastic Block Model (SBM) builds a general probabilistic
graph model based on such an assumption that nodes (genes) have different connectivities
depending on their block memberships.

Below we introduce two popular community detection tools, SBM and hierarchical clus-
tering (HC), which we will use in later simulation and real data analysis to dissect gene
interaction groups from Ā. As we have mentioned, there are many other choices for per-
forming this task. The structure of Ā itself may also imply some methods are more suitable
than others. In this paper, it is not our intention to suggest or evaluate the best community
detection tools that should be applied to Ā. Here we are presenting SBM and HC just as
two illustrative approaches.

The SBM, formally introduced by [38], generalizes the Erdős-Rényi model and defines a
family of probability distributions for a graph. Here is a detailed model definition.

Definition 3.2.8. A SBM is a family of probability distributions for a graph with node set
{1, 2, . . . , p} and Q node blocks defined as follows.

1. Let C = (C1, C2, . . . , Cp) denote the set of labels such that Ci = k if the node i belongs
to block k.

C
i.i.d∼ Multinomial(γ),

where γ = (γ1, γ2, . . . , γQ) is the vector of porportions.

2. Let π = (πlk)1≤l,k≤Q be a symmetric matrix of block dependent edge probability matrix
and A be the adjacency matrix. Conditioned on the block labels C, (Aij) for i < j are
independent, and

P (Aij|C) = P (Aij = 1|Ci = l, Cj = k) = πlk.

Discretizing Ā defined in Section 3.2 into a 0-1 matrix, the class labels and the parameters
γ and π are estimated using the psuedo-likelihood algorithm by [4]. The unconditional
version of the algorithm fits the conventional SBM above, while the conditional version
takes into account the variability of node degrees within blocks ([45]). Potential functional
groups are identified as classes having large diagonal entries in π.

Agglomerative HC is another widely used non-model-based technique for extracting com-
munities, especially in the study of social networks ([83]). In our application, we adopt the
Ward’s distance ([102]) for the computation of merging costs. Let gi be the nodes, the
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distance between two clusters M1, M2 is defined as

d(M1,M2) =
n1n2

n1 + n2

‖m1 −m2‖2

=
1

2(n1 + n2)

∑
i,j∈M1∪M2

‖gi − gj‖2 − 1

2n1

∑
i,j∈M1

‖gi − gj‖2

− 1

2n2

∑
i,j∈M2

‖gi − gj‖2

where n1 and n2 denote the sizes of M1 and M2, m1 and m2 are the cluster centers of
M1 and M2 respectively. A natural way to define the square of the pairwise distance is
‖gi − gj‖2 = 1 − Āij for i 6= j, and zero otherwise. Since Ward’s method minimizes the
increase in the within group sum of squares at each merging and tends to merge clusters
that are close to each other and small in size, a small cluster that manages to survive a
long distance before coalescing is likely to be a tight cluster, indicating the genes it contains
have high connectivity with each other. Thus at an appropriately chosen cutoff level Q, we
identify the smallest few clusters as potential functional groups.

Both SBM and HC require a priori knowledge of the number of clusters Q, and the proper
selection of Q remains an open problem in literature. For SBM, we refer to some discussions
in [40] and [16]. For HC, a common way to choose the cutoff Q is to set it as the number
just before the merging cost starts to rise sharply. Due to the scale and complexity of a
typical gene expression dataset, this criterion is not very applicable. In this paper, for the
HC approach we choose Q empirically based on the sizes of the clusters each Q produces.
That is, Q is increased incrementally until small clusters start to emerge. A comparison
between SBM and HC can be found in Section 3.3. Although we note here fitting the SBM
requires the input of a binary adjacency matrix and the process of thresholding will incur
information loss compared to HC.

Flow chart summarizing the whole procedure

A comprehensive summary of the whole procedure including the tuning parameters needed
in constructing Ā and illustrative subsequent analysis of Ā is provided in Figure 3.2.

3.3 Results

In this section we evaluate the performance of the proposed method and other approaches
using simulated and real microarray datasets. In particular, we compare the quality of the
estimated gene functional groups resulting from different ways of computing edge weights,
and the two methods of community detection (SBM and HC) discussed in Section 3.2. We
use precision and recall, defined as precision = TP/(TP+FP) and recall = TP/(TP+FN), as
measures for evaluating classification performance. Here TP is the number of true positive
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Figure 3.2: Flow chart summarizing the whole procedure. Each numeric superscript in
the diagram indicates the need for tuning parameters: 1. subsampling level, 2. penalty
parameter λ.

findings of functional group genes, FP is the number of false positives and FN is the number
of false negatives. In the context of this study, they can be regarded as a measure of exactness
and completeness of our search results, respectively. The problems of choosing appropriate
proportion of subsampling and λ for sparsity are also discussed.
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Simulation

Generation of simulation datasets

We simulate a microarray dataset consisting of p = 150, 300 or 500 genes and n = 30 experi-
ments, with 5 replicates for each experiment. To make the data more realistic, we introduce
experiment dependencies, multiple functional groups and random noise. The simulation
parameters are generated as follows:

(i) Experiment correlation matrix, ΣE. For illustrative purpose, we set the experiment
correlation matrix to have 0, 33 and 67% dependencies. In the case of a 33% dependency,
for example, 33% of the experiments have high dependencies (correlation between 0.5 and
0.6) while the remaining experiments are uncorrelated with one another.

(ii) Gene correlation matrix, ΣG. In each dataset, we introduce one or two functional
groups with 15 genes in each. Genes in the same group are correlated, having either high
correlations (0.5 - 0.6) or low correlations (0.1 - 0.2) with the other genes, and otherwise
they are not.

Using the above parameters, we generate the simulation data as follows. First, we gener-
ate a 30 × 500 gene expression matrix Z, with vec(ZT ), from a multivariate normal distri-
bution with mean zero and a covariance matrix ΣG ⊗ΣE. To introduce linear relationships,
within each group we take linear combinations of some genes to replace their original values.
Using the final 30× 500 gene expression matrix, we add random noise with a small SD (e.g.
0.01) to each row to generate the 5 replicates for each experiment.

Estimated Ā and tuning parameter selection

Figure 3.3 shows the heatmaps of the matrix Ā for two datasets with different numbers of
functional groups. For visual clarity, the genes are ordered according to their true group
memberships. In both cases, the matrix demonstrates a clear block structure. In particular,
in the two-group case both pathways are visible although the first one is more prominent. We
remark here that the difference in signal strength between the two pathways is introduced
by chance variation during data generation and the use of subsampling is necessary for the
identification of the weaker group. Although we present results obtained with a subsampling
level of 70%, a range of reasonable subsampling levels can be chosen without significantly
affecting the final results (further analysis below). The other tuning parameter λ is chosen
such that the matrix Ā displays optimal contrast between the pathway and non-pathway
groups, and we shall use this as a guidance for assessing the quality of Ā and selecting λ.

Among the common approaches for the selection of optimal tuning parameters, cross-
validation based methods are used in [98], [71] and [55]. However, all of their methods involve
dividing a sample into multiple sets which is impractical for datasets with only a few tens of
observations. [105] proposed an alternative permutation-based method which estimates the
p-value of the maximal correlation found by performing SCCA on permuted samples. Due
to the large number of partitions and subsamplings required in our method, this approach
would be very computationally expensive. Instead we measure the effectiveness of λ using
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the entropy of Ā, defined as

H(A) = −
∑

i<j,Aij>0

(Aij/SA) log(Aij/SA), (3.27)

where SA =
∑

i<jAij. The entropy quantifies the sharpness of its distribution and thus is

indicative of the signal intensity. Figure 3.4 plots the contours of H(Ā) for the same two
datasets used in Figure 3.3. Regions with low entropy correspond to λ leading to a matrix
with better signal intensity.
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Figure 3.3: Heatmaps of the matrix Ā using datasets with (a) p = 150, 0% experiment
dependency, one functional group, subsampling level 70% and (λ1, λ2) = (9, 9); (b) p = 300,
0% experiment dependency, two functional groups, subsampling level 70% and (λ1, λ2) =
(9, 15). For clarity, only the first 100× 100 entries are shown and the functional groups are
placed at positions 1-15 and 16-30, respectively.

Performance comparison

Figure 3.5 compares the classification performance of our methods, scca.sbm and scca.hc,
with four correlation-based methods, pearson.hc, pearson.sbm, module.dynamic and mod-
ule.hybrid. The methods are named by cross-mixing the following to allow for comparisons
in the two-stage procedure.

scca: Calculate Ā’s with λ ∈ {9, 12, . . . , 27}2 and select 10 of these with the smallest
entropy values. The final cluster membership (after community detection) is decided by a
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Figure 3.4: Contour plots of the entropy of the upper triangular entries of Ā on the grid
(λ1, λ2) ∈ {0, 3, . . . , 18}2 using datasets with (a) p=150, 0% experiment dependency, one
functional group and subsampling level 70%; (b) p=300, 0% experiment dependency, two
functional groups and subsampling level 70%.

majority vote based on the selected Ā’s so only stable clusters and cluster members are
chosen.

pearson: Pearson’s correlation matrix after the data is normalized using equation (3.6)
and Knorm estimates.

module: Transformed Pearson’s correlation matrix used in [52].
sbm: Fit a SBM on a discretized edge weight matrix (at level {0.3, 0.4, . . . , 0.8}) using

the unconditional pseudo-likelihood algorithm in [4] with Q = 2 (or 3) initialized by spectral
clustering with perturbation. Select the cluster with the highest internal connectivity based
on the estimates.

hc: HC with the Ward’s distance and cut the dendrogram when clusters of size less than
25 start to appear as the number of clusters Q increases. The choice of this upper bound is
based on the size of the cluster selected in scca.sbm, and a range of reasonable numbers can
be used without affecting the final results.

dynamic, hybrid : HC with dendrogram cutting methods in the R package dynamicTreeCut
([53]).

