
UCLA
UCLA Electronic Theses and Dissertations

Title
Machine Learning-Based Predictive Control of an Electrically-Heated Steam Methane
Reforming

Permalink
https://escholarship.org/uc/item/9w9709m8

Author
wang, yifei

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9w9709m8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Machine Learning-Based Predictive Control of an Electrically-Heated Steam Methane Reforming

Process

A thesis submitted in partial satisfaction of the

requirements for the degree Master of Science

in Chemical Engineering

by

Yifei Wang

2024

© Copyright by

Yifei Wang

2024

ABSTRACT OF THE THESIS

Machine Learning-Based Predictive Control of an Electrically-Heated Steam Methane Reforming

Process

by

Yifei Wang

Master of Science in Chemical Engineering

University of California, Los Angeles, 2024

Professor Panagiotis D. Christofides, Chair

Hydrogen plays a crucial role in improving sustainability and offering a clean and efficient

energy carrier that significantly reduces greenhouse gas emissions. However, the primary method

of industrial hydrogen production, steam methane reforming (SMR), relies on the combustion of

hydrocarbons as the heating source for the reforming reactions, resulting in significant carbon

emissions. To address this issue, an experimental setup of an electrically-heated steam methane

reformer (e-SMR) has been constructed at UCLA, and a lumped first-principle dynamic process

model was built based on parameters estimated from the experimental data in a previous study.

Subsequently, the first-principle dynamic process model was implemented into the computational

ii

model predictive control (MPC) scheme, successfully driving the hydrogen production rate to the

desired setpoint. While these works are important and pave the way for developing MPC for large-

scale e-SMR processes, the first-principle process model may not accurately reflect the actual

process behavior, particularly as the process behavior changes with time. Therefore, the develop-

ment and establishment of an adaptive data-driven approach for implementing model predictive

control in the e-SMR process is necessary. To address this need, the present work investigates

the construction of recurrent neural network (RNN) models for an e-SMR process in-depth, uti-

lizing data from an experimentally-validated first-principle model. Specifically, a long short-term

memory (LSTM) layer was utilized in the RNN model to effectively capture the complex corre-

lations present in long-term sequential data. Subsequently, this LSTM-based RNN process model

was employed to design an MPC, and its performance was evaluated through comparison with

proportional-integral (PI) control. To address potential disturbances and variability in a typical

e-SMR process, three distinct approaches were developed: MPC with an integrator, MPC with

real-time online retraining (transfer learning), and offset-free MPC. These approaches effectively

eliminated the offset caused by disturbances. Overall, this study underscores the effectiveness of

utilizing RNN models to capture process dynamics in an experimental e-SMR process. It also out-

lines strategies for employing RNN-based control and multiple approaches to address disturbances

in general processes with partially infrequent and delayed measurement feedback. This approach

is particularly valuable in scenarios where developing first-principle models for a new process may

be challenging.

iii

The thesis of Yifei Wang is approved.

Dante A. Simonetti

Carlos Gilberto Morales Guio

Panagiotis D. Christofides, Committee Chair

University of California, Los Angeles

2024

iv

Contents

1 Introduction 1

2 Preliminaries 8

2.1 Notations . 8

2.2 Process Overview . 9

2.3 Model Predictive Control . 12

2.4 Offset-Free Model Predictive Control . 13

3 Recurrent neural network model 16

3.1 Data Generation and Preprocessing . 17

3.1.1 Data Generation . 17

3.1.2 Data Preprocessing . 19

3.2 Model Construction and Hyperparameter Tuning 22

3.2.1 Model Structure . 22

3.2.2 Hyperparameter Tuning . 28

3.3 Model Training and Evaluation Process . 31

v

3.4 Transfer Learning Method . 39

4 Recurrent Neural Network Model-Based Predictive Control 44

5 Disturbance Compensation 54

5.1 Disturbance Compensation . 54

5.1.1 Model Predictive Control under Disturbance 54

5.1.2 Model Predictive Control Combined with an Integrator 55

5.1.3 Model Predictive Control with RNN Real-Time Online Retraining 60

5.1.4 Offset-Free Model Predictive Control . 67

6 Conclusion 71

vi

List of Figures

2.1 Process schematic of the electrified steam methane reformer at UCLA. 11

3.1 The structure of the RNN model. 24

3.2 The structure of an LSTM unit. 25

3.3 RNN model predictions of the flow rates of CH4, H2O, H2, CO and tempera-

ture compared to first-principle model predictions based on step change and ramp

change reference data. 35

3.4 RNN model predictions of the concentrations of CH4, H2O, H2, CO and temper-

ature compared to first-principle model predictions based on sinusoidal reference

data. 36

3.5 Comparison of RNN and first-principle predictions within two horizons of MPC. . 38

3.6 Impact of the transfer learning method on a reference RNN model for capturing

real experimental trends, with the flow rates of CH4, H2O, H2, CO and temperature

as the output variables. 42

4.1 Closed-loop RNN-based model predictive control scheme to regulate the H2 pro-

duction rate for the e-SMR process. 47

vii

4.2 Setpoint tracking control of the H2 production rate with an RNN-based model pre-

dictive controller for the e-SMR process. 50

4.3 Current and H2 production rate behaviors under PI control and MPC for the e-SMR

process. 52

4.4 Comparison between the generated data from polynomial regression and simulated

measurement data for all gas species. Measurement data used for data generation

are the first 3 simulated GC data points during the MPC run. 53

5.1 Setpoint tracking control of the H2 production rate with an RNN-based model pre-

dictive controller for the e-SMR process under disturbances. 56

5.2 Setpoint tracking control of the H2 production rate with an RNN-based model pre-

dictive controller with an integrator for the e-SMR process under disturbances. . . 60

5.3 Setpoint tracking control of the H2 production rate with RNN-based model predic-

tive controller combined with an integrator under different disturbances. 61

5.4 Setpoint tracking control of the H2 production rate with an RNN-based model pre-

dictive controller using online RNN retraining by utilizing real-time data for the

e-SMR process under disturbances: components and processing flow. 62

5.5 Setpoint tracking control of the H2 production rate with an RNN-based model pre-

dictive controller using online RNN retraining by utilizing real-time data for the

e-SMR process under disturbances: simulation results. 67

5.6 Setpoint tracking control of the H2 production rate with an RNN-based offset-free

model predictive controller for the e-SMR process under disturbances. 70

viii

List of Tables

3.1 Testing and Training MSE for Different Neurons. 29

3.2 Average relative errors of FCH4 , FH2 , FCO2 , FCO, and T started at different initial

conditions. 39

5.1 Settling time and maximum overshoot for different values of activation energies

(Ea) under the model predictive controller combined with an integrator scheme. . . 59

ix

ACKNOWLEDGMENTS

I would like to extend my deepest gratitude to my advisor, Professor Panagiotis D. Christofides,

for his guidance and support throughout my research. His expertise and encouragement have

played a significant role in shaping this thesis.

I am also thankful to Professors Dante Simonetti and Carlos Gilberto Morales Guio for their

review of my thesis and their contributions as members of my Master’s thesis committee.

I sincerely appreciate my colleagues in the research group. Specifically, I acknowledge

Berkay Çıtmacı, Fahim Abdullah, Matthew Tom, Aisha Alnajdi, and Dominic Peters for their

guidance and support. Additionally, I extend my thanks to Xiaodong Cui, Esther Hsu, and Parth

Chheda for their collaboration on the project. I am particularly grateful to Xiaodong and Berkay

for their remarkable contributions and insights, which have been invaluable to my research. Lastly,

I want to express my deep appreciation to my friends Zhichao Xue and Xiang Han for their support

throughout this journey.

Finally, I would like to extend my gratitude to my parents, Yuzhi Miao and Huaqiu Wang, for

their unwavering love, encouragement, and support throughout my Master’s degree. Their belief

in me has been a constant source of motivation and strength.

x

Chapter 1

Introduction

Hydrogen (H2) is recognized for its clean and efficient emissions properties and is crucial in

addressing global climate change and supporting the urgent energy revolution [1]. As an ideal

energy carrier [2], hydrogen substantially contributes to the establishment of environmentally

friendly industries, offering a sustainable alternative to traditional fossil fuels. Moreover, its piv-

otal roles in transportation [3], manufacturing [4], energy storage and production [5] underscore

its significant contribution to decarbonization. However, in modern industry, nearly 95% of H2

is produced through steam methane reforming (SMR) [6]. Steam methane reforming is a classic

industrial process used to produce hydrogen from natural gas. During the traditional SMR reaction

process, the combustion of fossil fuels creates the high temperatures required to heat the reactions

in large-volume industrial reactors, which significantly contributes to greenhouse gas accumula-

tion and climate change. To address this issue, a novel electrically-heated SMR (e-SMR) system

is considered as an alternative green hydrogen production method. Instead of utilizing heat from

1

natural gas combustion, electricity is used as the energy source to heat the reformer. This elec-

tricity is generated from various clean energy sources, including solar energy, wind power, and

hydropower [7]. Therefore, substantially decreased carbon emissions are achieved since no carbon

is generated to supply the necessary heat for the e-SMR. Additionally, when compared to conven-

tional SMR reactors, [8] also mentioned enhanced catalytic performance in an e-SMR setup due

to direct heating of the catalyst. Moreover, electrification can eliminate the need for a combustion

furnace, resulting in a significantly reduced reactor volume [9].

