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We extend a technique of approximation of the long-term behavior of a supercritical stochastic epidemic model, using the WKB
approximation and a Hamiltonian phase space, to the subcritical case. The limiting behavior of the model and approximation are
qualitatively different in the subcritical case, requiring a novel analysis of the limiting behavior of theHamiltonian system away from
its deterministic subsystem.This yields a novel, general technique of approximation of the quasistationary distribution of stochastic
epidemic and birth-death models and may lead to techniques for analysis of these models beyond the quasistationary distribution.
For a classic SIS model, the approximation found for the quasistationary distribution is very similar to published approximations
but not identical. For a birth-death process without depletion of susceptibles, the approximation is exact. Dynamics on the phase
plane similar to those predicted by the Hamiltonian analysis are demonstrated in cross-sectional data from trachoma treatment
trials in Ethiopia, in which declining prevalences are consistent with subcritical epidemic dynamics.

1. Introduction

Stochastic models are a common tool in epidemiological
research, where public health interventions aim at the reduc-
tion of fluctuating counts of infected or infective individuals
[1], and models are used in explaining, predicting, and
responding to acute and chronic diseases of public health
significance.

A fundamental result is the presence of a critical value of
the basic reproduction number 𝑅0, defined as the expected
number of secondary cases resulting from a single infective
case in an otherwise susceptible population. Supercritical
diseases, those with𝑅0 > 1, tend to stabilize around a positive
number of infective cases that can persist for very long
times, while in subcritical cases (𝑅0 < 1) the infective count
declines to zero on a relatively short timescale. In either
case, the long-term, stationary probability distribution of

number of infective cases is trivial, as all epidemics in finite
population stochastic transmission models must eventually
die out due to chance fluctuations, but the quasistationary
distribution—the distribution conditional on nonextinction
of the disease—can be very informative about the behavior of
the system within finite time intervals.

When 𝑅0 < 1, the quasistationary distribution of number
of infective cases in simple transmission models is often
approximately geometric, with probability of 𝐼 infective cases
proportional to (𝑅0)𝐼 [2, 3]. Prevalences consistent with the
geometric distribution, when analyzed statistically across
multiple locations simultaneously, have been observed in
trachoma elimination trials at times in which the disease’s
dynamics are subcritical [4–6].

Such statistics of case count distributions observed in
multiple communities at a single time may be able to help
provide an assessment of the dynamics of a disease, possibly
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of its basic reproductive number and, hence, of the future
time course of the disease. An approximately geometric
distribution of prevalences also implies that there will be
more high-prevalence communities than there would be in
a lighter-tailed distribution, even when the mean prevalence
is low and declining.This suggests that an exceptionally high-
prevalence community may be simply a statistical outlier,
which can be expected to regress to the mean without
intervention, rather than a “transmission hotspot” calling for
intensified intervention [5].

While the quasistationary distribution of a specific
stochastic model can be calculated as an eigenvector of
a Markov transition matrix, since the equations for the
entries of that vector cannot be solved explicitly for even
very simple models, research has focused on approximations
([2, 7–9], e.g.). Barbour and Pollett [10] established that
the quasistationary distribution is a fixed point of a given
map defined on probability mass functions, allowing efficient
approximation techniques [11]. The fixed point of that map
can also be found using a “ratio of means” approach built
on waiting times rather than transition rates [12] that can aid
in calculation. Quasistationary approximations for diffusion
processes and branching processes are also well developed
and are the subject of active research and development [3, 11,
13].

In this paper we introduce a method of approximating
the quasistationary distribution of a stochastic model in the
subcritical regime, using a technique that has been used
previously to approximate rare large-deviation events in
supercritical dynamics [14–16]. This technique takes a large-
population limit of the model dynamics in a way that yields
a Hamilton-Jacobi equation, which can be understood by
analyzing the geometry of an associated Hamiltonian ODE
system.

This Hamiltonian approach to stochastic mechanics,
innovated byGraham andTél [17] for diffusion equations and
extended by Hu [18] to master equations, has primarily been
used to study stationary solutions of the limiting stochastic
process, by locating special solutions of the Hamiltonian
ODE system, characterized by 𝐻 = 0, where 𝐻 is the
Hamiltonian. The Hamiltonian ODE system includes the
deterministic limit of the stochastic model as an invariant
subsystem within the equipotential (𝐻 = 0) set, and at each
limit set of the deterministic system, the equipotential set
extends outwards into the nondeterministic regions of the
Hamiltonian system’s phase space. Those extensions reveal
quantitative information about the system’s stochastic behav-
ior near attractors. Thus they are used to analyze stationary
probability densities associatedwith attractors and other limit
sets of the deterministic system and the frequencies and paths
of rare escape events from one attractor to another [15, 19–
22]. This geometric structure, which encodes characteristics
of the deterministic limit of the stochastic system and the
probability distribution of deviations from the deterministic
limit, is strange in comparison to the structures seen in
Hamiltonian systems from physics and is much less well
understood.

Here we investigate the use of structures within the
equipotential set, but at a distance from the deterministic

subsystem, to analyze a stochastic model’s behavior. We
identify such a structure far from the deterministic subsystem
with the quasistationary behavior of an epidemic model, in
contrast to the use of structures intersecting the deterministic
subsystem to analyze stationary behavior.

2. Limiting Behavior of Birth-Death Process

Many models of stochastic epidemic dynamics, biological
population dynamics more generally, and branching pro-
cesses are included in the category of birth-death processes.
Here we apply the analysis of Hu [18] to this class of processes,
and below we will apply it to specific example models.

