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A B S T R A C T

The increasing usage of nanopesticides in agriculture poses a concern to plant crops due to unknown implica-
tions of engineered nanomaterials (ENMs). Targeted metabolomics can provide both qualitative and quantitative
information at a molecular level to investigate the response of plants to emerging environmental stressors, such
as nanopesticides. Here we describe a detailed protocol for the extraction and analysis of plant metabolites,
specifically 23 amino acids in plants, using hydrophilic interaction liquid chromatography coupled to triple
quadrupole mass spectrometry (HILIC-LC-MS/MS). Sufficient separation of 23 amino acids was achieved,
without the need for derivatization, on an HILIC column with an MS/MS detector in a single run of 12min with
high sensitivity, selectivity and robustness and low LOD (0.005–15 ng/mL) and LOQ (0.02–50 ng/mL). A simple
and efficient method to effectively extract amino acids from plant tissues was developed with a high recovery
rate (80–120%). The protocol was then applied to determine the levels of amino acids in cucumber plants
exposed to various environmentally-relevant levels of nano copper (nCu at 0, 200, 400, and 800mg/kg soil;
harvested in 60 days). Dose-dependent changes in amino acid levels were found; 13 amino acids were upre-
gulated due to nCu stress, particularly, tyrosine increased 6.1, 8.2, and 11.0 fold after exposure to 200, 400 and
800mg/kg nCu, respectively. The change in amino acid levels suggests an active defense response of the cu-
cumber plant to nCu stress. We demonstrate that the HILIC-LC-MS/MS method is an effective and efficient
technique to analyze underivatized amino acids in plant samples.

1. Introduction

Recently, there has been an increasing use of nanoscale fertilizers
and pesticides in agriculture (Raliya et al., 2018; Dimkpa and
Bindraban, 2018), and copper-containing nanopesticides (Cu NPs) are
one of the most popular products on the market because of their ex-
cellent antimicrobial and antifungal properties (Bergeson, 2010; Kiaune
and Singhasemanon, 2011; Keller et al., 2017). However, due to the
unique physicochemical properties of engineered nanomaterials
(ENMs), e.g., ultra-fine particle size, high reactivity and etc., studies
indicated they can be considered as potential environmental stressors to
terrestrial plants (Conway et al., 2015; Rizwan et al., 2017; Du et al.,
2017). Some metallic ENMs (e.g. Cu NPs) and/or released ions (e.g.
Cu2+) can induce the stress to plant, e.g. the formation of reactive
oxygen species (ROS) within plant cells to induce oxidative stress (Zhao
et al., 2016a; Shaw et al., 2014). The levels of low molecular weight

metabolites, including amino acids, represent the ultimate response of
biological systems to environmental changes (Fiehn, 2002). Further-
more, by studying these metabolites, we can understand better the
metabolic pathways and networks that are up- or down-regulated due
to exposure to these ENM stressors (Hasler-Sheetal et al., 2016). Thus,
the quantitative determination of amino acids is important in mapping
the metabolomic profile and evaluating the pathway of key metabolites,
as well as the nutritional supplies from plant tissues; metabolomics
provides a more holistic view of plant response to these environmental
stressors. In addition, since Cu2+ exhibits strong binding to amino acids
forming complexes, increased levels of some amino acids may induce
the transformation of Cu NPs within the plants and/or in soil (Huang
et al., 2017). Monitoring the changes in amino acids can also serve to
better understand the underlying mechanisms behind plant-ENMs in-
teractions at a molecular level.

In our previous studies, untargeted gas chromatography-time of
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flight-mass spectrometry (GC-TOF-MS) and 1H nuclear magnetic re-
sonance (NMR)-based metabolomics were applied for a rapid screening
of metabolite changes within crop plants as responses to the stress in-
duced by Cu NPs (Zhao et al., 2016a, b, c, d, 2017a, b, c, d, e). Amino
acid levels within plant tissues were significantly (p < 0.05) altered
after exposure to Cu NPs (Zhao et al., 2016a, c, 2017a, c, d, e). For
example, eleven amino acids (e.g., alanine, glycine, proline and etc.)
were significantly up-regulated in the root exudate of cucumber, sug-
gesting an active defense mechanism against Cu NPs stress (Zhao et al.,
2016a). With untargeted analytical techniques, an overall metabolic
profile can provide a molecular-scale perspective on the response of
plants to stressors, such as nanopesticides. However, the untargeted
metabolomics analysis provides semi-quantitative information on the
changes in metabolite levels, since there is no rigorous assessment of
the recovery of metabolites during extraction, or calibration of the GC-
TOF-MS responses. Targeted metabolomics, for example liquid chro-
matography coupled to triple quadrupole mass spectrometry (LC-MS/
MS), can quantitatively determine the changes in secondary metabolite
concentrations in plants exposed to ENMs, which provides a more-
sensitive and mechanistic understanding of the biological response to a
stressor (Huang et al., 2019).

