
UC Irvine
ICS Technical Reports

Title
Parallel text compression

Permalink
https://escholarship.org/uc/item/9w94v5zb

Authors
Stauffer, Lynn M.
Hirschberg, Daniel S.

Publication Date
1993-01-26

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9w94v5zb
https://escholarship.org
http://www.cdlib.org/

(
\

Notice: This IVlaterial
may be protected
by Copyright Law
(Title 17 U.S.C.)

Parallel Text Compression
~- ,....~.r-·

Lynn M.~tauffeb,_
University of California, Irvine

Irvine, CA 92717
stauffer@ics.uci.edu

Daniel S. Hirschberg
University of California, Irvine

Irvine, CA 92717
dan@ics.uci.edu

Technical Report 91-44, REVISED

J anuary 26, 1993

ABSTRACT

Much of the study of text compression attempts to maximize the

compression or reduction in the size of a body of text by removing

redundancy. Another focus is on speed and on performing compression

rapidly. Parallelism offers a myriad of resources for meeting these goals.

This paper surveys algorithms, architectures and implementations for

parallel text compression. Related concepts from text compression and

parallel computation are discussed anda framework for evaluating paral­

lel compression schemes is developed. This framework delineates parallel

methods that boost system speed by compressing text concurrently, and

approaches that employ multiple compression techniques to improve

compression. Also, theoretical and empirical comparisons are reported

and areas for future research are suggested.

.[_ • ~ . i
\.11·:

·., i /•,

. . ~

. ::, ', ¡

INTRODUCTION .

PRELIMINARIES.

Contents

Categorization of Compression Methods

Models of Parallel Computation

Evaluation of Compression Methods

Moti vation .

PARALLEL STATISTICAL COMPRESSION

Static Code Construction

Static Coding.

PARALLEL DICTIONARY COMPRESSION.

Dictionary Compression on the PRAM

Static Dictionary Compression

Sliding-Window Compression.

Adaptive Dictionary Compression

Other Dictionary Methods .

Evaluation

MULTIPLE COMPRESSION

FUTURE RESEARCH .

References ·

Page

1

2

3

9

12

13

14

14

20

23

25

27

29

35

38

49

51

54

58

l. INTRODUCTION

Data compression attempts to remove redundancy from data and thereby

increase the effective density of transmitted or stored data. Traditionally, there

has been a tradeoff between the benefits of employing data compression versus the

computational costs required to compress and decompress data. Parallelism rep­

resents a means for increasing speed and compression effectiveness. Consequently,

parallel compression is suitable. for a wide range of applications including sorne

where sequential compression does not meet performance criteria. The purpose of

this paper is to present and analyze parallel text compression methods.

A common benchmark in software text compression systems is the UNIX1

compre.s.s utility. Compre.s.s is based on a variation of Ziv-Lempel compression

[ZL 78] due to Welch [W84]. The UNIX compre.s.s utility provides compression

savings of up to 80% at a relatively high input data rate of 30 Kbytes per second

on a 1 MIPS machine [TW89]. Higher compression savings achieved by high-order

Markov models and improved versions of compre.s.s operate at limited data rates of

approximately 10 Kbytes per second on a 1 MIPS machine. In this survey, severa!

parallel architectures and algorithms for text compression that achieve much higher

data rates of 20 Mbytes, 40 Mbytes and 120 Mbytes per second are described.

The speed gained by parallelizing text compression schemes enhances their

practicality and applicability. An alternative to a single parallel system is a

multiprocessing approach that employs various compression methods to improve

compression effectiveness. At the expense of system time and hardware resources,

multiple compression algorithms, operating concurrently, can improve compression.

While this use of parallelism may be less practica! because of its resource demands,

for certain applications the benefits of compression may outweigh the increased

overhead.

1 UNIX is a trademark of AT&T Bell Laboratories.

1

This survey of parallel text compression considers lo88le83 compression tech­

niques which operate under the constraint that the decompressed data must be

identical to the original data stream. That is, lossless compression is completely

reversible. Text compression, the focus of this survey, is usually restricted to

lossless compression. Image processing is an example of an application that can

tolerate inconsistencies between the original data and its decompressed form. Lossy

image compression techniques often subdivide the input into subimages which are

compressed and expanded independently in parallel. Errors introduced along the

boundaries of the substreams cause deviation from the input; however, normally

the decompressed image closely approximates the original.

It is further assumed that the communication channels and storage devices

are noi8ele88. That is, it is assumed that no data inaccuracies are introduced

during data transmission. Many techniques are available for error detection and

correction but are not included in this survey (RS91].

Background concepts in text compression and parallel computation are pro­

vided in Section 1. Parallel compression systems based on concurrent manipulation

of source data are described in Sections 2 and 3. Aggregate compression systems

incorporating collections of compression methods to improve compression are dis­

cussed in Section. 4. Finally, in Section 5, tapies for future research and their

relationship to known results are examined.

2. PRELIMINARIES

A brief introduction to parallel processing and text compression is provided

m this section. The terms and assumptions necessary for a careful evaluation

and comparison of parallel text compres·sion methods are presented. For more

detailed discussions of text compression in the sequential setting see [LH87], (S88A],

2

[BCW90], and [W91]. Further insight into parallel computation is provided by

[Q87], [GR88], and [L92].

2.1. Categorization of Compression Methods

The process of converting a text, such as a file on disk, a string in memory,

or a stream of characters, into a compact representation is called encoding or com­

pression. Decoding or decompression restores the original text from its compressed

representation. There are a number of ways of classifying compression methods.

This section describes the classifications that are relevant to parallel text compres-

SlOn.

Bell, Cleary and Witten draw a distinction between statistical and dictionary

based compression (BCW90]. Methods where characters and phrases are com­

pressed based on their probability or frequency are labeled stati.'Jtical methods.

Other techniques function by replacing large blocks of input with references to

earlier occurrences of identical data. These dictionary methods, also called textual

.'JUb.'Jtitution and Ziv-Lempel compression, achieve compression by replacing phrases

with references into sorne dictionary of phrases [ZL 77, ZL 78]. It is known that any

practica! dictionary compression system can be simulated by a statistical method to

yield comparable compression [BCW90]. However, dictionary compression remains

competitive because of its speed and simplicity [FG89].

Another classification splits compression into two separate parts: modeling

and coding [BCW90]. Modeling defines the set of elements that may be considered

and estimates the relative weighting or probability of each element. Coding uses

these elements to produce the compressed output. Given the distinction above,

statistical modeling, statistical coding, and modeling and coding for dictionary

com pression are further descri bed below.

Compression schemes can be further categorized as operating off-line, on­

line, or in real-time. An off-line model can manipulate and preprocess the entire

3

input string prior to coding. In on-line models, neither the sender nor receiver ~,_

can view all of the data at once; that is, data is constantly flowing through the

encoder, being transmitted, and pushed through the decoder. On-line algorithms

are further distinguished as real-time methods if, far sorne constant k, exactly

one new character is read into the encoder and one character is written by the

decoder every k units of time [SR90]. On-line algorithms are farced to construct the

coding dictionary "on the fly". The scheme is designed to "learn" an approximate

distribution of the data and to adapt to fluctuations in the source.

One final note on the categorization of compression methods. Robin Milner,

the recipient of the 1991 Turing Award, emphasizes the importance of investigating

computer science from both theoretical and practica! perspectives [F93]. Many

tapies in parallel text compression have not been considered from both perspectives.

The work in parallel statistical compression, far instance, is limited to theoretical

models. A possible organization of the work in parallel text compression is to

divide the area into theory and practice. Alternatively, this paper splits the

area into statistical and dictionary compression approaches. This categorization

is used to emphasize the missing links between practica! and theoretical parallel

text compression. Thus, this survey is intended not only to introduce readers to

parallel text compression, but also to highlight the areas where little is known.

2.1.1. Modeling

Models can be 3tatic, 3emi-adaptive, or adaptive. Static modeling uses the

same model far all texts. Semi-adaptive modeling employs a different model far

each input file. The semi-adaptive model can be constructed during a preprocessing

pass over the input and is transmitted to the decoder. Adaptive (or dynamic)

modeling <loes not transmita model explicitly. Rather, the adaptive model evolves

and adapts to changes in the input as data is. being encoded. After initializing

the model, the encoder compresses one or more input characters based on the

4

current model and subsequently updates the model. The decoder rece1ves the

input, decodes it and updates the model in the same way.

A statistical model provides the probability that a symbol or a string of

symbols will occur. Context modeling, finite state models, grammar models, and

recency models are the focus of current research in statistical modeling [BCW90,

W91]. In dictionary compression, the dictionary model contains the set of defined

strings. Typically, there is no estimation of relative probabilities.

Dictionary compression techniques are distinguished by their use and main­

tenance of the dictionary. The dictionary can be static, semi-a_daptive, or adaptive.

A static dictionary is created before encoding or decoding begins and must remain

fixed. Semi-adaptive dictionary compression uses a different dictionary for each

text encoded. Better compression is achieved by adaptive (also called dynamic)

dictionaries that allow additions, deletions, and changes to the collection of refer­

enced strings during compression.

Adaptive dictionaries are further distinguished by whether there are restric­

tions on which substrings can be referenced and on how far back an index can

point. Variations of these restrictions yield different compression methods (see

[BCW90]). Popular methods are based on the works of Ziv and Lempel [ZL 77,

ZL 78]. Their first approach limits the pointers to a fixed-size window preceding

the current position in the input and places a maximum length on dictionary entries

[ZL 77]. The dictionary is implicitly represented by a fixed-sized window that slides

continuously over the input. Pointers are (position, length) pairs that indicate a

substring of the window. These methods are referred to variously as LZ77, LZl,

and sliding-window compression.

Ziv and Lempel's second approach (often called LZ78 or LZ2 compression)

parses the input into phrases and stores the dictionary explicitly. The dictionary

is initially empty and new entries are derived from the longest matching dictionary

5

entry concatenated with a character from the input. That is, for input message

w = w1 w2 · · · Wn and longest matching prefix p of length l, the entry pwr+1 is

added to the dictionary. The input is encoded as a dictionary index plus the extra

input character [ZL 78]. The UNIX compre33 utility implements a variation of LZ78

due to Welch (referred to as LZW) and initializes the dictionary with the input

character set [W84]. Since pointers are not restricted to a fixed-sized window, the

dictionary (and _consequently the size ofpointers) can continue to grow without

bound. However, in practice, finite memories mandate policies for dealing with a

full dictionary.

There are a number of other dictionary methods that do not have roots in the

Lempel and Ziv work. These approaches include methods that use punctuation to

define words or consider words of only fixed length. These have not been considered

in the parallel setting. Consequently, they are not described here and the reader

is referred to [LH87], [S88A], [BCW90], and [W91].

2.1.2. Coding

A statistical coder assigns a code to each string based on the probabilities

given by the model. For a static or semi-adaptive model, Huffman coding, Shannon­

Fano coding and arithmetic coding attempt to assign short codes to frequently

occurring input strings [F49, H52, FW78]. Dynamic Huffman coding and arith­

metic coding are examples -of statistical coders that work in conjunction with an

adaptive model [K82, V87, RL79, 184, WNC87].

Codeword-based statistical coders replace input strings by codewords to

obtain a more compact representation of the input. Huffman coding and Shannon­

Fano coding are codeword-based. However, in sorne compression schemes, such

as arithmetic coding, it is not possible to identify the particular input character

that caused a particular bit of the encoded file. For codeword-based coders, let

E = { s1, s2, ... , sn} be the 3ource alphabet. A 3ource me33age is a sequence of

6

characters over the alphabet E. Let /3 = {O, 1, 2, ... ,-y - 1} be the code alphabet.

A code C = { c1, c2, ... , cm} is a finite nonempty set of finite sequences over code

alphabet /3. Each e¡ is a codeword. A message over C is a string resulting from

the concatenation of codewords from C. A code C is distinct if the assignment of

source words (strings over the source alphabet) to codewords is one-to-one. A code

e is a prefix code if no codeword in e is a prefix of another codeword.

Most coding techniques can be classified as fixed-to-fixed. fixed-to-variable,

variable-to-fixed, or variable-to-variable. This categorization distinguishes the re­

strictions on source message and output lengths of different mappings. Huffman

coding is a fixed-to-variable method since fixed-length input strings are mapped to

variable-length codes. Arithmetic coding is a variable-to-variable scheme.

There are a number of measures used to determine the "goodness" of a

particular code. Of interest to this survey is the notion of an optimal or minimum­

redundancy code. 2 A minimum-redundancy code has minimum average codeword

length for a given discrete probability distribution of the source [LH87]. This

definition is based on the concept of entropy. Entropy is a measure of the infor­

mation content of a message. For an unpredictable source, entropy (information

content) is high; for an orderly source, entropy is low. Formally, for source alphabet

E = { s1, s2, ... , Sn} with probabilities of occurrence {p1, P2, ... , Pn} and distinct

code e = {c1, c2, ... 'en}, the expression3 ¿k=l -pk lgpk denotes the entropy of

the source and L:k=l Pklen(ck) is the average codeword length, where len(ck) is the

length of codeword q. Theoretically, the minimum length of a compressed message

should equal its entropy multipied by the length of the source message. That is,

since the length of a coded message must be sufficient to carry the information

of the corresponding source message, entropy imposes a lower bound on codeword

2 In the parallel computation community, the term "optimal'' is used to describe efficient parallel
algorithms. Therefore, in this paper, "optimal'' is reserved for describing parallel algorithms and
"minimum-redundancy" is used for coding.
3 In this paper, lg denotes the base 2 logarithm.

7

length [LH87]. A minimum-redundancy code minimizes the difference between the

average codeword length and the entropy of the source.

Huffman coding generates a minimum-redundancy prefix code. The prefix

code is equivalent to a full4 binary tree with the source symbol probabilities

associated with the leaves. To construct this code tree sequentially, Huffman's

algorithm proceeds as follows [H52]. Initially, each probability is assigned to a

tree of height O (i.e., a single node). Iteratively, the pair of trees corresponding to

the two smallest probabilities are combined into a single tree with an associated

probability equal to the sum of the probabilities of the two original trees. Huffman's

algorithm runs in O(n log n) time, where n is the size of the source alphabet. If the

symbol probabilities are presorted, Huffman's method requires only linear time.