Figure 3.5 plots the average precision and recall of the above six methods calculated on
10 simulation datasets for each level of experiment dependency. It can be seen that using
our SCCA approach to compute edge weights in general leads to higher precision across
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all experiment dependency levels. Of the two ways of community identification, scca.hc
produces higher precision than scca.sbm at comparable recall levels.

Table 3.2 shows the same performance measures obtained from datasets containing two
independent functional groups for scca.hc, pearson.hc, module.dynamic and module.hybrid.
The numbers are averages from 10 simulation datasets for each level of experiment depen-
dency. Similar to the one-group case, we choose the smallest Q that produces two clusters of
size less than 25 as the cutoff in HC. We remark here that when multiple groups are present,
scca.sbm tends to detect only the strongest signal group while failing to pick up the weaker
one. This can be explained by considering the within-class homogeneity assumption in the
SBM model and noting that the degree distribution is often less homogeneous in the weaker
signal group (see e.g. Figure 3.3). Neither is the conditional pseudo-likelihood algorithm
in [4] sensitive enough to detect the finer distinctions. Results from pearson.sbm are also
omitted as they are very noisy. In all the cases, scca.hc demonstrates the best precision at
comparable, if not better recall.

Table 3.2: Classification performance of different methods using datasets with p = 500, two
pathway groups, subsampling level 70%, and various levels (0%, 33% and 67%) of experiment
dependency.

Pathway 1
0% 33% 67%

Precision Recall Precision Recall Precision Recall
scca.hc 0.861 0.533 0.831 0.441 0.811 0.433

pearson.hc 0.238 0.233 0.497 0.427 0.471 0.393
module.dynamic 0.718 0.3 0.742 0.333 0.764 0.38
module.hybrid 0.439 0.407 0.544 0.447 0.453 0.385

Pathway 2
0% 33% 67%

Precision Recall Precision Recall Precision Recall
scca.hc 0.808 0.487 0.890 0.489 0.833 0.420

pearson.hc 0.438 0.387 0.323 0.307 0.460 0.273
module.dynamic 0.758 0.4 0.808 0.347 0.8 0.4
module.hybrid 0.565 0.473 0.529 0.387 0.455 0.46

Subsampling levels

Using the same simulated dataset that produced the heatmaps in Figure 3.5 of the paper, we
performed the calculation of Ā again at (a) 50% subsampling level and (b) 95% subsampling
level. There are two gene groups at positions 1-15 and 16-30, respectively.

As can be seen in Figure 3.6, when almost no subsampling is applied, Ā is predominantly
expressing signals from the first group, while the signal intensity of the second group is weaker
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than that of the between-group interaction (due to the product definition of A) and only
marginally stronger than the background noise. This is because genes in the first group
possess stronger linear relationships and the weights in SCCA are preferentially assigned to
them under most partitions. Thus the only way to simultaneously capture both groups under
our framework is to consider different subsamples whereby the first group does not dominate
all the time. A low subsampling level, however, also increases the chance of selecting only
noise genes in the subsample. As a result, more background noise is introduced in the final
output and the signal ratio is diminished (Figure 3.6 (a)). The choice of subsampling level
is a trade-off between group structure complexity and signal to noise ratio. More complex
group structures require lower subsampling levels. On the other hand, if the ratio of signal
genes to noise genes is small, we need to apply higher subsampling levels to ensure the results
do not include too much noise.

Overlapping functional groups

In practice it is often the case there are genes actively participating in multiple pathways.
Our edge weight matrix would reflect the overlapping structure as long as the overlapping
genes possess strong direct or partial correlations with other genes in those pathways. At the
second step, these overlapping blocks can be detected by, for example, fitting an overlapping
SBM ([1]). To test our method’s performance under the overlapping setting, we simulate
a dataset with 150 genes and 30 experiments with 5 replicates each. Genes 1-15 form one
functional group and genes 11-25 form the second group. The two groups overlap by 5 genes
and genes in the same group have correlations around 0.5-0.6. Figure 3.7 shows the heatmaps
of Ā when the procedure is run at 50% level of subsampling, with the matrix demonstrating
the desired overlapping block structure.

Incorporating prior knowledge

For illustration, we incorporate prior knowledge for two simulated datasets used in the com-
putation of Table 1 in the paper. Both have 500 genes, 30 experiments with five replicates
each. The first set has the first 15 genes forming a functional group. Randomly selecting four
genes in the group as prior knowledge and reducing their penalties by half, the procedure
retains a perfect precision of 1, and recall improves from 0.533 to 0.733. The second set has
two functional groups of size 15 each (genes 1-15 and genes 16-30). Randomly choosing four
genes in the first group as prior knowledge, the recall of the first group improved from 0.533
to 0.733. Doing the same for the second group, the recall increased from 0.467 to 0.667.

Application to real data

We tested the performance of our procedure by applying it to Arabidopsis thaliana microar-
ray expression data retrieved from AtGenExpress (http://www.arabidopsis.org/servlets/
TairObject?type=expression set&id=1007966941). Analyzed dataset included expression
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measurements collected from shoot tissues subject to oxidation stress for 22810 genes under
13 experiment conditions with two replicates for each experiment. In these experiments,
the plants were treated with methyl viologen (MV), which led to the formation of reactive
oxygen species (ROS). Various studies have shown that depending on the type of ROS, a
different biological response is provoked. Thus by focusing on the ROS induced by MV, we
were able to show and validate that the results of our pathway gene search were supported,
in part, by other already published ROS-related microarray experiments.

A subset of all 22810 genes was selected for analysis based on the following criteria. (i)
The experiment variance of the gene exceeds 0.1. An unvarying expression profile suggests
the gene has an activity level unaltered by the particular stress condition and hence is
unlikely to be part of any stress-induced pathway. The inclusion of such genes may cause
problems in covariance estimation as well. We also removed genes with a suspiciously high
experiment variance as it could suggest inaccuracy in measurements. (ii) The discrepancy
between the two replicates is smaller than 2 for each experiment. This ensures only genes
with consistent measurements are included in our analysis. (iii) The minimum expression
level exceeds 7. More active genes are likely to possess stronger signals, making our search
easier. This requirement further trims down the dataset to a smaller size more desirable for
our procedure. We note here that the inclusion of (iii) is optional — if running time is not
a concern, the minimum expression level could be either lowered or entirely removed. The
final subset for analysis contained 2718 genes.

Potential functional groups were found by scca.hc. Due to the complexity and noise
level of the dataset, we did not expect the entropy (3.27) to have a clean-cut unimodal
distribution. Furthermore, the presence of many groups with varying signal strengths implies
each may need a different optimal λ for detection. For example, strong groups are likely
to require more regularization, or in other words, larger λ. For this reason, we performed
our search in multiple stages starting from large λ for stronger groups to smaller λ for
weaker ones. At every stage, the groups found were removed from the original set before
proceeding to the next stage. The upper bound on λ was found by increasing λ until
the entropy stabilized. Searching down from this upper bound, we chose λ from three
grids: {90, 100, 110}2, {60, 70, 80}2 and {30, 40, 50}2. The cutoff level Q in HC was increased
incrementally until at least five clusters of size less than 30 appeared. A reasonable range
of numbers can be used to choose the cutoff and our results are not very sensitive to the
choice of this number. The full procedure produced 13 groups of genes, the full list of which
including annotations can be found in the supplementary information of [101].

To test the biological significance of all 13 groups found (i.e., whether there is a functional
relationship between genes within the various groups), we first examined for enrichment of
gene product properties, collectively designated gene ontology (GO) annotations, within
each group using information available at The Arabidopsis Information Resource (http://
www.arabidopsis.org/tools/bulk/index.jsp). We determined that 8 out of 13 groups were
highly enriched with genes having the same GO annotation and calculated their p-values
using Fisher’s exact test to compare with the counts obtained from the full analyzed dataset
(Table 3.3).
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Table 3.3: GO enrichment of groups

Group
ID

Enriched GO term
Number of genes with
enriched terms

P-values

1 Chloroplast organellar gene 10 out of 151 1.10× 10−4

2 Phenylpropanoid-flavonoid biosynthesis 3 out of 4 6.65× 10−7

3 Glucosinolate biosynthsis 7 out of 7 1.95×10−14

4 Chloroplast organellar gene 3 out of 3 7.83× 10−3

5 Ribosome 10 out of 15 7.20×10−13

8 Ribosome 5 out of 6 8.31× 10−8

10 Photosystem I or II 8 out of 10 2.87×10−14

12 Endomembrane system 3 out of 4 2.35× 10−3

In addition to the GO enrichment approach for validating the groups, and in order to
support the biological significance of the groups found, we also evaluated other forms of
evidence. We were able to determine that for several groups, that the genes placed in
the groups encode for known pathways. For example, group 2 genes encode steps in the
phenylpropanoid-flavonoid (FB) biosynthesis pathway, and group 3 genes encode for steps
in the glucosinolate (GSL) biosynthesis pathway. Both are well-studied secondary metabolic
pathways. Flavonoids are compounds of diverse biological activities such as anti-oxidants,
functioning in UV protection, in defense, in auxin transport inhibition, and in flower coloring
([34, 67, 94, 109]), and GSLs are sulfur-rich amino acid-containing compounds which become
active in response to tissue damage, and believed to offer a protective function ([87, 97,
110]). A considerable number of genes in both pathways are induced by broad environmental
stresses, and regulated at the transcriptional level. Based on the lists of genes associated with
these two pathways reported in [49], our analyzed dataset contained 13 FB pathway genes
and 26 GSL pathway genes. The precisions of our search are 75% and 100%, respectively.