To build an energy plant based around an e-SMR unit, a controller must be designed to main-

tain a stable hydrogen production rate, addressing challenges such as start-up procedures, catalyst

deactivation, and setpoint modulation. At UCLA, the experimental setup for the e-SMR was con-

structed for e-SMR-based hydrogen production in an experimental process, and research work

was conducted to achieve the desired hydrogen production using model predictive control (MPC)

based on first-principle models, leading to a successful experimental implementation and desired

control behavior [10, 11, 12]. While the integration of the first-principle model with the MPC con-

troller effectively drives the output to the desired setpoint in previous studies, the predictions of the

first-principle model may not fully reflect the complexities of real experimental processes. The dis-

crepancies arise from assumptions made in constructing the first-principle model, which neglected

crucial factors inherent in real reaction processes, such as mass transfer phenomena and catalyst

deactivation. These uncertainties emphasize the necessity of developing alternative approaches to

accurately simulate the real process. Therefore, a data-based approach for MPC implementation

in the e-SMR process is investigated in this study.

With the advancements in computational power and the development of sophisticated algo-

2

rithms in the era of big data, the evolution of machine learning has gained significant attention

in the process modeling area. Over the past decades, the machine learning technique has evolved

from a research-oriented area to a field with various real-world applications, such as healthcare,

finance, manufacturing, etc [13]. Among various architectures of machine learning techniques,

neural networks have emerged as one of the most powerful due to their ability to learn and model

non-linear and complex data patterns. The common types of neural networks include feed-forward

neural networks (FNNs), recurrent neural networks (RNNs), and convolutional neural networks

(CNNs) [14]. Specifically, RNNs have gained significant popularity for modeling a broad class of

nonlinear dynamical systems. The origins of the RNN model date back to the 1980s, marked by

the invention of Hopfield networks for the purpose of pattern recognition [15]. Since then, vari-

ous types of RNNs have been extensively developed for applications such as pattern recognition

and natural language processing. Today, with the rapid advancement of computational resources

and the availability of open-source neural network libraries and frameworks like TensorFlow and

Keras, RNNs have been leveraged as one of the most effective methods to solve regression and

classification problems in engineering fields [16]. For example, [17] describes the development of

a neural network-based detection system designed to identify cyberattacks in chemical processes.

[18] used RNNs and other netwroks in an MPC scheme to improve the efficiency and quality of

a cooling crystallization process. [19] introduced an RNN-based MPC framework for a plasma

etching process.

Compared to feed-forward and other types of neural networks with single-directional connec-

tions between input and output vector, RNNs exhibit advantages due to their additional recurrent

connections formed between sequential data, which preserve the memory of the previous layer.

3

This characteristic allows RNNs to effectively process and learn the information between data

points while accounting for time dependency, making them particularly suited for tasks such as

natural language processing, time series prediction, and pattern recognition [14]. Moreover, the

distinctive architecture leverages RNNs to capture the dynamic behavior of the target process in a

way conceptually similar to the nonlinear state-space ordinary differential equation models, mak-

ing them a valid alternative to the first-principle model [20]. Although a basic RNN model can

be more effective for simulating time-dependent processes than other neural network models, their

structural simplicity may be insufficient to accurately capture highly complex processes with long-

term data dependencies. Today, various types of modern RNN-based process models have been

developed and incorporated into MPC schemes to enable long-term control actions on sequential

data. The common architectures of the modern RNN-based process model are long short-term

memory (LSTM), gated-recurrent unit (GRU), and Encoder-decoder. LSTM and GRU use a sim-

ilar gate mechanism to regulate information flow and manage the long-term time dependencies in

sequential data. According to a study conducted by [21], an LSTM and GRU model accurately pre-

dicted process outputs and achieved desired control behaviors to a similar extent when integrated

with an MPC scheme for controlling two chemical reactors. The Encoder-Decoder is a type of

special RNN model incorporating two RNN models in series. Compared to traditional RNNs, the

Encoder-Decoder RNN performs better in processing long-term sequential data by using a more

flexible time window size of input and output [22]. Moreover, a study conducted by [23] found that

the Encoder-Decoder outperforms LSTM-based and GRU-based RNNs in simulating dynamic pro-

cesses that involve numerous long-term dependencies. Even though the Encoder-Decoder neural

network model overcomes certain limitations of traditional RNN models, it also has a higher com-

4

putational cost while an LSTM-based RNN model is adequate at capturing most of the dynamic

process behavior [24].

In the field of chemical engineering, machine learning techniques can also make significant

contributions. In a study conducted by [25], the LSTM-based RNN process model trained on

experimental data was implemented into a multi-input-multi-output (MIMO) control scheme to

regulate ethylene and carbon monoxide production in a rotating cylinder electrode reactor for car-

bon dioxide (CO2) electrochemical reduction, achieving effective closed-loop control and approved

the feasibility of RNNs in the chemical engineering context. Nevertheless, there has been limited

research on using RNNs to simulate the e-SMR processes, despite their ability to accurately ap-

proximate complex dynamics and non-linearities without the knowledge of the underlying physics

and chemistry principles behind the process. Thus, this area presents an opportunity for further

exploration, which could make further advancements.

Based on these considerations, RNN-based model predictive control emerges as a promising

approach for the e-SMR process. However, various unforeseen phenomena can occur during the e-

SMR process. Notably, carbon formation (coking) is a prevalent issue that can deteriorate catalyst

performance [26, 27, 28]. These changes introduce disturbances to the actual e-SMR process,

resulting in inaccuracies in the RNN model. Therefore, strategies designed to address disturbances

in an e-SMR process MPC scheme are required.

To address disturbances in an MPC scheme, several approaches have been developed. One

widely used method in early MPC algorithms is MPC combined with an integrator, which elim-

inates offset by adding extra control action derived from error integration [29]. [30] discussed

embedding integrators within designed models, while [31] applied integrators in dynamic matrix

5

control (DMC). The offset-free approach is a more recent innovation for eliminating disturbance-

induced offset compared to conventional methods. Various disturbance models have been explored

and incorporated into this strategy (e.g., [32] and [33]). Specifically, the offset-free strategy em-

ploys additional disturbance states and a disturbance observer to estimate and counteract distur-

bances [34], thereby effectively addressing offsets. Beyond these general methods, online retrain-

ing using transfer learning offers another solution based on the properties of RNNs. This approach

involves retraining the pre-trained RNN model with real-time data, adapting it to current conditions

to manage offset [35, 36]. By continuously updating the RNN model with new data, the control

system can effectively respond to disturbances and maintain desired performance levels. These

methodologies handle disturbances within an MPC scheme sufficiently and can be applied to the

e-SMR process.

In this study, we aim to explore the application of a machine learning-based model to re-

place the first-principle model within an MPC framework for process control. Specifically, an

RNN model will be constructed based on the data generated from the first-principle model to cap-

ture the underlying pattern, which introduces a solid theoretical background of the actual e-SMR

experiment. Subsequently, the RNN-based process model will be employed in an MPC scheme

to estimate the initial condition of the controller and forecast the future state values of the pro-

cess variables as a predictive model within time horizons. Considering disturbances in an e-SMR

process, three approaches of RNN-based MPC schemes are emphasized for eliminating the final

offset: MPC combined with an integrator, MPC with transfer learning, and offset-free MPC. These

approaches will be analyzed based on their control performance. Our primary objective is to in-

vestigate the application of the RNN-based process models in the context of hydrogen production

6

and control.

7

Chapter 2

Preliminaries

2.1 Notations

The notation x ∈ R5 represents the vector of state variables, involving flow rates with deriva-

tion form (Fi − Fsp) of methane (CH4), carbon monoxide (CO), hydrogen, carbon dioxide and the

averaged reactor temperature (T − Tsp). The notation x⊺ represents the transpose of the vector x.