Instead of constructing a mapping from source messages to codewords, arith­

metic coding represents the input string by a subinterval of the interval between

O and 1 on the real line [RL 79, L84, WNC87]. The method uses the probabili­

ties of the source to successively narrow the interval used to represent the input.

Ultimately, the interval is narrowed sufficiently so that the interval, or any num­

ber in it, represents only the source string being compressed. Arithmetic coding

dispenses with the restriction that every character in the source message must be

represented by an integral number of bits. Because of this property, arithmetic

coding is capable of achieving compression results that are arbitrarily close to the

entropy of the source.

In dictionary compression, the coding step maps the index of the dictionary

entry matching the prefix of the source message to sorne shorter representation.

Indices can be coded using a fixed-to-variable-length representation of the integers,

including Elias codes, Fibonacci codes, and start-step-stop codes [BCW90]. It is

4 A binary tree is ful/ if every interna! (non-leaf) node has exactly two children.

8

also possible to use a statistical fixed-to-variable coder to assign shorter encod­

ings to frequently occurring indices. This cascading of a dictionary compression

methods into a statistical coder is considered in Section 4.

2.2. Models of Parallel Computation

The purpose of this section is to introduce sorne of the concepts, formal mod­

els, and performance measures from the area of parallel computation. There are a

variety of abstract models of parallel machines that correspond to different system

designs. Closest to the physical hardware are VLSI models that focus on tech­

nological limits; Other models, slightly removed from the actual implementation,

emphasize the importance of processor interconnection organization. Another class

of machines is defined by Flynn's Taxonomy that categorizes an architecture by

the presence or absence of multiplicity in the instruction and input streams [F66].

Furthest from physical system design is a general-purpose theoretical model, the

parallel random access machine (PRAM). The PRAM model assumes that each

processor has random access in unit time to any cell of a global memory. The

following discussion on parallel models includes only those models that are bases

for the compression methods presented in this paper.

Flynn's classification distinguishes parallel architectures based on the con­

cepts of instruction stream and data stream. An instruction stream is a se­

quence of instructions executed by a processor and a data stream is the se­

quence of input data. Single-Instruction, Single-Data (SISD) computers are essen­

tially enhanced sequential computers capable of pipelining the instruction stream.

Multiple-Instruction, Multiple-Data (MIMD) computers include multiprocessing

systems that have independent processors operating on non-overlapping sequences

of input. Multiple-Instruction, Single-Data (MISD) computers encompass systems

of severa! processors, each executing a different instruction on identical input. The

Single-lnstruction, Multiple-Data (SIMD) model consists of a number of uniform

9

processors, an interconnection network, andan associative memory. The synchro­

nized processing elements (PEs) of an SIMD computer simultaneously perform the

same operation on di:fferent data. These machines can differ in terms of number of

processors and method of interprocessor communication.

The principal model of computation considered in the theoretical study of

parallel computation is the parallel random access machine (PRAM). which is in

the SIMD classification (FW78, G78]. The PRAM is a SIMD model consisting

of a number of identical general-purpose sequential processors. Processors are

connected to a large shared, random access memory. Each processor has a private

memory for local computation, but communication between processors is done

through information exchange in a global random access memory. It is further

assumed that each processor may access any cell in the common memory in constant

time. In the PRAM model, each processor is assigned an index and all processors

execute the same instruction sequence. Instructions are specified for particular

processor indices and are executed by the corresponding processors. The PRAM is

not a physically realizable model since it is impossible to provide a constant length

communication link amongst an arbitrarily large number of processors. Algorithms

exist for simulating the PRAM with more realistic models [L92, pp 697-710].

Several variants of the PRAM di:ffer in their handling of simultaneous reading

and writing of the global memory. The weakest of these variants, the Exclusive­

Read, Exclusive-Write (EREW) PRAM, prohibits concurrent reads and writes.

The Concurrent-Read, Exclusive-Write model permits multiple processors to access

a common memory location but forbids simultaneous writes. The least restrictive

model, the Concurrent-Read, Concurrent-Write (CRCW) PRAM, allows different

processors to read from and write to identical positions in the shared memory.

CRCW PRAM models are further distinguished by their methods of handling write

conflicts. These various PRAM models do not differ widely in computational power.

10

(
Although the PRAM provides a useful framework for studying parallel com­

putation, other SIMD models that view a parallel computer as a set of processors

interconnected in a fixed pattern more closely resemble actual hardware. These

models assume that each processor has i ts own local memory and that data passes

between elements via a communication network. In the me3h-connected SIMD

model, processors are arranged in a lattice with connections between neighboring

processors. Sy8tolic array8 are linearly connected SIMD computers consisting of

synchronized rudimentary processing elements. A tree-connected network restricts

data movement to links between a processor and its parent (or children). In a tree­

connected system with n processors, data communication takes at most logarithmic

time. More detailed descriptions of these parallel models and how they are used

to perform compression are given in Section 3.

A straightforward application of parallelism in text compression partitions the

input into blocks and assigns a block to each processor. In parallel, each processor

compresses its block and writes its compressed output in its appropriate position

in the output stream (i.e., the order of the input blocks must be maintained in the

compressed output). Since the sizes of the compressed blocks may differ, additional

computation is required to determine where in the output stream a processor must

write its output. The decoder requires similar information to correctly partition

the encoded file into blocks for assignment to different decoding processors.

Another use of parallelism divides the input into blocks and begins by as­

signing a processor to each input character in the first block. That block is then

compressed by the processors operating in parallel and using an initial model (for

later blocks, a model is developed from earlier blocks). The model is updated

before moving to the next block. Again, an additional computation is required to

determine where to write the output and additional information is required by the

decoder to assign compressed pieces to processors.

11

Measure

e/o
1 - (e/o)
lOO(c/o)
100(1 - e/o)
8(e/ o)
o/(8c)
o/e

Name

Proportion remaining
Proportion removed
Percentage remaining
Percentage removed
Bits per instan ce
Instances per bit
Com pression gain

Table 1

Alternative compression measures (W91]

2.3. Evaluation of Compression Methods

Severa! measures are used to evaluate and compare compression methods.

Sorne measures attempt to describe the space reduction attained by compression.

The common term compression ratio is not clearly defined and is consequently not

used in this survey. Table 1 lists possible measures where o is the size of the original

data and e is the size of the compressed data (W91]. In this paper, compression is

given as percentage removed.

In the study of parallel complexity, problems are classified according to their

use of time and processor resources. The class Ne is the collection of problems that

are salvable by deterministic parallel algorithms that operate in time bounded by

a power of the logarithm of the size of the input using a polynomially-bounded

number of processors (GR88]. The class P is the collection of problems with

polynomial-time sequential algorithms. There are problems in P which do not

seem to be readily parallelizable. These problems form the class of P- Complete

problems. If an Ne algorithm for any P-complete problem could be found then all

problems in P would have similar Ne solutions. Although it has not been proven,

it is strongly believed that P f= Ne (GR88].

Work is another measure used to evaluate parallel algorithm performance.

The work done by a parallel algorithm is defined as the product of the time and

12

processor requirements. If Seq(P) is the time complexity of the fastest known

sequential algorithm for a problem P then a parallel algorithm is optimal if it

takes5 O(Seq(P)/P) time using O(P) processors. Therefore, the work performed

by an optima! algorithm is proportional to the time required by the fastest known

sequen ti al algori thm.

2.4. Motivation

The increasing availability of massively parallel computing architectures and

the large volumes of scientific data being produced motivate the study of parallel

data compression. Parallel computing, the process of solving problems on parallel

computers, has risen out of the need for higher performance systems. Weather

prediction, nuclear reactor monitoring, DNA sequencing and artificial intelligence

applications demand time-critica! computers that are extremely fast [Q87]. Data

compression has become an essential component of data storage and communica­

tion in these high-speed applications. The speed of the communication channel also

impacts the performance of distributed computing systems. Compacting messages

before transmission increases the effective data rate of the communication link.

Other services, such as data processing, which manipulate large volumes of data

that must be retrieved from and stored in externa! storage devices, also benefit

from widespread incorporation of data compression schemes. By compressing the

data before it is stored and later expanding the stored form, the effective capacity

of the storage medium is increased. Data compression provides additional benefits

such as increased security, improved efficiency in search operations on compressed

files, and reduction in backup and recovery costs in computer systems. Parallel

compression schemes which compress faster than sequential methods can improve

these systems.

5 0-notation represents an upper bound on the asymptotic behavior of a function.

13

3. PARALLEL STATISTICAL COMPRESSION

Statistical compression is composed of two tasks: modeling and coding. The

model estimates probabilities of input symbols and the coder uses the probabil­

ities to code the input into a compressed form. This section examines parallel

approaches to statistical compression.

Section 2.1 describes parallel construction of codewords based on a static

model of the input. Dynamic programming and matrix multiplication on the

PRAM are the underlying mechanisms for these approaches. Section 2.2 considers

parallel encoding of input characters by codewords.

3.1. Static Code Construction

A statistical codeword-based coder assigns codes based on probabilities of

individual symbols. Static Huffman compression calculates character probabilities

during a preprocessing pass over the source data. This information is used to

assign codewords so that short codes correspond to high-probability symbols and

longer codes are given to low-probability characters. The second pass compresses

the source data by replacing input characters by their codewords.

3.1.1. Huffman Coding Reduced to Para/le/ Circuit Evaluation

The first parallel Huffman code construction algorithm solved the problem

indirectly by a uniform reduction to a min-plus circuit value problem of polynomial

size and linear degree [T87]. The min-plus circuit value problem can be solved in

logarithmic time with a polynomial number of processors. This reduction coupled

with the efficient circuit evaluation algorithm yielded the first N'C algorithm for

the creation of minimum-redundancy prefix codes.

The reduction is based on a recursive definition of minimal average word

length. Namely, let the input to the Huffman coding algorithm consist of a sequence

(pi,p2, ... ,pn) of source character probabilities and let H(i,j) be the average word

14

length of a Huffman code for probabilities (p¡, ... , Pi). lnitially the input sequence

is sorted in to nondecreasing order in O(log n) time using O(n) processors [G R88].

Then the val ues of H (i, j) are gi ven by the following recurren ce relation:

H(i,j) = { :in{=i+l {H(i, k - 1) + H(k,j)} + l:~=;Pr
i = J

i < j
(a)

This recurrence relation is the basis of a dynamic programming algorithm for

sequential code creation. The idea is to build a tree of size k by taking the minimum

total path length over all possible tree configurations of size less than k.

A sequential algorithm, implementing the above recursive definition, for build­

ing a minimum-redundancy prefix code can be sketched as [T87]:

l. lnitialize H(i,j) =O for i = j and H(i,j) = +oo for i < j.

2. For i < j estimate H(i,j) applying relation (a) and the values of H obtained

during the previous step.

3. If any H value changed since previous iteration, return to step 2.

Teng reduces the algorithm to a min-plus circuit value problem which can be

evaluated in O(log2 n) time using a polynomial number of processors on the CRCW

PRAM [MRK85]. This results in an NC algorithm for generating the values H(i,j),

for all i and j. It remains to derive the tree and corresponding codewords from

the H values. Teng describes a construction which builds a directed graph whose

vertex set is the collection { H (i, j) l 1 ~ i ~ j ~ n} and w hose edges connect vertex

H(i,j) with the vertices H(i, k - 1) and H(k,j) where k is given by the recursive

definition of H(i,j). The directed graph induced by H(l, n) is made into a tree

by marking all of the nodes reachable from the root H(l, n) in O(log n) time using

a polynomial number of processors. The resulting tree represents a minimum­

redundancy prefix code for the source character probabilities (pi,p2, ... ,pn) and

is constructed in O(log2 n) using O(n 6) processors on the CRCW PRAM model.

The codeword for each source character can be generated in O(log n) time using

15

O(n / log n) processors by tree contraction [MR85]. Tree contraction is useful in

parallel tree manipulation and is the basis of the approach taken to improve this

result [AKLMT89].

Miller and Reif define RAKE and COMPRESS operations on trees [MR85].

Let RAKE be an operation that removes all leaves from a tree and let COMPRESS

be an operation that halves each chain of nodes (from leaf to root) by pointer dou­

bling. By considering a restricted form of the RAKE operation where a leaf is

removed only if its siblings are leaves, any left-justified6 tree can be reduced to a

single chain of vertices along the leftmost path of the tree in at most flog n l appli­

cations of RAKE [AKLMT89]. Also, each iteration of Step 2 in Teng's sequential

algorithm simulates the RAKE operation and can be done in O(log n) time using

n 3 / log n processors on the CREW PRAM model of computation. However, the

algorithm requires O(n) iterations and therefore yields an O(n log n) total time

bound.

The execution performance can be reduced to O(log n), usmg the same

number of processors, by introducing a step which carries out the COMPRESS op-

eration and thereby reduces the height of the tree [AKLMT89]. The COMPRESS

step estimates a quantity F(i,j), where H(l, i) + F(i,j) is the mínimum average

word length of a tree over source probabilities (pi, p2, ... , Pi) restricted to con­

taining a subtree corresponding to (p1,p2, ... ,p¡). Quantity F(i,j) can be defined

recursively in terms of precomputed H values and previous F values as follows:

i+l<j
(b)

{

H(i + 1,j) + ¿:=1 Pr .
F(i,j) = . H(i + 1,j) + ¿;=l Pr

m1n .
{ min'¡.:;!+if F(i, k) + F(k,j)}

i+l=j

6 A binary tree T is left-justified if for every pair of siblings u and v, with u to the left of v, if the
subtree Tv rooted at v is not empty at sorne level I in the tree then the subtree Tu rooted at u is
full at level /.

16

The following sketch of the algori thm performs flog n l RAKE operations

followed by flog n l COMPRESS operations to reduce the tree to a single node

[AKLMT89].

l. Initialize H(i,j) =O for i = j and H(i,j) = +oo for i < j.

2. Iterate flogn l times: For i < j estimate H(i,j) applying relation (a) using

the values of H obtained during the previous step.

3. Initialize F(i,j) = H(i + 1,j) + ¿!=¡Pr·
4. Iterate flognl times: For i < j estimate F(i,j) applying relation (b) using

the values of F obtained during the previous step.

The final value of F(l, n) is the average word length of the mm1mum­

redundancy prefix code. As noted above, since any left-justified tree can be

reduced to a single leftmost chain of nodes by flog n l applications of RAKE,

flog n l COMPRESS operations on a chain reduces the tree to the empty tree.