In order to assess the likelihood that genes in the remaining groups could also encode
steps within specific pathways, we reviewed microarray data from plants subjected to other
forms of oxidative stress (these experiments are similar to the experiment from which our
dataset using MV was obtained). Using this approach we found that genes in each of the
additional seven groups (1, 4, 5, 8, 9, 11, 12) were strongly associated in these independent
experiments (Table 3.4).

14 out of the 10 chloroplast genes are mitochondrial organellar genes.
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Table 3.4: Groups that show co-expression in other oxidative-stress-inducing conditions

Experimental (oxidative-stress-inducing) conditions

Group ID

Number of
genes with
changed
expression

SOD
knockdown2

apx1
exposed to
high light3 Ozone4 alx8 5

High light
(time
course)6

1 11 out of 15
Up
regulated7

4 2 out of 3
Up
regulated

Up
regulated

Up
regulated

12 4 out of 4
Up
regulated

Down
regulated8

Down
regulated

Up
regulated

5 15 out of 15
Co-
expression9

8 6 out of 6
Co-
expression

11 8 out of 8
Co-
expression

9 5 out of 5
Co-
expression

Of all the groups found, groups 6, 7 and 13 remain uncharacterized in the literature.
Nonetheless, using CoExSearch (part of the ATTD-II database (http://atted.jp/top search.shtml
#CoexVersion)), all four genes in group 7 were correlated to some degree with abiotic stress
conditions. We also found these genes were common anoxia-repressed genes ([61]). The lack
of complete characterization for these groups in the current literature leaves potential scope
for further biological examination.

For comparison we applied pearson.hc, module.dynamic and module.hybrid to the same
data. As the simulation study suggests the latter two methods in general have better per-

2The thylakoid-bound Cu/Zn superoxide dismutases ( Cu/ZnSOD, At2g28190) knockdown mutant was
compared to wild type plants ([78])

3The knockout cytosolic ascorbate peroxidase (apx1, At1g07890) mutant was exposed to high light, and
compared to untreated apx1 plants. ([23])

4Arabidopsis seedlings were exposed to 200 ppb ozone for 1 h. (http://affymetrix.arabidopsis.info /nar-
rays/experimentpage.pl? experimentid526)

5alx8 ( At5g63980) mutant, which has half H2O2 of that in wild type, was compared to wild type. ([28])
6Leaves from 4-week-old plants were exposed to high light for 0.75, 1.5, 3, and 6 h. ([48])
7Gene expression is coordinately increased as a result of the specific experimental condition.
8Gene expression is coordinately decreased as a result of the specific experimental condition.
9Gene expression changes coordinately (up or down) throughout the time course.
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Table 3.5: GO enrichment of groups — first cut

Group
ID

Enriched GO term
Number of genes with
enriched terms

P-values

9 Cell wall 16 out of 81 4.46× 10−6

10 Defense response 29 out of 78 1.58× 10−2

11 Phenylpropanoid-flavonoid biosynthesis 11 out of 76 5.42×10−12

Table 3.6: GO enrichment of groups — second cut

Group
ID

Enriched GO term
Number of genes with
enriched terms

62 NA 0 out of 6
63 Chloroplast 4 out of 6
64 Located in plasma membrane 2 out of 5
65 Located in plasma membrane 3 out of 5
66 Pyridoxine biosynthetic process 2 out of 5

formance than pearson.hc, particularly in the multi-group case, we will present the results
from these two methods. In order to compare with our results, we chose two cuts of the
dendrogram such that the first cut produced the same number of groups as our method,
and the second one led to groups with sizes comparable to ours. The first cut resulted in
13 groups with sizes ranging from 60 to 293. We picked three most promising groups based
on their annotations and the GO analysis is summarized in Table 3.5. Although all of them
have statistically significant p-values, their precisions are quite low. In particular, group 11
contains our group 2 as a subset and includes 11 genes (out of 76) in the FB pathway and 5
genes are in isoprenoid biosynthesis pathway. These two pathways are derived from different
initial precursors and and known to be unrelated. We note here that at this cut level, the
GSL pathway cannot be identified by the method. The second cut produces 66 groups with
sizes from 5 to 81. We picked five small groups for analysis and only one group with genes
localized in chloroplast has significant GO enrichment (Table 3.6). Even so, these genes are
unlikely to be functionally related. The comparison suggests our method can achieve better
precision and lead to more biologically meaningful groupings of genes.

Effects of tuning parameters

To systematically study the effects of different tuning parameters on the identification of gene
functional groups, we perform sensitivity analysis for different choices of subsampling levels
and penalty parameter λ using both the simulated and real data discussed above. For the
sake of completeness, we also compare tuning parameters from the HC and SBM procedures.
Overall our results are reasonably stable for a range of λ values. Further stability can be
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achieved by pooling results from different λ. As expected, the choice of subsampling level
is more important when there exist multiple functional groups. Our results suggest levels
between 50% and 80% can all be considered in practice. For community detection, HC is
more robust than SBM in the sense that the classification results are not sensitive to the
cutoff chosen. The results are summarized in the tables in Appendix.

3.4 Discussion

In this paper, we focus on the problem of estimating gene group interactions in gene networks,
where data are given in the form of nodes and their associated covariates and estimation of the
true network is a challenging task. We propose a new method to construct an edge weight
matrix for the full network by applying SCCA to sampled subsets of genes with random
partitioning. To evaluate the quality of the constructed network, subsequent analysis of
the community structures is applied to identify potential gene functional groups. Although
the work is presented under the setting of gene networks, we believe our approach can be
generally applicable to answer similar questions in other biochemical networks and even
networks in other fields that are sparse and have similar covariate features.

Compared to other popular ways of measuring gene interactions, our SCCA approach is
more conceptually appealing. By seeking maximally correlated sets of genes among randomly
sampled subsets, this approach provides an aggregated measure of gene partial correlations
when the correct conditional set is unknown and thus gives us a better chance of capturing
group interactions. As demonstrated in both simulation and real data applications, one of
the main attractions of our procedure is its high precision. Although it does not seem to
greatly improve recall, this is not a huge drawback in light of the search algorithm by [49].
Given the accuracy of our search results in general, one can use these identified genes as
“seed genes” to initiate a more complete search and expand on the current lists.

Our approach can be modified to handle other practical situations. When it is known
in advance that some genes operate in the same functional group, one may incorporate
the prior knowledge by lowering the penalties associated with those genes in the SCCA
algorithm. Although we have focused on the case with disjoint functional groups, our method
of constructing an edge weight matrix is still applicable to the overlapping case as long as
the shared genes possess strong direct or partial interactions with all the other functional
genes. However, a different community detection method (e.g. mixed membership SBM, [1])
should be applied to identify the overlapping structures.

The core of our procedure consists of an implementation of SCCA by LASSO regression,
and this naturally opens room for further investigation. For example, it would be interesting
to find out if using other penalty functions yields different results; more importantly, whether
SCCA can be implemented using a different optimization criterion or a more efficient algo-
rithm to lessen the computational cost of our procedure. In the theoretical aspect, it would
be desirable to incorporate sparsity into our asymptotic analysis.
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On the community detection side, although we used SBM and HC as examples, there are
many other available methods to be further explored, especially their properties in relation
to the edge weight matrix Ā. The use of SBM and HC also gives rise to other interesting
extensions. As noted in Section 3.3, conventional SBM does not perform well when there
are multiple groups, which is mainly caused by the heterogeneity of node degrees. However,
fitting a degree-corrected model using the conditional pseudo-likelihood algorithm does not
seem offer significant improvement. It would be desirable to carry out further study on the
theoretical properties of the degree-corrected SBM and characterize its identifiability prob-
lem. Another possible extension is to modify these algorithms to take weighted adjacency
matrices without discretization. Developing a practical but more systematic way of choosing
the cutoff level for HC also invites future study.
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Figure 3.5: Classification performance of different methods using datasets with p = 500,
one pathway group, subsampling level 70%, and (a) 0%, (b) 33% and (c) 67% of experi-
ment dependency. pearson.sbm and scca.sbm are applied to matrices at discretization levels
{0.3, 0.4, . . . , 0.8} (from left to right on the curve).
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Figure 3.6: Heatmaps of Ā at (a) 50% subsampling level and (b) 95% subsampling level.
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Figure 3.7: Heatmap of Ā with 50% subsampling.
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Chapter 4

Likelihood-based model selection for
stochastic block models

4.1 Overview

In Chapter 3, we applied SBM to detect communities in gene networks. In this Chapter,
we analyze this popular random graph model from a theoretical perspective and study the
problem of model selection. As mentioned in Chapter 1, much effort has been devoted to
estimating the model parameters, whereas the issue of choosing the block number is less
explored. We directly address the challenges involved in analyzing the asymptotic distribu-
tion of the maximum log likelihood function under model misspecification. We show the log
likelihood ratio statistic is asymptotically normal in the case of underfitting. Although ob-
taining an explicit asymptotic distribution of the statistic in the case of overfitting is much
more challenging, we have still derived its order of convergence and subsequently shown
these two cases of misspecification can be separated with probability tending to one. We
thus propose a model selection criterion taking the form of a penalized likelihood and show it
is asymptotically consistent. Our conclusions remain valid for networks with average degree
growing at a polylog rate in the semi-sparse regime. Computationally the likelihood can
be approximated with the variational algorithm in [40], making this approach applicable to
reasonably large networks. We also provide comparisons of its performance on simulated
and real networks with other model selection approaches.