The notation x̂ is the predicted vector of state variables. The notation x̄ is the predicted vector

of state variables combined with the error tracking terms (θ). The notation u ∈ R1 represents

the vector of the control action, involving the electric current with derivation form (I − Isp). The

notation u⊺ represents the transpose of the vector u. A function f(x) belongs to the class C1 if it

exhibits continuous differentiability along its domain. F (·) is the model to be used to estimate state

values. F̄ (·) is the modified model to be used to estimate state values. The notation ŷ represents

the deviation form of the target output vector predicted by the model. The notation ỹ represents

the deviation form of measured target output.

8

2.2 Process Overview

In our previous work, an electrically heated steam methane reformer was built to convert

methane to hydrogen gas carbon emission-free from heating [10]. In the electrically heated SMR

setup, methane, water steam, and argon (Ar) gas are fed to a tubular reactor under different tem-

peratures and pressures to react and produce hydrogen gas. The overall chemical reactions can be

written as follows:

Steam methane reforming : CH4 + H2O ⇌ 3H2 + CO, ∆H298 = 206.1 kJ ·mol−1 (2.1a)

Water gas shift : CO + H2O ⇌ CO2 + H2, ∆H298 = −41.15 kJ ·mol−1 (2.1b)

where steam methane reforming and water gas shift reactions are involved. Steam methane re-

forming is a strongly endothermic reaction that converts methane and water to hydrogen and car-

bon monoxide, and the water gas shift is a slightly exothermic reaction that converts the carbon

monoxide and water to carbon dioxide and hydrogen gas. Large amounts of energy are needed

to initialize the steam methane reforming reaction [37, 38, 39, 40], and a highly active Ni-based

catalyst is used in the reactor under high reaction temperatures to reduce activation energies and

increase the net SMR reaction rate.

The e-SMR process of interest outlined in Fig. 2.1 describes the transformation of methane

and steam reactants to carbon monoxide, carbon dioxide, and hydrogen products. Though the

experimental argon input is neglected in the RNN model developed in this study, the inert gas is

used as a tracer in the experiments for volumetric flow rate monitoring. Temperature measurements

are taken at the inlet and outlet of the reformer and are recorded on a per-second basis with a

9

set of two thermocouples (TC). The average of these experimental temperature measurements is

utilized for modeling the reactor temperature. A DC power supply sends electrical energy through

the outer wall of the experimental reformer which generates the required energy input for the

SMR reactions in the form of resistive-heat, also known as joule-heating. Temperature control in

the reformer is achieved with a proportional-integral (PI) controller that modulates the electrical

current input using a first-order algorithm that has been derived and tested by [10]. A nickel-

embedded zirconia washcoat catalyst resides along the inner walls of the reformer to lower the

activation energies of the SMR and WGS reactions. The synthesis procedure for the washcoat was

developed and modeled by [11]. After the product gas mixture exits the reformer tube, the mixture

enters a steam condenser that removes unreacted water vapor to prepare the gasses for analysis in

a gas chromatography device (GC). Mole fractions of each product species are measured in a TCD

column as a means for quantifying the compositions of the gas products.

To capture the dynamic behavior of the e-SMR process, a lumped-parameter dynamic model

was constructed in [10] based on the reaction kinetics developed in [41]. SMR, WGS, and gas

species adsorption kinetic parameters were experimentally validated in [10, 11]. Due to the rela-

tively small scale of the experimental setup, the first-principle model is built based on a simplified

modeling approach, which approximates the tubular reactor as a continuously stirred tank reactor

(CSTR). In the case of a lumped parameter model, the first-principle model is built based on the

mass balance of each chemical species to simulate a gas-phase CSTR. Due to the temperature de-

pendency of the reaction rates, the energy balance was also employed in the first-principle model

to estimate the kinetic parameters. Additionally, Pq = FRT is held at all times to satisfy the ideal

gas law within the flow system reactor, where P is the pressure, q is the volumetric flow rate, F is

10

MethaneVent

Hydrogen

Argon
GC

DC Power Source
Positive Lead (+)
Negative Lead (-)

Reformer

/// /// /// /// ///

/// /// ///

///
///

///

/// /// ///

Steam
Condenser

Insulation

Back Pressure
Regulator

Steam
Box

TC1

TC2

Figure 2.1: Process schematic of the electrified steam methane reformer at UCLA.

the molar flow rate, R is the universal gas constant and T is the reactor temperature. The details

about the reaction kinetics and the mass balance equations can be found in [10].

Remark 1. The flow rate of each gas species exiting the reactor is measured using GC and quan-

tified in standard cubic centimeters per minute (SCCM). Considering the 15-minute analysis time

and 3-minute cooling period of the GC, an 18-minute sampling interval and a 15-minute delay are

factored into the process. Consequently, the gas measurement is characterized by infrequent and

delayed data acquisition.

11

2.3 Model Predictive Control

Model predictive control works by using a mathematical model of a system to predict its

future behavior over a set time horizon. At each control step, MPC solves an optimization problem

to determine the sequence of control actions that will minimize a predefined cost function, which

typically includes terms for tracking desired outputs and minimizing control efforts, while satis-

fying any constraints on inputs and outputs. Once the optimal sequence is determined, only the

first control action is implemented, and the process is repeated at the next time step with updated

system information, effectively moving the prediction horizon forward and continuously adjusting

the control actions [42]. One form of the MPC mathematical formulation is represented by the

following equations:

J = min
u

∫ tk+Nh

tk

L(ŷ(t),u(t)) dt (2.2a)

s.t. ˙̂x(t) = F (x̂(t),u(t)) = f(x̂(t)) + g(x̂(t))u(t), x̂(tk) = x(tk) (2.2b)

ŷ(t) = h(x̂(t)) (2.2c)

L(ŷ(t),u(t)) = ŷ⊺(t)Aŷ(t) + u⊺(t)Bu(t) (2.2d)

t ∈ [tk, tk+Nh
) (2.2e)

||u(tk)− u(tk−1)|| ≤ uc (2.2f)

u(t) ∈ U ∀t ∈ (tk, tk+Nh
) (2.2g)

where u is the control input vector, which is also a variable in the optimization problem, Nh is the

horizon length, L is the objective function to be optimized, which measures the difference between

12

the setpoint and controlled output prediction over the horizons, x̂ is the predicted vector of all state

variables by the model, ŷ is the target output vector predicted by the model and F (·) is the model

to be used to estimate state values over the horizon. A and B are positive definite weight matrices

for the output target values and manipulated control input, respectively. The objective of the MPC

is to find the optimal control input to minimize the difference between the model predictions and

setpoint. It is crucial to emphasize that this optimization problem is solved under the rate of change

and magnitude constraints on the control input vector (Eq. 2.2f, Eq. 2.2g). Specifically, Eq. 2.2f is

employed to ensure that the control input change remains within a practically desired range, while

Eq. 2.2g is implemented to ensure the calculated control action values adhere to specific limits.

2.4 Offset-Free Model Predictive Control

Offset-free model predictive control is a control strategy that aims to regulate the output from

the system to a desired reference while simultaneously estimating and compensating for unknown

disturbances or offsets. Compared with the traditional MPC scheme, an additional term (θ) is

incorporated to augment the system model by tracking the accumulation of the error between the

real data and estimated values, which solves the steady-state errors resulting from model-plant

mismatch or disturbances. Hence, the model is modified by this error accumulation term as shown

below [34, 43]:

˙̂x(t) = F (x̂(t),u(t)) +Gθθ(t) (2.3a)

θ̇(t) = 0 (2.3b)

13

where θ is the error accumulation term with its corresponding coefficient, Gθ. This augmented

model can be further written as follows:

˙̄x(t) = F̄ (x̄(t),u(t)) (2.4a)

˙̄x(t) =

 ˙̄x(t)

θ̇

 (2.4b)

F̄ (x̄(t),u(t)) =

F (x̂(t),u(t)) +Gθθ(t)

0

 (2.4c)

This modification subsequently utilizes the updated model in the control scheme. To estimate the

current augmented term in real time and improve the estimation of other state variables in the state

vector, a Luenberger observer is employed.

˙̄x(t) = F̄ (x̄(t),u(t)) +K [ỹ(tn)− ȳ(tn)] (2.5a)

K =

Ky

Kθ

 (2.5b)

where K is the gain matrix of the Luenberger observer, ỹ is the measured output, ŷ is the es-

timated output, and tn is the measurement time instant. A constant error between measurement

and estimation is assumed for the interval between two consecutive measurements, and the θ can

be deemed as the integral of this error. Consequently, the model undergoes continuous correction

until no mismatch between measurement and estimation is achieved. The estimated state vector

is utilized for the initial values of the predictions in the MPC. In the present work, the offset-free

MPC concept is combined with the use of neural network models in MPC and it is applied to the

14

electrified SMR model under disturbances in a later section.