Therefore, the above algorithm computes the quantity F(l, n) in O(log n) time

using O(n 3 / log n) processors on a CRCW PRAM. The corresponding tree and

codewords can be generated from the computed H and F values within the same

resource bounds using an approach similar to Teng's. Also, Teng proves that, for

any nondecreasing sequence of probabilities (pi, p2, ... , Pn), there is a left-justified

Huffman tree representing a minimum-redundancy prefix code for (pi,p2, ... ,pn)

[T87]. Thus, Huffman codes can be constructed for a given list of probabilities,

in O(log n) time using (n 3 / log n) processors. These bounds can be improved by

formulating the Huffman coding problem in terms of multiplications of concave

matrices. This approach is discussed in the following section.

3.1.2. Huffman Coding as the Multiplication of Concave Matrices

In light of the sequential O(nlogn) performance of Huffman's algorithm,

the parallel solutions of the previous section are far from optima!. This section

discusses an alternative approach which runs in O(log2 n) time using n 2 / log n

17

processors [AKLMT89]. Huffman code construction can be formulated as a matrix

multiplication problem. The bottleneck of the dynamic programming algorithms

is the n 3 processor bound that arises from multiplication of arbitrary matrices.

Concave matrices are a subclass of matrices that can be multiplied more efficiently

in parallel. J;:Jy formulating the Huffman tree problemas a multiplication of concave

matrices, the processor requirement is reduced.

A concave matrix M is a rectangular matrix that satisfies the quadrangle

condition. Specifically, for n x m matrix M, the following inequality holds for all

1 ~ i < k ~ n, 1 ~ j < l ~ m:

M[i,j] + M[k, l] ~ M[i, l] + M[k,j]

A recursive algorithm for multiplying concave matrices over the closed semi­

rmg (mi n, +) runs in O(log n Iog log n) time using n 2 / log n processors on the

CREW PRAM [AKLMT89]. Allowing concurrent writing reduces the running

time to O((loglogn)2) time and n 2 /(loglogn) processors. By taking advantage

of the more efficient concave matrix multiplication, the Huffman code construc­

tion problem can be solved in O(log2 n) time using n 2 / log n processors. The

solution reduces Huffman coding to a minimum-weighted path problem for a di­

rected graph which can be solved via parallel concave matrix multiplication. The

reduction is two-fold. As mentioned earlier, for any nondecreasing sequence of

probabilities (pi,p2, ... ,Pn) there exists a left-justified tree representing the cor­

responding minimum-redundancy code such that the heights of the subtrees not

on the leftmost path are no more than flog n l · The first step of the reduction

builds minimum-redundancy height-limited subtrees of height at most flog n l for

all possible subintervals (p¡, ... , Pn). The resulting information is represented as

a matrix A which is computed in O(log2 n) time using n 2 / log n processors by a

reduction to recursive multiplication of concave matrices.

18

The matrix A generated in step 1 is augmented to form matrix M. Matrix

M has no simple meaning in terms of Huffman trees. But, matrix M 2 íl
09

"
1 gives

the minimum weighted path length of the minimum-redundancy Huffman tree

for probabili ti es (p1, p2, ... , Pn) and the information needed to construct the tree.

The second phase consists of the creation of matrix M and a series of pog n l
concave matrix multiplications which can be performed in O(log n) time using

n 2 / log n processors. This two-phase reduction yields the Huffman codes in a total

of O(log2 n) time using n 2 / logn processors on the CREW PRAM. On the CRCW

PRAM, the resource bounds fall to O(log n(log log n)2) time and n 2 / (log log n)2

processors.

3.1.3. Other Para/le/ Constructions of Static Codes

A reduction of the Huffman tree problem to the Concave Least Weight

Subsequence problem results in a new linear time sequential algorithm for a sorted

sequence of probabilities and a more efficient parallel algorithm for the general case

[LP91]. Given a concave triangular matrix of weights {w(i,j)IO ~ i < j ~ n}, the

Concave Least Weight Subsequence problem is to find a subsequence O = f3o <

f31 < · · · < f3m = n which minimizes the sum ¿~=l w(f3k-1, f3k)· This subsequence

can be found in sublinear time. Reducing the Huffman tree problem to the Concave

Least Weight Subsequence problem results in an O(fo log n)-time and n-processor

parallel algorithm. Although the solution is not in NC, it performs less total work

than any other sublinear time parallel Huffman algorithm.

Generation of near-minimum-redundancy codes can be done optimally in

parallel. Shannon-Fano coding is an example of a statistical coding scheme which

produces a near-minimum-redundancy prefix code such that the average codeword

length exceeds the minimum length by at most 1 bit. An optimal O(log n) time,

n/ log n processor EREW PRAM algorithm for near-minimum-redundancy code

construction is derived from a reduction to the problem of constructing a tree given

19

a monotonic sequence of leaf levels [AKLMT89]. lnitially, the input probabilities

(pi, P2, ... , Pn) are sorted and a sequen ce of lengths (li, l2, ... , ln) is calculated

such that log(l/p¡) ::::; [¡ ::::; log(l/p¡) + l. Next, tree T is constructed optimally

by invoking the algorithm for monotonic leaf level sequences. Tree T is then

compressed using parallel tree contraction resulting in a minimum-redundancy

prefix codeword tree T'. Atallah et al. claim that T' is the Shannon-Fano tree

[AKLMT89]. In the same paper, a parallel algorithm for constructing almost

optimal binary search trees is presented which can be used to build trees which

differ from a minimum-redundancy prefix code by at most 1/nk bits in O(k log2 n)

time and n 2 / log2 n processors.

Approximate solutions to the minimum-redundancy coding problem are inves­

tigated by Kirkpatrick and Przytycka [KP90]. They give an O(log n log* n)-time,

n-processor CREW algorithm for finding an approximate solution to the problem.

A variation of the Huffman tree problem is the alphabetic version which,

given a sequence of probabilities (pi,p2, ... ,pn), finds a binary tree of mínimum

weighted path length, with weight p¡ assigned to the ith leaf. An NC algorithm is

given for an approximate solution to the alphabetic Huffman coding problem using

a parallel implementation of the Package Merge technique [LP91]. The O(log2 n)

time, n processor algorithm improved an earlier approximation which required an

additional factor of n processors. Since the alphabetic Huffman coding problem

can be sol ved sequentially in O(n log n) time, further work is needed to eliminate

an additional log n factor to obtain an optimal parallel solution.

3.2. Static Coding

Once the codes are constructed, a static coder compresses the input by

mapping input characters to codewords. A very fast implementation uses a table

to store the codes and the mapping is performed by table lookup. On the PRAM

model of computation with concurrent reading and limited concurrent writing,

20

(Huffman compression with precomputed static codes can be done in parallel

[HV92A]. Sin ce both encoding and decoding are done in parallel, the location of

codes in the compressed file must be computable by the encoding processor prior

to writing output and by the decoding processors before reading input. Thus, the

main issue in parallel compression lies in accommodating the different codeword

lengths.

One simple approach ass1gns an input character to each processor. Each

processor computes the length of the codeword corresponding to its input character

and before writing output performs a calculation to determine the location of its

code bits in the output file. (This calculation is called a prefix sum operation and

can be performed optimally in parallel [GR88].) When all processors are finished

writing, each is assigned a new input character and processing continues. This

approach, however, does not lend itself to parallel decoding since the decoding

processors cannot parse the codewords from the encoded file in parallel.

A second approach supports parallel decoding by interleaving the output bits.

Encoding processors operate as in the first approach but instead of writing output

codewords contiguously in the output stream, each processor writes a single bit of

its output at each step. Since encoding processors finish writing their output at

different steps, each active processor must compute (using a prefix sum operation)

its write location before outputting each bit. After completing its output, a

processor remains inactive until all processors are finished. Decoding can be done

in parallel since each processor can determine when its input codeword is complete

and the same computation as used during encoding determines the location of

the next bits for active processors. The drawback of this approach is the relatively

time-consuming computations to determine bit locations in the compressed stream.

A third approach allows each processor to begin compressing a new input even

though other processors may not have completed writing their output. Processing

21

proceeds in phases and at the beginning of each phase the remaining input charac­

ters are reallocated among the processors. At the start of the first phase, all inputs

are allocated equally among the processors. During each phase, encoding proceeds

as in the second approach. That is, each processor maps its first allocated input to

its codeword and outputs a bit (interleaved with output bits of other processors)

at each step. After completing its output, a processor does not become inactive

but begins processing its next assigned input. When a processor finishes all of its

inputs it signals the other processors by writing to a common register and the phase

ends. The output process is interrupted for partially completed processors. The

next phase begins by reallocating the remaining untouched inputs among all of the

processors and compression continues. During the final phase, no inputs remain

for reallocation so processors become inactive as in the second approach and active

processors must compute (again using a prefix sum operation) their appropriate

output locations.

Decoding of prefix-coded messages and uniquely-decipherable-coded messages

can be done in O(log n)' time using O(n / log n) processors [TW 8 7]. The optima!

algorithm for the EREW PRAM is based on a reduction of the decompression prob­

lem to the problems of parallel finite-state automata simulation and the evaluation

of prefix sums. An optima! parallel simulation algorithm for finite-state automata

using dynamic expression evaluation and parallel tree contraction techniques com­

pletes the solution.

Huffman coding is restricted to represent each input character with an integral

number of bits. This restriction forces Huffman coding to perform suboptimally for

many probability distributions. Arithmetic coding, a non-codeword-based method,

does not have this restriction and can representan input character with less than 1

bit. Theoretically, arithmetic coding achieves minimum-redundancy compression.

In practice, arithmetic coding is excessively slow and therefore approximations

22

(
. '--

are of interest. Quasi-arithmetic coding approximates the intermediate intervals

computed by an arithmetic coder using a finite number of states [HV92A, HV92B] .

Look-up tables representing state transitions are precomputed resulting in a prac­

tica! approximation. The reallocation approach for parallel H uffman coding can be

used to perform quasi-arithmetic coding in parallel. Since a processor may com-

plete its processing of an input in sorne state other than the initial state, additional

measures are taken to force the processor back to the starting state.

4. PARALLEL DICTIONARY COMPRESSION

Dictionary compression (also referred to as Ziv-Lempel compression or textual

substitution) removes data redundancy by replacing repeated input substrings by

references (also called indices or pointers) to earlier copies of the identical substring

[RPE81, SS82, ZL 77, ZL 78]. A dictionary of characters, words or phrases that are

expected to occur frequently is maintained and a recurring substring is encoded

by the index of its corresponding dictionary entry. Compression is achieved by

choosing indices so that on average they require less space than the phrase they

encocle. This section considers dictionary compression in the parallel setting.

The encoder and decoder work in lockstep. The encoder repeatedly detects

matches between the input and the dictionary, deletes the matched characters from

the input, transmits the index of the dictionary entry, and updates the dictionary.

The decoder repeatedly receives an index, outputs the corresponding dictionary

entry, and updates the dictionary using the same update algorithm as the encoder.

Once the dictionary has been selected, the input stream must be parsed to

determine which substrings are to be replaced by dictionary pointers. The most

straightforward approach is greedy parsing where at each step the encoder finds

the longest dictionary phrase that matches a prefix of the uncoded portion of the

input stream. That is, the input stream is compared to each word in the dictionary

23

and the entry corresponding to the longest prefix of the uncoded portion of the

input is used to encocle the input prefix. An optimal parsing of the input is a

shortest possible sequence of dictionary indices such that the concatenation of

the corresponding dictionary entries equals the input. To determine an optima!

parsing, an encoder must perform two passes over the input or be capable of

looking at arbitrarily large prefixes of the input. So although a greedy parsing

strategy may not yield the optima! parsing, it is widely used.

In the parallel setting, the longest match step of a greedy parsing strategy can

be executed concurrently by a collection of processors [BCW90]. For a dictionary

of size N, 2N - 1 processors configured as a binary tree can find the longest match

in O(log N) time. Each leaf processor is assigned to perform comparisons for a

different dictionary entry. The remaining N - 1 processing elements coordinate

the results via signals that propagate ·up and clown the tree in O(log N) time.

A natural use of parallelism breaks the input into pieces and compresses se­

lected pieces in parallel. A recursive parallel algorithm with an exponential number

of processors for performing a variation of LZ78 yields logarithmic performance by

breaking the input into blocks and compressing blocks in parallel. The input is

iteratively split in half and each half is compressed using a dictionary constructed

during a sequential compression pass over an initial portian of each block [W92].

It is also possible to elicit fine-grain parallelism from the low-level software imple­

mentations of various algorithms.

Models of parallel computation which allow blocks of data to be read and writ­

ten simultaneously are necessary to break the linear time lower bound mandated

for handling input and output. Sublinear time methods for dictionary compression

on parallel models of computation, where data is assumed to be made available at

severa! processors in a single time unit, are considered in Section 3.1.

24

In the parallel VLSI environment, static, semi-adaptive, and adaptive dic­

tionary schemes have been considered using a systolic array. A systolic array is

composed of a collection of linearly connected processing elements (PEs) where

each processing element contains local units for program control and storage. It

is usually assumed that the local program control is simple (i.e., consists of a few

operations) and the local storage is small (i.e., a few words). Time is partitioned

into steps by a global dock so that the entire array operates synchronously. At each

step, each PE receives input from its neighbors, inspects its local storage, performs

the computation indicated by its local control, generates output and completes the

step by updating its local storage.

One advantage of a systolic implementation is that a larger array can be

fabricated by placing a sequence of PEs on a single chip, and then joining a series

of chips on a board. Another benefit is that the length of interprocessor connec­

tions is constant and independent of the size of the array. On-line parallel static

dictionary compression on the systolic array is considered in Sections 3.2. Systolic

architectures for sliding-window compression are described in Section 3.3. Section

3.4 considers the policies used by systolic architectures for handling adaptive die-

tionary maintenance.

4.1. Dictionary Compression on the PRAM

The PRAM model is abstracted away from issues of input/output and pro­

cessor interconnection. This model allows for the assumption that a block of input

data is made available to a block of processors in a single time step. U nder this

assumption, sublinear time parallel data compression is possible. NC algorithms

for static and adaptive dictionary compression are described below.