Hydrophilic interaction liquid chromatography (HILIC) can separate
and help quantitatively analyze a wide range of polar compounds, in-
cluding amino acids (Gao et al., 2016; Dell'mour et al., 2010), peptides
(Le Maux et al., 2015), carbohydrates (Schulze et al., 2017), metabo-
lites and other biologically important compounds (Mackay et al., 2015;
Buszewski and Noga, 2012). Compared to other analytical techniques
(e.g., reversed-phase high-performance liquid chromatography (RP-
HPLC) and/or capillary electrophoresis (CE) coupled with optical or
mass spectrometry (MS) detection), no pre-treatment (derivatization
with strong chromophore groups, for example, ninhydrin (Bidlingmeyer
et al., 1984), o‑phthalaldehyde (Nimura and Kinoshita, 1986), etc.) is
required to analyze amino acids on HILIC. This avoids time-consuming
derivatization procedures, and can minimize issues such as derivative
instability, insufficient reproducibility of derivative yield, and inter-
ferences caused by the reagent (Kaspar et al., 2009). Furthermore,
coupled with tandem mass spectrometry (MS/MS), HILIC-MS/MS can
offer gains in selectivity and sensitivity by reaction monitoring (MRM),
while avoiding issues of instrument contamination and downtime that
occur with the use of derivatizing agents.

Previous LC methods exhibited long retention time for under-
ivatized amino acids analysis (Prinsen et al., 2016; Krumpochova et al.,
2015). In this study, A newly released HILIC column with small particle
size (2.7 μm) was used to develop a fast and sensitive HILIC-MS/MS
method for direct quantitative analysis of underivatized amino acids. A
single transition was used for quantification (Prinsen et al., 2016), and a
second transition was employed as qualifier for confirmation of the
identity of the targeted amino acids. The HILIC-MS/MS method pre-
sented here is capable of performing quantitation at trace levels (e.g.,
μg/L) of these amino acids in food, biological or environmental ma-
trices. Using the quantitative secondary metabolites (e.g., amino acids)
data, targeted metabolomics were conducted to investigate the re-
sponse of plants (e.g., cucumber) exposed to ENMs (e.g., Cu NPs).

2. Materials and methods

2.1. Chemicals and reagents

All analytical standards used during the study had at least>96%
purity. All amino acid standards were purchased from Sigma-Aldrich (St.
Louis, MO), including: L‑tyrosine (≥99.0%), L‑proline (≥99.0%), L‑alanine
(≥98.5%), L‑valine (≥98.5%), L‑phenylalanine (≥98.5%), L‑lysine
(≥98%), L‑threonine (≥99.0%), glycine (≥99.0%), L‑asparagine
(≥98%), L‑ornithine monohydrochloride (≥99.0%), L‑arginine
(≥98.5%), L‑glutamic acid (≥98.5%), L‑tryptophan (≥99.0%),
L‑isoleucine (≥98.5%), L‑glutamine (≥99.0%), L‑leucine (≥98.5%),

L‑methionine (≥99.0%), L‑histidine (≥99.0%), L‑aspartic acid (≥99.0%),
L‑cysteine (≥97%), L‑citrulline (≥98%), L‑serine (≥99.0%) and
L‑homoserine (≥98%) (Table S1). Isotopically labeled internal standards
(ISTD), L‑isoleucine‑15N (98%), L‑methionine‑2,3,3,4,4‑d5‑methyl‑d3
(98%), L‑glutamic acid‑15N (98%), Glycine‑2,2‑d2 (98%), and L‑alanine-
3,3,3‑d3 (99%) were purchased from Cambridge Isotope Laboratories
(Andover, MA, USA). DL‑Lysine‑3,3,4,4,5,5,6,6‑d8 dihydrochloride (99.6%)
was purchased from CDN Isotopes (Pointe-Claire, Québec, Canada), used
as isotopically labeled internal standard (ILIS). LC-MS grade acetonitrile
(ACN) and water were purchased from Burdick and Jackson (Muskegon,
MI), while LC-MS grade formic acid and ammonium formate were pur-
chased from Sigma-Aldrich (St. Louis, MO).

2.2. Characteristics of nCu NPs

Uncoated nCu (U.S. Research Nanomaterials) was employed here; a
detailed characterization was presented in a previous study (Adeleye
et al., 2014). In this study, the primary particle size is 40 nm and the
hydrodynamic diameter (HDD) was measured as 2432 ± 484 nm in
deionized (DI, Barnstead nanopure) water at pH 7 (0.5mM phosphate
buffer). Scanning electron microscope (SEM) and transmission electron
microscopy (TEM) images of nCu are presented in the Supporting In-
formation (Fig. S1). The surface charge, expressed as zeta potential in
0.5 mM phosphate buffer solution, is −28.8 ± 0.6mV at pH 7.

2.3. Plant exposure and growth conditions

Cucumber (Cucumis sativus) seeds were purchased from Seed Savers
Exchange (Iowa, USA). nCu was suspended in DI water and sonicated
for 30min before being applied to the soil surface without mixing (top
soil collected from Sedgwick Reserve, CA, USA; and the characteristics
of the soil were provided in SI, as Table S3). The final concentration of
nCu in soil (mg/kg) was 0 (Control), 200 (low), 400 (medium) and 800
(high). This total Cu concentration is within the range predicted for
biosolids applied to soils (Lazareva and Keller, 2014) or due to the
application of copper-based nanopesticides (Conway et al., 2015). Each
treatment had four replicates. In each replicate, pairs of cucumber
seedlings were grown in 3.0 L Poly-Tainer containers. The cucumber
plants were grown 60 days in the greenhouse at a controlled tempera-
ture of 25.5 to 30.0 °C during the day and 17.7 to 18.9 °C at night.