15

Chapter 3

Recurrent neural network model

The recurrent neural network is a type of machine learning-based process model that has

been widely applied for modeling nonlinear dynamic processes. Unlike other neural network (NN)

process models, the RNN process model can memorize the information from a previous input in

the sequence and predict the output based on the ordinal correlation between different time steps.

Due to this advantage, the RNN process models are more suitable to simulate dynamic processes

involving time-dependent data compared to other NN models. Furthermore, the feedback loop in

the RNN models that enables the capture of the model’s dynamic behavior over time is similar

to how non-linear first-principle models describe the process behavior [24]. Therefore, the RNN

models are better options than other NN process models for simulating time-dependent dynamic

processes. In our study, an LSTM-based RNN process model is built to capture the behavior of a

first-principle-based model built in our prior work [10], which is a model constructed to simulate

the dynamic behavior of the e-SMR process. Additionally, the LSTM-based RNN process model

is used as an initial condition estimator for the MPC controller, and also as a predicting model in

16

the MPC schemes to predict the flow rates of hydrogen products within prediction horizons based

on previously known reaction states, which will be discussed in later chapters. In this section,

the architecture of an LSTM-based RNN process model is discussed in detail in the following

order: Section. 3.1 describes the data generation and preprocessing, Section. 3.2 describes model

construction and hyperparameter tuning, Section. 3.3 describes the model training and evaluation

process, and Section. 3.4 describes the transfer learning method.

3.1 Data Generation and Preprocessing

3.1.1 Data Generation

In our previous study published in [10], a first-principle-based process model was built based

on chemical engineering fundamental principles that included a mole balance and energy balance

around a CSTR control volume. In this work, the first-principle-based process model was used to

simulate the real experimental process in our MPC scheme. Thus, the data used to train, validate,

and test the RNN model is generated from the open-loop simulation using the first-principle model.

Specifically, the first-principle model generates reaction states at each time step within a defined

time interval, starting from different initial conditions. Subsequently, the data is transformed into

the desired format to train the RNN model. To consider different scenarios and improve the gen-

eralization of the model, a wide range of initial conditions (10,000 initial conditions of 7 input

variables: concentrations of CH4, CO, CO2, H2O, H2, Ar, and the reactor temperature (T)) are ap-

plied to the first-principle model to conduct the open-loop simulations for twenty seconds. These

results are collected as the dynamic behavior of the simulated experimental process starting at dif-

17

ferent initial conditions. Several limits and bounds for each input variable were applied to the data

generalization process to make the 10,000 initial conditions conceptually reasonable according to

the understanding of the e-SMR process principles. For example, the ideal gas law principle and

its derivative correlation between the mole fraction and the concentration of each chemical species

involved in the reactor are used to determine the initial concentrations of each chemical species, as

shown in Eq. 3.1:

P

R · T
= Ctotal (3.1a)

CCH4 = Ctotal ·XCH4 (3.1b)

CCO = Ctotal ·XCO (3.1c)

CCO2 = Ctotal ·XCO2 (3.1d)

CH2O = Ctotal ·XH2O (3.1e)

CH2 = Ctotal ·XH2 (3.1f)

CAr = Ctotal ·XAr (3.1g)

XCH4 +XCO +XCO2 +XH2O +XH2 +XAr = 1 (3.1h)

where P , n, and T are the pressure, number of moles, and temperature within the reactor. C i is the

concentration of the species i, and X i is the mole fraction of the species i, respectively. The mole

fraction of each species is constrained between 0 and 1. The initial conditions of the electric current

are 24 and 31 A, and the initial temperature conditions are constrained between 482 ◦C and 743 ◦C.

According to Eq. 3.1, the sum of the initial concentrations of each chemical species is equal to the

18

total concentration, which requires the sum of the fraction of each chemical species to be 1 to obey

the ideal gas law principle. Moreover, the first-principle process model utilizes concentrations as

variables whereas the RNN model uses flow rates as variables. Thus, the concentration variables

generated from the first-principle model are converted to flow rates before being applied to the

RNN model. This conversion from concentration to flow rates involves another important factor

that affects the quality of training data for the RNN: the volumetric flow rate. The equation of

volumetric flow rate (q) is shown as:

q =
FT0 + 2r1W

P
RT

+
VR

T

dT

dt
(3.2)

where FT0 is the total inlet molar flow rate, r1 is the reaction rate of Eq. 2.1a, VR is the reactor vol-

ume. The details of the equation can be found in [12]. Based on the volumetric flow rate equation,

an additional condition requiring the calculated volumetric flow rate to be positive is applied to

the initial condition-generating process. The open-loop simulation data-generation process yields

200,000 data points of the flow rates of CH4, CO, CO2, H2O, H2, Ar, reactor temperature, and

electric current values.

3.1.2 Data Preprocessing

For a sequential forecasting task, the data must be processed in the model in batches rather

than single sequences [24]. The sliding window technique is employed to separate and extract the

RNN input and output data from the 200,000 data points generated from the first-principle model

and arrange them into the desired dimensions for the training process. The sliding function is a data

19

processing technique that is widely used for preprocessing time-dependent data sets. In our case,

the window size is 10, which is set to equal the time length of the RNN input, and the step size is 1.

Specifically, the sliding-window technique is applied to the dataset by shifting a ten-second time

window one-time step at a time across the 200,000 data points collected from the first-principle-

based process model. The fixed time window of ten seconds allows the sliding window technique

to extract the reaction states from i seconds to i + 9 seconds time step as a ten-second scale RNN

input data, and the reaction states at i + 10 seconds time step as a one-second scale output data,

where i ∈ {0, 1, 2, 3, . . . , n− 9} for n data. Through this approach, the data points are separated

into the size of (105, 10, 6) as an RNN input and (105, 1, 5) as an output, where the first index

refers to the number of ten-second scale RNN input data sets generated using the sliding window

technique, the second index represents the size of the time window, and the third index represents

the number of RNN input/output variables. Following this data arrangement, the model will learn

to predict the state variables at the immediate time step based on the known data from the previous

ten seconds as the RNN input.

When constructing an RNN model, it is essential to separate the dataset into training and

testing sets. Additionally, a separate validation set is recommended for tuning hyperparameters

to optimize model performance. In our study, the data is split into training, validation, and test-

ing datasets by the train-testing split technique. A split ratio of 70/15/15 gives the RNN model

70,000 training inputs/outputs to update the weights and biases, 15000 validation inputs/outputs

to adjust the hyperparameter of the model, and 15000 testing inputs/outputs to evaluate the model

performance on unseen data. The data split helps to prevent data leakage, which can occur when

information outside of the training data, such as mean or standard deviation, influences the training

20

process and eventually results in a false reflection of the model performance on unseen data [24].

Data normalization is an essential preprocessing step that transforms data to a reasonable

scale, enhancing the quality of the training process. Variations in the dataset can significantly

disrupt the learning process, leading to poor model performance due to exploding or vanishing

gradients. Normalization mitigates these variations, stabilizing gradients, improving model gen-

eralization, and increasing the convergence rate during optimization. In our case, the dataset is

normalized using the Min-Max scaling method, which scales the data between 0 and 1 according

to the following equation:

znormalzied =
z − zmin

zmax − zmin

(fmax − fmin) + fmin (3.3)

where zmax is the maximum value within the dataset, zmin is the minimum value within the dataset,

z is the target data point, fmax is the user-defined maximum value of the data after scaling, and

fmin is the user-defined minimum value of the data after scaling. In our case, fmax is 1 and fmin

is 0. The Min-Max scaler is fitted to the training dataset and subsequently applied to transform the

training, testing, and validation datasets. This process scales the original data to a range between

0 and 1, eventually improving the training process while preserving the original data distribution.

Remark 2. The data preprocessing process in our study remains simple due to the high quality of

data generated by the validated first-principle model. In scenarios where a first-principle model is

unavailable and noisy experimental data must be utilized, additional data processing techniques

may be necessary to combat the noise and improve the training efficiency.

21

3.2 Model Construction and Hyperparameter Tuning

3.2.1 Model Structure

Depending on the complexity of the dynamic behavior of the process to capture, different

neural network models may be applied. Among neural networks, the FNN model is the simplest

neural network model that computes the weights and outputs of neurons by propagating the infor-

mation in one direction from input to output. The simple learning algorithm and basic architecture

make it easy to construct and implement FNNs; however, this type of neural network is limited

to capturing complex dynamic behavior involving ordinal datasets. Compared to the FNN model,

the RNN model computes the sequence of hidden states and updates the weights by including

time as an additional factor to account for the time-dependent property. In other words, the RNN

model is considered a two-dimensional model that includes time as an additional factor while the

FNN model is one-dimensional [24]. Like any other type of neural network model, the learning

algorithm behind the RNN model consists of two steps: the forward pass and the backward pass.