Under various restrictions, NC algorithms for static dictionary and sliding­

window compression exist. For dictionaries satisfying the prefix property 7, it is

7 A dictionary satisfies the prefix property if all of the prefixes of each dictionary entry are also in
the dictionary.

25

possible to compute the optimal parsing on-line [HR85]. This sequential algorithm

modifies the greedy parsing strategy by considering not only the longest dictionary

phrase that matches a prefix of the unencoded input but also all dictionary phrases

which match the input beginning at any proper suffix of the previous match.

The match extending farthest into the input is chosen. After finding the optima!

parsing, the input is encoded by the corresponding dictionary indices.

NC algorithms for compression with a dictionary having the prefix property

parallelize the sequential approach [DS92]. For a static dictionary of size N with the

prefix ptoperty and with entries at most logarithmic in length, optima! compression

can be computed in O(log N) time using O(N2) processors or in O(log 2 N) time

and O(N) processors (on the CREW PRAM). In parallel, the length of all matches

beginning at positions in the suffix of the previous match are computed and

stored in a matrix. Matrix entries are then manipulated to yield longest match

information.

By a reduction to the shortest path problem on directed graphs, the optima!

parsing with an arbitrary dictionary (and arbitrary entry length) can be found in

O(log 2 N) time with O(N 3) processors or in O(log N) time using O(N 4) processors.

For sliding-window compression, these bounds are reduced to O(log N) time and

O(N3) processors [DS92].

The discovery of NC algorithms for sorne dynamic dictionary compression

methods is highly unlikely. LZ78 and two variations are known to be P-complete

[D91]. The variants, fir8t character and next character, implement different parsing

strategies and dictionary update procedures [W84, S88A]. The P-completeness of

these three methods is established by a reduction from the circuit-value problem

[L75, D91].

26

(
PE N PE N-1 PE 1

encoded
1 entryN 1 tntrYN-~ 1 entry1 1

so urce
message input input input message

buffer buffer buffer

Figure 1

Systolic array for static dictionary compression

4.2. Static Dictionary Compression

Static dictionary compression on the systolic array detects matches between

the input and the dictionary entries stored in processing elements (PEs) and

encocles an input by the corresponding PE's identification number [GS85, S88A].

For a dictionary of size N, the systolic array consists of N PEs. Input is assumed to

enter the array from the right (PE 1) and exit on the left (PE N). PE i stores static

dictionary entry, entry¡, of length at most l. Relatively small values of l (l :::; 6) are

required to limit hardware costs. Strings of length exceeding l can be represented

by allowing dictionary entries to contain pointers to other dictionary entries. The

dictionary is constructed prior to compression and is loaded or hardwired into the

processors. Figure 1 depicts the systolic array.

A greedy parsing strategy is used and a search of the entire dictionary for

the longest match is avoided by enforcing three conditions: dictionary entries

must be organized in order of shortest to longest strings, encoding must proceed

from left to right and suffixes of dictionary elements cannot be prefixes of other

dictionary entries [GS85]. Performance of the greedy approach is unknown when

these assumptions fail to hold.

At the start of the encoding dock cycle, PE i receives pair (w, p) from PE

i + l. w is the input string to be encoded and p is the index of w (O if not yet

27

encoded). PE i compares entry¡ to w and if a match is found, w is encoded as i

(p is set to i). At the end of the cycle, PE i sends (w, p) to PE i - l.

Decoding is similar to encoding. The compressed string is expanded by

replacing each pointer by the corresponding dictionary entry. More precisely, PE

i receives pair (w, p) and if p = i then w is set to entry¡.

A difficulty in this design concerns buffer overflow errors that occur when

data moves too quickly through parts of the array. A locking scheme prevents

local buffer overflow. No ad di tional characters are read until space is available in

the buffer. U nfortunately, locking signals can propaga te up the array, eventually

locking the entrance processor. A straightforward solution is to restrict the data

rate into the decoding circuit to a speed commensurate with that of the systolic

array [GS85, S88A].

Static dictionary compression requires no additional overhead for maintaining

the dictionary but suffers from the performance limitations of a non-adaptive

technique. The key observation about this systolic array architecture is that a

new character can enter the array on every clock cycle. Moreover, since each step

consists of little more than a parallel comparison, a relatively short dock cycle is

sufficient and each PE requires only simple hardware. Assuming an 8-bit character,

the communication channel is 81 + lg N bits wide to accommodate (w, p).

Another form of static dictionary compress1on, N-gram compress1on, has

been considered in a parallel setting. N-gram compression maintains a dictionary

of common phrases each of length exactly N. Parallel hardware implementations

for N-gram compression which store the dictionary in an associative memory and

manipulate the dictionary in parallel on an associative parallel processor have been

described [L 78].

28

4.3. Sliding-Window Compression

This section considers systolic array architectures for sliding-window (LZ77

or LZl) dictionary compression. Recall, sliding-window compression replaces re­

peated phrases by pointers to positions within a fixed-sized window of the input

immediately preceding the current compression position. The window implicitly

represents the dictionary. Pointers consist of (position, length) pairs denoting the

longest match between the incoming input and the previous fixed-sized window of

characters. The three systolic architectures described in this section differ in the

manner pointer pairs are computed.

4.3.1. The Match Tree Architecture

For a fixed-sized window of N characters, the first systolic architecture, called

the Match Tree architecture, employs 4N - 1 processors. The first 2N processors

are configured as a systolic array and the remaining 2N - 1 processors are arranged

as a binary tree (the match tree) attached to the systolic array [GS85, S88A, S92].

Input enters at the right end of the systolic array (PE 2N), travels along the systolic

array, and exits on the left (PE 1). The previous 2N characters processed are stored

in the systolic array, one character per processing element. The character stored in

PE i is referred to as entry¡. The match tree is used to determine match position

and length information. Figure 2 depicts the Match Tree architecture for N = 8.

Compression is carried out in phases of N steps. At the start of each phase,

PE i overwrites entry¡ with the character in its input buffer. The next N shifts

and comparisons of the input have the effect of passing each of the N characters

(which began the phase in PE's N + 1 through 2N) past the N characters that

preceded that character. During step k (l ~ k ~ N), PE i (N-k+l ~ i ~ 2N-k)

compares its input character to entry¡. Notice that not all processors participate

in each step. For example, PE N - l makes a comparison in the first step, but only

reads and sends input for the remainder of the phase. An additional special purpose

29

-...
Match Tree

input

Figure 2

Match Tree Architecture

processor PE 2N handles the longest match position and length information and,

when the length l exceeds the size of a pointer, the pointer is output and the next

l characters in the array are ignored. Moreover, whenever pointers overlap, the

output pointer is altered to maximize compression.

As a character travels through the systolic array, it is accompanied by its

longest match location and length information, pointer pair (position, length),

which is updated whenever a longer match is found. Calculating the longest match

information may require communication among non-neighboring processors. In

logarithmic time, the match tree propagates information up and clown the tree to

determine the position and length of the longest match. If PE i detects a match, it

checks with each of its neighboring processors. If PE i -1 did not match, then PE

i sends a message to its parent processor in the match tree signaling that it has the

first character of a matching string. Similarly, if PE i + 1 did not match, PE i flags

its parent processor that it is at the end of a match. These signals propagate up

the tree until sorne processor, PE k, is a ble to pair up a start and an end symbol.

PE k then calculates the match length and returns the information to the processor

(PE j) holding the first character in the match. If the new match length exceeds

30

the existing length of the longest match beginning at that character, the match

position is assigned the processor number j and the length register is updated.

A different match position and length updating scheme avoids sorne of the

VLSI layout concerns, such as long edge lengths, at the expense of an increased

logic delay of O(Vfi) [GS85]. Processors are placed in an O(Vfi) x O(Vfi) grid

with constant length connections and additional steps are introduced to spread

information among non-neighboring processors. If the maximum length of a target

string is limited to sorne constant k, the logical delay can be bounded by k.

Decoding expands all pointers by employing a systolic array of O(N) proces­

sors. Since all pointers are to locations fewer than N characters away, the N -most

recently decoded characters are stored in the array. The pointer (p, l) is decoded

by concatenating the characters stored in processors PE p through PE p - l +l.

The input is augmented with two additional pointers which aid in switching from

different modes in the decoding process. As in encoding, decoding proceeds in

blocks of N characters. Before entering the array, the pointer (p, l) is expanded

into the sequence of integers p, p + 1, ... , p + l - 1. The expanded encoded message

enters the array on every other system step. After each cycle, the input shifts left

and each processor compares its identification number to the input. If the input

ítem is an integer equal to the processor number, the processor replaces the integer

by the contents of its dictionary entry. After N cycles, each processor replaces its

dictionary entry with the contents of its input register.

Like the static dictionary model, the Match Tree architecture for the sliding

window model requires that the speed of the chip and the rate of the communication

channel guarantee that additional data does not arrive at a processing element prior

to its having available space. Hence, any improvements to the system performance

that impact the data transfer rate may force the redesign of many system compo­

nents. Another disadvantage is the communication and logical delays associated

31

with the maintenance of match information. Consequently, O(log N) time is re­

quired to process an input character. If m is the maximum match length then this

can be reduced to O(log m) using a collection of trees. The decoder produces an

output on every system cycle. Both the encoder and decoder require the input to

flow through the entire array resulting in a linear through delay8 . The processing

elements are simple and can be implemented in VLSI straightforwardly.

4.3.2. Broadcast/Reduce Architecture

A second design for sliding-window compression, the Broadca3t/Reduce ar­

chitecture, is also built from a systolic array and binary trees of processors [Z90A,

S92]. In this architecture, the data stream and dictionary are separated and longest

match decisions are made by tree processors. This is unlike the Match tree design

in which the data, dictionary, and output all flow through the systolic array. The

longest match pointer information for each character is computed by making each

character simultaneously available to every processor via a binary tree of proces-

sors, and identifying the largest match at each cycle using another tree-connected

collection of processors.

For a dictionary of size N, the architecture consists of 3N - 2 processors.

N processors are arranged in a systolic array and the remaining processors are

configured as two binary trees (each containing N - 1 processors) synchronized

wlth the systolic array (see Figure 3). One of the binary trees (the broadca3t tree)

is placed on top of the systolic array. On each cycle, input enters at the root of

the broadcast tree and data in the tree is propagated clown one leve!. After a

delay of log N steps, the same input character enters the systolic array at PE N.

Consequently, the input enters the systolic array one step after the copy sent via

the broadcast tree reaches processors in the array. The input character leaves the

broadcast tree and is simultaneously compared to the N preceding characters, each

8 Through delay for an input character is the interval between its entering and exiting the systolic
array.

32

ela

PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7 PE 8

1 entryl 1 entrYJ 1 entryl 1 entr)1 1 entryl lentryl 1 entryl

1 input! 1 inpu~ 1 input! 1 inpu~ 1 inpuy jinpuy 1 input!

1 1
1 1
1 1
L J

Reduction Tree

Figure 3

Broadcast /reduce architecture

available in one of the N PEs of the array. The other binary tree (the reduction tree)

is placed below the systolic array and combines match information. Ultimately, the

(position, length) pair representing the longest match ending (previous approaches

calculate the longest match beginning at a particular symbol) at that character is

output by the root of the reduction tree. As in the Match Tree design, a special

purpose processor at the root of the reduction tree combines pointer pairs.

Since global communication among processors is not required, the match

length computations of the Match Tree design are avoided. All steps take unit

time and system speed is unaff ected by match length. Also, the linear through

delay of previous architectures is reduced to 2 log N at the expense of additional

33

hardware. The decoding architecture is described in [Z90A]. The designs of the

next section eliminate the trees of processors.

4.3.3. Wrap Architecture

More recent architectures for sliding-window compress1on on the systolic

array attempt to remove the trees introduced in previous designs. The Wrap

architecture consists of a bi-directional systolic array [Z90B, S92]. Input is encoded

by maximal (po8ition, length) pointers as it travels through the array. After

being encoded, characters wrap back and flow through the array as dictionary

entries. The movement of data alternates with the shifting of the dictionary

(sliding-window) and pointer information is updated without the need for a tree oí'

processors.

For a dictionary of size N, the Wrap architecture consists of a systolic array

of N /2 processing elements (PEs) connected by a two-way communication channel.

PE i has an input register and stores a character of the sliding-window in entry¡.

Input enters on the right (PE N/2) and travels through the array and exits on the

left (PE 1). After remaining latched for one system step, the character is output

anda copy re-enters the array as entry1 at PE l. This copy moves right through the

entry registers. The Wrap architecture is depicted in Figure 4. Input enters on even

numbered cycles and characters in the entry registers move right on odd numbered

cycles. As an input character shifts left from PE N /2 to PE 1, it is compared to

the N characters that preceded it. At PE i, if the input character matches entry¡

then the (po8ition, length) pair is updated. When the input character lea ves PE

1 and is latched, it is accompanied by a (po8ition, length) pair representing the

longest match that end3 with this character. As with previous designs, the output

is then manipulated by a special purpose processor to yield the final encoding.

The Wrap encoding architecture allows input on every other cycle. This

restriction can be eliminated by having PE i compare entry¡ to both its input

34

PE 1 PE N/2 -1

1 en try 1 t----t• · · · · · · · .. · .. · · · · .. -- 1 entry 1 --
---1 input 1-- 1input1 ---

output

Figure 4

Wrap Archi tecture

PE N/2

- 1 entry 1

1 input j __ input --- -

register and the input register of PE i - l. However, processors and data paths

of this design are more complicated and increase the system cycle and hardware

costs.

An architecture similar to the Wrap design sends two copies of each input

into the systolic array [HR90, RH91, RH92]. The second copy enters the array N

steps after the first. Processing elements require relatively complicated hardware

to determine in which steps to participate.

4.4. Adaptive Dictionary Compression

Adaptive dictionary compression utilizes an evolving dictionary that adapts to

changes in the input characteristics. Usually, adaptive approaches achieve superior

compression results over static and semi-adaptive methods. There are a number

of different adaptive approaches, all of which must include strategies for match

selection and dictionary updating~ Adaptive dictionary compression on the systolic

array is the focus of this section.

An architecture for adaptive dictionary compression, referred to here as the

Pair architecture, is based on a pair forest representation of the dictionary [S88B].

In a pair forest representation, each character of the input alphabet is present

in the dictionary and_larger entries consist of a pair of pointers to other entries.

