
UC Davis
UC Davis Previously Published Works

Title
Mechanisms of organophosphate neurotoxicity

Permalink
https://escholarship.org/uc/item/9w96f916

Authors
Tsai, Yi-Hua
Lein, Pamela J

Publication Date
2021-06-01

DOI
10.1016/j.cotox.2021.04.002
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9w96f916
https://escholarship.org
http://www.cdlib.org/


Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Toxicology
Mechanisms of organophosphate neurotoxicity
Yi-Hua Tsai and Pamela J. Lein
Abstract
The canonical mechanism of organophosphate (OP) neuro-
toxicity is the inhibition of acetylcholinesterase (AChE). How-
ever, multiple lines of evidence suggest that mechanisms in
addition to or other than AChE inhibition contribute to the
neurotoxic effects associated with acute and chronic OP ex-
posures. Characterizing the role(s) of AChE inhibition versus
noncholinergic mechanisms in OP neurotoxicity remains an
active area of research with significant diagnostic and thera-
peutic implications. Here, we review recently published studies
that provide mechanistic insights regarding (1) OP-induced
status epilepticus, (2) long-term neurologic consequences of
acute OP exposures, and (3) neurotoxic effects associated
with repeated low-level OP exposures. Key data gaps and
challenges are also discussed.
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cellular Ca2+ concentrations; CB1R, endocannabinoid type 1 receptors;
CPF, chlorpyrifos; DFP, diisopropyl fluorophosphate; GABAAR, GABAA

receptors; GluK1R, kainate receptors containing the GluK1 subunit;
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chondrial translocator protein.
Introduction
The canonical mechanism of organophosphate (OP)
(Box 1) neurotoxicity is inhibition of acetylcholines-
terase (AChE), which results in hyperstimulation of
muscarinic cholinergic receptors (mAChRs) and
www.sciencedirect.com
nicotinic cholinergic receptors in the peripheral and
central nervous systems. Acute inhibition of AChE by
�60e70% causes ‘cholinergic crisis’, a clinical toxidrome
characterized by muscle fasciculations and weakness,

parasympathomimetic signs, depression of respiratory
control centers in the brainstem, seizures, and death
[1,2]. Clinical and experimental evidence supports
AChE inhibition as the mechanism triggering acute
neurotoxic effects of OPs [1,2], although AChE
knockout mice exhibit signs of acute neurotoxicity
similar to those observed in wild-type mice after acute
OP poisoning [3]. Persistent epileptiform discharges,
cognitive deficits, and anxious/depressive behavior
manifest in acutely intoxicated humans [4,5] and
experimental animals [1,6,7] well after AChE activity

has recovered to pre-exposure levels. These observa-
tions suggest that acute and long-term effects of acute
OP intoxication are mediated by mechanisms in addition
to or other than AChE inhibition.

Occupational [8,9] and early-life [10] OPexposures that
do not cause cholinergic crisis are also associated with
neurotoxic outcomes, but there is little evidence
supporting an association between AChE activity and
neurobehavioral outcomes. The hypothesis that non-
cholinergic mechanisms contribute to the neurotoxicity

of repeated low-level OP exposures is largely supported
by preclinical literature [10,11]. Although the most
significant and prolonged motor effects in animals are
observed after OP exposures that markedly inhibit
AChE activity, deficits in cognitive [12] and social [13]
behavior are not as clearly correlated with AChE
inhibition.

Characterization of noncholinergic mechanisms of OP
neurotoxicity remains an area of active research. Here,
we review selected studies published from late 2018

through early 2021 that provide mechanistic insights
into (1) OP-induced status epilepticus (SE), (2) long-
term neurologic consequences of acute OP exposures,
and (3) neurotoxicity of repeated low-level OP
exposures.
Mechanisms contributing to OP-induced SE
Seizures are generated by the initial hypercholinergic
state, but are reinforced and sustained by glutamatergic
activity [14]. The molecular mechanism(s) mediating
the transition to SE are poorly understood. Recent
electrophysiological studies of acute rat brain slices
Current Opinion in Toxicology 2021, 26:49–60
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Box 1. What are OPs?