A stochastic birth-death process models the size of a
single population, altered by events in which the size either
increases by one or decreases by one.The rate of increase from
size 𝑘 is labeled 𝐵(𝑘) and the rate of decrease from size 𝑘 is
labeled 𝐷(𝑘). Writing 𝑃(𝑘, 𝑡) for the probability that the size
is 𝑘 at time 𝑡, the change in probability over time is governed
by a master equation:𝑑𝑃 (𝑘, 𝑡)𝑑𝑡 = 𝐵 (𝑘 − 1) 𝑃 (𝑘 − 1, 𝑡)+ 𝐷 (𝑘 + 1) 𝑃 (𝑘 + 1, 𝑡) − 𝐵 (𝑘) 𝑃 (𝑘, 𝑡)− 𝐷 (𝑘) 𝑃 (𝑘, 𝑡) for each 𝑘. (1)

Taking𝐷(0) = 0 and𝐵(−1)𝑃(−1, 𝑡) = 0 for all 𝑡, the dynamics
of the master equation is confined to nonnegative values of 𝑘.
In order to take a large-system-size limit, let Ω be a measure
of system size such as, for example, a maximum population
size, such that, as we consider increasingly large birth-death
systems in which both Ω and 𝑘 become unboundedly large,
the ratio 𝑘/Ω remains finite. For example, in a system with
finite population size 𝑁, we can use Ω = 𝑁, as we will see
below.Then letting 𝑥 = 𝑘/Ω, we obtain a transformedmaster
equation1Ω 𝑑𝑃 (𝑥, 𝑡)𝑑𝑡 = 𝑏 (𝑥 − 1Ω)𝑃(𝑥 − 1Ω, 𝑡)+ 𝑑 (𝑥 + 1Ω)𝑃(𝑥 + 1Ω, 𝑡)− 𝑏 (𝑥) 𝑃 (𝑥, 𝑡) − 𝑑 (𝑥) 𝑃 (𝑥, 𝑡) ,

(2)

where 𝑏(𝑥) = (1/Ω)𝐵(Ω𝑥) and 𝑑(𝑥) = (1/Ω)𝐷(Ω𝑥). Let the
functions 𝑏 and 𝑑 be smooth functions of 𝑥 for each Ω, with
a smooth limit asΩ →∞.

Additionally, let 𝜙(𝑥, 𝑡) be a probability density function
that is smooth in 𝑥 and 𝑡, such that 𝜙(𝑘/Ω, 𝑡) = Ω𝑃(𝑘/Ω, 𝑡).
Following Hu [18], this allows construction of a Kramers-
Moyal expansion of the dynamics, by substituting and Tay-
lor expanding the master equation around 𝑥 so that it is
expressed using only values at 𝑥:1Ω 𝜕𝜙 (𝑥, 𝑡)𝜕𝑡 = ∞∑

𝑛=1

1𝑛! (− 1Ω)𝑛 𝜕𝑛𝜕𝑥𝑛 (𝑏 (𝑥) 𝜙 (𝑥, 𝑡))
+ ∞∑
𝑛=1

1𝑛! ( 1Ω)𝑛 𝜕𝑛𝜕𝑥𝑛 (𝑑 (𝑥) 𝜙 (𝑥, 𝑡)) . (3)
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To derive a partial differential equation in the large-
system limit, we rewrite the density as an exponential expres-
sion: 𝜙 (𝑥, 𝑡) = Ω𝑒−Ω𝑈(𝑥,𝑡). (4)

Assume that the function 𝑈 can be expanded in powers ofΩ
on 0 < 𝑥 < 1,𝑈 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) + 1Ω𝑢1 (𝑥, 𝑡) + 1Ω2 𝑢2 (𝑥, 𝑡) + ⋅ ⋅ ⋅ , (5)

and that the terms of that expansion other than 𝑢(𝑥, 𝑡) vanish
asymptotically as Ω approaches infinity. This ansatz, known
as the WKB approximation [18, 26], makes it possible to
generate a partial differential equation in 𝑢.

With these assumptions, derivatives of products of 𝜙 take
on a simplified form,

[− 1Ω]𝑛 𝜕𝑛𝜕𝑥𝑛𝐹 (𝑥, 𝑡) 𝑒−Ω𝑈(𝑥,𝑡)= 𝑒−Ω𝑈(𝑥,𝑡)𝐹 (𝑥, 𝑡) (𝜕𝑢𝜕𝑥)𝑛 + O( 1Ω) . (6)

Substituting, the expansion of (3) to first order is1Ω 𝜕𝜙 (𝑥, 𝑡)𝜕𝑡 = Ω[𝑒−Ω𝑈(𝑥,𝑡) (𝑏 (𝑥) ∞∑
𝑛=1

1𝑛! (𝜕𝑢𝜕𝑥)𝑛 + 𝑑 (𝑥)
⋅ ∞∑
𝑛=1

1𝑛! (−𝜕𝑢𝜕𝑥)𝑛) + O( 1Ω)] . (7)

Thus, in the large size limit, (3) becomes a partial differential
equation for 𝑢:𝜕𝑢 (𝑥, 𝑡)𝜕𝑡= − (𝑏 (𝑥) (𝑒𝜕𝑢/𝜕𝑥 − 1) + 𝑑 (𝑥) (𝑒−𝜕𝑢/𝜕𝑥 − 1)) . (8)

2.1. The Associated Hamiltonian System. Because the right
hand side of (8) contains only first partial derivatives of 𝑢,
it has the form of a Hamilton-Jacobi equation of classical
mechanics [27], 𝜕𝑢 (𝑥, 𝑡)𝜕𝑡 = −𝐻(𝑥, 𝜕𝑢𝜕𝑥) , (9)

with the consequence that it can be analyzed using charac-
teristic curves described by an associated system of ordinary
differential equations [18]. This analysis is based on the
Hamiltonian function𝐻(𝑥, 𝜕𝑢𝜕𝑥) = 𝑏 (𝑥) (𝑒𝜕𝑢/𝜕𝑥 − 1) + 𝑑 (𝑥) (𝑒−𝜕𝑢/𝜕𝑥 − 1) . (10)

From that Hamiltonian a two-dimensional dynamical
system can be written, whose state variables are 𝑥, the
scaled population size, and a conjugate variable 𝑝, which

takes the place of 𝜕𝑢/𝜕𝑥 in the Hamiltonian. The associated
Hamiltonian dynamical system is𝑑𝑥𝑑𝑡 = 𝜕𝜕𝑝𝐻 (𝑥, 𝑝) = 𝑏 (𝑥) 𝑒𝑝 − 𝑑 (𝑥) 𝑒−𝑝,𝑑𝑝𝑑𝑡 = − 𝜕𝜕𝑥𝐻 (𝑥, 𝑝)= −𝑏 (𝑥) (𝑒𝑝 − 1) − 𝑑 (𝑥) (𝑒−𝑝 − 1) .