The Pair architecture stores the dictionary in a systolic array, one entry in each

processing element. The dictionary is updated by adding entries derived from the

35

concatenation of the previous match with the current match. Thus, each processing

element stores an entry consisting of two pointers. Compression is achieved by

replacing input which matches the pair of pointers stored in a processing element

by the single processor number. When the dictionary becomes full, the Pair

architecture switches control to a second dictionary. To accommodate this scheme,

two separate dictionary arrays are employed, each initialized to contain the coding

alphabet with one character per processor. Initially, compression begins using one

of the two dictionaries and once the current dictionary becomes full, additional

space is made available by swapping in the other (empty) dictionary. Later, when

the dictionary again becomes full, the roles of the two dictionaries are reversed.

For a dictionary of size N, encoding is performed on a systolic array consisting

of N processing elements (PEs), numbered 1 through N from left to right. A

second identical systolic array is used for dictionary swapping. PEs at the start

of the array store the characters of the input alphabet and later PEs store a pair

of pointers. That is, for input alphabet ~' PEs 1 through l~I store one input

character each. Each processor stores a flag bit, flag¡, used to delimit the current

dictionary. Initially, only f laglEl+l is set. If flag¡ is set then PE i is designated to

"learn" the next new dictionary entry. All PEs to the left of the learning processor

contain dictionary entries, while PEs to the right are empty. Input enters from the

left (PE 1) and leaves on the right (PE N). A greedy parsing strategy is used and

whenever a prefix of the input matches the contents of a processor, the string is

replaced by the processor's number. The dictionary is updated by assigning the

first pair of pointers to enter the learning processor to the dictionary entry stored

in the learning processor and then passing the flag to the next processor. If flag¡

is set then PE i must allow one pointer to pass through before adopting its pair

entry in order to avoid duplicating the entry in PE i - l. After PE N learns its

36

entry, a signal is sent indicating that the dictionary is full. At this point, control

is shifted to the empty dictionary and the current dictionary is flushed out.

Decoding utilizes a systolic array of size N with bi-directional communication

paths. PEs are numbered N to 1, with PE 1 being the rightmost processor (this

is the reverse of the encoding array). Data enters from the left (PE N) and exits

on the right (PE 1). Processors to the right of PE IEI are initialized to contain the

source alphabet and PE IEI + 1 starts out as the learning processor. Each processor

has a flag bit and a dictionary entry. U pon adopting an entry, the learning processor

passes the flag upstream to the processor on its left. As described, the decoding

dictionary will fail to adopt entries that appear in the encoding dictionary. To

see this, consider the four pointers pi, p2, p3, and p4 (p1 then P2 then p3 then p4)

traveling clown the encoding array. Pointers Pl and p2 reach the learning processor

PE j and are adopted. Later, PE i + 1 adopts pointers P2 and p3. And finally,

PE i + 2 adopts p3 and p4. In the decoder, learning processor PE k adopts Pl

and P2 and PE k + 1 later adopts p3 and p4. Pointer pair (p2, p3) is not entered

into the decoding dictionary. To remedy this, nil pointers are interspersed between

every input to the decoder. This ensures that the encoder and decoder learn the

same dictionary. Decoding mirrors encoding; that is, whenever an input substring

arrives at a processor with index equal to the input, it is replaced by the entry

stored in the processor. As in previous systolic architectures, additional measures

are needed to avoid buffer overflows which may occur when compressed inputs are

expanded. The Pair architecture uses a stop bit to signal the processor to the left

to wait to send additional data.

As described, the Pair design stores each character of the input alphabet in

the PEs at the start of the array (or at the end in the case of decoding). This

requirement is not necessary since the input characters can be handled as pointers

37

concatenation of the previous match with the current match. Thus, each processing

element stores an entry consisting of two pointers. Compression is achieved by

replacing input which matches the pair of pointers stored in a processing element

by the single processor number. When the dictionary becomes full, the Pair

architecture switches control to a second dictionary. To accommodate this scheme,

two separa te dictionary arrays are employed, each ini tialized to contain the coding

alphabet with one character per processor. Initially, compression begins using one

of the two dictionaries and once the current dictionary becomes full, additional

space is made available by swapping in the other (empty) dictionary. Later, when

the dictionary again becomes full, the roles of the two dictionaries are reversed.

For a dictionary of size N, encoding is performed on a systolic array consisting

of N processing elements (PEs), numbered 1 through N from left to right. A

second identical systolic array is used for dictionary swapping. PEs at the start

of the array store the characters of the input alphabet and later PEs store a pair

of pointers. That is, for input alphabet E, PEs 1 through IEI store one input

character each. Each processor stores a flag bit, flag¡, used to delimit the current

dictionary. Initially, only f laglEl+l is set. If flag¡ is set then PE i is designated to

"learn" the next new dictionary entry. All PEs to the left of the learning processor

contain dictionary entries, while PEs to the right are empty. Input enters from the

left (PE 1) and leaves on the right (PE N). A greedy parsing strategy is used and

whenever a prefix of the input matches the contents of a processor, the string is

replaced by the processor's number. The dictionary is updated by assigning the

first pair of pointers to enter the learning processor to the dictionary entry stored

in the learning processor and then passing the flag to the next processor. If flag¡

is set then PE i must allow one pointer to pass through before adopting its pair

entry in order to avoid duplicating the entry in PE i - l. After PE N learns its

36

entry, a signa! is sent indicating that the dictionary is full. At this point, control

is shifted to the empty dictionary and the current dictionary is flushed out.

Decoding utilizes a systolic array of size N with bi-directional communication

paths. PEs are numbered N to 1, with PE 1 being the rightmost processor (this

is the reverse of the encoding array). Data enters from the left (PE N) and exits

on the right (PE 1). Processors to the right of PE IEI are initialized to contain the

source alphabet and PE IEI + 1 starts out as the learning processor. Each processor

has a flag bit anda dictionary entry. U pon adopting an entry, the learning processor

passes the flag upstream to the processor on its left. As described, the decoding

dictionary will fail to adopt entries that appear in the encoding dictionary. To

see this, consider the four pointers pi, p2, p3, and p4 (pi then p2 then p3 then p4)

traveling clown the encoding array. Pointers Pl and p2 reach the learning processor

PE j and are adopted. La ter, PE i + 1 adopts pointers P2 and p3. And finally,

PE i + 2 adopts p3 and p4. In the decoder, learning processor PE k adopts Pl

and p2 and PE k + 1 la ter adopts p3 and p4. Pointer pair (p2, p3) is not entered

into the decoding dictionary. To remedy this, nil pointers are interspersed between

every input to the decoder. This ensures that the encoder and decoder learn the

same dictionary. Decoding mirrors encoding; that is, whenever an input substring

arrives at a processor with index equal to the input, it is replaced by the entry

stored in the processor. As in previous systolic architectures, additional measures

are needed to avoid buffer overflows which may occur when compressed inputs are

expanded. The Pair architecture uses a stop bit to signal the processor to the left

to wai t to send addi tional data.

As described, the Pair design stores each character of the input alphabet in

the PEs at the start of the array (or at the end in the case of decoding). This

requirement is not necessary since the input characters can be handled as pointers

37

into the dictionary (by padding them to length log N) without having to store

them explicitly in the array.

Storer and Reif present a systolic real-time architecture based on a modified

version of the update heuristic used in the Pair architecture [SR90]. The dictionary

update heuristic, instead of entering the concatenation of two previous matches

(after allowing one pointer to pass through), adds the concatenation of two pointers

only if neither pointer was adopted by the preceding processor. A prototype VLSI

chip for this design was built using a systolic array of 3, 839 PEs (4, 096 minus

the 257 which correspond to characters of the input and a special nil value). The

implementation runs on a 40 Mhz dock and yields a data rate of 40 Mbytes per

second. Section 3.6 describes sorne additional details of the hardware.

A variant of the previous architectures stores severa! dictionary entries in each

processing element [SRM90]. In each dock cyde, each PE performs a parallel match

between its entries and the contents of its input buffer. This yields a more compact

design requiring significantly less hardware that operates at commensurate speeds.

A similar variation uses Content Addressable Memories in each PE to perform

parallel matches between the input and several dictionary entries withing a single

clock cyde [MRS92].

A different use of parallelism for adaptive dictionary compression employs a

tagged trie data structure for dictionary management [BB92]. The tags are used

to determine what strings are to be deleted. Two parallel processes carry out

compression and dictionary updating. With little demand on current technology,

hardware implementations achieve data rates ranging from 13.6 to 20 Mbytes per

second.

4.5. Other Dictionary Methods

This section considers a dass of parallel compression algorithms which imple­

ment a sequential dictionary of words using a self-organizing list. Self-organizing

38

(

lists permute the order of list entries after an entry is accessed, attempting to place

more frequently requested entries closer to the front of the list. To distinguish this

collection of compression techniques from other dynamic dictionary schemes, we

refer to them collecti vely as li3t compre33Íon methods under a particular update

heuristic. Parallel list compression schemes operate at much higher data rates of

40Mbytes per second (assuming a 40 MHz dock and 1 byte per cycle) in compari­

son to the data rates of sequential compression systems that range from 10 to 320

Kbytes per second.

A list compression method uses a self-organizing data structure to maintain

a list of source messages and an encoding of the integers to compress list indices

[BSTW86, E87, R87, HC87]. To compress a word, it is located in the dictionary and

encoded by its list position. After a word has been referenced, the list is reorganized

appropriately. After an input string has been replaced by its matching list index,

it can be further compressed by encoding list positions. A variable-length encoding

of the integers, such as Elias codes, Fibonacci codes or start-step-stop codes, or a

non-codeword based method such as arithmetic coding can be used to compress

list positions [BCW90].

Move-to-front and transpose are two update heuristics used in parallel list

compression (see [HH85] for a survey of self-organizing linear search). The move­

to-front heuristic moves the accessed string to the front of the list, shifting all

records previously ahead of it back one position. The transpose heuristic permutes

the list by exchanging the accessed entry with the one immediately before it in

the list. After reaching a steady state, where many further search requests are not

expected to significantly impact the expected search time, the expected access cost

is less for transpose than for move-to-front, but the convergence time or number of

accesses required to reach a steady state is greater for transpose than for move-to­

front [HH85]. There are applications for which each of move-to-front and transpose

39

outperforms the other. For any particular application, simulations are necessary

to determine the superior heuristic.

VLSI implementation issues regarding input/output pin requirements have

forced the investigation of two major algorithmic variants for list compression. The

simpler procedure permutes a fixed-length list of symbols and the other approach

permits arbitrary-length list entries. A byte-leve! fixed-length list might maintain

a target list of 256 entries corresponding to the 256 possible values of an 8-bit

ASCII byte. Such a system achieves compression of 30% to 40% on text files

[TW89]. Methods which allow arbitrary-length dictionary entries provide higher

compression of 48% to 75%. For parallel models, however, arbitrary-length list

entries that must travel between processing elements force an arbitrary number

of input/output pins on each PE. Designs for the simpler fixed-length list entries

are described below. Approximations for the more general list of variable-length

entries are addressed in Section 3.5.4.

4.5.1. Move-to-Front List Compression on the Systolic Array

Assuming a dictionary of size N, the first systolic array architecture for list

compression under the move-to-front update heuristic and based on the fixed-length

scheme employs two systolic arrays of N PEs each [TW89]. One array is used for

encoding and the other for decoding. Input enters the systolic array from the right

(PE 1) and leaves to the left (PE N). As input fl.ows through the array, matches

are detected between the input and the characters stored in the PEs.

To encocle fixed-length word w using the move-to-front heuristic, w is com­

pared to the list entries of successive processors. PE i has an input buffer and stores

dictionary entry en'try¡. At PE 1 (the front of the list) w overwrites the current

list entry which is transrnitted to PE 2. Next, the list entry of PE 2 is overwritten

by the previous entry of PE 1. List entries continue to cascade clown the list until

w matches the list entry and the final entry is updated. Upon rnatching, w is

40

encoded by the identification number of the matching PE. By depositing the input

character in the first processor as it enters the array and then cascading previous

processing element contents clown the array, the move-to-front behavior is realized.

The output of the array, consisting of a sequence of 8-bit list indices, is fed into a

fixed-to-variable length coding processor.

At the beginning of the dock cyde, PE i receives 4-tuple (w, e, p, m) from

PE i - l. w is the word to be encoded, e is the word being moved clown in the

list (i.e., e is the current contents of entry¡ and is nil if w is already encoded), p

is the list position of w (O if no match found yet) and m is a flag bit which is set

if the list needs further updating. If m is set then PE i compares entry¡ to w. If

the words match, PE i overwrites entry¡ with e, sets m to O and transmits (w, e,

i, m) to PE i +l. If w differs from entry¡ then PE i sends (w, entry¡, p, m) to PE

i + 1 and copies e into entry¡. Otherwise the input passes through PE i unchanged.

If words are limited to a single byte, this scheme achieves compression savings of

19% to 38% at a data rate of 40 Mbytes per second (assuming a 40 MHz dock)

[TW89].

A string of lg N-bit codes, corresponding to the list positions of the input

characters, is output by the encoding array and fed into a fixed-to-variable-length

coding system. Unfortunately, no high-data rate fixed-to-variable-length coder is

known. This bottleneck dictates the data rate of the entire systolic system. U sing

a table lookup approach, Thomborson and Wei experimented with various tail­

end encoders [TW89]. Their empirical findings suggest that their fixed-to-variable

code converter gives rather poor compression (11 % to 22%) but can perform at a

data rate commensurate with the systolic array. Huffman coding provides better

compression (19% to 38%) but operates at a limited data rate. Dynamic Huffman

coding and arithmetic coding yield far better compression but even the most

41

sophisticated implementations operate at data rates below 15 KBytes per second

[MP88, K82, V87].

The systolic decoder for move-to-front list compression cannot simply mirror

the encoder since it is impossible to update the dictionary until after the input has

passed PE 1 (except if the input is '1') and has been decoded at sorne processor

later in the array. By using a two-way communication channel and having input

enter the array on the left (PE N) and exit on the right (PE 1), it may be possible

to mirror the encoder.

Alternatively, instead of storing the ith word in the dictionary, PE i reserves

pos¡ which is the list position of the alphabet symbol with index representation i.

For ASCII codes, pos¡ is the table index of the entry with ASCII value i. At the

onset of the decoding dock cycle, PE i receives input (w, p) from PE i - l. As in

the encoder, p is the encoded list posi tion and w is the decoded word occurring in

position p of the list. If p =pos¡ then pos¡ is set to '1' -and w is assigned i. That is,

the symbol with representation i is moved to the first list entry and w is decoded

as i. If p > pos¡ then pos¡ is incremented to reflect the movement of character

representation i deeper into the list.