The term “organophosphates” (OPs) refers to a group of synthetic
compounds that have in common a pentavalent phosphorus bound
to sulfur or oxygen via a covalent double bond. OPs were first
synthesized in the early 20th century as insecticides. The discovery
in the 1930s that their insecticidal activity was primarily mediated
by inhibition of acetylcholinesterase (AChE), an enzyme conserved
across species, including humans, led to the development during
World War II of potent OP nerve agent, such as sarin, cyclosarin,
soman, tabun, VR and VX, that have been weaponized for use
against military and civilian targets.

Since World War II, hundreds of OP compounds have been
developed for commercial applications, predominantly as in-
secticides, but also as plasticizers, fire retardants, and fuel additives.
Despite increasing regulatory restrictions on their use in the United
States and Europe, OPs remain the most commonly used group of
insecticides worldwide, with particularly heavy use in developing
countries because of their lower cost compared to newer in-
secticides. As a result, human exposure to OPs is widespread, as
evidenced by data indicating that OPs are among the most
commonly detected anthropogenic contaminants in human tissues.

Human and animal studies have established neurotoxicity as the
primary endpoint of concern associated with OP exposures. There
are several “toxic scenarios” associated with OP exposure: acute
cholinergic crisis triggered by acute inhibition of AChE by more
than 60–70%, long-term effects associated with acute OP intoxi-
cation, neurotoxicity associated with repeated low-level OP expo-
sures that may inhibit AChE, but do not cause signs of cholinergic
crisis.

50 Mechanistic Toxicology
found that paraoxon acutely enhanced the
hyperpolarization-activated cation current Ih in baso-
lateral amygdala principal neurons [15]. The M1
mAChR antagonist, VU0255035, blocked this effect,
suggesting a mechanism by which cholinergic over-
stimulation increases glutamatergic signaling in the
basolateral amygdala, a brain region critically involved in

seizure initiation by OP nerve agents [14]. In support of
this model, pretreatment with VU0255035 prevented
the development of SE for up to 40 min in rats acutely
intoxicated with paraoxon or soman [15].

In contrast, another group found that M1/M3 mAChR
hyperactivity inhibited excitatory neurotransmission via
retrograde activation of presynaptic endocannabinoid
type 1 receptors (CB1Rs) [16]. Electrophysiological
recordings of hippocampal Schaeffer collateral synapses
revealed that paraoxon, soman, and VX depressed field

excitatory postsynaptic potentials before the onset of
interictal spiking. This effect was mediated by presyn-
aptic mechanisms independent of recurrent firing or
N-methyl-D-aspartate (NMDA) receptor (NMDAR)
currents and was completely reversed by pharmacologic
antagonism of CB1Rs or M1/M3 mAChRs, but not M2/
M4 mAChRs. Based on these data and previous reports
that M1/M3 mAChR agonists activated retrograde
CB1R signaling in the hippocampus to inhibit
Current Opinion in Toxicology 2021, 26:49–60
presynaptic glutamate release, the authors proposed
that hyperstimulation of postsynaptic M1/M3 mAChRs
triggered postsynaptic release of endocannabinoids that
retrogradely diffused across the synapse to activate
CB1Rs and reduce presynaptic release probability [16].
The observation that presynaptic depression occurred
before interictal bursting suggested that OP suppression
of presynaptic glutamate release is an early compensa-

tory response to excessive cholinergic signaling. In
support of this, pharmacologic antagonism of CB1Rs
enhanced lethality in a mouse soman model [16].

The neurotransmitter receptor subtypes involved in sus-
taining OP-induced seizures have also been the focus of
recent research (Table 1). Seizures result from imbal-
anced excitatory to inhibitory signaling in the brain, and
prolonged seizure activity is associated with upregulated
expression of all three ionotropic glutamate receptor
subtypes - alpha-amino-3-hydroxy-5-methyl-4-isoxazole-

propionic acid (AMPA), kainate, and NMDA - and
downregulated expression of gamma aminobutyric acid
(GABA)A receptors (GABAAR) at synapses in the hippo-
campus and amygdala, brain regions critically involved in
OP-induced SE [14]. Downregulation of synaptic
GABAAR is posited to mediate benzodiazepine refracto-
riness, a characteristic feature of OP-induced SE [14,17].
Neurosteroids are positive allosteric modulators of not
only synaptic but also extrasynaptic GABAAR [17]. Post-
exposure administration of neurosteroids significantly
attenuated benzodiazepine-refractory seizures in rats

acutely intoxicated with sarin [18] or diisopropyl fluo-
rophosphate (DFP) [19], suggesting that activity of
extrasynaptic GABAAR influences seizure duration after
acute OP intoxication.