4.2 Results

Preliminaries

To set the notation for this Chapter, a SBM with K blocks on n nodes is defined as follows. A
vector of latent labels Z = (Z1, . . . , Zn) is generated with Zi taking integer values from [K] =
{1, . . . , K} governed by a multinomial distribution with parameters π = (π1, π2, . . . , πK).
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Given Zi = a, Zj = b, an adjacency matrix A is generated with

Ai,j|(Zi = a, Zj = b) ∼ Bernoulli(Ha,b), i 6= j.

We consider a symmetric A with zero diagonal entries corresponding to an undirected graph,
although our arguments generalize easily to directed graphs. H is a K×K symmetric matrix
describing the connectivities within and between blocks. We denote the model parameters
θ = (π,H) and let ΘK be the parameter space of a K-block model,

ΘK ={θ | π ∈ (0, 1)K ,
K∑
a=1

πa = 1, H ∈ (0, 1)K×K}.

Throughout the paper, θ∗ = (π∗, H∗) will denote the true generative parameter giving rise
to an observed A. We will further parametrize H∗ by H∗ = ρnS

∗, where the degree density
ρn may be Ω(1) or going to zero at a rate nρn/ log n → ∞. We assume θ∗ ∈ ΘK and H∗

has no identical columns, meaning the underlying model has K blocks and it is identifiable
in the sense that it cannot be further collapsed to a smaller model. z = (z1, . . . , zn) ∈ [K ′]n

represents another set of labels under a K ′-block model with K ′ not necessarily equaling K.
g(A; θ) is the likelihood function describing the distribution of A with parameter θ ∈ ΘK′

and can be written as the sum of the complete likelihood function f(z, A; θ) associated with
the labels z ∈ [K ′]n:

g(A; θ) =
∑

z∈[K′]n

f(z, A; θ), (4.1)

where f(z, A; θ) takes the form

f(z, A; θ) =

(
n∏
i=1

πzi

)(∏
i<j

HAij
zi,zj

(1−Hzi,zj)
1−Aij

)

=

(
K′∏
a=1

πna(z)
a

)(
K′∏
a=1

K′∏
b=1

H
Oa,b(z)

a,b (1−Ha,b)
na,b(z)−Oa,b(z)

)1/2

with count statistics

na(z) =
n∑
i=1

I(zi = a), na,b(z) =
n∑
i=1

∑
j 6=i

I(zi = a, zj = b)

Oa,b(z) =
n∑
i=1

∑
j 6=i

I(zi = a, zj = b)Ai,j.

g and f are invariant with respect to a permutation on the block labels, τ : [K ′]→ [K ′], and
its corresponding permutations on the node labels z and the parameters θ. Furthermore, let
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R(z) be the K ′ ×K confusion matrix whose (k, a)-th entry is

Rk,a(z, Z) = n−1

n∑
i=1

I(zi = k, Zi = a). (4.2)

We take a likelihood-based approach toward model selection and first investigate whether
different model choices can be separated using the log likelihood ratio

LK,K′ = log
supθ∈ΘK′

g(A; θ)

supθ∈ΘK
g(A; θ)

. (4.3)

Here the comparison is made between the correct K-block model and fitting a misspecified
K ′-block model.

In the following sections, we analyze the asymptotic distribution of LK,K′ for K ′ 6= K.
The main focus of analysis lies in handling the sum in (4.1) which contains an exponential
number of terms. It has been shown in [12] that when θ ∈ ΘK , supθ∈ΘK

g(A; θ) is essentially
equivalent to maximizing the complete likelihood corresponding to the correct labels Z,
supθ∈ΘK

f(Z,A; θ). In the next section, we first show an analogous result in the case of
underfitting and use it to derive the asymptotic distribution of LK,K′ .

Underfitting

We start by considering K ′ = K − 1. Intuitively, a (K − 1)-block model can be obtained by
merging blocks in a K-block model. More specifically, given the correct labels Z ∈ [K]n and
the corresponding block proportions p = (p1, . . . , pK), pa = na(Z)/n, we define a merging
operation Ua,b(H

∗, p) which combines blocks a and b in H∗ by taking weighted averages with
proportions in p. For example, for H = UK−1,K(H∗, p),

Hl,k = H∗l,k for 1 ≤ l, k ≤ K − 2;

Hl,K−1 =
plpK−1H

∗
l,K−1 + plpKH

∗
l,K

plpK−1 + plpK
for 1 ≤ l ≤ K − 2;

HK−1,K−1 =
p2
K−1H

∗
K−1,K−1 + 2pK−1pKH

∗
K−1,K + p2

KH
∗
K,K

p2
K−1 + 2pK−1pK + p2

K

. (4.4)

A schematic representation of H is given in Figure 4.1.
For consistency, when merging two blocks (a, b) with b > a, the new merged block

will be relabeled a and all the blocks c with c > b will be relabeled c − 1. Using this
scheme, we also obtain the merged node labels Ua,b(Z) and merged proportions Ua,b(p) with
[Ua,b(p)]a = pa + pb.

Constraining the parameters to a smaller model results in a suboptimal likelihood and
its distance from the likelihood associated with the correct model can be measured by the
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Figure 4.1: A schematic representation of how H∗ is merged to give H = UK−1,K(H∗, p). The
green area contains unchanged parameters and the arrows indicate where mergings occur.

Kullback-Leibler divergence, denoted DKL(·‖·). Let

γ1(x) = x log x+ (1− x) log(1− x),

γ2(x) = x log x− x.

and define

Di(a, b) =
K−1∑
k,l=1

[Ua,b(π
∗)]k[Ua,b(π

∗)]lγi([Ua,b(H
∗, π∗)]k,l) (4.5)

When p = π∗ and treating the labels Z as fixed parameters, denote PA|Z,H∗ the probability
distribution of A. Then the information loss incurred by the merging operation Ua,b can be
measured by

DKL

(
PA|Z,H∗‖PA|Ua,b(Z),Ua,b(H∗,π∗)

)
(4.6)

=


n2

2

[∑K
c,d=1 π

∗
cπ
∗
dγ1(H∗c,d)−D1(a, b)

]
+O(n), for ρn = Ω(1);

n2ρn
2

[∑K
c,d=1 π

∗
cπ
∗
dγ2(H∗c,d)−D2(a, b)

]
+O(n2ρ2

n), for ρn → 0.

Thus an optimal merging minimizing DKL is essentially equivalent to maximizing Di(a, b).
We assume the following holds for θ∗:

Assumption 4.2.1. A unique maximum exists for max(a,b) Di(a, b).
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This assumption is more of a notational convenience than necessity. From now on without
loss of generality assume the maximum is achieved at a = K − 1 and b = K, and denote
H ′ = UK−1,K(H∗, π∗), S ′ = H ′/ρn and Z ′ = UK−1,K(Z). We also assume H ′ is identifiable
in the sense that

Assumption 4.2.2. H ′ has no identical columns.

Thus the merged model cannot be collapsed further to a smaller model.
The next lemma argues supθ∈ΘK−1

g(A; θ) is essentially dominated by the complete like-
lihood associated with the optimal merging.

Lemma 4.2.3. Let S(z) be the set of labels which are equivalent up to a permutation τ ,
S(z) = {τ(z), τ : [K − 1]→ [K − 1]}. Then∑

z /∈S(Z′)

sup
θ∈ΘK−1

f(z, A; θ) = sup
θ∈ΘK−1

f(Z ′, A; θ)oP (1). (4.7)

The proof is shown in Section 4.6.
This lemma provides a tractable bound on supθ∈ΘK−1

g(A; θ), allowing the rest of the
analysis to be carried out by usual Taylor expansion. Define

µ1(θ∗) =
1

2

[
D1(K − 1, K)−

K∑
c,d=1

π∗cπ
∗
dγ1(H∗c,d)

]

µ2(θ∗) = µ1 +
1

n

{
(π∗K−1 + π∗K) log(π∗K−1 + π∗K)− π∗K−1 log π∗K−1 − π∗K log π∗K

}
The following theorem gives the asymptotic distribution of LK,K−1, the proof of which is

shown in Section 4.6.

Theorem 4.2.4. Suppose the underlying model parameter generating A is θ∗ = (π∗, H∗) ∈
ΘK, then LK,K−1 is asymptotically normal with

n−3/2LK,K−1 −
√
nµ1(θ∗)

D−→ N(0, σ2
1(θ∗)), if ρn = Ω(1);

ρ−1
n n−3/2LK,K−1 − ρ−1

n

√
nµ2(θ∗)

D−→ N(0, σ2
2(θ∗)), if ρn → 0. (4.8)

Let I be the set of indices affected by the merge UK−1,K(H∗, π∗),

I = {(a, b) ∈ [K]2 | K − 1 ≤ a ≤ K or K − 1 ≤ b ≤ K},

and u(a) such that

u(a) =

{
a for a ≤ K − 2

K − 1 for K − 1 ≤ a ≤ K.
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Define di = (di(a, b))(a,b)∈I,a≤b as

d1(a, b) = H∗a,b log
H ′u(a),K−1

H∗a,b
+ (1−H∗a,b) log

1−H ′u(a),K−1

1−H∗a,b

d2(a, b) = S∗a,b log
S ′u(a),K−1

S∗a,b
+ (S ′u(a),K−1 − S∗a,b).

Denote Σ(π∗) the covariance matrix of a multinomial(π∗) distribution, B(x) the Jacobi
matrix of the vector valued function ξ(x1, . . . , xK) = (ξa,b)(a,b)∈I,a≤b, where

ξa,b =

{
xaxb for a 6= b
x2a
2

for a = b.

The variance σi(θ
∗) is given by dTi B(π∗)Σ(π∗)B(π∗)Tdi for i = 1, 2.