4.5.2. Transpose List Compression on the Systolic Array

Parallel transpose list compression is described by the following general

paradigm. Encoder and decoder maintain identical word lists using the transpose

heuristic. Namely, after a word is used it is exchanged with the word stored in

the position immediately preceding its original position. This section describes

two designs for parallel list compression under the transpose heuristic. The first

approach is similar to the move-to-front designs and uses a systolic array. However,

input is restricted to every other system step (the reasons for this are discussed

later). The second design combines a systolic array with trees to improve the linear

through delay of the first design.

42

(
For the first design, to transmit word w on the systolic array, w is compared

to the list entries of successive processors. If w matches the list entry in PE i, it

is encoded as i. The encoder then updates the list by transposing the list entry

(w) of PE i with the list entry in PE i - l. When the decoder array receives list

index i, it decodes it as the list word stored in PE i (w) and then updates the

list by exchanging w with the previous list entry stored in PE i - l. Since several

matches can be detected in parallel the list update procedure needs additional

consideration.

In the sequential setting, a sequence of words that match the list structure

m successive en tries are handled in the same way as other matches. However,

in the systolic environment, matches corresponding to successive entries in the

array impose additional constraints when the list of words is being manipulated in

parallel. That is, simultaneous matches occurring in different locations in the array

may force global communication among the processors to determine the contents of

the updated list. To illustrate this difficulty, consider the input string "abcdefgh"

and the word list " h, g, f, e, d, e, b, a". Sequential transpose list compression

outputs the sequence of positions 8, 8, 6, 6, 4, 4, 2, 2 and the final word list is

identical to the original. In a sense, each pair of matches causes updates that cancel

each other. On the systolic array, all eight matches are detected simultaneously.

Handling the subsequent update may require global communication.

For a list of length N, the systolic array encoder consists of N processing

elements linearly connected by a two-way communication channel [SH92A]. PE i

stores the list entry which is currently in position i in the list and a copy of the

input word PE i considered on the previous dock cycle. The list entry will be

referred to as entry¡ and the prior input word as oldw¡. The input stream enters

the array from the right (PE 1) and the encoded message exits at the left (PE N).

43

In order to prevent a contiguous sequence of matches from occurring concur­

rently, input packets enter the array only on every other clock cycle. The word list

is updated at the start of each encoding cycle. Later in the cycle, word matches

are detected and encoded.

At the beginning of the dock cycle, PE i receives triple (w, e, p) from PE i-1

and bit m¡+1 from PE i + l. As in the move-to-front systolic architecture, w is a

word to be matched, e is the current contents of entry¡_1 that may be needed for

a transpose update, p is the list position of w (O is no match found yet) and m¡+1

is a bit flag which is set if PE i + 1 detected a match in the previous dock cycle. If

mi+1 is set then PE i overwrites entry¡ with oldw¡. If w matches entry¡ then PE

i carries out three tasks. Namely, PE i sets p = i, assigns m¡ = 1, and (if i > 1)

overwrites entry¡ with input e (equivalently entry¡_1 obtained from PE i - 1).

At the close of the dock cycle, PE i overwrites oldw¡ with w and transmits

(w, entry¡, p) to PE i + 1 and (m¡) to PE i - l. Contention is avoided as a result

of restricting input to every other cycle.

A systolic transpose decoder which mirrors the encoder also allows input to

enter the array on every other clock cycle. At the outset of the cycle, the word list

is updated. Unlike the encoder, where only a single bit is passed from PE i back

to PE i - 1 to facilitate updating, the decoder requires entry¡ be transmitted along

with the single match bit. Following the list updating, list indices are replaced

by word list entries. An alternative systolic decoder similar to the move-to-front

decoder of the previous section, processes packets on every step. See [SH92A] for

details.

For a fixed-length list, such as the 256 different 8-bit ASCII characters, each

processor is initialized to contain one of the 8-bit bytes. Alternatively, new words

can be added to the list until the list becomes full. Moreover, if an input word

w is not in the current list of size K (1 :::; K :::; N) the word is encoded by the

44

\...

index K + 1 followed by the word w and the list is updated by transposing w

with the list entry K. If K = N (i.e., the list is full), word w replaces the last

list entry. The decoder "learns" the word list in a similar fashion. In the systolic

array, an additional flag bit in each processor is used to delimit the current list.

The processor holding the flag is designated as the first empty list entry. Initially,

the flag bit in PE 1 is set.

The linear through delay of the prev1ous systolic array transpose designs

1s determined by the passage of the input from PE 1 through to PE N. An

architecture, similar to the Broadcast/Reduce design in Section 3.3.2, combines a

systolic array with trees to reduce the through delay to logarithmic at the expense

of additional hardware. The trees broadcast the input to the systolic array and

reduce the simultaneous outputs of the processors. In addition to decreased through

delay, the restriction allowing data to enter the array only on every other system

step is eliminated.

For a list of size N, the architecture consists of 3N - 2 processors. N proces-

sors are arranged in a systolic array and the remaining processors are configured as

two binary trees (the broadcast and reduction trees). Input enters at the root of the

broadcast tree and is propagated clown the tree to each array processor. Results of

the processors are reduced to a single non-null output via the propagation toward

the root of the reduction tree. The tree interconnect provides total through delay

of 2logN.

Processor PE i in the systolic array stores the list entry which is currently

in position i in the list. This entry is referred to as entry¡. PE i receives input

from the broadcast tree and from PE i - 1 and PE i + l. PE i transmits entry¡

to PE i - 1 and PE i + 1 and outputs match information to the reduction tree.

Processors in the broadcast tree simply pass their input to their outputs. Reduction

processors receive two inputs at least one of which is zero. When both inputs are

45

zero the reduction tree outputs zero. Otherwise, the reduction processor transmits

the non-zero input.

After the input has propagated clown the broadcast tree to the array pro­

cessors, encoding proceeds as follows. At the beginning of the dock cyde, PE i

receives (w) from the broadcast tree, (entry¡_l) from PE i -1, and (entry¡+1) from

PE i + 1. w is the word to be encoded. If w matches entry¡ then w is set to i and

entry¡_1 is written into entry¡. If w matches entry¡+1 (received from PE i + 1 at

the start of the cyde) then PE i overwrites entry¡ with entry¡+l and sets w to O.

Otherwise, PE i sets w to O. At the dose of the dock cyde, PE i transmits entry¡

to PE i + 1 and PE i -1 and sends w to its neighboring processor in the reduction

tree. Thus, at the end of each dock cyde, exactly one processor (the one which

matched the input symbol) outputs a non-zero value into the base of the broadcast

tree. This non-zero value is propagated to the root of the reduction tree and finally

output. Decoding mirrors encoding [SH92A].

4.5.3. List Compression on the Xnet

The Xnet interconnection network provides a modified mesh-connected struc­

ture suitable for rapid communication among neighboring processing elements.

Switches, located between each pair of PEs, permit vertical, horizontal, or diago­

nal connections. The connections wrap around, meaning that switches are located

between the top and bottom row of the mesh and between the extreme left and

right columns. During each step, the switches are identically set throughout the

system and computation proceeds synchronously. Each PE is connected to two of

its nearest neighbors and communication proceeds in a single direction. For exam­

ple, when the switches are set to provide North-to-South connections, a single PE

receives input from the processor above it in the mesh and transmits data to the

processor below it. Each PE has its own local memory and is assigned a unique

46

identification number. High-speed Xnet architectures for list compression under

the move-to-front and transpose permutation heuristics are described below.

List compression on the Xnet is similar to the systolic array designs of the

previous sections. Additional phases are introduced to accommodate the switching

connections [SH92B].

For a list of length N 2 the Xnet implementations for maintaining a self­

organizing list of fixed-length entries under move-to-front consists of N 2 PEs. PE i

stores the list entry which is currently in position i in the list (referred to as entry¡).

The input enters the Xnet at PE 1 and exits at PE N 2 •

Each step of consists of updating the list and checking for matches between

the input and ~he stored entries. Each step is carried out in 2 phases. During

Phase 1 the Xnet switches are set to connect North West-to-SouthEast (NW-SE)

PEs. PE kN, where k 2:: 1, sends 4-tuple (w, e, p, !) to PE kN + l. w is the

input being accessed in the list, e is the current contents of entry¡, p is the list

position of w (p is used to perform data compression) and f is a bit flag which is

set if entry¡ is to be cascaded to PE i + 1. In Phase 2, the Xnet connections are

changed to link processors East-to-West (E-W). PE i, where i is nota multiple of

N, transmits 4-tuple (w, e, p, !) to PE i +l. In either phase, processors receiving

input update their entry and then compare it to the input character. That is, .if

f = 1, PE i exchanges entry¡ ande. Then, if w matches the new entry stored in e

(equivalently the previous contents of entry¡) then PE i sets f = O and p = i. To

realize the move-to-front update, if the input w is not already at the front of the

list, PE 1 writes entry1 into e, stores w in entry1 and set f = l.

For a list of length N 2 , the Xnet design for list compression under the

transpose update heuristic consists of N 2 PEs. PE i stores the ith list record

anda copy of the input word PE i considered on the previous step. The list entry

is referred to as entry¡ and the prior input word as oldw¡. Since severa! matches

47

can be detected simultaneously, the Xnet design for transpose allows input to enter

the mesh on every other step. The dictionary is updated and, later in the cycle,

word matches are detected.

In Phase 1, the Xnet switches are set NW-SE. PE kN, where k 2:: 1, sends

3-tuple (w, e, p) to PE kN + 1. As in the Xnet move-to-front design, w is the input

being accessed in the list, e is entry¡ that may be needed for transpose update,

and p is the list index of w used for performing data compression. Switches are

changed to reverse the diagonal connections of Phase 1 to SE-NW links in Phase

2. PE kN + 1, k 2:: 1 sends bit mkN+l to PE kN. mkN+l is a bit flag which is

set if PE kN + 1 detected a match in the previous step. At the start of Phase 3,

the Xnet alters the connections to W-E links. PE i, where i is not a multiple of

N, sends 3-tuple (w, e, p) to PE i + l. In Phase 4, the switches link E-W and PE

i + 1, where i is not a multiple of N, transmits m¡+1 back to PE i. If m¡+l is set

then PE i (for all i) overwrites entry¡ with oldw¡. If w matches entry¡ then PE i

sets m¡ = 1 and (if i > 1) overwrites entry¡ with input e. Finally, PE i overwrites

oldw¡ with w. Contention is avoided as a result of restricting input to every other

cycle.

4.5.4. Para/le/ List Compression for Arbitrary-length Entries

Defined-word schemes provide better compression than byte-level methods.

The most notable scheme, BSTW compression, is dueto Bentley, Sleator, Tarjan

and Wei [BSTW86]. Initially, the encoder list of the BSTW algorithm is empty.

The first time a word is encountered, an escape code is transmitted followed by

the word in cleartext. The word is entered into a move-to-front table. Subsequent

occurrences of the word are encoded by the word's list position. The BSTW scheme

compresses the cleartext and list indexes applying two separate codes.

As pointed out earlier, a parallel list compression architecture may have

difficulty allowing non-fixed length words to travel between processing elements

48

(

\

because of the potentially unreasonable pin requirements. For the arbitrary-length

scheme, placing a limit on the length of words and hashing approximate the general

paradigm [TW89].

One simple solution to the problem of unbounded pin requirements is to place

a bound on the maximum allowable word length and use the fixed-length systems of

the previous sections [TW89]. This bound enforces a limit on the pin requirements

at the risk of deteriorating compression and speed. The appropriate maximum

word length is dependent on the application.

In order to avoid the potential VLSI issues, an approximation using a hard­

wired hash table to map arbitrary words onto an 8-bit byte has been considered

[TW89]. These 8-bit codes are entered into a move-to-front list of target strings

and manipulated as in the byte-leve! systolic encoder and decoder arrays. A closed

hashing scheme with no collision resolution is used to obtain a high-speed, high-data

rate design. These performance improvements, however, come at the expense of

poorer compression performance. Unlike the BSTW algorithm in which the least­

recently-used target word "falls" off of the end of the list, the hashing approach

randomly eliminates list words. This random behavior of the systolic design yields

compression ranging from 25% to 65% andan input data rate of 120 Mbytes per

second running on a 40 MHz word stream dock. This is considerably lower than

the compression savings of 30% to 75% obtained by BSTW.

4.6. Evaluation

Preliminary designs for encoding and decoding chips for byte-level move-to­

front list compression on the systolic array have critica! paths of 25 nanoseconds

(assuming 1986 CMOS standard logic) and can operate at a data rate of 40Mbytes

per second [TW89]. The data rate of the design is dependent on the behavior of the

front-end variable-to-fixed decoder. This is an advantage over the Match tree design

whose data transfer rate is determined by the maximum match length [GS85]. For

49

these systems, any improvement in the data rate may require changes to many

system components. The hashing scheme, described above, for list compression

of arbitrary-length entries yields a data rate of 120 Mbytes per second assuming

a 40 MHz word stream dock. One drawback of the list compression methods is

that a variable-length code is output which requires a 360 MHz queue at the end

of the systolic array to handle bit-serial outputs. This requires more advanced

implementation technology than is currently available in CMOS [BB92].

Of the Match Tree, Broadcast/Reduce, and the Wrap architectures for sliding­

window compression, the simpler Wrap system which processes input on every

step is superior. However, if through delay is critica!, the logarithmic through

delay of the Broadcast/Reduce architecture is favored. In practice, binary trees of

processors are often readily available in hardware. In these cases, the architectures

require additional evaluation [892]. However, the Match Tree architecture remains

less desirable since its data rate is dependent of the size of the dictionary.