In the forward pass, the RNN model regulates the flow of information between layers, between

different time steps, and passes the information down to the output layer to make a final prediction.

In the backward pass, the RNN model back propagates the difference between the predicted out-

put and the true value of the target to update weight parameters. For this reason, the RNN model

has been a popular option to study time series data and is also suitable for this study. However,

as the sequence length of input data increases and the weight matrices become larger in the stan-

dard RNN model, the output may diverge, leading to either extremely large (gradient exploding)

or small (gradient vanishing) gradient estimations during backpropagation. One solution to solve

22

this issue is to truncate the gradient at certain time steps to prevent large matrix computations

and divergent eigenvalues, yet this may result in losing information from earlier steps [24]. The

LSTM-based RNN model is a special type of RNN model that replaces the normal recurrent units

with LSTM units to solve the gradient vanishing/exploding issue by utilizing an additional cell

state and achieve better performance compared to standard RNN models [25]. According to [21],

the LSTM-based RNN model performed better than a standard RNN model as a process model in

the MPC scheme to stimulate the experiment process. Thus, an LSTM-based RNN model is used

in our study to capture the nonlinear dynamic behavior of the first-principle model. In this section,

the construction, learning algorithm, and hyperparameter tuning of an LSTM-based RNN model

are explained.

The RNN process model used in our study is constructed by four layers: an input layer, an

LSTM layer, an output layer, and a reshape layer, as shown in Fig. 3.1. The input layer serves

as the entry of the RNN model, accepting sequential data in the form of time-dependent inputs.

The size of our input data is (10,6), representing six input variables (I , T , F CH4 , FH2 , F CO2 , and

F CO) over ten seconds. The LSTM layer is composed of 180 neurons to capture the long-term time

dependencies of the sequential data. The selection of the number of neurons will be discussed in

detail in Section 3.2.2. After the LSTM layer, the dense layer receives all the active neurons from

the output of the LSTM layer and transforms them into the final outputs. Eventually, the reshape

layer transforms the final output into the desired data size (1,5), representing five output variables

including T , F CH4 , FH2 , F CO2 , and F CO at one-time step.

Among these layers, the LSTM layer is the key factor in capturing the time-dependent data

pattern [44]. LSTM units are designed to overcome the limitations of traditional RNN models, such

23

Figure 3.1: The structure of the RNN model.

as the vanishing and exploding gradient problems [45]. Compared to the basic recurrent units, the

LSTM unit uses an additional memory cell state, a candidate cell state, and a gate mechanism

involving three gates (forget gate, input gate, and output gate) to control the flow of information

and update the parameters between different time steps [14]. A structure diagram of the LSTM

unit showing the correlation between states and gates can be seen in Fig. 3.2. In the LSTM unit,

the memory cell state and candidate cell state help to save the relevant information and allow

the LSTM layers to learn long short-term dependencies in sequential data more efficiently than

traditional recurrent units. The gate mechanism involving the forget, input and output gate is

also crucial in the LSTM unit to determine the extent of the information to memory or discard.

24

According to Fig. 3.2, the C l
t−1 and H l

t−1 are the memory cell state and hidden state from the

Figure 3.2: The structure of an LSTM unit.

previous time step, Xt, C l
t and H l

t are the input, cell state, and hidden state at the current time step.

For a better understanding of concepts, the math expression of the memory cell state C t, candidate

cell state, and hidden state of the LSTM unit can be shown as follows:

Ĉt = tanh(XtWx +H l
t−1Wh + bc) (3.4a)

Ct = ft · Ct−1 + it · Ĉt (3.4b)

Ht = ot · tanh(Ct) (3.4c)

where Wc and bc are the weight matrix and the bias term of the candidate cell state. Based on

Fig. 3.2 and Eq. 3.4, the candidate cell state Ĉt is determined by applying a hyperbolic tangent

25

activation function (tanh) to the weighted sum of the RNN input vector at current time step Xt,

the hidden state at previous time step Ht−1 and the candidate cell-corresponded biased term bc.

The cell state at the current time steps Ct is computed based on the cell state at the previous time

step Ct−1 and Ĉt, which is the candidate cell state at the current time step. Additionally, ft is the

forget gate, and it is the input gate. The hidden state at the current time step Ht is computed based

on the current cell state Ct and ot output gate. The hyperbolic tangent activation function used

to compute the candidate cell state and hidden state will return a value between -1 and 1, which

helps to stabilize the training process and also captures both positive (increasing) and negative

(decreasing) changes from the current RNN input and previous hidden states. Unlike the cell states

and hidden states, math formulations of the forget, input, and output gates use a sigmoid activation

and incorporate the current RNN input vector and previous hidden states according to the equation:

ft = σ(XtWxf +H l
t−1Whf + bf) (3.5a)

it = σ(XtWxi +H l
t−1Whi + bi) (3.5b)

ot = σ(XtWxo +H l
t−1Who + bo) (3.5c)

where ft, it, and ot are the forget gate, input gate, and output gate. According to Fig.3.2 and Eq.3.5,

the forget gate is determined by the weighted sum of the current input vector X t and previous

hidden states H t-1, where each is multiplied by their corresponding weight parameters W i, and

is supplemented by the bias term bi, then passed through a sigmoid activation function, which

eventually returns a value between 0 and 1. The forget gate determines how much information

is kept or discarded from the previous cell state. The input gate and output gate share the same

26

math formulation as the forget gate which involves the current RNN input vector, previous hidden

states, corresponding weights, and biases. Different from the forget gate, the input gate decides

how much new information from the current candidate cell state should be added to the cell state,

whereas the output gate decides how much of the information restored in the cell state should be

passed to the next hidden states. Depending on the value returned by the sigmoid function, each

gate decides how much of the information will be discarded or passed down, where 0 indicates all

the information will be discarded and 1 means all the information will be kept and passed to the

next step.

Remark 3. In our study, a simple RNN structure with one LSTM layer is used to adequately

capture the relatively simple behavior of the process. Typically, the number of layers required in

an RNN depends on the complexity of the target process. For a more complex process, more than

one layer might be necessary to accurately capture the underlying dynamics. While increasing

the number of layers can improve the model performance based on large datasets, it also raises

the risk of over-fitting, where the model learns the training data too well and performs poorly on

new data. Using fewer layers, on the other hand, may result in poor model performance which

is incapable of capturing the actual correlation between data points. Thus, finding the optimal

balance in the number of layers is crucial for achieving strong model performance and preventing

over-fitting.

Remark 4. The dropout layer, which randomly deactivates neurons to improve model performance

on unseen data, is a common regularization technique to prevent over-fitting [46]. In our study,

various RNN models were tested with different dropout rates. The best model performance was

27

observed with a dropout rate of zero, resulting in a loss function error at the scale of 10-8. This

minimal error suggests that the model learns more effectively without dropout. Therefore, the

dropout layer was not utilized in our model. In scenarios where there are high levels of data noise,

the dropout layer may be crucial to be utilized in the model.

3.2.2 Hyperparameter Tuning

Hyperparameter tuning is another important step in constructing the architecture of the RNN

model. Hyperparameters are the parameter settings defined by users in the machine learning model.

For example, the number of layers, neurons, epochs, type of optimizer, batch size, and many other

parameters are used to build the model. Searching for the optimal hyperparameter is crucial in

improving the model performance. Common methods for hyperparameter tuning include random

search, grid search, Bayesian optimization, etc. [47]. Grid search and random search are two

common hyperparameter tuning approaches. Grid search finds the optimal hyperparameter by

evaluating the model performance based on all combinations of possible hyperparameters within

a user-defined region and saving the one with the best performance. Random search, on the other

hand, evaluates the model based on a few randomly selected combinations of hyperparameters.

According to [48], random search is more efficient than grid search because it prioritizes tuning

hyperparameters that have a greater impact on model performance, optimizing the search process

by focusing on key parameters rather than all possible combinations. Thus, the random search

method is used to determine the number of parameters in this study due to the advantage of its

lower computational power demands and higher efficiency compared to other methods. In this

section, various hyperparameters and their approach are discussed.

28

The number of neurons is critical in determining the learning capacity and complexity of the

model, where more neurons yield a model that can capture more complex processes, yet require

more computational time and power and also may encounter the issue of vanishing gradient [24].