2.4. Extraction of amino acids

Cucumber leaf tissue extracts were prepared from freshly harvested
cucumber leaves, which were immediately placed in liquid nitrogen for
rapid freezing. The frozen cucumber tissues were homogenized in liquid
nitrogen into a fine powder using a mortar and pestle, then stored in a
freezer at −85 °C. For extraction, 100mg of frozen cucumber leaf
powder was weighed into 2-mL Eppendorf microcentrifuge tubes, and
1mL of 0.5M aqueous HCl was added. The tubes were vortexed at
8000 rpm for 20min, sonicated in a 25 °C water bath for 20min, then
centrifuged at 20,000×g for 20min. Finally, 250 μL of the extraction
supernatant was transferred into LC vials with ISTD already added, and
the mixture was diluted to 1mL with 20% water in acetonitrile.

To determine the extraction recovery rates of amino acids, three
levels of mixed amino acid standards were spiked into cucumber leaf
tissue samples before and after the extraction process, to obtain pre-
and post-extraction spike recovery rates, respectively. The spiked con-
centrations of amino acids were 20, 40 and 80 μg/g (cucumber leaf
tissues).

The recovery rates were calculated using:

Recovery rate (%) C C
C

100observed neat

expected
=

−
×

where, Cobserved is the concentration of pre- or post-extraction spiked
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sample with a mixture of amino acid standards; Cneat the concentration
of non-spiked (control) sample; Cexpected the concentration that was
spiked into the samples.

2.5. Liquid chromatography

An Agilent 1260 UHPLC binary pump was used to perform liquid
chromatography for all analyses. An Agilent InfinityLab Poroshell 120
HILIC-Z (2.1× 100mm, 2.7 μm) column was used for chromatographic
separation of all analytes. The column was maintained at 25 °C
throughout the run. A dual eluent mobile phase was run at 500 μL/min
for separation. Stock aqueous solution was prepared in water with
200mM ammonium formate and adjusted to pH 3 with formic acid.
Mobile phase A (aqueous) was prepared by diluting the stock solution
9:1 in water, and mobile phase B (organic) was prepared by diluting the
stock solution 9:1 in acetonitrile (final ionic strength of both mobile
phases= 20mM). The mobile phase B was linearly decreased from
100% to 70% for 11.5 min, and returned to the initial condition after a
total of 12min. A 3min post-run column re-equilibration at 100%
solvent B was added before the next analysis. This resulted in a total
cycle time of 15min per sample. The injection volume for each sample
was 1 μL.

2.6. Mass spectrometry

Mass spectrometry was performed on an Agilent 6470 triple quad-
rupole mass spectrometer. The optimization of the mass spectrometer
was divided into two: (i) compound-specific optimization and (ii)
source-dependent optimization. Details of the optimization procedure
have been published previously (Anumol et al., 2013). The optimized
compound parameters and retention times (RT) are shown in Table 1

while source-dependent parameters for electrospray (ESI) positive
mode are shown in Table S2.

While the RTs were very stable and did not vary much, for safety so
as not to miss any peaks or co-eluents, the mass spectrometer was run in
dynamic multiple reaction monitoring (DMRM) mode with a delta RT of
2min for each compound. Two transitions: a quantifier (most-abundant
product) and qualifier were used for most of the compounds to increase
specificity of the method. Data acquisition and analysis was performed
using the Agilent MassHunter software (version Rev. B.06.00). RT va-
lidation and product ion ratio monitoring reduced the possibility of
false positives in the method.

The precision of the method was validated by retention time and
analyte response variation of the calibration standards, as well as the
inter-day and intra-day variation of a cucumber extraction sample,
expressed as relative standard deviation (RSD). Retention time and
analyte response variation was determined via 15 continuous injections
of calibration standards. Intra-day and inter-day variation was de-
termined using a cucumber extraction sample run three times on the
same day within 6 h of each other and six times on six different days,
respectively.

2.7. Method validation

The proposed LC-MS/MS method for quantitative analysis of un-
derivatized amino acids was evaluated with regards to linearity, limit of
detection (LOD) and quantification (LOQ), intraday and interday pre-
cisions, stability, accuracy, and matrix effects. Instrumental LOD, LOQ
were determined to be the lowest concentration in which the signal to
noise ratios (SNR) are 3:1 and 10:1, respectively. A set of standards
ranging from blank to 100 ng/mL was analyzed in order to determine
LODs and LOQs.

Table 1
Optimized compound-specific parameters and retention times for LC-MS/MS.