U sing a systolic array of 4,096 processing elements and assuming 40 MHz sys­

tolic hardware, the Match Tree architecture achieves a data rate of 40 Mbytes per

second [G885, 888A]. Preliminary estimates for the Wrap and Broadcast/Reduce

architectures specify similar data rates [Z90A, Z90B]. A prototype VLSI chip for

sliding-window compression (similar to Wrap approach) implementing nine process­

ing elements was fabricated using CMOS 2-micron technology [892]. Assuming a

40 MHz dock, the chip yields a data rate of 20 Mbytes per second. A systolic array

for adaptive dictionary compression using approximately 4,000 processing elements

on 30 custom chips has been fabricated using 1.2-micron CMOS and can operate at

40Mbytes per second [8R91]. A custom VLSI chip for the adaptive dictionary com­

pression architecture of the last section built using 1.0 micron CMOS technology

operates with a 20 MHz dock, consumes 8 bits per cyde, and achieves a data rate

of 20 Mbytes per second [8R91, 892]. Each chip houses 128 processors. A complete

50

systolic array of 3,839 processors is obtained by chaining 30 chips together. Based

on simulations, a clock rate of 75 MHz is feasible, yielding a data rate of 75 Mbytes

per second. A new design, incorporating techniques for isolating pad delays, is

estimated to run at 40 Mbytes per second and has 256 processing elements per

chip (892].

5. MULTIPLE COMPRESSION

The parallel systems of Sections 2 and 3 utilize a single compression method

that manipulates the data in parallel to improve compression speed. An alterna­

tive application of parallelism combines multiple compression techniques operating

simultaneously to obtain greater compression. Current approaches to this form of

parallel compression are pipelining and competitive processing.

Pipelined compression systems combine two or more compression methods

in succession to compress the input more effectively than the individual methods

operating in isolation. Communication applications are an example of systems for

which the additional time used to carry out the sequence of methods is insignifi­

cant in view of the relatively slow communication speed (PMK91]. Research has

focused on the selection of appropriate methods and their optima! positioning in

the pipeline.

Statistical methods take advantage of character redundancy whereas dictio­

nary methods profit from string repetition. This distinction is the basis of current

pipelined compression systems [BM90, PM90, PMK91]. Dictionary methods main­

tain a table of strings and compression is carried out by replacing repeated strings

by references (or indices) into the table. The fixed-length indices that are produced

by the dictionary compressor may contain repeated copies of the same index. This

corresponds to strings in the table appearing more than once in the input. By

treating the dictionary indices as the input alphabet to a statistical compressor,

51

these systems, any improvement in the data rate may require changes to many

system components. The hashing scheme, described above, for list compression

of arbitrary-length entries yields a data rate of 120 Mbytes per second assuming

a 40 MHz word stream dock. One drawback of the list compression methods is

that a variable-length code is output which requires a 360 MHz queue at the end

of the systolic array to handle bit-serial outputs. This requires more advanced

implementation technology than is currently available in CMOS [BB92].

Of the Match Tree, Broadcast/Reduce, and the Wrap architectures for sliding­

window compression, the simpler Wrap system which processes input on every

step is superior. However, if through delay is critical, the logarithmic through

delay of the Broadcast/Reduce architecture is favored. In practice, binary trees of

processors are often readily available in hardware. In these cases, the architectures

require additional evaluation [S92]. However, the Match Tree architecture remains

less desirable since its data rate is dependent of the size of the dictionary.

U sing a systolic array of 4,096 processing elements and assuming 40 MHz sys­

tolic hardware, the Match Tree architecture achieves a data rate of 40 Mbytes per

second [GS85, S88A]. Preliminary estimates for the Wrap and Broadcast/Reduce

architectures specify similar data rates [Z90A, Z90B]. A prototype VLSI chip for

sliding-window compression (similar to Wrap approach) implementing nine process­

ing elements was fabricated using CMOS 2-micron technology [S92]. Assuming a

40 MHz dock, the chip yields a data rate of 20 Mbytes per second. A systolic array

for adaptive dictionary compression using approximately 4,000 processing elements

on 30 custom chips has been fabricated using 1.2-micron CMOS and can operate at

40Mbytes per second [SR91]. A custom VLSI chip for the adaptive dictionary com­

pression architecture of the last section built using 1.0 micron CMOS technology

operates with a 20 MHz dock, consumes 8 bits per cyde, and achieves a data rate

of 20 Mbytes per second [SR91, S92]. Each chip houses 128 processors. A complete

50

I
I

systolic array of 3,839 processors is obtained by chaining 30 chips together. Based

on simulations, a clock rate of 75 MHz is feasible, yielding a data rate of 75 Mbytes

per second. A new design, incorporating techniques for isolating pad delays, is

estimated to run at 40 Mbytes per second and has 256 processing elements per

chip [S92].

5. MULTIPLE COMPRESSION

The parallel systems of Sections 2 and 3 utilize a single compression method

that manipulates the data in parallel to improve compression speed. An alterna­

tive application of parallelism combines multiple compression techniques operating

simultaneously to obtain greater compression. Current approaches to this form of

parallel compression are pipelining and competitive processing.

Pipelined compression systems combine two or more compression methods

in succession to compress the input more effectively than the individual methods

operating in isolation. Communication applications are an example of systems for

which the additional time used to carry out the sequence of methods is insignifi­

cant in view of the relatively slow communication speed [PMK91]. Research has

focused on the selection of appropriate methods and their optimal positioning in

the pipeline.

Statistical methods take advantage of character redundancy whereas dictio­

nary methods profit from string repetition. This distinction is the basis of current

pipelined compression systems [BM90, PM90, PMK91]. Dictionary methods main­

tain a table of strings and compression is carried out by replacing repeated strings

by references (or indices) into the table. The fixed-length indices that are produced

by the dictionary compressor may contain repeated copies of the same index. This

corresponds to strings in the table appearing more than once in the input. By

treating the dictionary indices as the input alphabet to a statistical compressor,

51

Fixed Wariable
data dictionary Length __ statistical Lengt1l, data -- compression compression - - -- transmitter so urce Codes Codes technique technique

Figure 5

Example of a pipelined compression scheme

additional compression may be gained by replacing frequently occurring indices

with shorter variable-length representations. Figure 5 illustrates this pipelined

approach.

Severa! dictionary-statistical-pipelined compression systems have been inves­

tigated. Reported methods have paired LZW, a variant of Ziv-Lempel compression

and the basis of the UNIX compre33 utility, with statistical compressors based on

splay trees, Huffman coding, and arithmetic coding [W84, J88, BM90, PM90,

PMK91]. Bailey and Mukkamala conclude that the LZW-Splay method provides

better compression of 6% on average than either method in isolation when applied

to their test files.

The LZW-Arithmetic coding combination works by accumulating frequencies

of LZW dictionary entries and later using these frequencies in the arithmetic

coding phase to further compress the representation. Table 2 reports compression

findings for LZW-Arithmetic coding. UNIX compre33 version 4.0, paired with

the arithmetic coding implementation due to Bell, Cleary and Witten [BCW90],

is referred to as Compre33-AC in the table. The test files used belong to the

Calgary /Canterbury text compression corpus [BCW90]. The best compression

for each file is shown in bold type. Except for the two program files progl and

progp, the pipelined method Compre33-AC provided slightly better compression

than compre33. Significantly better results are reported for fine-tuned v~rsions of

pipelined LZW-Arithmetic coding. By utilizing various LZW dictionary sizes and

52

Improvement
Input Size Arithmetic of Compress-A C
File (Bytes) compress Coding Compress-AC over compress

bib 111261 58.18 34.58 58.28 .1
bookl 768771 56.81 43.17 57.04 .23
book2 610856 58.95 40.29 59.20 .25
geo 102400 24.05 29.30 27.72 3.67
news 377109 51.71 35.17 52.12 .41
objl 21504 34.67 25.42 36.97 2.3
obj2 246814 47.87 24.12 49.01 1.14
paperl 53161 52.83 37.70 52.90 .07
paper2 82199 56.01 42.17 56.10 .09
paper3 46526 52.36 41.12 52.47 .11
pie 513216 87.88 85.42 87.96 .08
pro ge 39611 51.67 34.56 51.78 .11
progl 71646 62.11 40.51 62.08 <.03>
progp 49379 61.10 38.82 61.04 <.06>
trans 93695 59.19 31.35 59.28 .09

Table 2

Listing of compression delivered by Compress and Arithmetic coding

applying different methods of maintaining the cumulative frequency table, Perl,

Maram and Kadakuntla report compression increases of as much as 21 % on their

test files over LZW or arithmetic coding in isolation [PMK91]. They conclude that

the pipelined version yields greater compression for smaller dictionary sizes and is

especially effective in compressing binary text for which LZW achieves only small

compress1on.

Competitive-parallel processing employs severa! processors, each concurrently

executing a different compression method [C90]. In this MISD system, the output

stream of the processor achieving the best compression is selected by the referee

processor and transmitted (see Figure 6). Information is relayed with the com­

pressed input to enable the appropriate decompression processor to reconstruct

the original data. Competitive-parallel processing is used in file archiving. The

53

data
so urce

coding
method

1

coding
me~hod

coding
method

3

coding
method

5

Figure 6

referee
processing
element

data
transmitter

Multiple compression techniques competing for best compression performance

program ARC, a popular archiver for personal computers, analyzes the compres­

sion effectiveness of four compression schemes before compressing a file using the

best method [BCW90, pp 17-18].

6. FUTURE RESEARCH

In this survey, the use of parallelism in text compression has been described

and compared. The distinct goals of speed and compression effectiveness have

yielded different applications of parallelism. To create faster systems, parallelism

has been applied to the modeling and coding tasks. To improve compression

effectiveness, work has focused on compression systems using multiple methods

operating in parallel. In this section, we highlight a number of important problems

that remain unanswered in the area of parallel text compression.

Empirical evaluation is a fundamental component of parallel text compression

research just as it is for sequential compression. Unfortunately, existing evaluations

54

are not based on uniform criteria. Fabricating chips, implementing algorithms

on existing parallel machines, and building special purpose hardware are, how­

ever, formidable and often prohibitive tasks. Aside from actual implementation,

simulations provide meaningful evaluation. Also, detailed designs of processor com­

ponents and timing requirements are informative. To facilitate comparative studies

of speed, compression, and other application objectives, a common corpus of test

files must be established. Augmenting the Calgary /Canterbury compression corpus

(BCW90] with a collection of multi-megabyte files is a reasonable starting point

for standardizing the evaluation of practica! parallel algorithms and architectures.

Statistical compression involves the tasks of modeling and coding. Parallel

statistical modeling has not been investigated. Context modeling, for example,

uses the preceding few characters of the input to predict and therefore estímate

the probability of the next input character (BCW90]. For instance, in isolation,

the probability of the letter "u" occurring is relatively small. However, if the

preceding character is a "q" the probability of the next letter being a "u" is quite

high. Perhaps parallelism can improve the models by considering several contexts

simultaneously.

For statistical coding, Teng suggests further investigation of randomized and

probabilistic algorithms for minimum-redundancy prefix coding (T87]. Also, op­

tima! solutions for the general and alphabetic versions of the Huffman coding

problem are not known and warrant further research. Another unanswered question

is whether there exists a poly-logarithmic time, sub-quadratic processor algorithm

for the Huffman tree problem. A variation of Huffman coding is the length-limited

Huffman coding problem which creates a code from a sequence of probabilities

restricted to sorne maximum code length (LH90]. Parallel construction of length­

limited Huffman codes remains an open problem.

55

data
so urce

coding
method

1

coding
me~hod

coding
me~hod

Figure 6

data
transmitter

Multiple compression techniques competing for best compression performance

program ARC, a popular archiver for personal computers, analyzes the compres­

sion effectiveness of four compression schemes before compressing a file using the

best method [BCW90, pp 17-18].

6. FUTURE RESEARCH

In this survey, the use of parallelism in text compression has been described

and compared. The distinct goals of speed and compression effectiveness have

yielded different applications of parallelism. To create faster systems, parallelism

has been applied to the modeling and coding tasks. To improve compression

effectiveness, work has focused on compression systems using multiple methods

operating in parallel. In this section, we highlight a number of important problems

that remain unanswered in the area of parallel text compression.

Empirical evaluation is a fundamental component of parallel text compression

research justas it is for sequential compression. Unfortunately, existing evaluations

54

are not based on uniform criteria. Fabricating chips, implementing algorithms

on existing parallel machines, and building special purpose hardware are, how­

ever, formidable and often prohibitive tasks. Aside from actual implementation,

simulations provide meaningful evaluation. Also, detailed designs of processor com­

ponents and timing requirements are informative. To facilitate comparative studies

of speed, compression, and other application objectives, a common corpus of test

files must be established. Augmenting the Calgary /Canterbury compression corpus

[BCW90] with a collection of multi-megabyte files is a reasonable starting point

for standardizing the evaluation of practica! parallel algorithms and architectures.

Statistical compression involves the tasks of modeling and coding. Parallel

statistical modeling has not been investigated. Context modeling, for example,

uses the preceding few characters of the input to predict and therefore estímate

the probability of the next input character [BCW90]. For instance, in isolation,

the probability of the letter "u" occurring is relatively small. However, if the

preceding character is a "q" the probability of the next letter being a "u" is quite

high. Perhaps parallelism can improve the models by considering several contexts

simultaneously.

For statistical coding, Teng suggests further investigation of randomized and

probabilistic algorithms for minimum-redundancy prefix coding [T87]. Also, op­

tima! solutions for the general and alphabetic versions of the Huffman coding

problem are not known and warrant further research. Another unanswered question

is whether there exists a poly-logarithmic time, sub-quadratic processor algorithm

for the Huffman tree problem. A variation of Huffman coding is the length-limited

Huffman coding problem which creates a code from a sequence of probabilities

restricted to sorne maximum code length [LH90]. Parallel construction of length­

limited Huffman codes remains an open problem.

55

Most of the work in statistical coding is under the PRAM model of parallel

computation and focuses on the parallel construction of codes. More practica!

approaches are of interest. For example, can a minimum-redundancy prefix code

be constructed efficiently using a systolic architecture? Also, there are no known

parallel methods for adaptive statistical coding methods, such as dynamic Huffman

coding and arithmetic coding [K82, V87, RL 79, 184, WNC87]. Also, an adaptive

coding system capa ble of operating at a data rate that is commensurate wi th the

systolic list compression systems can be used to compress the output of dictionary

compression methods.

The static and adaptive models for dictionary compress1on use primarily

the systolic array as the model of computation. Dictionary compression systems

need to be developed for alternative parallel models, such as the hypercube. In

the theoretical setting, sublinear time parallel algorithms are possible on models

allowing more than one character to be read and written per unit time. Since

dynamic dictionary compression is P-complete, it is highly unlikely that parallel

methods belonging to the class NC exist. Instead, it may be possible to find NC

solutions for methods which approximate dynamic dictionary compression. Also,

the PRAM algorithms for static and sliding-window dictionary compression are

not optimal.