Recent studies also support a causal role for AMPA and
kainate receptor activity in sustaining OP-induced sei-
zures. Administration of LY293558, a relatively broad-
spectrum antagonist of AMPA receptors (AMPARs)
and kainate receptors containing the GluK1 subunit
(GluK1R), 20 min after soman intoxication terminated
electrographic seizures in rats and significantly

repressed recurrent seizures for up to 72 h after
exposure [20]. Reports that the AMPAR antagonist
perampanel [19] and the dual AMPAR and NMDAR
antagonist urethane [21] attenuated but did not
completely suppress electrographic seizures in DFP-
intoxicated rats suggest that the antiseizure activity
of LY293558 involves both GluK1R and AMPAR. Co-
administration of LY293558 and caramiphen, an M1
mAChR antagonist with NMDAR antagonistic proper-
ties, terminated soman-induced SE significantly faster
than LY293558 alone and completely suppressed

seizure recurrence for up to 72 h [20]. The authors
attributed the added benefit of caramiphen to its
antagonistic activity at the NMDAR. This is consistent
with recent reports that ketamine and MK-801, both
NMDAR antagonists, significantly mitigated OP-
www.sciencedirect.com
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Table 1 Mechanisms of OP neurotoxicity: SE (green) and long-term effects of acute (yellow) and repeated low-level (blue) exposures.
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induced SE [22,23]; however, memantine, which also
blocks NMDARs, exacerbated DFP-induced seizures
and increased mortality [24]. Insufficient data are

available to determine whether the differential effects
of these drugs reflect differential targeting of NMDAR
subunits or different pharmacological properties inde-
pendent of the NMDAR. Nonglutamatergic receptors
may also be involved in sustaining OP-induced seizures.
www.sciencedirect.com
Combined midazolam and dexmedetomidine, an a2-
adrenergic receptor antagonist, was superior to mida-
zolam alone in mitigating seizure activity in rats when

given 60 min after the initiation of SE by DFP [24] or
soman [25].

Whether and how the functions of these neurotrans-
mitter receptor subtypes vary in a region- and/or time-
Current Opinion in Toxicology 2021, 26:49–60
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dependent manner during the evolution of OP-induced
seizures are questions that warrant attention. Another
research need is better understanding of the role of glia

cells in the initiation and propagation of OP-induced
seizures, as highlighted by a recent report suggesting
that the OP metabolite, diethyl dithiophosphate, im-
pairs glutamate transport in cultured Bergmann glia cells
[26].

Mechanisms underlying the long-term
outcomes of acute OP intoxication
It is generally believed that brain damage observed after
acute OP intoxication is primarily caused by prolonged
seizure activity [27,28]. However, it was observed that
antiseizure efficacy did not necessarily correlate with
protection against neuronal death 24 h after exposure in
rats acutely intoxicated with DFP. Specifically,
memantine exacerbated seizure severity, but signifi-
cantly reduced neuronal cell death; conversely, dexme-
detomidine enhanced seizure suppression but conferred
no significant neuroprotection [24]. In another study of

DFP-intoxicated rats, a subpopulation of animals were
observed to exhibit minimal to no behavioral or elec-
trographic seizures despite brain AChE inhibition
comparable with that of animals with SE [29]. The
brains of nonseizing animals exhibited significant
neurodegeneration although it was delayed, less persis-
tent, and less severe compared with seizing animals.
Microecomputed tomography scans at 60 days after
exposure revealed extensive mineralization in the
Current Opinion in Toxicology 2021, 26:49–60
thalamus that was not significantly different between
seizing and nonseizing subjects [29]. These observa-
tions suggest that seizure-independent mechanism(s)

contribute to neuropathology after acute OP
intoxication.