Compound ISTD Retention time
(min)

Precursor ion (m/
z)

Product ions

Quant ion
(m/z)

Collision energy
(V)

Qual ion
(m/z)

Collision energy
(V)

Fragmentor (V)

Amino acids
Phenylalanine Isoleucine‑15N1 2.95 166.1 120.1 13 103 29 80
Leucine Isoleucine‑15N1 3.38 132.1 86.1 9 30.2 17 75
Tryptophan Isoleucine‑15N1 3.41 205.1 188.0 8 146 20 80
Isoleucine Isoleucine‑15N1 3.75 132.1 86.1 9 44.2 25 75
Methionine Methionine‑d8 4.22 150.1 104.0 9 56.1 17 75
Valine Alanine‑d3 4.95 118.1 72.1 9 55.1 25 70
Proline Alanine‑d3 4.96 116.1 70.1 17 43.2 37 75
Tyrosine Alanine‑d3 5.01 182.1 136.1 13 91.1 33 85
Cysteine Alanine‑d3 5.63 122.0 59.1 29 76 13 65
Alanine Alanine‑d3 6.61 90.1 44.2 9 45.3 40 40
Threonine Alanine‑d3 6.72 120.1 74.1 9 56.1 17 75
Homoserine Alanine‑d3 6.91 120.1 74.1 9 56.1 21 70
Glycine Glycine‑d2 7.00 76.0 30.3 12 NA NA 35
Glutamine Glycine‑d2 7.23 147.1 84.1 17 130.1 9 80
Serine Glycine‑d2 7.26 106.1 88.1 8 42.2 24 67
Asparagine Glycine‑d2 7.31 133.1 87.1 5 74 17 75
Glutamic acid Glutamic acid‑15N1 7.68 148.1 84.1 17 130 5 75
Citrulline Glutamic acid‑15N1 7.89 176.1 159.1 9 70.1 25 80
Aspartic acid Aspartic acid‑d3 8.38 134.0 88.1 9 74 13 70
Histidine Aspartic acid‑d3 9.06 156.1 110.1 13 83.1 29 90
Arginine Aspartic acid‑d3 9.54 175.1 70.1 24 60.1 12 100
Lysine Lysine‑d8 10.16 147.1 84.1 17 130.1 9 75
Ornithine Lysine‑d8 10.28 133.1 116 8 70 20 76

Internal standards
Isoleucine‑15N1 3.75 133.1 87.1 8 NA NA 75
Methionine‑d8 4.26 158.1 112.1 8 NA NA 75
Alanine‑d3 6.61 93.1 47.2 12 NA NA 40
Glycine‑d2 7.00 78.1 32.2 12 NA NA 40
Glutamic acid‑15N1 7.68 149.1 85.1 16 NA NA 75
Aspartic acid‑d3 8.37 137.1 75.0 16 NA NA 60
Lysine‑d8 10.16 155.2 92.1 20 NA NA 80
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2.8. Data processing and statistical analyses

Data were processed with Agilent MassHunter Workstation Software
Quantitative Analysis (Version B.07.01/Build 7.1.524.0). Principal
components analysis (PCA) and partial least squares discriminant ana-
lysis (PLS-DA) were conducted using MetaboAnalyst 4.0 (Xia and
Wishart, 2016).

3. Results and discussion

3.1. LC-MS method development

Separation and identification of the AAs was effective under 11min
(Fig. 1 and Fig. S2), via differences in RT and product ion ratio(s)
(Table 2).

The HILIC can retain and separate polar analytes due to the strong
hydrophilic interaction between the polar compounds and the hydro-
philic polar stationary phase (Jandera, 2011). In this reported method,
the new Agilent InfinityLab Poroshell 120 HILIC-Z column with small
particle size provides selectivity on the quantitative analysis of amino
acids with sharp peaks and short retention time. The current method
can separate and identify 23 amino acids within 12min, providing
faster quantitative analysis compared to previous studies (Prinsen et al.,
2016; Krumpochova et al., 2015). Notably, baseline separation was also
achieved for both the leucine/isoleucine isobars and threonine/homo-
serine isobars (Fig. S3), which overcome challenges in previous studies
(Gokmen et al., 2012). The choice of ammonium formate (20mM) as a
salt additive into the mobile phase with lower pH also helped to further
improve the peak shapes in the amino acids analysis (Guo et al., 2013).

3.2. Method validation

The proposed LC-MS/MS method for quantitative analysis of un-
derivatized amino acids was evaluated with regards to linearity, LOD,
LOQ, intraday and interday precisions, stability, accuracy, and matrix
effects. The results are summarized in Table 2. Isotopically labeled
ISTDs were chosen based on RT across the chromatography spectrum to
correct the response of the analytes. Seven ISTDs exhibited good

representation of different polarities for all 23 amino acids, resulting in
good linearity in a wide range of concentrations (50 to 10,000 ng/mL).
The coefficient values (R2) of the calibration curves were higher than
0.9950 for all analytes. Other than serine, LOD ranged from 0.005 to
15 ng/mL, and LOQ ranged from 0.01 to 50 ng/mL (Table 2). Notably,
serine exhibited the highest LOD (50 ng/mL) and LOQ (167 ng/mL) in
our current method. Serine usually requires pre-column derivatization
to improve the LOD and LOQ (Sakamoto et al., 2016; Xie et al., 2014).
The current method, a direct quantitative analysis of underivatized
serine, had a better LOD when compared to the values reported in
previous studies (LOD=262–436 ng/mL) (Vilches et al., 2017;
Nemkov et al., 2015). Thus, the present method is highly sensitive, with
detection and quantification of very low concentrations of amino acids.