(11)

Trajectories of this system do not correspond to realizations
of the stochastic birth-death process but rather trace out
curves along the surface of 𝑢 versus 𝑥 and 𝑡, which can be
used to analyze the behavior of 𝑢 over time.

Thus we can gain information about birth-death pro-
cesses in the large size limit by using this associated system
to analyze the Hamilton-Jacobi equation (8). Stationary solu-
tions of themaster equation, characterized by the equilibrium
condition 𝑑𝜙(𝑥, 𝑡)/𝑑𝑡 = 0, are identified with curves on the(𝑥, 𝑝) plane on which𝐻(𝑥, 𝑝) = 0.

In the case of this one-dimensional system, though not
in the general master equation case, the Hamiltonian has two
factors, 𝐻(𝑥, 𝑝) = (𝑏 (𝑥) − 𝑑 (𝑥) 𝑒−𝑝) (𝑒𝑝 − 1) , (12)

which contribute two solution sets to the solution of𝐻 = 0.
The flat subspace 𝑝 = 0 is always a solution set for𝐻 = 0

in Hamiltonian systems constructed from master equations
in thisway [18].Thedynamicswithin this set are the dynamics
of the ODE approximation to the stochastic dynamics, and
fixed points and other limit sets of the Hamiltonian system
located in this set correspond to fixed points and other limit
sets of this deterministic subsystem. Other solutions to the
equation 𝐻 = 0 pass transversely through those limit sets
and can reveal information about the stochastic behavior of
the master equation system, as we will see in the treatment of
the supercritical SIS model, below.

In the birth-death systems we consider here, in which 𝑘 =0 is an absorbing state, a common factor of 𝑥 can be taken out
of 𝑏(𝑥) and 𝑑(𝑥), allowing us to describe three components of
the solution set in all.

3. The SIS Model

The SIS (susceptible-infective-susceptible) model provides a
simple representation of infectious disease processes in the
absence of immunity [28]. Classically, this model describes
the number of susceptibles 𝑆 and infective cases 𝐼 in a
population of fixed size, where increase in the infective class
is driven by infective-susceptible contact events, and infective
cases return to the susceptible class at a rate independent of
contact with others. SIS models have been used to describe
a range of diseases, including trachoma [29] and sexually
transmitted infections [30]. In population biology, a model
identical in form to this one is known as a stochastic logistic
model [31].

In the basic SIS model, the infective class increases
at a rate 𝛽𝑆(𝐼/𝑁), which is proportional to a quadratic
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susceptible-infective contact rate, and decreases at a per
capita constant rate 𝛾𝐼, with 𝑆 = 𝑁 − 𝐼, and total population𝑁 held fixed.Thus it is the number of infective cases, 𝐼, that is
the stochastically varying state variable of themodel. Infective
cases are added by transmission events, at rate 𝛽(𝑆/𝑁)𝐼,
where 𝛽 is the transmission rate per susceptible-infective pair
[1]. Cases return to the susceptible class at rate 𝛾𝐼, where 𝛾 is
the per capita removal rate. The parameters can be combined
into one nondimensional value by rescaling the time variable
by a factor of 𝛾, after which the birth and death rates are𝐵 (𝐼) = 𝑅0 (1 − 𝐼𝑁) 𝐼,𝐷 (𝐼) = 𝐼, (13)

where 𝑅0 = 𝛽/𝛾 is the basic reproduction number [28].
Using system size Ω = 𝑁, the analysis we have presented

for birth-death systems applies to the SIS model, with
Hamiltonian𝐻(𝑥, 𝑝) = 𝑅0 (1 − 𝑥) 𝑥 (𝑒𝑝 − 1) − 𝑥 (𝑒−𝑝 − 1) , (14)

where 𝑥 = 𝐼/𝑁 is the infective fraction of the population.

3.1. The Supercritical Case. In the supercritical (𝑅0 > 1) case,
the SIS process is attracted to a positive, or endemic, equilib-
rium value 𝑥 = 1 − 1/𝑅0, at which the birth and death rates
are equal.The probability density of the fraction infective case
concentrates around that value. On very long time scales,
however, in finite systems, stochastic fluctuation will bring
the fraction infective case to zero, which is an absorbing
state from which the epidemic cannot return. Thus the
stationary distribution of the process is a point mass at𝑥 = 0, and the density function concentrated around the
endemic equilibrium, while it is a stationary distribution in
the infinite-size limit and is the quasistationary distribution
in the finite cases.

The Hamiltonian analysis of the supercritical SIS model
has been treated exactly elsewhere [16, 20]. The phase plane
of the Hamiltonian system is shown in Figure 1.

Stationary solutions of the PDE correspond to solutions
of𝐻(𝑥, 𝑝) = 0 on this plane, when 𝑝 is interpreted as 𝜕𝑢/𝜕𝑥.
The Hamiltonian factors into three parts:𝐻(𝑥, 𝑝) = 𝑥 (𝑅0 (1 − 𝑥) − 𝑒−𝑝) (𝑒𝑝 − 1) , (15)

which directly identifies the three solution curves of 𝐻 = 0
in the plane: two trivial solutions,𝑥 = 0,𝑝 = 0, (16)

and one nontrivial solution,𝑝 = − ln (𝑅0 (1 − 𝑥)) , (17)

shown in Figure 1.These curves are trajectories of the Hamil-
tonian dynamical system (11).