Oxidative stress

Oxidative stress is strongly associated with excessive

cholinergic and glutamatergic activity [14,30] and is
posited to mediate the neuropathologic consequences of
OP-induced SE [7,31]. Recent preclinical studies
confirmed that acute OP intoxication upregulated brain
expression of multiple oxidative stress biomarkers
(Table 1). To probe a functional role for oxidative stress,
structurally and mechanistically diverse antioxidants
were used to reduce oxidative stress in the brain after
OP-induced SE (Table 1). Administration of
AEOL10150, a catalytic antioxidant that scavenges
reactive oxygen species (ROS) and reactive nitrogen

species (RNS), within 5e15 min after rats were exposed
to DFP [32] or soman [33] significantly attenuated
neuroinflammation and neurodegeneration in multiple
brain regions at 24 and 48 h after exposure. Adminis-
tration of diapocynin [34], a nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase inhibitor, or
1400W [35], an inducible nitric oxide synthase (iNOS)
inhibitor, 4 h after acute DFP intoxication significantly
attenuated neuroinflammation and neurodegeneration
for weeks to months. Interestingly, diapocynin reduced
astrogliosis, but not microgliosis, whereas 1400W
www.sciencedirect.com
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attenuated both these responses. In all studies, miti-
gation of oxidative stress did not attenuate SE, ruling
out the possibility that neuroprotective effects were
mediated by cessation of seizure activity and suggesting
that oxidative stress is not necessary for sustained
seizure activity.

These studies suggest oxidative stress contributes to the
neuropathologic consequences of acute OP intoxication,
but is oxidative stress causally linked to neurologic defi-
cits observed after OP-induced SE? The diapocynin and

1400W studies [34,35] showed that 1400W significantly
www.sciencedirect.com
suppressed epileptiform spiking for weeks, diapocynin
during the first 72 h after acute DFP intoxication,
whereas diapocynin, but not 1400W, mitigated DFP-
induced motor impairment in the rotarod assay. Neither
1400W nor diapocynin improved cognitive behavior in
the Morris water maze, and 1400W had no effect on
anxiety-like behavior in the forced swim test. These
differential effects of mechanistically distinct antioxi-
dants raise questions regardingmechanistic relationships
between different mechanisms of oxidative stress,
neuroinflammation, neurodegeneration, and neurologic

deficits after acute OP intoxication.
Current Opinion in Toxicology 2021, 26:49–60
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Box 2. Recent data that addresses long-standing debates over human
OP neurotoxicity.

Acute OP intoxication is estimated to cause 3 million life-threat-
ening poisonings and 250,000 deaths annually across the world
[55]. There are numerous reports of long-term neurologic effects in
those who survive acute OP intoxication [4,5], but a cause-effect
relationship has been difficult to establish in humans. This was
recently addressed in a systematic review of the evidence for long-
term effects in humans acutely exposed to intoxicating levels of
sarin [56]. This analysis indicated that acute sarin poisoning is a
neurologic hazard to humans during the first 7 days post-exposure,
causing reduced cholinesterase activity and visual and ocular ef-
fects, and a suspected hazard in the subsequent weeks to years,
leading to impaired learning and memory and structural changes in
the brain [56]. Similar effects are documented in preclinical models
of acute OP intoxication: acute cholinergic signs and seizures that
transition to status epilepticus (SE), and delayed, persistent
neurologic sequelae, including brain damage, cognitive dysfunc-
tion, anxiety-like behavior, and spontaneous recurrent seizures
[1,6,7].