The results for the repeatability and precision values are presented
in Table 2. All 23 analytes in the calibration standards have retention
time variability < 0.5%, indicating no peak shifting. The variability in
the responses of the calibration standards were<5% for all target
amino acids except tyrosine was slightly higher (RSD=8.77%). For
cucumber leaf tissues extract intra-day variability, most of the analytes
were under 5%, except cysteine (8.8) and glutamine (12.1). Similar
results were obtained for cucumber leaf tissues extract inter-day re-
sponse variability: only cysteine (10.8) and glutamine (29.9) showed an
RSD higher than 5%, which could be partly due to the fast oxidation of
cysteine to cystine and the instability of glutamine in various matrices
(Grossie et al., 1993). All other analytes have inter-day RSDs < 5%,
indicating good precision and stability.

3.3. Matrix spike and recoveries

Optimization of the extraction of the AAs from leaf tissues required
testing various solution matrixes. Different ratios of organic solvent and
water (e.g. 75:25 acetonitrile/water, 50:50 acetonitrile/water, 25:75
acetonitrile/water, and water) were employed for the extraction ma-
trix. In addition, different additives, such as HCl (0.01M, 0.1 M, 0.5M,
0.7 M, 0.9 M and 1M) and ammonium formate (20mM) were added to
the extraction matrixes to adjust and control pH and optimize the re-
covery rates. The recovery rates using different extraction matrixes are
presented in the Supporting Information (Table S4). Comparing across

Fig. 1. LC-MS/MS chromatograms of the investigated analytes overlaid and (B) normalized (peak heights scaled to the highest peak in the chromatogram). The peaks
are the transitions of the following compounds: 1. Phe; 2. Leu; 3. Trp; 4. Ile; 5. Met; 6. Val; 7. Pro; 8. Tyr; 9. Cys; 10. Ala; 11. Thr; 12. Hse; 13. Gly; 14. Gln; 15. Ser; 16.
Asn; 17. Glu; 18. Cit; 19. Asp; 20. His; 21. Arg; 22. Lys; and 23. Orn.
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11 different extraction matrixes, water with 0.5M HCl was chosen as
the best extraction solution since it extracted most of the analytes ef-
ficiently with high recovery rates. In this matrix, all of the analytes
exhibited recovery values within the range of 65–135% at the tested
spiking level (Table S4); and notably, 22 of the 23 analytes achieved
80–120% recovery rates. High recovery rates in this extraction matrix
(0.5 M aqueous HCl) resulted from higher solubilities of amino acids in
acidic aqueous solution compared to organic solvents (e.g., methanol)
(Fuchs et al., 2006).

To validate our extraction method, three replicates of frozen cu-
cumber leaf powder (100mg) were spiked with all target analytes at
three levels (20, 40 and 80 μg/g) and then extracted using the opti-
mized extraction method (pre-extraction-spike). As shown in Table 3,
the recovery rates were within the required range (80–120%) for all
analytes with the exception of cysteine (57–66%) and ornithine (134%
in the medium spike of 40 μg/g, and 163% in the high spike of 80 μg/g).
However, in the post-extraction-spike study (samples were spiked after
extraction at same concentration as pre-extraction-spike, Table S5), a
recovery rate of 94–105% was achieved for cysteine. It suggested that
the current optimized extraction method was still not optimal for cy-
steine, although it was the best for cysteine among the 11 extraction
methods; there was< 40% recovery of cysteine using the other 10
methods (Table S6). For ornithine, similar higher recovery rates (138%
in the medium spike of 40 μg/g, and 160% in the high spike of 80 μg/g)
were observed in the post-extraction-spike study (Table S5), while in
the lower spike level (20 μg/g), the recovery rates in both pre- and post-
extraction spike were< 120%. The high recovery in both pre- and post-
spike study of ornithine indicates a matrix effect, and further clean-up
after sample extraction may be needed. However, since we aimed to
develop a rapid method that can test most amino acids directly after
extraction, and the HILIC-Z column provides effective separation of
analytes, no additional clean-up steps were developed in this study.
Overall, this extraction method is a simple and effective approach for
these secondary metabolites, and may be useful for many other meta-
bolites previously semi-quantitatively determined via untargeted me-
tabolomics in previous studies (Zhao et al., 2016c, 2017f; De Vos et al.,
2007) (Table 3).

3.4. Response of cucumber plant leaves after exposure to Cu NPs

After exposure to different levels of nCu, we found that the photo-
synthetic rate and instantaneous water use efficiency of cucumber
leaves decreased compared to the control, while the transpiration and
stomatal conductance rates tended to increase (Fig. S4), although not
all the changes were statistically significant at p < 0.05. Cu con-
centrations in all cucumber tissues, including roots, stems, leaves and
fruits, were significantly higher compared to the control (p < 0.05)
(Fig. S5), which indicates Cu was taken up by the roots and translocated
to upper tissue (e.g., the fruits) (Zhao et al., 2016c). The translocation
factor (Cu in shoots/Cu in roots) of Cu ions/nCu in the control (0mg/kg
nCu) group was 0.33, but it decreased to 0.21, 0.22 and 0.23 for plants
exposed to 200, 400 and 800mg/kg nCu, respectively. The reduced
translocation rate suggests that cucumber plants grown in nCu treated
soils may uptake both Cu ions and nCu (Zhao et al., 2016c). Although
the biomass of cucumber roots, stem, leaves and fruits decreased after
exposure to nCu, the difference was not statistically significantly (Fig.
S6).