The horizontal axis of the phase plane, which is the 𝑝 =0 solution, is isomorphic to the deterministic SIS system.

p

1

0.5

0

−0.5

−1

x

−1 −0.5 0 0.5 1

Figure 1: Phase plane of the Hamiltonian dynamical system (11), for
a supercritical SIS model (𝑅0 = 2). Arrows depict the flow of the
dynamics of 𝑥 and 𝑝. The three invariant curves of the dynamics
(solution curves of 𝐻 = 0) are shown in gray: the two axes of the
space and one nontrivial curve.The nontrivial curve corresponds to
the quasistationary solution of the stochastic SISmodel, as discussed
in the text.

Two of the fixed points of the Hamiltonian system are the
fixed points of that deterministic system—the disease-free
equilibrium at (0, 0) and the endemic equilibrium at (1 −1/𝑅0, 0). They are located at the points where the horizontal
axis intersects the other two solution curves. A third fixed
point, at (0, − ln𝑅0), also corresponds to the disease-free state
(𝑥 = 0) but is at the intersection of solution curves away from
the horizontal axis.

The nontrivial solution curve (17) corresponds to the
stationary solution of 𝑢(𝑥) on which probability concentrates
around the endemic equilibrium, and the fixed points on it
describe the probability density at the endemic and disease-
free equilibria. That solution is a function 𝑢(𝑥) that solves𝜕𝑢 (𝑥)𝜕𝑥 = − ln (𝑅0 (1 − 𝑥)) . (18)

Changing variables to 𝑠 = 1 − 𝑥 and integrating produce a
closed-form solution,𝑢 (𝑠) = 𝑠 ln (𝑅0𝑠) − 𝑠 + 𝐶0. (19)

This provides a closed-form solution for the quasistationary
probability density:

𝜙 (𝑠) = 𝑁𝑒−𝑁𝑢(𝑠) = 𝐶1 ( 𝑒𝑅0𝑠)𝑁𝑠 . (20)

The constant 𝐶1 is determined by the constraint that∫1
0
𝜙(𝑠)𝑑𝑠 = 1.
In supercritical models in general, the equipotential

surfaces (solutions of 𝐻 = 0) near the nontrivial solution
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of the deterministic subsystem describe the behavior of the
probability distribution of rare events, which are located in
the tail of the stationary distribution.

The above stationary solution approximates the quasista-
tionary density in the finite-𝑁 SIS system, inwhich extinction
is a rare event given large𝑁.

It provides an approximation for the time to extinction
in the stochastic dynamics. The function 𝑢 is the action of
classical mechanics. The most probable path to extinction
can be obtained by maximizing the function 𝑢(𝑥), which
produces the equipotential surfaces 𝐻 = 0. The path is
explicitly calculated by integrating along the 𝐻 = 0 curves,
both in this SIS case and in more complex models (e.g., [16]).

4. Subcritical Dynamics

In the deterministic SIS system in the subcritical case, 𝑥
relaxes to zero for all initial conditions 0 ≤ 𝑥 ≤ 1. The master
equation solution also relaxes to 𝑥 = 0, with probability
mass declining to zero at all other values of 𝑥 [2]. In this
case, the quasistationary distribution is not stationary even
in the large-𝑁 limit due to the deterministic attraction of the
origin.TheWKB hypothesis that the probability current near
the absorbing state 𝑥 = 0 vanishes when the system size𝑁 grows without bound is not satisfied, and we do not use
the stationary behavior of the PDE (which relaxes to a point
mass) to analyze the quasistationary behavior of the master
equations. Insteadwe use the transient behavior of the PDE to
identify the equilibrium structure in the Hamiltonian phase
plane that describes the master equation’s quasistationary
solution.

4.1. Using the Phase Plane to Analyze Dynamics of the Hamil-
ton-Jacobi Equation. In the Hamiltonian phase plane for the
subcritical model, the same three solution curves for 𝐻 = 0
are present as in the supercritical case, but they fall in different
places on the phase plane, as shown in Figure 2. In this case,
the point of intersection of the nontrivial curve (17) and
the horizontal axis is shifted to the left of the origin. The
endemic equilibrium represented by that point is lost in a
transcritical bifurcation when 𝑅0 declines below 1, and the
origin becomes the attracting solution for the stochastic SIS
system. The intercept where the nontrivial curve (17) meets
the vertical axis, at 𝑝 = − ln𝑅0, is now above 𝑝 = 0.

Because of this bifurcation, in the subcritical case we
cannot apply the analysis used for the supercritical case, as the
system is drawn to a singular value of 𝑥 at which the 𝐻 = 0
curve crossing the horizontal axis is vertical and cannot be
translated to values of 𝜕𝑢/𝜕𝑥 as a function of 𝑥. To study the
quasistationary distribution of this system requires further
analysis.

Any smooth initial distribution 𝜙(𝑥) can be mapped onto
a curve in the (𝑥, 𝑝) plane on which 𝑝 = 𝜕𝑢/𝜕𝑥 at every value
of 𝑥, where 𝑢 is defined by 𝜙(𝑥) = 𝑁𝑒−𝑁𝑢(𝑥) as above. This
curve for an example initial distribution is plotted in Figure 3.