Remark 4.2.5. (i) In general, underfitting a K− < K model will lead to the same type of
limiting distribution under conditions similar to Assumptions 4.2.1 and 4.2.2, assuming the
uniqueness of the optimal merging scheme and identifiability after merging. That is,

ρ−1
n n−3/2LK,K− − ρ−1

n

√
nµ

D−→ N(0, σ2) (4.9)

for some mean µ ∼ Cρn and variance σ2. The proof will be similar but involve more tedious
descriptions of how various merges can occur.

(ii) The asymptotic distributions derived under the null distribution of a K-block model
suggest one might consider performing hypothesis testing directly to compare against an al-
ternative simpler model. However, the asymptotic means depend on the true parameters, and
its maximum likelihood estimate converges only at the rate

√
n [12].

(iii) Without Assumptions 4.2.1 and 4.2.2, it is easy to show

LK,K− ≤ −ΩP (n2ρn), (4.10)

where Ω(·) denotes asymptotic lower bound, using the method in proving Theorem 4.2.7.

Overfitting

In the case of overfitting a K+-block model with K+ > K, deriving the asymptotic distribu-
tion of LK,K+ is much more challenging. Intuitively, embedding a K-block model in a larger
model can be achieved by appropriately splitting the labels Z and there are an exponential
number of possible splits. We first show a result analogous to Lemma 4.2.3. However, the
number of summands involved in supθ∈ΘK+

g(A; θ) remains exponential this time.

Recall that for z ∈ [K+]n, R(z, Z) is the K+ × K confusion matrix. We first define a
subset VK+ ∈ [K+]n such that

VK+ =
{
z ∈ [K+]n | there is at most one nonzero entry in every row of R(z, Z)

}
.
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VK+ is obtained by splitting of Z such that every block in z is always a subset of an existing
block in Z. The next lemma shows it suffices to consider only the subclass of labels VK+ in
the sum g(A; θ), the proof of which is given in Section 4.6.

Lemma 4.2.6. Suppose θ∗ ∈ ΘK, then∑
z∈[K+]n

sup
θ∈ΘK+

f(z, A; θ) = (1 + oP (1))
∑
z∈VK+

sup
θ∈ΘK+

f(z, A; θ).

The lemma does not provide a direct simplification of the sum and suggests the reason
why obtaining an asymptotic distribution for LK,K+ is difficult. On the other hand, with
appropriate concentration we can still derive the asymptotic order of the statistic.

Theorem 4.2.7. Suppose θ∗ ∈ ΘK, then overfitting by a K+-block model with K+ > K
gives LK,K+ = OP (n3/2ρ

1/2
n ).

The proof is provided in Section 4.6.

Model selection

The results in the previous sections lead us to construct a penalized likelihood criterion for
selecting the optimal block number. The criterion is consistent in the sense that asymptoti-
cally it chooses the correct K with probability one. Define

β(K ′) = sup
θ∈ΘK′

log g(A; θ)−NK′Bn, (4.11)

where Bn gives the order of the penalty term, and NK′ is a strictly increasing sequence
indexed by K ′ describing the complexity of the model. The optimal K0 is such that

K0 = arg max
K′

β(K ′). (4.12)

Corollary 4.2.8. For K ′ < K, setting Bn = o(n2ρn),

Pθ∗(β(K ′) < β(K))→ 1. (4.13)

For K ′ > K, setting Bn such that Bnn
−3/2ρ

−1/2
n →∞,

Pθ∗(β(K ′) < β(K))→ 1. (4.14)



CHAPTER 4. MODEL SELECTION FOR STOCHASTIC BLOCK MODELS 70

Proof. For K ′ < K, generalizing Theorem 4.2.4,

Pθ∗ (β(K ′) < β(K))

=Pθ∗
(
n−3/2ρ−1

n log
supθ∈ΘK′

g(A; θ)

supθ∈ΘK
g(A; θ)

−
√
nρ−1

n µ

< (NK′ −NK)
Bn

n3/2ρn
−
√
nρ−1

n µ

)
→1, (4.15)

since Bn = o(n2ρn) and −ρ−1
n µ ≥ C(θ∗) for some positive constant depending on θ∗. In

general the same conclusion holds by Remark 4.2.5 (iii).
For K ′ > K, using Theorem 4.2.7,

Pθ∗ (β(K ′) < β(K))

=Pθ∗
(

1

n3/2ρ
1/2
n

log
supθ∈ΘK′

g(A; θ)

supθ∈ΘK
g(A; θ)

< (NK′ −NK)
Bn

n3/2ρ
1/2
n

)
→1, (4.16)

when Bnn
−3/2ρ

−1/2
n →∞.

Since the ratio of the upper bound n2ρn and the lower bound n3/2ρ
1/2
n tends to infinity,

such a sequence Bn exists. Choosing Bn in this interval, we have K0 = K with probability
tending to 1. However, we also note that for finite cases with moderate-sized n,

√
nρ−1

n µ in
(4.15) is small, making it easy to over penalize with large Bn. At the same time, the lower
bound in Theorem 4.2.7 is not tight and can be refined further.

We further assume the followings hold for tractable approximation.

Assumption 4.2.9.
∑

z:∈VK+
supθ∈ΘK+

f(z, A; θ) = OP (eMn), where

Mn = max
z∈VK+

sup
θ∈ΘK+

log f(z, A; θ) (4.17)

Assumption 4.2.10. The maximum is achieved in the set NK+ = {z ∈ VK+ | nk(z) ≥
εn for all k, for some ε > 0, }.

Assumption 4.2.9 assumes a Laplace-type approximation holds for the sum, whereas
Assumption 4.2.10 assumes the maximum can only be achieved on a loosely balanced block
design. These assumptions together with Lemma 4.2.6 imply it remains to analyze the order
of maxz∈NK+ supθ∈ΘK+

log f(z, A; θ). The following theorem shows the order of LK,K+ can

be refined to OP (1). The details can be found in Section 4.6.
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Theorem 4.2.11. Under Assumptions 4.2.9 and 4.2.10, LK,K+ is of order OP (1) for K+ >
K.

It follows then choosing Bn growing slightly faster than a constant will ensure consistency
in the sense described in Corollary 4.2.8 . It can also be deduced from the proof that the
order of LK,K+ grows at most at the rate (K+ + 1)K+/2. Thus we choose a penalized
likelihood of the following form,

β(K ′) = sup
θ∈ΘK′

log g(A; θ)− λ · K
′(K ′ + 1)

2
log n, (4.18)

where the constant λ is a tuning parameter and does not affect the asymptotic properties
of the criterion. It is not surprising that the penalty term has the same order as other BIC-
type criteria (e.g. [40]) based on the complete likelihood assuming the node labels are fixed.
Recall that in the underfitting case we have proved the likelihood is essentially equivalent to
the complete likelihood corresponding to the appropriate labels. A similar equivalence also
holds for the overfitting case by Lemma 4.2.6 and Assumption 4.2.9.

Approximation by variational likelihood

In practice, direct computations of the likelihood function g(A; θ) involves an exponential
number of summands and quickly become intractable as n grows. In particular, the op-
timization over θ using the EM algorithm requires computing the conditional distribution
of Z given A, which is not factorizable in this case. Variational methods tackle the true
conditional distribution fZ|A;θ with the mean field approximation, thus simplifying the local
optimization at each iteration. The variational log likelihood J(q, θ;A) for a K ′-block model
is defined as

J(q, θ;A) = −DKL(q‖fZ|A;θ) + log g(A; θ), (4.19)

where q ∈ DK′ is any product distribution with q(z) =
∏n

i=1 qi(zi), 1 ≤ zi ≤ K ′. The

variational estimates θ̂VAR
K′ is given by

θ̂VAR
K′ = arg max

θ∈ΘK′
max
q∈DK′

J(q, θ;A),

which can be optimized using the EM algorithm in [40]. Also we note that J(q, θ;A) simplifies
to

J(q, θ;A) =
n∑
i=1

K′∑
k=1

qi(k)(− log qi(k) + log π(k))

+
∑
i<j

K′∑
k,l=1

qi(k)qj(l) (Aij logHk,l + (1− Aij) log(1−Hk,l))
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and hence can be easily evaluated.
We can replace the likelihood in (4.18) by the variational log likelihood J without chang-

ing its asymptotic performance. More precisely, the criterion with variational approximation

βVAR(K ′) = sup
θ∈ΘK′

sup
q∈DK′

J(q, θ;A)− λ · K
′(K ′ + 1)

2
log n (4.20)

is still asymptotically consistent. Noting that

(i) supθ∈ΘK′
supq∈DK′ J(q, θ;A) ≤ supθ∈ΘK′

log g(A; θ);

(ii) supθ∈ΘK
supq∈DK J(q, θ;A)− supθ∈ΘK

log g(A; θ) = OP (1) as shown in [12],

it can be easily verified that (4.15) and (4.16) still hold.

4.3 Simulations

We first examined how well the normal limiting distribution approximated the empirical
distribution of the statistic in the case of underfitting. Figure 4.2 plots the distribution of
n−3/2LK,K−1 for n = 200 and n = 500 obtained from 200 replications for the following two
scenarios:

(a) K = 2, π∗ = (0.4, 0.6), H∗ =

(
0.15 0.05

0.01

)
;

(b) K = 3, π∗ = (0.4, 0.3, 0.3), H∗ =

 0.2 0.1 0.1
0.2 0.03

0.1

.

The log likelihoods are approximated by the variational EM algorithm initialized by regu-
larized spectral clustering [44]. The solid curves are normal densities with mean µ2(θ∗) and
σ(θ∗) given in Theorem 4.2.4. Even though the O(n) term in µ2(θ∗) diminishes asymptoti-
cally for ρn going to 0 slowly, we found it essential to correct for the bias in the finite sample
regimes above. In both cases, the convergence to the Gaussian shape appears faster than the
convergence to the mean, and a bias exists for n = 200. When the network size reaches 500,
the empirical distributions are well approximated by their limiting distribution. We note
that the bias should not have an adverse effect on model selection since it is in the direction
away from zero, making it easier to separate the two models.