The optimized method was used to determine the concentration of
the 23 amino acids in cucumber plant leaves exposed to nCu and un-
exposed control samples. All targeted amino acids were detected in the
unexposed control group, but the levels of ornithine in cucumber leaf
tissues were lower than the LOD (Table 4). In all three (low, medium
and high) nCu exposure treatment groups, all the amino acids (except
ornithine) exhibited significant change (p < 0.01) as compared to the
unexposed control group. Some of the amino acids were clearly up-
regulated (e.g. tyrosine, citrulline, glutamine) and others were down-
regulated (e.g. threonine, methionine, serine) mostly in a dose depen-
dent manner. Compared to the control, tyrosine increased 6.1, 8.2, and
11.0 fold, while serine decreased 10.8, 8.1 and 3.9 fold after exposure
to 200, 400 and 800mg/kg nCu, respectively. In other cases, although
there is a significant change in levels, the response was not clearly dose-
dependent. Thus, we performed an analysis of the changes in a more
comprehensive manner as discussed below.

Unsupervised PCA was performed for the 23 amino acids in control
and nCu treated cucumber leaf tissues (Fig. 2A). The first two principal

Table 2
Linearity, LOD and LOQ, repeatabilities, precisions and stabilities of target analytes.

Compound name LOD
(ng/mL)

LOQ (ng/
mL)

R2 for calibration curve
(50–10,000 ng/mL)

Retention time
variability RSD
(n= 15) (%)

Calibration standard
response variability
(n=15) RSD (%)

Intra-day response
variability (n= 3) RSD
(%)

Inter-day response
variability (n= 6) RSD
(%)

Phenylalanine 0.5 1.67 0.9999 0.35 0.99 0.9 4.9
Leucine 0.005 0.02 0.9979 0.43 2.97 0.8 4.1
Tryptophan 0.005 0.02 0.9999 0.24 0.65 1.6 2.6
Isoleucine 0.005 0.02 0.9978 0.37 2.08 0.2 0.4
Methionine 0.05 0.17 0.9996 0.35 0.96 0.4 2.2
Valine 0.4 1.33 0.9981 0.73 1.21 3.2 4.0
Proline 1 3.33 0.9983 0.58 1.04 1.5 3.3
Tyrosine 0.15 0.50 0.9987 0.69 8.77 3.1 4.0
Cysteine 5 16.67 0.9999 0.07 1.25 8.8 10.8
Alanine 0.005 0.02 0.9994 0.00 3.76 0.5 0.5
Threonine 0.4 1.33 0.9987 0.10 1.51 2.6 3.6
Homoserine 0.15 0.50 0.9969 0.00 1.20 3.6 4.3
Glycine 15 50.00 0.9999 0.06 1.82 1.5 3.9
Glutamine 0.5 1.67 0.9993 0.06 0.73 12.1 29.9
Serine 50 166.67 0.9957 0.08 1.08 4.5 4.5
Asparagine 1 3.33 0.9994 0.00 1.38 1.2 1.2
Glutamic acid 0.005 0.02 0.9978 0.00 1.19 0.3 0.6
Citrulline 0.15 0.50 0.9997 0.05 1.29 4.1 3.4
Aspartic acid 0.005 0.02 0.9999 0.13 2.77 0.4 1.3
Histidine 0.25 0.83 0.9961 0.06 0.70 3.6 3.7
Arginine 0.01 0.03 0.9972 0.09 0.68 2.9 3.5
Lysine 0.005 0.02 0.9992 0.06 1.02 1.1 1.9
Ornithine 0.01 0.03 0.9998 0.08 0.63 2.1 2.1
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components (PC 1 and PC 2) accounted for> 97% of the variance; PC 1
and PC 2 accounted for 90.6% and 7.2% of the total variance, respec-
tively. The remaining principal components, which had a minor effect
on the model, were discarded. PCA analysis revealed a clear separation
in amino acid profiles collected from control and the three different
levels of nCu treatment.

PLS-DA, a supervised multivariate analytical method, was also ap-
plied to determine the separation between groups. From a score plot of
PLS-DA (Fig. 2B), the control samples were clearly separated from

different levels of nCu treated sample (particularly the group treated
with 800mg/kg nCu) along PC1, which explained 86.3% of the total
variability. This indicates that exposure to nCu significantly changed
the amino acid profiles in cucumber plants. Using variable importance
in projection (VIP) scores, 4 amino acids (lysine, glutamine, alanine and
glutamic acid) with VIP > 1were found to be responsible for this se-
paration (data not shown).

Overall, 13 amino acids, including phenylalanine, leucine, trypto-
phan, isoleucine, valine, tyrosine, cysteine, glycine, glutamine,

Table 3
Extraction method validation results (n= 4 for each analyte).