Integrating points of this curve forward along trajectories
of this systemproduces a geometric representation of the time
evolution of the system as a moving curve in the phase plane,
on which the changing shape of 𝜕𝑢/𝜕𝑥 is visible, and that
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Figure 2: Phase plane of Hamiltonian dynamical system for subcrit-
ical SIS system (𝑅0 = 0.5). Flow is represented by arrows and the
three invariant curves of the dynamics (solution curves of 𝐻 = 0)
are shown in gray, as in Figure 1. In this case, the nontrivial curve is
shifted to a different position, and its intersections with the axes are
located above and to the left of the origin, where in the supercritical
case (Figure 1) they are below and to the right of the origin.This leads
to qualitatively different dynamics, requiring a different analysis to
explain the quasistationary behavior of the model.
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Figure 3: Initial condition for the subcritical SIS system on the
Hamiltonian phase plane, represented by a curve of 𝑝 values as a
function of 𝑥. In this and following figures, the initial condition used
is a 𝛽 distribution with 𝛼 = 𝛽 = 2 (i.e., 𝜙0(𝑥) = 6𝑥(1 − 𝑥)) and using𝑁 = 100, transformed to a curve in the 𝑥-𝑝 plane using the relations𝑢(𝑥) = − ln(𝜙0(𝑥)/𝑁)/𝑁 and 𝑝 = 𝜕𝑢/𝜕𝑥.
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Figure 4: Transient dynamics of the subcritical SIS system on
the Hamiltonian phase plane, evolving from the initial condition
depicted in Figure 3 (red) toward later states (yellow, green, and
blue), as each point of the initial curve moves according to the
Hamiltonian dynamics (11).

relation between 𝜕𝑢/𝜕𝑥 and𝑥 provides information about the
form of the function 𝑢(𝑥).

In terms of Hamiltonian dynamics, the function 𝑢(𝑥, 𝑡)
is the action of the system, a scalar quantity that can be
evaluated by integrating along its trajectories:𝑑𝑢 (𝑥, 𝑡)𝑑𝑡 = 𝜕𝑢𝜕𝑥 𝑑𝑥𝑑𝑡 + 𝜕𝑢𝜕𝑡 = 𝑝𝜕𝐻𝜕𝑝 − 𝐻. (21)

For convenience, it is possible to calculate 𝑢 directly
when integrating the Hamiltonian dynamics numerically,
by extending the dynamical system to include 𝑢 as a state
variable:

𝜕𝜕𝑡 (𝑥𝑝𝑢) =(
(

𝜕𝐻𝜕𝑝−𝜕𝐻𝜕𝑥𝑝𝜕𝐻𝜕𝑝 − 𝐻
)
)

. (22)

Integrating this system, with initial conditions 𝑢(𝑥, 0) =𝑢0(𝑥) at selected points of the initial curve, then yields values
of 𝑢(𝑥, 𝑡) explicitly for positive 𝑡.
4.2. Evolution of the Subcritical System from Initial Conditions.
As time passes, each point of the 𝑝-versus-𝑥 curve moves
on the phase plane according to the Hamiltonian dynamics.
Their evolution stretches and translates the curve across the
phase plane, as shown in Figure 4. While any given point
may move in somewhat strange ways, including many that
tend to infinity in the upper right direction, the curve moves
smoothly to the left, approaching the vertical line 𝑥 = 0 and
the gray curve that extends into the first quadrant.
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Figure 5: Transient dynamics of probability density in the subcritical
SIS system, displayed as 𝜙(𝑥, 𝑡) = 𝐶𝑒−𝑁𝑢(𝑥,𝑡) versus 𝑥 using the same
data points as in Figure 4, with𝑁 = 100. Each curve is normalized to
total probability one.The quasistationary distribution (23) is plotted
in gray.

From the moving points (𝑥, 𝑝, 𝑢) of this curve, a plot of 𝑢
versus 𝑥 can be constructed, or of𝜙 = 𝑁𝑒−𝑁𝑢 versus 𝑥, at each
time 𝑡. Figure 5 presents this plot of 𝜙 versus 𝑥 in time. The
peak of the probability density moves asymptotically toward𝑥 = 0, and there is a declining tail to the right of the peak.

A number of features of the evolution of 𝑢(𝑥, 𝑡) versus 𝑥
are visible in this view of the dynamics. As discussed above,
the dynamics on the horizontal axis of the phase plane is
identical to the usual deterministic ODE for the SIS system.
When 𝑝 is read as 𝜕𝑢/𝜕𝑥, it follows that horizontal axis,
where 𝑝 = 0, corresponds to the extrema of the potential
function 𝑢(𝑥, 𝑡)with respect to 𝑥. In the case pictured in these
figures, the only extremum is a minimum of 𝑢(𝑥, 𝑡), which
is a maximum of 𝜙(𝑥, 𝑡). This implies that the maximum
point of the probability density function 𝜙, which is the
mode of the probability distribution, in the large-system
approximation we are using (8), moves in exact accordance
with the deterministic SIS dynamics.

Regions of 𝑥 values for which a curve in the 𝑥-𝑝 plane
is below the horizontal axis are regions where 𝜕𝑢/𝜕𝑥 < 0
and equivalently on which 𝜙(𝑥, 𝑡) is increasing in 𝑥, and
regions where the curve is above the axis are where 𝜙(𝑥, 𝑡) is
decreasing in 𝑥. Near the vertical axis, the 𝑝-versus-𝑥 curve
diverges to 𝑝 = −∞. The fact that 𝑝, representing 𝜕𝑢/𝜕𝑥,
becomes negatively infinite there strongly suggests that 𝑢(𝑥)
is divergent to +∞ at 𝑥 = 0, and so lim𝑥→0+𝜙(𝑥, 𝑡) = 0, at
least in cases like the one illustrated in which 𝜙(0) is zero in
the initial conditions.

If the Hamilton-Jacobi PDE (8) is used to approximate
any finite-𝑁 system, by grouping the probability density into
bins of width 1/𝑁, the result will be that probability mass
accumulates in the bin that includes 𝑥 = 0, and all the other
bins contain a tail that is decreasing in𝑥, andwhose totalmass
declines asymptotically to zero as 𝑡 → ∞.