Next we investigated how the success rate of the criterion (4.20) changes with respect to
the tuning parameter λ. Figure 4.3 shows the fraction of the penalized likelihood selecting the
correct K out of 50 trials for λ values varying between 0 and 4. The generative parameters
for K = 2 and K = 3 are given in scenarios (a) and (b), and in addition a K = 5 model was
generated with π∗i = 0.2 for all i and the entries in H∗ varying between 0.06 and 0.19. For
K = 2 and K = 3, the penalized likelihood achieves reasonable success rate for λ smaller
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Figure 4.2: Empirical distributions of n−3/2LK,K−1 for (a), (b) K=2, π∗ and H∗ as described
in scenario (a); (c), (d) K=3, π∗ and H∗ as described in scenario (b). n = 200 in (a) and (c);
n = 500 in (b) and (d). The solid curves are normal densities with mean µ2(θ∗) and σ(θ∗)
as given in Theorem 4.2.4.

than 3 when the network size reaches 200. When n = 500, the success rate appears robust
to the choice of λ and is maintained at 1 for a wide range of values. For K = 5, however, it
becomes difficult to select the correct K since the task of fitting also becomes harder as K
increases.
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Figure 4.3: The fraction of the penalized likelihood with difference values of λ successfully
choosing the correct K out of 50 iterations for (a) K = 2, π and H∗ as described in scenario
(a); (b) K = 3, π and H∗ as described in scenario (b); (c) K = 5, πi = 0.2 for all i, H∗ with
entries varying between 0.06 and 0.19.

To see how our criterion (denoted vlh) compares with other existing model selection
methods, we fix λ = 1 and compare its success rate with variational Bayes ([54], denoted
vb) and the 3-fold network cross validation method in [17] (denoted ncv). In Figure 4.4,
these methods were implemented on 50 networks of size 500 with K = 2, 3, 4, H∗ = ρS∗, and
ρ ∈ {0.02, 0.04, . . . , 0.1}. The average degrees of these networks range from around 12 to 75.
In general, the success rate of each method decreases as the networks become sparser and
the number of blocks grows. Overall vlh outperforms the other two methods, and although
not explicitly shown, the trends remain true for λ values between 0.25 and 2.

4.4 Real world networks

We first implemented our method along with vb and ncv on nine Facebook ego networks,
collected and labeled by [57]. An ego network is created by extracting subgraphs formed on
the neighbors of a central (ego) node, i.e. a network of connections between the ego’s friends.
Any isolated node was removed before analysis. The actual sizes of the networks and the
number of communities selected by the three methods are shown in Table 4.1. The second
row of the table shows the number of friend circles in every network with some individuals
belonging to multiple circles, but not every individual possesses a circle label. The third
row of the table shows the average degree of every network, which gives us a sense of the
network density. These circle numbers give partial truth on how many communities there
are in the networks. Overall, the penalized likelihood and vb tend to produce comparable
community numbers, whereas ncv consistently favors small community numbers. The pe-
nalized likelihood approach is reasonably robust to the choice of λ on larger networks. Both
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Figure 4.4: Comparison of the success rates of the penalized likelihood (λ = 1, vlh) with
variational Bayes (vb) and network cross validation (ncv) when (a) K = 2, π = (0.4, 0.6);
(b) K = 3, π = (0.3, 0.3, 0.4); (c) K = 4, πi = 0.25 for all i. In all the cases, H∗ = ρS∗,
where ρ ∈ {0.02, 0.04, . . . , 0.1}, the diagonal elements of S∗ equal 2 and the off diagonal
elements equal 1.

the penalized likelihood and vb tend to underestimate the community number on smaller
networks with a large number of circles and a small average degree, reflecting the difficulty
in fitting a large K-block model on small networks.

# Non-isolated vertices 333 1034 224 150 168 61 786 534 52
# Circles 24 9 14 7 13 13 17 32 17

Average degree 15 52 29 23 20 9 36 18 6
Optimal K, (λ = 1/4) 13 15 15 10 13 9 20 14 6

(λ = 1/2) 13 15 13 10 9 8 20 14 6
(λ = 1) 10 15 13 7 9 6 20 14 3

Optimal K, vb 11 24 16 9 11 6 25 23 6
Optimal K, ncv 3 6 4 2 4 2 2 2 3

Table 4.1: Facebook ego networks and the number of communities selected by the three
methods, the penalized likelihood with three choices of λ.

We also experimented these methods on the political book network [70], which consists
of 105 books and their edges representing co-purchase information from Amazon. Figure
4.5 (a) shows the manual labeling of the books based on their political orientations being
either conservative, liberal or neutral. (b) and (c) show the community structures obtained
by our method with three choices of λ. When λ = 2, the method selected K = 3 with the
clustering of the nodes being close to the truth. With the other two smaller λ values, the
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method selected K = 6 and the clustering further splits each of the communities obtained
previously into two. vb found four communities but merged two clusters in (a) into one. ncv
again produced the smallest K value with K = 2.

(a) (b) (c) (d)

Figure 4.5: Communities in 105 political books based on (a) manually curated ground truth;
(b) penalized likelihood with λ = 2; (c) penalized likelihood with λ = 1, 1/2; (d) vb.

4.5 Discussion

In this paper, we have studied the problem of selecting the community number under a
regular stochastic block model, allowing the average degree to grow at a polylog rate and
the true block number being fixed. Using techniques similar to [12], we have shown the
log likelihood ratio statistic has an asymptotic normal distribution when a smaller model
with fewer blocks is specified. In the case of misfitting a larger model, we have obtained
the convergence rate for the statistic. Combining these results we arrive at a likelihood-
based model selection criterion that is asymptotically consistent. For finite-sized networks,
we have further refined the bound for the statistic in the overfitting case under reasonable
assumptions to correct for the possibility of over-penalizing.

There are a number of open problems for future work. (i) It would be desirable to have a
data-driven approach to select the tuning parameter λ. Similar to other AIC and BIC-type
criteria under standard models, the choice of this constant does not affect the asymptotic
consistency of the criterion. Our analysis and simulation suggest small λ is often preferred
to avoid over-penalizing. However, it is less clear on the real networks which λ is optimal.
Some form of a cross-validation method would seem appropriate for this purpose. (ii) It
would be interesting to investigate whether the results can be extended to other block model
variants, such as degree-corrected SBM [45] and overlapping SBM [1]. (iii) We have performed
our analysis with fixed block number as the number of nodes tends to infinity. However,
in practice the number of communities is also likely to grow as a network expands [20],
especially when we view block models as histogram approximations for more general models
[11, 108]. [72] has provided some analysis on the maximum number of blocks detectable
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for a given SBM graph with fixed labels. In general as more time-course network data
become available in biology, social science, and many other domains, incorporating dynamic
features of community structures into network modeling will remain an interesting direction
to explore.

4.6 Proofs of lemmas and theorems

In this section, we prove all the lemmas and theorems in the main paper. Denote µn = n2ρn,
the total number of edges L =

∑n
i=1

∑n
j=i+1Ai,j, and N(z) = (nk,l(z))1≤k,l≤K′ . For two sets

of labels z and y, |z − y| =
∑n

i=1 I(zi 6= yi). ‖ · ‖∞ denotes the maximum norm of a matrix.
We abbreviate R(z, Z)S∗R(z, Z)T as RS∗RT (z). C,C1, C2, . . . are constants which might be
different at each occurrence. The following concentration inequalities bound the variations
in A and will be used throughout the section.

Lemma 4.6.1. Suppose z ∈ [K ′]n and define X(z) = O(z)/µn −RS∗RT (z). For ε ≤ 3,

P
(

max
z∈[K′]n

‖X(z)‖∞ ≥ ε

)
≤ 2(K ′)n+2 exp

(
− 1

4(‖S∗‖∞ + 1)
ε2µn

)
. (4.21)

Let y ∈ [K ′]n be a fixed set of labels, then for ε ≤ 3m/n,

P
(

max
z:|z−y|≤m

‖X(z)−X(y)‖∞ > ε
m

n

)
≤2

(
n

m

)
(K ′)m+2 exp

(
− nε2µn

4m(4‖S∗‖∞ + 1)

)
. (4.22)

Proof. The proof follows from [12] with minor modifications for general K ′-block models and
correcting for the zero diagonal in A.

Recall that

γ1(x) = x log x+ (1− x) log(1− x),

γ2(x) = x log x− x.

Define Fi(M, t), i = 1, 2, as

Fi(M, t) =
K′∑
k,l=1

tk,lγi

(
Mk,l

tk,l

)
, (4.23)

Then the log of the complete likelihood can be expressed as

sup
θ∈ΘK′

log f(z, A; θ) = n

K′∑
k=1

α(nk(z)/n) +
n2

2
F1

(
O(z)/n2, N(z)/n2

)
,

(4.24)
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where α(x) = x log(x). Noting the first term is of smaller order compared to the second term,
and the conditional expectation of the argument in γ1 given Z is [RH∗RT (z)]k,l/[R11TRT (z)]k,l
and [RS∗RT (z)]k,l/[R11TRT (z)]k,l for γ2 (up to a diagonal difference) with fluctuation bounded
by Lemma 4.6.1, we will focus on analyzing the conditional expectation

G1(R(z), H∗) =
K′∑
k,l=1

[R11TRT (z)]k,lγ1

(
[RH∗RT (z)]k,l

[R11TRT (z)]k,l

)
for ρn = Ω(1), (4.25)

G2(R(z), H∗) =
K′∑
k,l=1

([R11TRT (z)]k,lγ2

(
[RS∗RT (z)]k,l

[R11TRT (z)]k,l

)
for ρn → 0. (4.26)

The following lemma shows in the case of underfitting a (K − 1)-block model, to maximize
Gi over different configurations of R(z, Z) with given Z, it suffices to consider the merging
scheme described in Section 4.2 by combining two existing blocks in Z.