Conversely, fewer neurons simplify the model, requiring less computation yet possibly limiting its

ability to capture complex patterns. In the LSTM layer, 180 neurons are used to capture the time

dependencies of the data, which is determined by the random search method. According to Table

3.1, models containing 64, 128, 180, and 200 neurons are constructed, and the mean squared error

(MSE) of training and testing data are compared. The model with the smallest training and testing

MSE (3.39 × 10-8 and 3.74 × 10-8, respectively) is found with 180 neurons, which is decided to

be the optimal unit number used in the LSTM layer in our model.

Table 3.1: Testing and Training MSE for Different Neurons.

Number of Neurons Training Mean Squared Error Validation Mean Squared Error
64 1.62× 10−7 1.69× 10−7

128 4.59× 10−8 4.89× 10−8

180 3.39× 10−8 3.74× 10−8

200 4.53× 10−8 5.10× 10−8

In the output layer, six dense units are used corresponding to the number of output variables.

The hyperbolic tangent is used as the activation function in the LSTM layer to regulate the cell

state updates. The sigmoid activation function is used as the activation function in the dense

layer to interpret the RNN input in terms of probability, and eventually transform the probability

into meaningful output. The number of epochs used in the RNN model refers to the number

of iterations of a complete training process through the entire data set. One epoch indicates the

model has learned every training data point one time. The model can be evaluated through epochs

29

based on validation loss, or MSE value, to determine whether the model is still improving. Since

the EarlyStop function is used in our model, the learning process will end early when the training

MSE stops improving for 15 epochs. In our case, the maximum number of epochs used is 100. The

batch size refers to the number of data samples processed by RNN to make predictions and update

weights in one forward and backward pass of the model. Typically, a small batch size provides

more frequent updates to the weights but results in noisier gradient estimates. In contrast, a large

batch size updates the weights less frequently but yields more accurate gradient estimates. In our

case, the default batch size for TensorFlow/Keras (32) is used. The number of layers, neurons,

mini-batch, and epochs are determined by the random search method.

The optimizer plays an important role in the model structure as a hyperparameter. It updates

the weights in the neural network to minimize the value of the loss function in the training pro-

cess. Common optimizers include stochastic gradient descent (SGD), RMSprop, and Adam [24].

Adam optimizer is a type of optimizer that combines the advantages of SGD and RMSprop op-

timizer, enabling it to adapt the learning rate for different parameters based on the gradient and

also momentum to smooth the optimization process [49]. Thus, Adam optimizes the process more

robustly and efficiently compared to other optimization methods. In our study, we used the Adam

optimizer, shown in the equation form:

mt = βmt−1 + (1− β)∇E (3.6a)

ν = γν + (1− γ)∇2E (3.6b)

ω = ω − α√
ν + ϵ

m (3.6c)

where ω is the weight, ν is the velocity term, m is the momentum of the gradient, γ and β are

30

the hyperparameters of the momentum and decay rate, ϵ is a coefficient (10-8), α is the learning

rate, and E is the cost function. According to equation Eq. 3.6, the momentum improves the

convergence rate in the learning process by accelerating the gradient vector in the correct direction

based on the past gradients. The velocity term introduces the ability of the adaptive learning rate

to adjust the weight-updating process according to the magnitude of the gradient by incorporating

a squared gradient. Thus, the Adam optimizer can find the optimal learning rate according to past

gradient estimation while conducting a faster convergence.

Remark 5. The learning rate refers to the step size to update the weights in the direction of

gradients in each epoch during optimization. A small learning rate will slow the convergence

process, while a large learning rate might skip the optimal points. Therefore, Adam optimizer

can be a good option to find the optimal learning rate based on past gradient estimation which is

affected by the batch size, due to its adaptive learning rate characteristic.

3.3 Model Training and Evaluation Process

After preprocessing the data and determining the right model architecture, the training pro-

cess of the RNN model proceeds to learn the underlying pattern of the training data. As previously

mentioned, the RNN model captures the information from training data and passes them down

layer by layer to make the predictions in the forward pass and update the weights to minimize

the error in the backward pass during the training process. With the validation data used in the

training process, the model performance on the unseen data can be monitored during the training

process. This validation data evaluation can help to determine whether the model is over-fit or

31

under-fit based on the validation loss, which can also guide the adjustment of the hyperparameters.

In the training process, we used 70,000 input/output, 15,000 input/output, and 15,000 input/output

as training data, validation data, and testing data, respectively.

To evaluate the model performance and guide the weight updating in the training process,

the loss function is applied in the RNN model to determine the error of the training model in

terms of the average squared difference between the model predictions and actual results. During

the training process, the loss function is minimized to improve the model accuracy by updating

the weights in the opposite direction of the gradient in the backpropagation step. The common

types of loss functions are mean absolute error (MAE), mean squared logarithmic error (MSLE),

and mean square error (MSE) [24]. In our model, the MSE loss function is used to evaluate and

improve model performance based on training and validation data, where the MSE loss function

could be shown in the equation:

MSE =
1

Nt

Nt∑
i=1

(
y(i) − ŷ(i)

)2 (3.7)

where Nt is the number of the training data, y(i) is the value of the training data, and ŷ(i) is the

predicted value of the training data. MSE is a common type of loss function for regression tasks.

Like other loss functions, the MSE loss function computes the difference between the predicted

value and the actual value in the forward pass and minimizes the difference by adjusting the weights

according to the gradient of the loss function in the backward pass.

During the training process, the training MSE loss decreases as more epochs pass. The MSE

loss function also plays an important role in solving over-fitting and saving the best model by

32

incorporating EarlyStopping and ModelCheckpoint functionalities. The over-fitting issue occurs

when the training MSE loss decreases yet the validation MSE loss increases during the training

process, indicating poor model performance on unseen data. EarlyStopping is a technique that

monitors the validation MSE as a metric and stops the training process once it does not improve.

Our training process stopped at 77 epochs, with no MSE loss improvement from the previous 15

epochs. ModelCheckpoint is a technique that records the model during the training process and

saves the best model based on metrics. In our case, the ModelCheckpoint saves the best model

after the MSE validation loss ceases to improve.

To prevent over-fitting, L1 and L2 regularization techniques are commonly applied in training

neural network models [50]. Both L1 and L2 techniques effectively solve the over-fitting issue by

applying different Lp norms to penalize the cost function and reduce the large weight parameter. L1

regularization typically eliminates very small weights making the weight matrix more sparse, while

L2 regularization adds a penalty term to the cost function to prevent large weights (outliers) from

dominating [24]. L2 regularization is typically more effective with larger datasets, maintaining

model complexity and improving generalization without eliminating any values. In our study, we

applied various L2 parameters within the LSTM layer using a random search method to evaluate

its effectiveness. The best model performance is achieved with a L2 regularization parameter set

to 0, indicating a sufficient model performance without the need for additional regularization in

our study. This outcome is attributed to the high quality and abundance of data in our training

process. In scenarios where data is limited in amounts and highly affected by noise, additional

regularization techniques may be considered to prevent over-fitting.

The training and validation MSE are 3.39 × 10-8 and 3.74 × 10-8, respectively. The similarity

33

between the tiny errors of training and testing data exhibits the successful training process and

good model performance on the unseen data. More testing data for each RNN input variable (I ,

T , F CH4 , FH2 , F CO2 , and F CO) generated in open-loop simulations using the first-principle model

to build step change, ramp change, and sinusoidal data trends, are employed to further evaluate

the model performance. The comparisons between the RNN and first-principle predictions in a

closed-loop simulation are shown in Fig. 3.3 and 3.4. In the beginning, the RNN model is initiated

by the testing data. For each time step, the flow rate of each gas species and temperature obtained

from the RNN output is fed back to the RNN model. The electric current is updated using the

testing data at each time step. In Fig. 3.3 and 3.4, the RNN model is evaluated based on step

change, ramp change trends, and sinusoidal type data. The close alignment between the RNN

predictions and the reference value illustrates the high accuracy of the model. Small differences

between RNN predictions and first-principle predictions can be observed at step changes in Fig.

3.3. For a step change, the first-principle prediction reaches the steady state immediately, whereas

the RNN prediction takes longer to reach the steady-state conditions. The discrepancy between

the RNN and first-principle model predictions arises from the designated input shape of the RNN

model and the approach of data extraction in the data preprocessing process. Since RNN and first-

principle predictions closely align, with small averaged relative errors (0.32% for Fig. 3.3 and

1.05% for Fig. 3.4), the difference in the model errors is negligible.