Chronic or repeated exposures to OPs at levels that do not cause
cholinergic crisis are also associated with neurotoxic outcomes in
humans, including cognitive deficits, depression, anxiety, and
suicidal ideation [57]. Additionally, recent epidemiologic studies
link repeated low-level OP exposures to increased risk of neuro-
developmental disorders [58-60] and neurodegenerative disease
[61,62]. These associations have been debated in part because of
the lack of evidence of a dose-response relationship [8,9]. A
recently published field assessment of pesticide application teams
in Egypt who were primarily exposed to a single OP, chlorpyrifos
(CPF), identified a dose-related effect of CPF on performance in the
Trail Making test, a behavioral test that measures processing speed,
mental flexibility, and executive function [63]. Trail Making per-
formance deficits were associated with job title, and job title was
associated with varying levels of CPF exposure. Thus, pesticide
applicators had the highest CPF exposures and the greatest per-
formance deficit, while engineers had the lowest exposures and the
least deficit. Control subjects who did not work in or near the fields
had the lowest CPF exposures and the best Trail Making perfor-
mance. Interestingly, Trail Making performance was not associated
with blood cholinesterase activity [63]. Data from this and other
studies met the Bradford-Hill criteria for strong evidence of a
cause-effect relationship between occupational CPF exposures and
neurotoxic effects in humans [63].

54 Mechanistic Toxicology
Neuroinflammation
As reviewed in 2019 [7], a growing body of literature
demonstrates that acuteOPintoxication triggers a robust
neuroinflammatory response. Recent studies in rodent
models extended this literature by showing that astro-
gliosis and microgliosis persisted for months after acute
DFP intoxication [34,36,37]. Longitudinal monitoring of

neuroinflammatory responses in DFP-intoxicated rats
using positron emission tomography to quantify expres-
sion of the 18 kDa mitochondrial translocator
protein revealed neuroinflammation varied dynamically
in a region- and time-dependent manner [38].

The 18 kDa mitochondrial translocator protein is a
biomarker of activated microglia and/or astrocytes [39],
but its expression does not indicate whether activated
microglia and astrocytes are neuroprotective or patho-
genic [7]. A recent study began to address this ques-

tion by phenotyping microglia and astrocytes in the
mouse brain after DFP-induced SE [40] using bio-
markers that label microglia as proinflammatory (M1-
like), anti-inflammatory (M2a-like), or immunoregula-
tory (M2b-like) [41] and reactive astrocytes as neuro-
toxic (A1-like) or neuroprotective (A2-like) [42].
These biomarkers were quantified by quantitative
reverse transcriptionepolymerase chain reaction in
CD11B- (microglia/infiltrated macrophages) and
GLAST (astrocytes)-immunopositive cells isolated
from the whole brain at varying times after DFP-

induced SE using magnetic-activated cell sorting
[40]. At 1 and 4 h after exposure, M1-like and A2-like
markers were observed in CD11B- and GLAST-positive
isolated cells, respectively. At 4 and 24 h, microglial
cells transitioned from M2b-like to M2a-like. At 24 h
and 3 days, A1-like markers were increased in isolated
astrocytes. Although this study did not assess function,
the observation that these cells’ phenotype shifted over
time after exposure suggests that whether neuro-
inflammation is protective versus harmful after OP-
induced SE varies with time after exposure.

Few studies have examined whether pharmacologic
manipulation of neuroinflammation modifies long-term
effects of acute OP intoxication. To date, the most
compelling data are from studies of TG6-10-1, a small
molecular inhibitor of the prostaglandin-E2 receptor
EP2, which plays a key role in neuroinflammatory re-
sponses in the brain [43]. As described in detail in a
recent review of these data [43], administration of TG6-
10-1 to DFP-intoxicated rats had no effect on SE, but
attenuated upregulation of inflammatory cytokine and

chemokines (IL-1b, TNFa, IL-6, CCL2, CCL4) in the
brain and prevented bloodebrain barrier breakdown.
TG6-10-1 did not mitigate anxiety-like behavior, but it
significantly improved performance in the novel object
recognition task 8e12 weeks after DFP-induced SE. As
Current Opinion in Toxicology 2021, 26:49–60
more studies begin to assess the causeeeffect rela-
tionship between neuroinflammation and neurologic
sequelae of acute OP intoxication, comparing neuro-
inflammatory parameters and behaviors modulated by

mechanistically diverse anti-inflammatories will be
important for linking specific neuroinflammatory medi-
ators to varying neurologic outcomes.
Synaptotoxicity