Figure 4 demonstrates that, in the long term, the 𝑝-
versus-𝑥 curve becomes asymptotically close to the union
of the vertical axis below the positive-𝑝 equilibrium and the
nontrivial 𝐻 = 0 curve (17) at and above that equilibrium.
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We conclude that as the probability density accumulates near𝑥 = 0, the shape of the tail of the density on 𝑥 > 0
approaches a function described by the diagonal curve, which
is the nontrivial solution (17) of 𝐻 = 0. That tail defines the
conditional distribution of 𝑥 given 𝑥 > 0, and therefore the
limiting curve (17) should provide an approximation for the
quasistationary distribution of the SIS master equations.

4.3. Explicit Approximation for the Quasistationary Distribu-
tion. From the above analysis we conclude that the quasista-
tionary probability density function of the master equation
system (1) is approximated by the density function repre-
sented by the nontrivial 𝐻 = 0 curve (17). This is solved in
the same way as in the supercritical case:

𝜙 (𝑠) = 𝐶1 ( 𝑒𝑅0𝑠)𝑁𝑠 , (23)

where 𝑠 = 1 − 𝑥.
While in the supercritical case this density function has a

mode at the endemic value 𝑠 = 1/𝑅0, in this case the density
is greatest at 𝑥 = 0 (𝑠 = 1), as the function is monotonic
decreasing on the interval 0 < 𝑥 < 1.

Changing variables back to the number of infective cases,𝐼 = 𝑁𝑥 = 𝑁(1 − 𝑠), the quasistationary approximation
becomes𝑃 (𝐼) = 1𝑁𝜙(1 − 𝐼𝑁) = 𝐶2 ( 𝑒𝑁𝑅0 (𝑁 − 𝐼))𝑁−𝐼 , (24)

using the appropriate normalizing factor 𝐶2 for this discrete
probability mass function.

This quasistationary approximation is closely related to
the classical approximation 𝑝(1) of Kryscio et al. [2, 8] (see
also [32]): their approximation,

𝑝(1) (𝐼) = 𝐶3 1(𝑁 − 𝐼)! (𝑅0𝑁)𝐼 , (25)

when transformed using Stirling’s approximation for factori-
als,

ln 𝑛! ≈ 𝑛 ln 𝑛 − 𝑛, (26)

yields the approximation we have derived:

𝑝(1) (𝐼) ≈ 𝐶3 ( 𝑒𝑁 − 𝐼)(𝑁−𝐼) (𝑁𝑅0)−𝐼≈ 𝐶4 ( 𝑒𝑁𝑅0 (𝑁 − 𝐼))𝑁−𝐼 , (27)

(where 𝐶3, 𝐶4 are normalizing constants).
Previous approximations and numeric evaluation have

established [2, 7, 8] that the quasistationary distribution of the
subcritical SIS system is approximately geometric near 𝐼 = 0,
with the probabilities of successive values of 𝐼 having ratio𝑅0.

Thus the approximating geometric distribution has the
form Γ (𝐼) = 𝐶5 (𝑅0)𝐼 . (28)

The geometric distribution is characterized by the constant
slope of its logarithm:𝑑𝑑𝐼 ln Γ (𝐼) = 𝑑𝑑𝐼 [ln𝐶5 + 𝐼 ln𝑅0] = ln𝑅0. (29)

Comparing to our approximation 𝑝, the slope of ln𝑝 is
not constant:𝑑𝑑𝐼 ln𝑃 (𝐼) = 𝑑𝑑𝐼 [ln𝐶2+ (𝑁 − 𝐼) (1 + ln𝑁 − ln𝑅0 − ln (𝑁 − 𝐼))] = − (1+ ln𝑁 − ln𝑅0 − ln (𝑁 − 𝐼)) + (𝑁 − 𝐼) ( 1𝑁 − 𝐼)= ln𝑅0 + ln 𝑁 − 𝐼𝑁 .

(30)

However, near 𝐼 = 0, the nonconstant term is approxi-
mately zero, and the slope of the logarithm is approximately
ln𝑅0, with the consequence that the distribution is approxi-
mately geometric with the desired ratio when 𝐼 ≪ 𝑁.

Since the ratio (𝑁 − 𝐼)/𝑁 is smaller than one when 0 <𝐼 < 𝑁 and thus its logarithm is negative, it follows that the
probability mass function 𝑝 decreases to zero more rapidly
than the geometric function Γ does as 𝐼 increases.

In an appendix we compare the SIS process to a birth-
death process that has the transmission and removal rates
of the SIS model without the effect of depletion of suscep-
tibles and whose quasistationary distribution is exactly the
geometric distribution that approximates the above distri-
bution. The phase plane analysis of the birth-death process
provides visual evidence that the parameter characterizing
the approximating geometric distribution by its rate of decay
is determined by the intercept where the nontrivial curve (17)
crosses the vertical axis.

5. Application of SIS Model Analysis to
Trachoma Case Counts

Trachoma is a common subclinical childhood infection in
certain regions of the less-developed world. Repeated infec-
tion results in scarring of the eyelid and trichiasis (turning
inward of the eyelashes, so that the eyelids scrape against
the cornea). Millions of cases of blindness have resulted. The
causative agent, Chlamydia trachomatis, can be cleared with
high efficacy with a single dose of azithromycin [33]. The
World Health Organization currently recommends annual
mass treatment in affected communities as a public health
control measure [33, 34].