Lemma 4.6.2. Given the true labels Z with block proportions p = n(Z)/n, maximizing the
function G1(R(z), H∗) over R achieves its maximum in the label set

{z ∈ [K − 1]n | there exists τ such that τ(z) = Ua,b(Z), 1 ≤ a < b ≤ K, }

where Ua,b merges Zi with labels a and b.
Furthermore, suppose z0 gives the unique maximum (up to permutation τ), for all R such

that R ≥ 0, RT1 = p,

∂G1((1− ε)R(z0) + εR,H∗)

∂ε

∣∣∣∣
ε=0+

< −C < 0 (4.27)

for ρn = Ω(1). The same conclusions hold for G2(R(z), S∗).

Proof. Treating R as a (K − 1) × K-dimensional vector, it is easy to check G1(·, H∗) is
a convex function. Furthermore, since R ≥ 0, RT1 = p, the domain is part of a convex
polyhedron PR = {R ∈ RK(K−1) | R ≥ 0, RT1 = p}. Therefore the maximum is attained at
the vertices of PR, that is Rvert such that for every a, exactly one Rvert

k,a , (1 ≤ k ≤ K − 1)
is nonzero. This is equivalent to assigning all Zi ∈ [K] with the same label into one group
with a new label in [K − 1]. Let u : [K] −→ [K − 1] be the function specified by Rvert, then

G1(Rvert, H∗) =
∑
k,l

∑
a∈u−1(k),
b∈u−1(l)

papbγ1


∑

a∈u−1(k),
b∈u−1(l)

H∗a,bpapb∑
a∈u−1(k),
b∈u−1(l)

papb

 . (4.28)

Note that there exists at least one l ∈ [K − 1] such that |{u−1(l)}| > 1, and {u−1(k), k ∈
[K − 1]} forms a partition on [K]. By strict convexity of γ1 and identifiability of H∗, to
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maximize G1 it suffices to consider merging two of the labels in [K] and mapping the other
labels to the remaining labels in [K − 1] in a one-to-one relationship.

The second part of the lemma holds since it is easy to see when the maximum is unique,
the derivative of the G1 at the optimal vertex is bounded away from 0 in all directions. The
same arguments apply to G2.

Noting that when p = π∗, Gi evaluated at R(Ua,b(Z)) is equal to Di defined in (4.5), it
is easy to see Assumptions 4.2.1 and 4.2.2 guarantees the maximum is unique. We will now
prove Lemma 4.2.3.

Proof of Lemma 4.2.3. Taking the log of the complete likelihood,

sup
θ∈ΘK−1

log f(z, A; θ)

=n
K−1∑
k=1

α(nk(z)/n) +
n2

2
F1

(
O(z)/n2, N(z)/n2

)
.

(4.29)

By concentration of pk, it suffices to consider {‖p − π∗‖∞ < η}, where η is small enough
that Z ′ remains the unique maximizer of G1(R(z), H∗) and G2(R(z), S∗), and distribution
conditional on Z.

Using techniques similar to [12], we prove this by considering z far away from Z ′ and
close to Z ′ (up to permutation τ). Let δn be a sequence converging to 0 slowly. Define

Iδn = {z ∈ [K − 1]n : G1(R(z), H∗)−G1(R(Z ′), H∗) < −δn}.

First by (4.21) in Lemma 4.6.1, for εn → 0 slowly,∣∣F1

(
O(z)/n2, N(z)/n2

)
−G1(R(z), H∗)

∣∣
≤C ·

∑
k,l

∣∣Ok,l(z)/n2 − (RH∗RT (z))k,l
∣∣+O(n−1)

=oP (εn) (4.30)

since γ1 is Lipschitz on any interval bounded away from 0 and 1 and minH∗ = Ω(1). For
z ∈ Iδn and ρn = Ω(1),∑

z∈Iδn

sup
θ∈ΘK−1

elog f(z,A;θ) ≤ sup
θ∈ΘK−1

f(Z ′, A; θ)(K − 1)neO(n)+oP (n2εn)−n2δn

= sup
θ∈ΘK−1

f(Z ′, A; θ)oP (1) (4.31)

choosing δn → 0 slowly enough such that δn/εn →∞. Similarly for ρn → 0, define

Jδn = {z ∈ [K − 1]n : G2(R(z), S∗)−G2(R(Z ′), S∗) < −δn}.
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Note that in this case, for εn → 0 slowly,

F1

(
O(z)/n2, N(z)/n2

)
=2 log ρnL/n

2 + ρnF2

(
O(z)/µn, N(z)/n2

)
+OP (ρ2

n)

=2 log ρnL/n
2 + ρnG2 (R(z), S∗) + oP (ρnεn) +OP (ρ2

n), (4.32)

by (4.21) and the fact that γ2 is Lipschitz on any interval bounded away from 0 and 1 and
minS∗ > 0. Then for z ∈ Jδn ,∑

z∈Jδn

sup
θ∈ΘK−1

elog f(z,A;θ)

≤ sup
θ∈ΘK−1

f(Z ′, A; θ)(K − 1)neO(n)+OP (µnρn)+oP (µnεn)−µnδn

= sup
θ∈ΘK−1

f(Z ′, A; θ)oP (1). (4.33)

choosing εn → 0, δn → 0 slowly enough.
For z /∈ Jδn , |G2(R(z), H∗) − G2(R(Z ′), H∗)| → 0. Let z̄ = minτ |τ(z) − Z ′|. Since the

maximum is unique up to τ , ‖R(z̄)−R(Z ′)‖∞ → 0 and |
∑

k α(nk(z̄)/n)−
∑

k α(nk(Z
′)/n)| →

0.
By (4.22),

P
(

max
z /∈S(Z′)

‖X(z̄)−X(Z ′)‖∞ > ε|z̄ − Z ′|/n
)

≤
n∑

m=1

P
(

max
z:z=z̄,|z̄−Z′|=m

‖X(z)−X(Z ′)‖∞ > ε
m

n

)
≤

n∑
m=1

2(K − 1)K−1nm(K − 1)m+2 exp
(
−Cmµn

n

)
→ 0. (4.34)

It follows for |z̄ − Z ′| = m, z /∈ Jδn ,∥∥∥∥O(z̄)

µn
− O(Z ′)

µn

∥∥∥∥
∞

= oP (1)
|z̄ − Z ′|

n
+ ‖RS∗RT (z̄)−RS∗RT (Z ′)‖∞

≥ m

n
(C + oP (1)). (4.35)

Observe ‖O(Z ′)/µn − RS∗R(Z ′)‖∞ = oP (1) by Lemma 4.6.2, N(Z ′)/n2 = R11TRT (Z ′) +
o(1) on {‖p − π∗‖∞ < η}, and F2(·, ·) has continuous derivative in the neighborhood of
(O(Z ′)/µn, N(Z ′)/n2). Using (4.27) in Lemma 4.6.2,

∂F2

(
(1− ε)O(Z′)

µn
+ εM, (1− ε)N(Z′)

n2 + εt
)

∂ε

∣∣∣∣∣∣
ε=0+

< −ΩP (1) < 0
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for (M, t) in the neighborhood of (O(Z ′)/µn, N(Z ′)/n2). Hence

F2

(
O(z̄)/µn, N(z̄)/n2

)
− F2

(
O(Z ′)/µn, N(Z ′)/n2

)
≤− ΩP (1)

m

n
. (4.36)

We have

sup
θ∈ΘK−1

log f(z, A; θ)− sup
θ∈ΘK−1

log f(Z ′, A; θ)

≤n

∣∣∣∣∣
K−1∑
k=1

α(nk(z̄)/n)− α(nk(Z
′)/n)

∣∣∣∣∣
+ n2

(
F1(O(z̄)/µn, N(z)/n2)− F1(O(Z ′)/µn, n(Z ′)/n2)

)
≤ (O(n) + oP (µn)− ΩP (µn))

m

n

=− ΩP (µn)
m

n
(4.37)

using (4.32) and (4.36). We can conclude∑
z /∈Jδn ,z 6=τ(Z′)

sup
θ∈ΘK−1

elog f(z,A;θ)

≤ sup
θ∈ΘK−1

f(Z ′, A; θ)
n∑

m=1

(K − 1)K−1nm(K − 1)me−Ω(µn)m/n

= sup
θ∈ΘK−1

f(Z ′, A; θ)oP (1) (4.38)

The bounds (4.33) and (4.38) yield (4.7). The case for ρn = Ω(1) can be shown in a similar
way.

Now Theorem 4.2.4 follows by Taylor expansion.

Proof of Theorem 4.2.4. First note that

LK,K−1 = log
supθ∈ΘK−1

g(A; θ)

g(A; θ∗)
− log

supθ∈ΘK
g(A; θ)

g(A; θ∗)

= sup
θ∈ΘK−1

log

[
g(A; θ)

f(Z,A; θ∗)
· f(Z,A; θ∗)

g(A; θ∗)

]
+OP (1)

= sup
θ∈ΘK−1

log
g(A; θ)

f(Z,A; θ∗)
+OP (1) (4.39)
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by a consequence of Theorem 1 and Lemma 3 in [12]. Noting that supθ∈ΘK−1
f(Z ′, A; θ) is

uniquely maximized at (omitting the argument Z)

π̂a =
na
n

= π∗a +OP (n−1/2) for 1 ≤ a ≤ K − 2, π̂K−1 =
nK−1 + nK

n

Ĥa,b =
Oa,b

na,b
= H∗a,b +OP (

√
ρnn

−1) for 1 ≤ a ≤ b ≤ K − 2,

Ĥa,K−1 =
Oa,K−1 +Oa,K

na,K−1 + na,K
= H ′a,K−1 +OP (

√
ρnn

−1) for 1 ≤ a ≤ K − 2,

ĤK−1,K−1 =

∑K
a=K−1

∑K
b=aOa,b∑K

a=K−1

∑K
b=a na,b

= H ′K−1,K−1 +OP (
√
ρnn

−1), (4.40)

and Assumption 4.2.2 the merged H ′ is identifiable, we have

supθ∈ΘK−1

∑
z∈S(Z′) f(z, A; θ)

supθ∈ΘK−1
f(Z ′, A; θ)

= 1 + oP (1).