34

0 10 20 30 40
Time (min)

2

4

6

8

10

12

14

CO
 F
lo
w
 R
at
e

 (
SC

CM
)

RNN Predictions
First-principle Predictions

0 10 20 30 40
Time (min)

50

60

70

80

90

100

110

120

H
2
Fl
ow

 R
at
e

 (
SC

CM
)

RNN Predictions
First-principle Predictions

0 10 20 30 40
Time (min)

7

8

9

10

11

12

13

14

CO
2
Fl
ow

 R
at
e

 (
SC

CM
)

RNN Predictions
First-principle Predictions

0 10 20 30 40
Time (min)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

CH
4
Fl
ow

 R
at
e

 (
SC

CM
)

RNN Predictions
First-principle Predictions

0 10 20 30 40
Time (min)

520

540

560

580

600

620

640

660

Te
m
pe

ra
tu
re

 (
℃
)

RNN Predictions
First-principle Predictions

(a) Temperature.

Figure 3.3: RNN model predictions of the flow rates of CH4, H2O, H2, CO and temperature com-
pared to first-principle model predictions based on step change and ramp change reference data.

35

0 10 20 30 40
Time (min)

2

4

6

8

10

12

14

16

CO
 F
lo
w
 R
at
e

 (
SC

CM
)

RNN Predictions
First-principle Predictions

0 10 20 30 40
Time (min)

50

60

70

80

90

100

110

120

130

H
2
Fl
ow

 R
at
e

 (
SC

CM
)

RNN Predictions
First-principle Predictions

0 10 20 30 40
Time (min)

8

10

12

14

16

CO
2
Fl
ow

 R
at
e

 (
SC

CM
)

RNN Predictions
First-principle Predictions

0 10 20 30 40
Time (min)

10

15

20

25

30

35

CH
4
Fl
ow

 R
at
e

 (
SC

CM
)

RNN Predictions
First-principle Predictions

0 10 20 30 40
Time (min)

520

540

560

580

600

620

640

660

Te
m
pe

ra
tu
re

 (
℃
)

RNN Predictions
First-principle Predictions

Figure 3.4: RNN model predictions of the concentrations of CH4, H2O, H2, CO and temperature
compared to first-principle model predictions based on sinusoidal reference data.

36

To test the feasibility of this RNN model in the MPC scheme, the prediction of the RNN was

compared to the first-principle model in a scenario of the MPC scheme. In Fig. 3.5, the RNN

predictions of each output variable are compared to the first-principle predictions within two pre-

diction horizons with a 5-second sampling time to align with the scope and duration of the control

actions in our MPC scheme. Also, the electric current in the RNN input is increased by 0.01 A

(maximum limit change per control action) at the beginning of the second prediction horizon to

simulate the condition of the electric current as a control variable in our MPC scheme. Based

on Fig. 3.5, the comparisons of the flow rates of CH4, H2, CO2, CO, and temperature are made

between two models. The close alignments between the RNN predictions and the first-principle

predictions demonstrate the reliability of the RNN model to be utilized in MPC. Moreover, both

RNN and first-principle predictions slightly increase at the beginning of the second horizon (at 5

seconds), in response to the electric current increase. However, it should be noted that the maxi-

mum difference occurs at the beginning of each horizon, which is noticeably observed at t = 0 s

and t = 5 s in the figures of hydrogen flow rate and temperature. This difference gradually reduces

over time as the RNN predictions converge to the first-principle predictions at the end of each hori-

zon. This observation shows a similarity to the variations between RNN and first-principle model

observed in Fig. 3.3 and 3.4 when the electric current undergoes a step change, confirming that

our RNN model takes a slightly longer lag to response compared to the first-principle model with

the electric current change. Nevertheless, the difference between the predictions of the two models

is sufficiently small (within an average relative error of 0.3%) and can be considered insignificant.

To evaluate the generalization capability of the RNN model, five different initial conditions are

applied to the scenario. Table. 3.2 presents the average relative errors of the five output variables

37

for the RNN. The small average relative error for all five initial conditions demonstrates the good

generalization capability of our RNN model. Overall, the results demonstrate the accuracy of the

RNN model, indicating its learning capacity to fully capture the underlying pattern of the data and

the validation of using the RNN model to predict the system behavior and aim control actions in

the MPC scheme.

0 2 4 6 8 10
14

15

16

CO
 F
lo
w
 R
at
e

 (
SC

CM
) First-principle Predictions RNN Predictions

0 2 4 6 8 10

118

119

120

H
2
Fl
ow

 R
at
e

 (
SC

CM
) First-principle Predictions RNN Predictions

0 2 4 6 8 10
13

14

15

CO
2
Fl
ow

 R
at
e

 (
SC

CM
) First-principle Predictions RNN Predictions

0 2 4 6 8 10
10

11

12

CH
4
Fl
ow

 R
at
e

 (
SC

CM
) First-principle Predictions RNN Predictions

0 2 4 6 8 10
Time (s)

645

650

655

Te
m
pe

ra
tu
re

 (
°C
)

First-principle Predictions RNN Predictions

Figure 3.5: Comparison of RNN and first-principle predictions within two horizons of MPC.

38

Table 3.2: Average relative errors of FCH4 , FH2 , FCO2 , FCO, and T started at different initial
conditions.

Initial Conditions Average Relative Error (%)
Initial Condition 1 0.216
Initial Condition 2 0.219
Initial Condition 3 0.163
Initial Condition 4 0.209
Initial Condition 5 0.188

3.4 Transfer Learning Method

After the training and evaluation process, the predictions of the LSTM-based RNN model

and the first-principle process model exhibit close correspondence according to the small MSE

value determined based on training and testing data, indicating the accuracy of the RNN model in

capturing the dynamic behavior of the first-principle model. However, the discrepancies between

the true experiment results and the first-principle model predictions can be observed due to several

factors, including simplifications and assumptions made in the mathematical formulations of the

first-principle model, or unknown phenomena of the real experiment. Ideally, an RNN model

should be built using real experimental data to capture the actual process behavior, yet the amount

of experimental data is insufficient to build an RNN model most of the time. The transfer learning

method is an approach used in machine-learning modeling that utilizes prior knowledge from a

pre-trained model and combines it with new, albeit limited, data to train a new model. Thus, the

transfer learning method is employed to refine the pre-trained RNN model with limited new data

and align the model predictions closer with the actual experiment results. The common application

of the transfer learning method is to improve model performance in detecting operational faults of

industrial processes, particularly in multimode chemical processes where the experiment results

39

and the number of available data points vary for different initial conditions [51, 52]. The utilization

of the transfer learning method requires the new target process to share similar configurations with

the process captured by the pre-trained model. By transferring the prior knowledge from the pre-

trained model, the transfer learning method can generalize the model and achieve new tasks while

saving training time. In this study, the transfer learning method is used in the real-time online

retraining MPC scheme to reduce the discrepancies between the predictions of the RNN model

and actual experiment results. In this section, the transfer learning method is conducted on the pre-

trained RNN model with a small set of experimental data to ensure its effectiveness in the real-time

online retraining MPC scheme.

In the transfer learning method, the weight initialization is an important step to utilize the prior

information by initializing the weights and biases of the new model using the weights and biases of

the pre-trained model [53]. If the number of the state variables or control variables changes in the

new model, the weights of the pre-trained model need to be modified before being used to initial-

ize the parameters of the new model. In such cases, new fully-connected layers need to be added

before and after the input and output layers to adapt to the new data dimensions. In our objective,

the transfer learning method is used to compensate for the disturbance that caused the unexpected

discrepancies between the pre-trained model and the real process. Thus, the dimensions of the

input and output of the new model are the same as the pre-trained model, meaning the weights

of the pre-trained model can be used without further modifications [54]. In the transfer learning

process, the pre-trained RNN model is fine-tuned with experimental data directly, without adding

new layers. Over 30,000 experimental data points, which are generated by the first-principle model

including disturbance, are used for fine-tuning the new model with a learning rate of 10-6. All the

40

hyperparameters remained the same as the pre-trained RNN model. After the fine-tuning process,

the result is shown in Fig. 3.6, where the predictions of the transfer learning-based RNN model

are compared to those from the pre-trained RNN model, and the simulation results under distur-

bances. According to Fig. 3.6a to Fig. 3.6d, the flow rates of each chemical species predicted

by the transfer learning-based RNN model show closer modeling of the simulation results under

disturbances compared to the pre-trained model predictions, indicating the transfer learning-based

RNN model effectively captures the process behavior. In Fig. 3.6e and Fig. 3.6f, the temperature

predictions also show a better correspondence to the target values compared the the pre-trained

model predictions at the final steady state. This result validates the effectiveness of the transfer

learning method in solving the disturbance encountered in our case.

41

0 10 20 30 40
Time (min)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

CO
 F
lo
w
 r
at
e

 (
SC

CM
)

Target value
Transfer-learning RNN Predictions
Reference RNN Predictions

(a) Flow rates of CO.