During a clinical trial of timing of mass administra-
tion of azithromycin in the Amhara Region of Ethiopia
[23, 34, 35], village-level prevalence data were collected. At
baseline the probability distribution of village-level preva-
lences, omitting zero values, had a mean of 0.39 (range
0.08–0.62) (Figure 6, top plot). After the initiation of mass
treatment at or exceeding recommended WHO levels, the
mean prevalence declined, and the distributions became
indistinguishable from exponential [5] (Figure 6, subsequent
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Figure 6: Changing trachoma prevalence at baseline and at 6-
month intervals during the TANA trial of mass administration of
azithromycin [23]. As the trial progresses, the prevalences become
smaller and become more closely approximated by the exponential
[5]. (Individual village prevalences are shown in tick marks on the
horizontal axis. Curves result from beta distribution kernel density
smoothing [24], with smoothing parameter determined from leave-
one-out cross-validation [25].)

plots).This finding is consistent with the approximately expo-
nential distributions predicted by simple epidemic models,
as discussed above. The matter is of more than theoret-
ical interest, as mentioned in our introduction: the long
tail of the exponential distribution implies that, during
an elimination campaign, some communities may have
unexpectedly large prevalence and appear to be outliers
when in fact they are entirely consistent with the variation
expected.

The SIS model has been used in practice to assess
treatment frequency needed for elimination of trachoma [4,
29, 36].

Figure 7 displays these probability density functions 𝜙(𝑥)
transformed to the phase plane representation defined above,𝑝(𝑥) = −(𝑑/𝑑𝑥) ln(𝜙(𝑥)/𝑁)/𝑁. We assume a population size𝑁 = 100 per village, which is approximately the number
of children at risk in one of these villages [23]. In this plot,
the same motion from lower right to upper left is visible,
with convergence to the vertical axis and possibly to a curve
leaving that axis in the positive quadrant. More abundant
data may permit location of such a limiting curve that would
intersect the vertical axis in this representation of the data.
That curve would provide an estimate of the quasistationary
behavior of the disease, and its intercept would provide an
estimate of the disease’s 𝑅0.
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Figure 7: Phase plane representation of changing trachoma preva-
lence data from TANA trial shown in Figure 6. Each curve on the
plot corresponds to one of the distributions shown in Figure 6,
transformed to the𝑥-𝑝plane as in earlier figures (see text for details).
Over time the curves shift upward and to the left, moving close to
the vertical axis for smaller values of𝑝 and diverging from it at larger
values of 𝑝, similar to the motion seen in the Hamiltonian analysis
of the SIS model (Figure 4). Each curve in this figure is restricted to
the range of the nonzero prevalence values.

6. Summary

Hamiltonian structures describing master equation and dif-
fusion equation systems are the subject of ongoing explo-
ration in stochastic processes research, where the solution
sets of 𝐻 = 0 near the deterministic subspace are used to
model quasistationary behaviors and rare transition events,
such as switching between states or noise-induced extinc-
tions. We have presented an application of these structures
far away from the deterministic subsystem, to approximate
the probability distribution of a process near an absorbing
singular point, where theWKB hypothesis does not hold and
transient dynamics of the limiting PDE rather than its large-
time limit behavior must be used to identify the structure
corresponding to the quasistationary probability distribution
of the finite-size system.

Quasistationary solutions in epidemic models can gener-
ally not be solved exactly, so approximation techniques are
crucial in analysis of these processes. We present an alter-
native approach to this approximation problem, which may
be extensible to other similar model settings and whose full
usefulness is yet to be discovered. The WKB approximation
and the Hamiltonian and Lagrangian techniques of analysis
that it makes available are powerful and flexible andmay have
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applications in subcritical disease settings that gowell beyond
the quasistationary distribution.

Our exploration of cross-sectional prevalence data from
trachoma trials, when the prevalence distributions are repre-
sented as curves on the Hamiltonian phase plane, reveals a
pattern of motion consistent with the motion on the phase
plane predicted by this analysis for a subcritical transmission
model. Thus it is consistent, at least qualitatively, with a
hypothesis that trachoma transmission in that trial setting is
in fact subcritical and stochastic.This analysis fails to discon-
firm that hypothesis, though other explanations are possible.
In epidemiological settings where more data are available, it
may become possible to observe an upper limiting curve in
such a plot as well as the convergence to the vertical axis.
By revealing an emerging shape of the tail of the prevalence
distribution, information about that curve could contribute
to description of the quasistationary behavior of the disease.
Such information also may contribute to an estimate of its
basic reproduction number, arrived at independently of any
estimate based on temporal change in prevalences.

Beyond the one-variable birth-deathmodels that we have
analyzed, the techniques that we explore here for study of
quasistationary dynamics may be of use with models with
more stages of disease progression or differing transition
rates, multitype models, models with patch or network struc-
ture (cf. [37]), and other cases that aremore complex than the
simple models presented here. In population biology, the SIS
model we have discussed is also known as a stochastic logistic
model [38], and this analysis has promise for population
biology models that are similar but not identical to this
model. While the primary goal in conservation biology is to
preserve the populations in question, rather than to eradicate
them as in epidemiology, declining populations are clearly
of interest and the models in use may benefit from a similar
analysis. This analysis may be of use in other applications as
well, where quasistationary dynamics near an absorbing state
is of interest.

Appendix

Comparison to Poisson Birth-Death Process

Theclose approximation to the geometric by the SIS andother
transmissionmodels when infective counts are small can also
be explained by comparing the transmission model to a Pois-
son birth-death process, that is, a process in which depletion
of the susceptible class is not accounted for [1]. The quasista-
tionary limit of this process is the Yaglom limit of its associ-
ated branching process [39, 40] and is exactly geometric.

Here we use the above Hamiltonian phase plane analysis
to approximate the quasistationary limit of a Poisson birth-
death process with the same basic reproduction number 𝑅0,
for comparison to the above results.