Although strongly implicated in neurodegenerative
disease [44], synaptotoxicity has not been widely
investigated as a mechanism underlying the
www.sciencedirect.com
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neurologic consequences of acute OP intoxication.
Quantitative immunocytochemical analyses of rat
hippocampal slice cultures acutely exposed to para-
oxon revealed progressive decline in the synaptic
biomarkers synaptophysin, synapsin II, and PSD-95
in the CA1 and dentate gyrus [45]. These changes
were likely not secondary to excitotoxicity because
GluR1 levels were reduced over a slower timeframe,

and NeuN and Nissl staining revealed no signs of
neuronal damage. Declined synapsin II dendritic la-
beling correlated with increased staining for b1
integrin, an adhesion molecule involved in regulating
synapse maintenance and plasticity. Expression of
other synaptic adhesion molecules was unchanged,
and the extent of synaptic decline positively corre-
lated with the level of b1 integrin expression. A
potential caveat of these studies is that slice cul-
tures were obtained from postnatal day 12 rat pups,
an age at which OPs do not cause seizures in vivo
[46]. If OP-induced synaptotoxicity can be repli-
cated in older animals that do respond to the
Figure 1

Schematic summarizing mechanisms implicated in mediating the neurotoxic effec
sequencesofacute, high-levelOPexposuresaredepictedon the left;mechanisms
areshownon the right.Oxidative stress resulting froman imbalancebetween the pr
antioxidant capacity of the system are implicated in both acute OP poisoning and

www.sciencedirect.com
seizurogenic activity of OPs (postnatal day 21 and
older), these findings suggest a novel mechanism to
explain delayed neurologic dysfunction after acute
OP intoxication.
Neurotoxic mechanisms of repeated low-
level OP exposures
Neuroinflammation and oxidative stress
We recently reviewed the evidence demonstrating that
repeated low-level OP exposures triggered neuro-
inflammation [7]. Identifying the mechanism(s) by
which OPs cause neuroinflammation and determining
the causeeeffect relationship between neuro-
inflammation and neurotoxic outcomes remain as sig-
nificant data gaps that have yet to be addressed.

The literature addressing oxidative stress in repeated
low-level OP exposures was also recently reviewed [47];

here, we highlight recent studies that investigated
causeeeffect relationships between oxidative stress and
neurotoxic outcomes (Table 1). Two groups [48,49]
ts of OPs. Mechanisms postulated in mediating the long-term neurologic con-
implicated in theneurotoxicityassociatedwith repeated low-levelOPexposures
oduction of pro-oxidants (reactive oxygen/nitrogenspecies;ROS/RNS)and the
chronic OP neurotoxicity. This image was created with BioRender.com.

Current Opinion in Toxicology 2021, 26:49–60
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examined the role of oxidative stress in apoptosis in
adult rats repeatedly exposed to chlorpyrifos (CPF) at
levels that did not cause cholinergic crisis but signifi-
cantly inhibited brain AChE activity by the end of the
exposure period. Both studies found that CPF increased
expression of oxidative stress biomarkers coincident
with upregulated expression of caspases and the pro-
apoptotic protein Bax and reduced expression of the

antiapoptotic protein Bcl-2. Co-administration of CPF
and an antioxidant, either quercetin [48] or N-acetyl-
cysteine [49], mitigated expression of oxidative stress
biomarkers and reversed CPF effects on apoptotic pro-
tein expression. Although quercetin mitigated CPF in-
hibition of AChE [48], N-acetylcysteine did not [49],
suggesting that AChE inhibition is not mechanistically
linked to CPF-induced apoptosis.

A significant caveat of these studies is that they neither
quantified neuronal cell loss nor determined whether

oxidative stress mediated behavioral deficits associated
with repeated CPF exposures. These questions were,
however, addressed by a third group that investigated the
relationship of mitochondria-dependent oxidative stress
to dopaminergic cell death and locomotor deficits in ju-
venile rats chronically exposed to CPF [50]. Initial
mechanistic studies using the N27 immortalized murine
mesencephalic dopaminergic cell line showed that CPF
promoted apoptosis via STAT1-dependent signaling,
which triggered mitochondrial dysfunction and ROS
generation in part via enhanced proteolytic cleavage of

protein kinaseCdelta [50].CPFalso enhanced autophagy
via STAT1-dependent ROS generation. Mitoapocynin, a
mitochondrially targeted antioxidant, protected against
CPF-induced dopaminergic cell death via improved
clearance of autophagic vacuoles in an STAT1- and
mitochondrial ROS-dependent manner. In vivo, CPF
similarly elicited STAT1 activation and oxidative stress-
mediated proapoptotic signaling in the substantia nigra
and striatum, but not the cortex [50]. Co-administration
of mitoapocynin ameliorated these molecular effects and
rescued CPF-induced motor deficits and nigrostriatal
dopaminergic neurodegeneration [50].