Compound name Spike level

20 μg/g 40 μg/g 80 μg/g

% recovery %RSD % recovery %RSD % recovery %RSD

Phenylalanine 107 ± 1 0.9 106 ± 2 1.9 102 ± 3 2.9
Leucine 126 ± 1 0.8 122 ± 2 1.6 112 ± 1 0.9
Tryptophan 132 ± 1 0.8 126 ± 3 2.4 116 ± 4 3.4
Isoleucine 102 ± 0 0.0 99 ± 3 3.0 96 ± 1 1.0
Methionine 80 ± 2 2.5 78 ± 3 3.8 78 ± 1 1.3
Valine 124 ± 1 0.8 117 ± 6 5.1 99 ± 7 7.1
Proline 104 ± 1 1.0 105 ± 5 4.8 102 ± 7 6.8
Tyrosine 106 ± 7 6.6 100 ± 5 5.0 91 ± 3 3.3
Cysteine 57 ± 8 14.1 66 ± 2 3.0 61 ± 3 4.9
Alanine 85 ± 4 4.7 89 ± 2 2.2 83 ± 3 3.6
Threonine 107 ± 4 3.7 105 ± 5 4.8 100 ± 6 6.0
Homoserine 102 ± 1 1.0 108 ± 6 5.5 105 ± 5 4.8
Glycine 96 ± 1 1.0 94 ± 2 2.1 89 ± 2 2.3
Glutamine 134 ± 1 0.7 130 ± 3 2.3 119 ± 3 2.5
Serine 107 ± 5 4.7 102 ± 2 2.0 94 ± 2 2.1
Asparagine 99 ± 2 2.0 97 ± 2 2.1 93 ± 3 3.2
Glutamic acid 80 ± 14 17.4 97 ± 1 1.0 88 ± 1 1.1
Citrulline 87 ± 1 1.2 85 ± 1 1.2 84 ± 2 2.4
Aspartic acid 82 ± 4 4.9 92 ± 1 1.1 93 ± 4 4.3
Histidine 119 ± 5 4.2 120 ± 5 4.2 119 ± 6 5.0
Arginine 98 ± 1 1.0 96 ± 2 2.1 91 ± 3 3.3
Lysine 92 ± 2 2.2 96 ± 3 3.1 92 ± 2 2.2
Ornithine 112 ± 2 1.8 134 ± 5 3.7 163 ± 6 3.7

Table 4
Change in amino acid levels in cucumber leaf tissues after exposure to nCu.

Compound name Control Low Medium High

Conc. (ng/g leave) %RSD Conc. (ng/g leave) %RSD Conc. (ng/g leave) %RSD Conc. (ng/g leave) %RSD

Phenylalanine 4776.8 ± 125.1 2.6 6973.1 ± 380.8 5.5 7093.0 ± 495.5 7.0 9737.7 ± 370.6 3.8
Leucine 20,045.3 ± 531.7 2.7 22,940.5 ± 986.1 4.3 22,156.0 ± 1062.6 4.8 31,834.2 ± 863.8 2.7
Tryptophan 7918.7 ± 357.7 4.5 11,345.1 ± 677.3 6.0 8972.4 ± 468.5 5.2 12,211.0 ± 535.0 4.4
Isoleucine 3615.8 ± 125.2 3.5 7965.9 ± 356.7 4.5 6327.1 ± 284.1 4.5 10,080.8 ± 209.3 2.1
Methionine 1378.5 ± 50.1 3.6 561.3 ± 18.6 3.3 613.8 ± 14.2 2.3 753.6 ± 9.4 1.2
Valine 6790.1 ± 331.0 4.9 12,793.9 ± 916.6 7.2 10,135.7 ± 825.4 8.1 15,780.6 ± 815.6 5.2
Proline 3236.3 ± 171.6 5.3 2130.4 ± 159.9 7.5 2790.8 ± 221.8 7.9 4909.2 ± 259.6 5.3
Tyrosine 850.9 ± 21.0 2.5 4380.2 ± 267.4 6.1 5858.9 ± 449.0 7.7 7943.9 ± 350.2 4.4
Cysteine 200.1 ± 16.4 8.2 416.8 ± 32.2 7.7 239.9 ± 23.3 9.7 564.5 ± 45.3 8.0
Alanine 21,486.0 ± 660.3 3.1 20,437.4 ± 948.4 4.6 13,312.8 ± 549.4 4.1 19,349.7 ± 342.2 1.8
Threonine 809.9 ± 56.7 7.0 135.1 ± 7.4 5.4 120.3 ± 11.2 9.3 139.1 ± 6.9 5.0
Homoserine 132.0 ± 16.6 12.6 142.6 ± 11.0 7.7 94.2 ± 6.3 6.7 102.8 ± 6.3 6.1
Glycine 2965.9 ± 87.1 2.9 4593.3 ± 257.5 5.6 3506.8 ± 197.1 5.6 4542.6 ± 147.0 3.2
Glutamine 7860.3 ± 229.6 2.9 15,200.6 ± 686.6 4.5 19,163.9 ± 829.6 4.3 23,116.1 ± 731.4 3.2
Serine 2654.4 ± 138.6 5.2 205.5 ± 36.5 17.8 319.2 ± 26.4 8.3 677.2 ± 51.4 7.6
Asparagine 4340.3 ± 125.5 2.9 2730.7 ± 141.1 5.2 2417.3 ± 104.5 4.3 4215.2 ± 88.5 2.1
Glutamic acid 11,732.7 ± 384.5 3.3 33,985.8 ± 1596.0 4.7 19,140.9 ± 1000.2 5.2 37,048.5 ± 442.6 1.2
Citrulline 505.2 ± 31.8 6.3 2705.9 ± 154.0 5.7 1904.6 ± 114.6 6.0 2998.0 ± 87.7 2.9
Aspartic acid 7073.6 ± 299.9 4.2 14,416.1 ± 623.3 4.3 8128.6 ± 471.6 5.8 20,373.5 ± 826.5 4.1
Histidine 6562.1 ± 127.6 1.9 5526.7 ± 397.5 7.2 4110.9 ± 271.6 6.6 6926.4 ± 270.6 3.9
Arginine 6288.0 ± 119.1 1.9 4551.9 ± 144.9 3.2 4657.1 ± 129.3 2.8 4992.1 ± 56.7 1.1
Lysine 11,414.9 ± 517.1 4.5 8977.7 ± 389.5 4.3 9580.8 ± 545.4 5.7 81,781.6 ± 6179.3 7.6
Ornithine < 0. 04 N/Aa <0.04 N/Aa < 0.04 N/Aa < 0.04 N/Aa