In the Poisson birth-death process, the birth and death
rates are the same as in the SIS model, except for the absence
of the nonlinear 𝑆 factor in the birth rate:𝐵 (𝐼) = 𝑅0𝐼,𝐷 (𝐼) = 𝐼. (A.1)
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Figure 8: Phase plane for supercritical Poisson birth-death process(𝑅0 = 2).
It follows that the resulting Hamiltonian also is the same
except for the absence of that factor:𝐻(𝑥, 𝑝) = 𝑅0𝑥 (𝑒𝑝 − 1) + 𝑥 (𝑒−𝑝 − 1)= 𝑥 (𝑅0 − 𝑒−𝑝) (𝑒𝑝 − 1) . (A.2)

As in the SIS case, the Hamiltonian factors into three
parts, corresponding to three intersecting components of the
solution set of𝐻 = 0. Again, two components are the vertical
and horizontal axis. The third, nontrivial solution in this
case is a horizontal line rather than a rising curve. Unlike
the SIS case, here the nontrivial curve does not intersect the
horizontal subsystem (except in the critical case, which we
will leave aside in this discussion).

In the supercritical case (Figure 8), the dynamics on the
horizontal axis (the deterministic subsystem) is similar to
the SIS model in that positive values rise away from zero,
but with the difference that they increase to infinity rather
than to a finite endemic equilibrium value. In the subcritical
case (Figure 9), in which the birth-death process tends to
extinction, the behavior of the Hamiltonian system in the𝑥 ≥ 0 half-plane is qualitatively the same as for the subcritical
SIS. The only difference is in the form of the nontrivial curve
that specifies the quasistationary distribution.

The quasistationary curve is specified by the equation𝑅0 = 𝑒−𝑝, or 𝑝 = − ln𝑅0. Substituting 𝜕𝑢/𝜕𝑥 for 𝑝 produces
the quasistationary solution for the action, 𝑢(𝑥) = −𝑥 ln𝑅0,
and for the probability density, 𝜙(𝑥) = 𝐶𝑒−𝑁𝑢(𝑥) = 𝐶(𝑅0)𝐼.
This is equivalent to the geometric distribution with param-
eter 𝑅0, which is well known to be the quasistationary
distribution of this process.

We note that we can relate the geometric approximation
to the geometry of theHamiltonian phase plane. As discussed
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Figure 9: Phase plane for subcritical Poisson birth-death process(𝑅0 = 1/2).
above, the geometric approximation to the quasistation-
ary distribution is characterized by the logarithmic slope(𝜕/𝜕𝐼) ln𝑃(𝐼, 𝑡). The density function in terms of the fraction𝑥 is 𝜙(𝑥, 𝑡) = Ω𝑃(𝐼, 𝑡), and the action 𝑢 is defined by 𝜙(𝑥, 𝑡) =Ω𝑒−Ω𝑢(𝑥,𝑡), or 𝑢(𝑥, 𝑡) = − ln(𝜙(𝑥, 𝑡)/Ω)/Ω. Combining,

𝑢 (𝑥, 𝑡) = − ln𝑃 (𝐼, 𝑡)Ω , (A.3)

so that𝜕𝜕𝑥𝑢 (𝑥, 𝑡) = Ω 𝜕𝜕𝐼 (− ln𝑃 (𝐼, 𝑡)Ω ) = − 𝜕𝜕𝐼 ln𝑃 (𝐼, 𝑡) . (A.4)

But note that, on the phase plane, the vertical coordinate 𝑝
is identified with 𝜕𝑢/𝜕𝑥; so it follows that the parameter of
the geometric distribution approximating the quasistationary
distribution near 𝐼 = 0 is revealed by the value of the
nontrivial solution for 𝑝 at 𝑥 = 0, that is, the intercept where
the limiting curve describing the quasistationary distribution
crosses the vertical axis. That intercept is equal to − ln𝑅,
where 𝑅 is the parameter of the approximating geometric
distribution.

We note that the horizontal line found in the Poisson
birth-deathmodel’s phase plane and the SIS process’s limiting
curve converge on the same value 𝑝 = − ln𝑅0 at 𝑥 = 0,
confirming visually that this birth-death process is a good
approximation for the SIS process when its infective count is
much smaller than𝑁.
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[31] I. Nåsell, Extinction and Quasi-Stationarity in the Stochastic
Logistic SIS Model, vol. 2022 of Lecture Notes in Mathematics,
Springer Heidelberg, Berlin, Germany, 2011.

[32] T.G. Kurtz, “Limit theorems for sequences of jumpMarkov pro-
cesses approximating ordinary differential processes,” Journal of
Applied Probability, vol. 8, pp. 344–356, 1971.

[33] A. W. Solomon, World Health Organization, London School of
Hygiene and Tropical Medicine, and International Trachoma

Initiative, Trachoma Control: A Guide for ProgrammeManagers,
World Health Organization, Geneva, Switzerland, 2006, http://
apps.who.int/iris/bitstream/10665/43405/1/9241546905_eng.pdf.

[34] J. I. House, B. Ayele, T. C. Porco et al., “Assessment of herd
protection against trachoma due to repeated mass antibiotic
distributions: a cluster-randomised trial,” The Lancet, vol. 373,
no. 9669, pp. 1111–1118, 2009.

[35] N. E. Stoller, T. Gebre, B. Ayele et al., “Efficacy of latrine pro-
motion on emergence of infection with ocular Chlamydia tra-
chomatis after mass antibiotic treatment: A cluster-randomized
trial,” International Health, vol. 3, no. 2, pp. 75–84, 2011.

[36] D. Gao, T. M. Lietman, C.-P. Dong, and T. C. Porco, “Mass drug
administration: the importance of synchrony,” Mathematical
Medicine and Biology, vol. 34, no. 2, pp. 241–260, 2016.

[37] J. Hindes and I. B. Schwartz, “Epidemic extinction and control
in heterogeneous networks,” Physical Review Letters, vol. 117,
no. 2, Article ID 028302, 2016, http://link.aps.org/doi/10.1103/
PhysRevLett.117.028302.
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