The discussion in Section 4 illustrates the impact of pipelined and competi­

tive parallel systems on compression. A different approach to utilizing a number

of different compression algorithms involves switching from one method to another

when system performance begins to deteriorate. For example, move-to-front list

compression performs well on small files and transpose compression is superior

for large files [SH92A, SH92B, TW89]. This suggests the examination of a hybrid

scheme combining move-to-front and transpose. Research into the dynamic evalu­

ation of data and the use of the evaluation to determine the compression method

56

that gives the best system performance may provide a valuable system that 1s

capable of achieving enhanced compression.

57

REFERENCES

(AKLMT89] ATALLAH, M. J., KoSARAJU, S. R., LARMORE, L. L., MILLER, G. L.,
AND TENG, S.-H. Constructing trees in parallel. In Proceedings 1989
A CM Symposium on Parallel Algorithms and A rchitectures, Sante Fe,
New Mex., 1989, pp. 283-290.

[BM90] BAILEY, R. L. AND MuKKAMALA R. Pipelining data compression
algorithms. The Computer Journal 99, 4 (1990), 308-313.

(BCW90] BELL, T. C., CLEARY, J. G., AND WITTEN, l. H. Text Compression,
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

(BSTW86] BENTLEY, J. L., SLEATOR, D. D., TARJAN' R. E., AND WEI, v. K.
A locally adaptive data compression scheme. Commun. A CM 29, 4
(April, 1986), 320-330.

[BB92] BuNTON, S. AND BoRRIELLo, G. Practica! dictionary management
for hardware data compression. Commun. ACM 95, 1 (Jan., 1992),
95-104.

[C90] Competitive parallel processing for compression of data. NASA Tech
Briefs 14, 2 (Feb., 1990), 32-33.

[D91] DE AGOSTINO, S. P-Complete problems in data compression. Tech.
Rep. URLS-DM/NS-90/00l(INFO). Dept. of Mathematics, Univer­
sity of Rome "La Sapienza", Italy.

[DS92] DE AaosTINO, S. AND STORER, J. A. Parallel algorithms for optima!
compression using dictionaries with the prefix property. In Proceed­
ings IEEE Data Compression Conference, Snowbird, Utah, IEEE
Computer Society Press, Los Alamitos, CA, 1992, pp. 52-61.

[E87] ELIAS, P. Interval and recency rank source coding: two on-line
adaptive variable-length schemes. IEEE Trans. In/. Theory IT-99,
1 (Jan., 1987), 3-10.

[F49] FANO, R.M. Transmission of Information, M.I.T. Press, Cambridge,
Mass., 1949.

[FG89] FIALA, E. R. AND GREENE, D. H. Data compression with finite
windows. Commun. ACM 92, 4 (Apr., 1989), 490-505.

58

~

(
[F66]

[FW78]

[F93]

[GR88]

[G78]

[GS85]

[HR85]

[HR90]

[HH85]

[HC87]

[HV92A]

[HV92B]

59

FLYNN, M. J. Very high-speed computing systems. In Proceedings
IEEE, Vol. 54, 1966, pp. 1901-1909.

FoRTUNE, S. ANO WYLLIE, J. Parallelism in random access machines.
In Proceedings Tenth Annual ACM Symposium on Theory of Com­
puting, 1978, pp. 114-118.

FRENKEL, K. A. An interview with Robin Milner. Commun. A CM
36, 1 (Jan., 1993), 90-97.

GIBBONS, A. M. ANO RYTTER, W. Efficient Parallel Algorithms,
Cambridge University Press, Cambridge, 1988.

GoLOSCHLAGER, L. M. A unified approach to models of synchronous
parallel machines. In Proceedings Tenth A nnual A CM Symposium on
Theory of Computing, 1978, pp. 89-94.

GoNZALEZ-SMITH, M. E. ANO STORER, J. A. Parallel algorithms for
data compression. J. ACM 32, 2 (Apr., 1985), 344-373.

HARTMAN, A. ANO RooEH, M. Optima! parsing of strings. In Com­
binatorial Algorithms on Words, A. Apostolico and Z. Galil, Ed.,
Springer-Verlag, pp. 155-167.

HENRIQUES, s. ANO RANGANATHAN' N. A parallel architecture for data
compression. In Proceedings Second IEEE Symposium on Parallel and
Distributed Processing, Dallas, Texas, 1990.

HESTER, J. H. ANO HIRSCHBERG, D. S. Self-organizing linear search.
ACM Comp. Sur. 17, 3 (Sep., 1985), 295-311.

HoRSPOOL, R. N. ANO CoRMACK, G. V. A locally adaptive data
compression scheme. Technical Correspondence. Commun. A CM 30,
9 (Sept., 1987), 792-794.

HoWARO, P. G. ANO VITTER, J. S. Parallel lossless image compression
using Huffman and arithmetic coding. In Proceedings IEEE Data
Compression Conference, Snowbird, Utah, IEEE Computer Society
Press, Los Alamitos, CA, 1992, pp. 299-308.

HoWARO, P. G. ANO VITTER, J. S. Practica! implementations of
arithmetic coding. In lmage and Text Compression, Storer, J. A.,
Ed., Kluwer Academic Publishers, Norwell, MA, 1992, pp. 85-112.

[H52]

[J88]

(KP90]

[K82]

(L75]

[L84]

[LP91]

[LH90]

(L78]

[L92]

[LH87]

[MRS92]

[MRK85]

60

HUFFMAN, D. A. A method for the construction of mm1-
mum-redundancy codes. Proceedings !RE 40, 9 (Sept., 1952),
1098-1101.

JoNES, D. W. Application of splay trees to data compression. Com­
mun. ACM 31, 8 (Aug., 1988), 996-1007.

KIRKPATRICK, D. G. ANO PRZYTYCKA, T. Parallel construction of
binary trees wi th almost optima! weighted path length. In Proceedings
1990 A CM Symposium on Parallel Algorithms and A rchitectures,
Crete, Greece, 1990.

KNUTH, D. E. Dynamic Huffman coding. J. Algorithm3 6 (1982),
163-180.

LADNER, R. E. The circuit value problem is log-space complete for
P. SIGA CT N ew" 7 (1975), 18-20.

LANGOON, G. G. An introduction to arithmetic coding. IBM J.
Research and Development 28, 2 (Mar., 1984), 135-149.

LARMORE, L. L. ANO PRZYTYCKA, T .. Personal communication, 1991.

LARMORE, L. L. ANO HIRSCHBERG, D. s. A fast algorithm for optima!
length-limited Huffman codes. J. ACM 37, 3 (July, 1990), 464-473.

LEA, R. M. Text compression with an associative parallel processor.
Computer J. 21, 1 (Jan., 1978), 45-56.

LEIGHTON, F. T. Introduction to Parallel Algorithms and Architec­
tures: A rrays, Trees, Hypercubes, Morgan Kaufmann Publishers, San
Mateo, CA, 1992.

LELEWER, D. A. AND HIRSCHBERG, D. S. Data compression. ACM
Comp. Sur. 19, 3 (Sep., 1987), 261-296.

MARKAS, T., REIF, J. ANO STORER, J. A. On parallel implementations
and experimentations of lossless data compression algorithms. In
Proceedings IEEE Data Compression Conference, Snowbird, Utah,
IEEE Computer Society Press, Los Alamitos, CA, 1992, p. 425.

MILLER, G. L., RAMACHANORAN' v., ANO KALTOFEN' E. Efficient
parallel evaluation of straight-line code and arithmetic circuits. Tech.
Rep .. University of Southern California (1985).

61

[MR85] MILLER, G. L. AND REIF, J. H. Parallel tree contraction and its
application. In Proceeding.1J IEEE Twenty-Sixth A nnual Sympo.1Jium
on Foundation.1J of Computer Science, 1985, pp. 4 78-489.

(MP88] MITCHELL, H. L. AND PENNEBAKER, W. B. Optima! hardware and
software arithmetic coding procedures for the Q-coder. IBM J. Re­
.1Jearch and Development S2, 6 (Nov., 1988), 727-736.

(PMK91] PERL, Y., MARAM, v., AND KADAKUNTLA, N. The cascading of the
LZW compression algorithm with arithmetic coding. In Proceeding.1J
IEEE Data Compre.1J.1JÍon Conference, Snowbird, Utah, IEEE Com­
puter Society Press, Los Alamitos, CA, 1991, pp. 277-286.

(PM90] PERL, Y. AND MEHTA, A. Cascading LZW algorithm with Huffman
coding method: a variable to variable length compression algorithm.
In Proceeding.1J Fir.1Jt Great Lake.1J Computer Science Conference, Kala­
mazoo, 1990.

[Q87] QurnN, M. J. De.1Jigning Efficient Algorithm.1J for Parallel Computer:J,
McGraw-Hill, New York, 1987.

[RH91] RANGANATHAN' N. AND HENRIQUES, s. A systolic architecture for
LZ based decompression. In Proceeding.1J IEEE Data Compre.1J.1JÍon
Conference, Snowbird, Utah, IEEE Computer Society Press, Los
Alamitos, CA, 1991, p. 450.

[RH92] RANGANATHAN, N. AND HENRIQUES, S. High speed VLSI designs for
Lempel-Ziv compression. to appear. IEEE Tran3. on Circuit.1J and
System3.

[RS91] REIF, J. H. AND STORER, J. A. Adaptive lossless data compression
over a noisy channel. In Proceeding3 Communication Security, and
Sequence:J Conference, Positano, Italy, 1991.

[RL79] RISSANEN, J. J. AND LANGDON, G. G. Arithmetic coding. IBM J.
Re3earch and Development 2S, 2 (Mar., 1979), 149-162.

[RPE81] RoDEH, M., PRATT, V. R. AND EvEN, S. Linear algorithm for data
compression via string matching. J. ACM 28, 1 (Jan., 1981), 16-24.

(R87] RYABKO, B. Y. A locally adaptive data compression scheme. Techni­
cal Correspondence. Commun. ACM SO, 9 (Sept., 1987), p. 792.

(SH92A]

(SH92B]

[S92]

(S88A]

(S88B]

[SR90]

[SR91]

[SRM90]

[SS82]

[T87]

[TW87]

62

STAUFFER, L. M. AND HIRSCHBERG, D. S. Transpose coding on the
systolic array. In Proceedings IEEE Data Compression Conference,
Snowbird, Utah, IEEE Computer Society Press, Los Alamitos, CA,
1992, pp. 162-171.

STAUFFER, L. M. AND HIRSCHBERG, D. S. Self-organizing lists on the
Xnet. Tech. Rep. 92-81. Info. and Comp. Sci. Department, University
of California, · Irvine.

STORER, J. A. Massively parallel systolic algorithms for real-time
dictionary-based text compression. In lmage and Text Compression,
Storer, J. A., Ed., Kluwer Academic Publishers, Nor.well, MA, 1992,
pp. 159-178.

STORER, J. A. Data Compression Methods and Theory, Computer
Science Press, Rockville, MD, 1988a.

STORER, J. A. Parallel algorithms for on-line dynamic data
compression. In Proceedings IEEE International Conference on Com­
munications: Digital Technology - Spanning the Universe, 1988b,
pp. 385-389.

STORER, J. A. AND REIF, J. H. A parallel architecture for high speed
data compression. In Proceedings Third Symposium on the Frontiers
of Massively Parallel Computation, Fairfax, Vir., IEEE Computing
Society Press, Washington, D. C., 1990.

STORER, J. A. AND REIF, J. H. A parallel architecture for high-speed
data compression. J. Parallel and Distr. Comp. 19 (1991), 222-227.

STORER, J. A., REIF, J. H., AND MARKAS, T. A massively parallel
VLSI design for data compression using a compact dynamic dictio­
nary. In Proceedings IEEE VLSI Signal Processing Conference, San
Diego, CA, 1990.

STORER, J. A. AND SzYMANSKI, T. G. Data compression vía textual
substitution. J. A CM 29, 4 (1982), 928-951.

TENG, S.-H. The construction of Huffman-equivalent prefix code in
NC. ACM SIGACT J. 18, 4 (May, 1987), 54-61.

TENG, S. H. AND WANG, B. Parallel algorithms for message decom­
position. J. Parallel and Distr. Comp. 4 (1987), 231-249. .

[TW89]

[V87)

[W84]

[W91]

[W92)

[WNC87)

[Z90A)

[Z90B]

[ZL 77]

[ZL 78]

63

THOMBORSON, C. D. AND WEI, BELLE W.-Y. Systolic implementa­
tions of a move-to-front text compressor. In Proceedings 1989 A CM
Symposium on Parallel Algorithms and Architectures, Sante Fe, New
Mex., ACM, New York, 1989, pp. 283-290.

VITTER, J. S. Design and analysis of dynamic Huffman codes. J.
ACM 94, 4, Oct., 825-845.

WELCH, T. A. A technique for high-performancedata compression.
IEEE Computer 17, 6 (June, 1984), 8-19.

WILLIAMS, R. N. Adaptive Data Compression, Kluwer Academic
Publishers, Norwell, MA, 1991.

WILLIAMS, R. N .. Comp.compression.research bulletin board posting

WITTEN, I. H., NEAL, R. M., AND CLEARY, J. G. Arithmetic coding
for data compression. Commun. ACM 90, 6 (June, 1987), 520-540.

Z1To-Wo1F, R. J. A broadcast/reduce architecture for high-speed
data compression. In Proceedings Second IEEE Symposium on Par­
allel and Distributed Processing, Dallas, TX, 1990a, pp. 174-181.

Z1To-Wo1F, R. J. A systolic architecture for sliding-window data
compression. In Proceedings IEEE VLSI Signal Processing Confer­
ence, San Diego, CA, 1990b, pp. 339-351.

Z1v, J. AND LEMPEL, A. A universal algorithm for sequential data
compression. IEEE Trans. lnf. Theory 29, 3 (1977), 337-343.

Z1v, J. AND LEMPEL, A. Compression of individual sequences via
variable-rate coding. IEEE Trans. Inf. Theory 24, 5 (1978), 530-536.

1\ 11\111i\ 1\1111 l\\\~\filtí1~\U1\~~\i1 \~ \11\111\
3 1970 01005 6007