These findings support a role for oxidative stress in
mediating dopaminergic neurotoxicity associated with
chronic CPF exposure but raise numerous questions:
How does CPF activate STAT1, and what is the bio-
logical explanation for the regional specificity of STAT1-
dependent apoptosis? Do OPs other than CPF similarly
trigger dopaminergic cell death via oxidative stress?
Does oxidative stress mediate nondopaminergic effects
associated with chronic OP neurotoxicity?

Calcium dysregulation
The role of Ca2þ-dependent signaling in cognitive
behavior and mood is well documented, and Ca2þ dysre-
gulation is observed in many neurologic disorders [51].

Repeated low-dose DFPexposure (Table 1) was recently
Current Opinion in Toxicology 2021, 26:49–60
shown to cause significant neuronal damage in the hip-
pocampal region associated with depressive signs and
cognitive deficits in adultmale rats at 3 and 6months after
exposure [52,53]. Ca2þ imaging studies of hippocampal
neurons acutely isolated 3 or 6 months after exposure
revealed that DFP was associated with a significantly
greater percentage of neurons with elevated concentra-
tions of intracellular Ca2þ ([Ca2þ]i) [52,53]. Pharmaco-

logic block of voltage-gated Ca2þ ion channels, AMPA/
kainate channels, or other nonspecific, gadolinium
chlorideesensitive cation channel did not reduce
[Ca2þ]i. In contrast, pharmacologic antagonism of
NMDARs with MK-801 produced a small but significant
reduction, whereas ryanodine receptor (RyR) antagonism
by dantrolene or combined block of the RyR and inositol
triphosphate receptor with levetiracetam significantly
decreased [Ca2þ]i [53]. These findings suggested that
the sustained increase in hippocampal [Ca2þ]i originated
from persistent release of Ca2þ from intracellular stores, a

possibility supported by western blot data demonstrating
DFP reduced levels of the RyR stabilizing protein
calstabin2 [53]. In support of this hypothesis, in vivo
treatment with levetiracetam at 3 months after DFP
exposure mitigated depression-like behavior in the su-
crose preference test, elevated plus maze, and forced
swim test and improved learning andmemory behavior in
the novel object recognition task [53].

These findings support a mechanistic link between
calcium dysregulation and behavioral effects of repeated

low-dose DFP. However, levetiracetam did not restore
[Ca2þ]i or behaviors to baseline, suggesting additional
mechanisms likely contribute to these phenotypes.
Because levetiracetam not only blocks RyR and inositol
triphosphate receptor activity, but also modulates
glycine and GABA receptors and binds to SV2A protein
[54], it will be important to determine whether leve-
tiracetam reversed the underlying molecular changes
responsible for elevated [Ca2þ]i in DFP neurons and
how DFP reduced calstabin2 expression.
Conclusions
OPs cause neurotoxicity (Box 2) via multiple mecha-
nisms that vary depending on the exposure paradigm
(Figure 1). Recent data implicate oxidative stress in

both acute high-level and repeated low-level OP expo-
sure. However, significant questions remain regarding
functional relationships between oxidative stress,
neuroinflammation, and neurodegeneration, the mech-
anism(s) by which OPs trigger these processes, and their
contribution(s) to neurologic outcomes. Untangling
these relationships is complicated by the dynamic
nature of these processes that vary in a time- and region-
dependent manner. There is also a critical need for
determining whether neurotoxic mechanisms generalize
across OPs. Answering these questions is critical for

developing diagnostic biomarkers to identify OP-
www.sciencedirect.com
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intoxicated individuals at greatest risk for neurologic
outcomes and for determining therapeutic targets and
windows that provide optimal neuroprotection from
acute or chronic OP neurotoxicity.
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