Combined with Lemma 4.2.3

sup
θ∈ΘK−1

log
g(A; θ)

f(Z,A; θ∗)

= sup
θ∈ΘK−1

log
f(Z ′, A; θ)

f(Z,A; θ∗)
+ oP (1).

(4.41)

We will check the expansion for the case ρn → 0; the case ρn = Ω(1) can be shown in the
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same way.

n−3/2ρ−1
n sup

θ∈ΩK−1

log
g(A; θ)

f(Z,A; θ∗)

=n−3/2ρ−1
n sup

θ∈ΩK−1

log
f(Z ′, A; θ)

f(Z,A; θ∗)
+ oP (1)

=n−3/2ρ−1
n

{
n
K−1∑
a=1

α(π̂a) +
K−2∑
a=1

K−2∑
b=a

na,bγ1(Ĥa,b) +
K−2∑
a=1

(na,K−1 + na,K)γ1(Ĥa,K−1)

+
1

2

K∑
a=K−1

K∑
b=K−1

na,bγ1(ĤK−1,K−1)

−
K∑
a=1

na log π∗a −
1

2

K∑
a=1

K∑
b=1

(
Oa,b log

H∗a,b
1−H∗a,b

+ na,b log(1−H∗a,b)

)}
+ oP (1)

=n−1/2ρ−1
n

[
α(π∗K−1 + π∗K)− α(π∗K−1)− α(π∗K)

]
n−3/2ρ−1

n

1

2

∑
(a,b)∈I

(
Oa,b log

H ′u(a),u(b)(1−H∗a,b)
(1−H ′u(a),u(b))H

∗
a,b

+ na,b log
1−H ′u(a),u(b)

1−H∗a,b

)
+ oP (1)

(4.42)

It is easy to see the expectation of this term is ρ−1
n

√
nµ2, we have

n−3/2ρ−1
n sup

θ∈ΩK−1

log
g(A; θ)

f(Z,A; θ∗)
−
√
nρ−1

n µ2

=
1

2n3/2ρn

∑
(a,b)∈I

[
(Oa,b − E(Oa,b)) log

H ′u(a),u(b)(1−H∗a,b)
(1−H ′u(a),u(b))H

∗
a,b

+ (na,b − E(na,b)) log
1−H ′u(a),u(b)

1−H∗a,b

]
+ oP (1)

=
1

2n3/2ρn

∑
(a,b)∈I

{
(na,b − E(na,b))

[
H∗a,b log

H ′u(a),u(b)(1−H∗a,b)
(1−H ′u(a),u(b))H

∗
a,b

+ log
1−H ′u(a),u(b)

1−H∗a,b

]}
+ oP (1)

D−→N(0, σ2
2(θ∗)), (4.43)

where the form of σ2
2(σ∗) can be checked by Taylor expansion and the delta method.

Proof of Lemma 4.2.6. The proof follows using arguments similar to Lemma 4.2.3. Note
that in this case G1(R(z), H∗) is maximized at any z ∈ VK+ with the value

∑
a,b papbγ1(H∗a,b)

(or
∑

a,b papbγ2(S∗a,b) for G2(R(z), S∗)).
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It suffices to discuss the case ρn → 0. Denote the optimal G∗ :=
∑

a,b papbγ2(S∗a,b), define
similarly to Lemma 4.2.3

Jδn = {z ∈ [K+]n : G2(R(z), S∗)−G∗ < −δn}

for δn → 0 slowly enough. It is easy to see∑
z∈Jδn

sup
θ∈ΘK+

f(z, A; θ) ≤ sup
θ∈ΘK+

f(z0, A; θ)oP (1)

for any z0 ∈ VK+ .
Next note that treating R(z) as a vector, {R(z) | z ∈ VK+} is a subset of the union

of some of the K+ − K faces of the polyhedron PR. For every z /∈ Jδn , z /∈ VK+ , let z⊥
be such that R(z⊥) := minR(z0):z0∈VK+ ‖R(z) − R(z0)‖2. R(z) − R(z⊥) is perpendicular to
the corresponding K∗ − K face. Furthermore, this orthogonality implies the directional
derivative of G2(·, S∗) along the direction of R(z)−R(z⊥) is bounded away from 0. That is

∂G2 ((1− ε)R(z⊥) + εR(z), S∗)

∂ε

∣∣∣∣
ε=0+

< −C

for some universal positive constant C. Similar to (4.37),

sup
θ∈ΘK+

log f(z, A; θ)− sup
θ∈ΘK+

log f(z⊥, A; θ) ≤ −ΩP (µn)
m

n

sup
θ∈ΘK+

f(z, A; θ) ≤ e−ΩP (µn)m
n sup
θ∈ΘK+

f(z⊥, A; θ)

where |z − z⊥| = m. We have∑
z /∈Jδn ,z /∈VK+

sup
θ∈ΘK+

f(z, A; θ)

≤
∑
z∈VK+

sup
θ∈ΘK+

f(z, A; θ)
n∑

m=1

(K − 1)mnme−ΩP (µn)m
n

=oP (1)
∑
z∈VK+

sup
θ∈ΘK+

f(z, A; θ).

Hence the claim follows.

Proof of Theorem 4.2.7. First note

LK,K+ = log
supθ∈ΘK+

g(A; θ)

f(Z,A; θ∗)
+OP (1),



CHAPTER 4. MODEL SELECTION FOR STOCHASTIC BLOCK MODELS 85

where

log
supθ∈ΘK+

g(A; θ)

f(Z,A; θ∗)
≥ log

supθ∈ΘK+
f(Z,A; θ)

f(Z,A; θ∗)

= OP (1). (4.44)

Let D(·) be a diagonal matrix, upper bounding by the maximum,

log
supθ∈ΘK+

g(A; θ)

f(Z,A; θ∗)

≤max
z

sup
θ∈ΘK+

log
f(z, A; θ)

f(Z,A; θ∗)
+ n logK+

= max
z

n2

2

{
F1

(
O(z)/n2, N(z)/n2

)
− F1

(
D(p)H∗D(p), ppT

)}
+OP (n)

≤max
z

n2

2

∣∣F1

(
O(z)/n2, N(z)/n2

)
− F1(RH∗RT (z), R11TRT (z))

∣∣
+ max

z

n2

2

[
F1(RH∗RT (z), R11TRT (z))− F1

(
D(p)H∗D(p), ppT

)]
+OP (n)

≤Cµn max
z

∥∥∥∥O(z)

µn
−RS∗RT

∥∥∥∥
∞

+OP (n)

=OP (n3/2ρ1/2
n ) (4.45)

using (4.21) in Lemma 4.6.1, and the fact that

max
z∈[K+]n

F1(RH∗RT (z), R11TRT (z)) = F1

(
D(p)H∗D(p), ppT

)
.

Next we prove Theorem 4.2.11.

Proof of Theorem 4.2.11. It remains to upper bound LK,K+ . By Lemma 4.2.6 and Assump-
tion 4.2.9, it suffices to consider

max
z∈VK+

sup
θ∈ΘK+

log f(z, A; θ)− sup
θ∈ΘK

log g(A; θ)

= max
z∈VK+

sup
θ∈ΘK+

log f(z, A; θ)− log f(Z,A; θ∗) +OP (1).
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It follows from the definition of VK+ there exists a surjective function h : [K+] → [K]
describing the block assignments in R(z, Z). We have

max
z∈VK+

sup
θ∈ΘK+

log f(z, A; θ)− log f(Z,A; θ∗)

=n
K+∑
k=1

α (nk(z)/n)− n
K∑
a=1

α

 ∑
k∈h−1(a)

nk(z)/n


+

1

2

K+∑
k=1

K+∑
l=1

(
Ok,l log

Ĥk,l

H∗h(k),h(l)

+ (nk,l −Ok,l) log
1− Ĥk,l

1−H∗h(k),h(l)

)
, (4.46)

where Ĥk,l = Ok,l(z)/nk,l(z). The first part of the expression is nonpositive since α is
superadditive.

For z ∈ NK+ , Ĥk,l−H∗h(k),h(l) = OP (n−1ρ
1/2
n ). Furthermore, the order is uniform since by

(4.34),
‖X(z)−X(z0)‖∞ = oP (1)

for any fixed z0 ∈ NK+ , and all z ∈ NK+ , z /∈ S(z0). It follows by Taylor expansion that
(4.46) is upper bounded by

1

4

∑
k,l

nk,l
(Ĥk,l −H∗h(k),h(l))

2

H∗h(k),h(l)

+ oP (1) = OP (1) (4.47)

uniformly for all z ∈ NK+ . The claim follows with Assumptions 4.2.9 and 4.2.10. Since
(4.46) has K+(K+ + 1)/2 terms of order OP (1), it suffices to bound the model complexity
term for supθ∈ΘK+

log g(A; θ) by λ ·K+(K+ + 1)/2 · log n for some constant λ.
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structures: a probabilistic approach. Vol. 1. European Mathematical Society Zürich,
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