All data are mean ± SD (n= 4). All the data in the low, medium and high exposure group exhibited a p < 0.01, as compared to the control.
a The concentration of ornithine in cucumber leaf is lower than LOD, and %RSD was reported as N/A.
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glutamic acid, citrulline, aspartic acid and lysine, were generally up-
regulated in response to nCu in a dose-dependent way (Fig. 3). The
increased levels of amino acids is likely part of the active defense re-
sponse of the cucumber plant to the stress induced by nCu (Zhao et al.,
2016a). For example, the upregulated phenylalanine and tyrosine,
precursors of the shikimate-phenylpropanoid biosynthesis pathway, are
an indication of the activation of the plant defense and detoxification
systems (Rai, 2002). As shown in a previous study (Huang et al., 2017),
many amino acids strongly bind with copper ions, which could hinder
the translocation of Cu2+ inside the plant. The upregulated amino acids
can also contribute to chelating Cu2+ as well as other metals (e.g. Ni)
(Liao et al., 2000; Sharma and Dietz, 2006; Homer et al., 1997; Zhao
et al., 2018).

Furthermore, some amino acids (e.g. glutamate) can serve as sig-
naling molecules and have an antioxidant defense function (Sharma
and Dietz, 2006). The increased levels of valine and leucine (branched-
chain amino acids (BCAA)), may serve as an oxidative phosphorylation

energy source during plant stress (Taylor et al., 2004), indicating an
adaptation process of cucumber plants to stress induced by nCu.

Change in amino acid levels can also indicate impacts to metabolic
pathways. Glutamine is involved in nitrogen metabolism that regulates
ammonium assimilation in plants (Forde and Lea, 2007). The increase
in glutamine might imply a higher capacity of nitrogen assimilation
through the glutamine synthetase pathway (Forde and Lea, 2007). The
up-regulation of glutamic acid might be a mechanism to improve the
chlorophyll content. The increase in amino acids may also contribute to
increased protein synthesis (Less and Galili, 2008). The increased levels
in glycine and serine, two essential amino acids formed during photo-
respiration (Novitskaya et al., 2002), may reflect an upregulation of this
process.

4. Conclusions

The quantitative LC-MS/MS method developed here for the analysis
of amino acids in plant tissues is a powerful tool for studying changes
induced by exposure to stressors, such as ENMs. The method provides
rapid screening and low-level (ng/L) quantification of amino acids,
providing a robust quantitative analysis not available from untargeted
metabolomics. The reported LC-MS/MS method exhibited high linearity
(R2 > 0.99) and reproducibility (0.63–8.77% RSD) with low LOD
(0.005–15 ng/mL) and LOQ (0.02–50 ng/mL) for all analytes except
serine (LOD=50 ng/mL and LOQ=167 ng/mL). We also developed a
simple and efficient method to effectively extract most of these 23
amino acids from plant tissues with high recovery rate (80–120%). As a
case study, significant changes in the amino acids were detected in
cucumber leaf tissues after exposure to nCu, in a dose-dependent way.
As part of an active defense to the response of the cucumber plant to the

Fig. 2. (A) PCA and (B) PLS-DA score plots of amino acids level in cucumber
leaf tissues after exposure to nCu different doses. The shaded area around each
data point represents the 95% confidence region.

Fig. 3. Heatmap of the changes in amino acid levels (in rows) in cucumber leaf
tissues after exposure to different dosage of nCu (in columns). Red colors in-
dicate higher concentrations of amino acids, while blue colors indicate lower
concentrations. (For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)
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stress of nCu, a significant amount (13 out 23 amino acids) were up-
regulated. The change in amino acid levels can serve to indicate re-
sponses in signaling molecules and antioxidant defense metabolites, as
well as impacts to metabolic pathways. The quantitative LC-MS/MS
method developed here can be widely applied to study oxidative stress
response, detoxification mechanisms and nutritional content of plants.
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Appendix A. Supplementary data

Table S1 presents the chemical structures of the amino acids. Table
S2 provides the optimized source parameters. Table S3 contains the
characteristics of soil. Fig. S1 shows the SEM and TEM image of nCu.
Fig. S2 displays the LC-MS/MS chromatograms of the investigated
analytes normalized. Fig. S3 presents the spectrum separation of iso-
bars. Table S4 shows the extraction recovery rates. Figs. S4–S6 present
the photosynthesis activity, biomass accumulation and Cu accumula-
tion in cucumber plant tissues after exposure to nCu. Supplementary
data to this article can be found online at https://doi.org/10.1016/j.
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