0 10 20 30 40
Time (min)

40

60

80

100

120

H
2
Fl
ow

 r
at
e

 (
SC

CM
)

Target value
Transfer-learning RNN Predictions
Reference RNN Predictions

(b) Flow rates of H2.

0 10 20 30 40
Time (min)

6

8

10

12

14

CO
2
Fl
ow

 r
at
e

 (
SC

CM
)

Target value
Transfer-learning RNN Predictions
Reference RNN Predictions

(c) Flow rates of CO2.

0 10 20 30 40
Time (min)

5

10

15

20

25

30

CH
4
Fl
ow

 r
at
e

 (
SC

CM
)

Target value
Transfer-learning RNN Predictions
Reference RNN Predictions

(d) Flow rates of CH4.

0 10 20 30 40
Time (min)

800

825

850

875

900

925

950

975

Te
m
pe

ra
tu
re

 (
°C

)

Target value
Transfer-learning RNN Predictions
Reference RNN Predictions

(e) Temperature.

20 25 30 35 40
Time (min)

964

966

968

970

972

974

976

Te
m
pe

ra
tu
re

 (
°C

)

Target value
Transfer-learning RNN Predictions
Reference RNN Predictions

(f) Temperature zoom in.

Figure 3.6: Impact of the transfer learning method on a reference RNN model for capturing real
experimental trends, with the flow rates of CH4, H2O, H2, CO and temperature as the output vari-
ables.

Remark 6. When additional state and control variables are taken into account in the new task,

42

new fully connected layers are added before and after the input and output layers of the pre-trained

model to create a new model that adopts the new variable dimension. Typically, the procedure of

the transfer-learning method starts with only training the newly added layers by setting the pre-

trained layers to non-trainable. This step saves the prior information of the pre-trained model in

the new model while introducing the new data trends into the newly added layers. Subsequently,

the fine-tuning process further trains the new model by setting the pre-trained layers to be train-

able and the newly added layers to be non-trainable. To prevent dramatically losing the prior

information from the pre-trained layers, the learning rate used in the fine-tuning process is tuned

to be small, typically 10-5 [55]. As mentioned in previous sections, a small learning rate causes a

slow convergence rate and eventually results in a long period of the training process. Therefore,

small experiment data sets are used to fine-tune the pre-trained layers.

43

Chapter 4

Recurrent Neural Network Model-Based

Predictive Control

In this section, an RNN-based model predictive controller is specifically designed to regulate

the H2 production rate by adjusting the electric current input through the DC power supply. A

method to address the challenges of infrequent and delayed measurement feedback is developed.

The performance of this model predictive control strategy is then evaluated by comparing it to a PI

controller.

The mathematical formulation of MPC is shown in Eq. 2.2. Specifically, derivation forms

of flow rates of CH4, CO, H2, and CO2 measured by the GC, and the average reactor temperature

measured by a TC are set as the vector of state variables, represented as x. The manipulated

electric current with derivation form actuated by DC power is the control action represented as u.

This MPC is designed with predictions of two horizons, each lasting 5 seconds. In each horizon,

the RNN predicts the vector of state variables based on the previous vector of state values and

control actions. y is the process output target with deviation form required to be controlled, which

44

is the vector of H2 production rate. u and y are scalars instead of vectors since u and y only refer

to one element for each.

As discussed in Section 1, catalyst sintering is a common phenomenon in an e-SMR process

with a Ni-based catalyst. This issue is accelerated by higher reactor temperature change rates.

Therefore, it is crucial to set a limit to the reactor temperature. According to [12], the correspond-

ing electric current constraint is defined in Eq. 2.2f, where uc is set to 0.01 A per control action

interval, to restrict the temperature change rate not exceeding 6 ◦C/min. Eq. 2.2g ensures that

the electric current magnitude is larger than 0 A and smaller than 40 A, maintaining the feasibil-

ity of the operational electric current range and ensuring the safe working of the entire system.

Based on the constraint and bound, the optimization problem is conducted to minimize the differ-

ence between the H2 production rate and electric current with their corresponding setpoints within

receding horizons (Eq. 2.2d).

This optimization problem is solved by sequential quadratic programming (SQP), a type of

optimization technique widely used for solving constrained non-linear optimization problems. By

using the SQP method, the original non-linear optimization problem is transformed into a series of

quadratic programming sub-problems. The constraints are linearized at each iteration. By solving

these new convex quadratic programming sub-problems with linearized constraints in each itera-

tion, the search direction is determined. This search direction is then used to update the solution

estimates, which progressively lead to the optimal solution. Due to its strong local convergence

properties, SQP can accurately approximate the optimal solution with high efficiency, especially

when provided with good initial guesses. Thus, the SQP is a good option for saving computational

time in solving optimization problems that have well-defined constraints and a reasonable initial

45

guess. In particular, a 5-second control time interval is selected to ensure the optimization process

completes before the subsequent control action calculation.

To implement this designed controller in regulating H2 production rate for an e-SMR process,

a close-loop MPC scheme is developed, which is illustrated in Fig. 4.1. The electric current (Impc)

computed by the RNN-based model predictive controller is implemented in the actual process, with

the resulting behavior detected by the GC and TC. In the simulation, the real process is modeled

using the lumped parameter-based dynamic model described in 2.2. Given an 18-minute sampling

interval of the GC, frequent species flow rate feedback from the measurement cannot be provided

to the MPC. Therefore, the RNN is employed to estimate flow rates every second, based on the

same implemented control action (Impc). For each second, the flow rate predictions are based on

the flow rates of CH4, CO, H2, and CO2 from previous RNN estimations, and reactor temperature

values are extracted from the TC, which has a sampling time of 1 second. These estimated flow

rates incorporated with the temperature measurements from TC serve as feedback information for

the MPC. The simulated flow rate measurement data from the GC are utilized to correct the RNN

estimation and feedback to MPC. However, the input of the RNN requires data per second, while

the measurement data is reported only once every 18 minutes.

To address this issue, the flow rate data between each discrete measurement point (18 minutes)

is estimated on a per-second basis, leveraging the temperature measurements recorded at each

second. This estimation is determined based on the strong correlation between the behaviors of

all flow rates and the reactor temperature at each time interval. Given the rapid dynamics of the

designed e-SMR process according to [10] and [12], the flow rates quickly reach a steady state

corresponding to the new temperature value whenever the temperature changes, which indicates a

46

Figure 4.1: Closed-loop RNN-based model predictive control scheme to regulate the H2 production
rate for the e-SMR process.

strong correlation between temperature and flow rates and demonstrates that temperature can be

used to estimate flow rates accurately. In detail, a polynomial regression method is utilized and

conducted by the following steps [56]:

• Data preparation: The GC measurement data obtained every 18 minutes are collected in

a dataset. Additionally, the corresponding reactor temperature values for each GC mea-

surement are also recorded, considering a 15-minute time delay. Consequently, the dataset

containing all simulated GC measurements and the dataset containing their corresponding

reactor temperatures are established. To ensure the accuracy of the polynomial regression,

the data generation process is triggered when the number of GC collection times exceeds

three.

• Feature engineering: Feature engineering is the process of creating new features or trans-

forming existing features to improve the performance of fitting. Specifically, the reactor

temperature values are transformed to the third-order polynomial. This third-order polyno-

47

mial is selected according to the complexity of the system.

• Linear regression: After transforming the feature, a linear regression method is employed to

predict the trend of H2 production rate behavior concerning the variations in the transformed

temperature values.

• Data generation: Based on the linear relationship observed between the featured temperature

and H2 production rate, and real-time temperature data captured every second across three

consecutive GC datasets, the H2 production rate is computed for each interpolated data point.

This computation results in a total of 1080 data points for flow rates of each gas species.

Following these steps, the pre-trained RNN model utilized in MPC optimization problem and in

the initial condition estimations will be replaced by the retrained RNN. Additionally, based on this

retrained RNN, flow rates of all gas species per second can be estimated. Considering the time

delay, the RNN input at the time step of 15 minutes ago can be obtained by combining the last 10

consecutive estimated flow rates of all gas species (10 consecutive seconds) from the polynomial

function results with the 10 temperature measurements and 10 electric currents from the same

time step (10 consecutive seconds 15 min ago). The retrained RNN model subsequently simulates

forward in 15-minute intervals, using these data as the initial condition, continuously updating its

predictions by feeding its output back into the input until it reaches the present time step. These

predictions at the current time step are further utilized as the corrected MPC initial conditions and

corrected RNN input

To evaluate the performance of the RNN-based model predictive controller, the MPC is exe-

cuted over 120 min, with the control action starting at 2 min. The setpoint for the H2 production

48

rate is 120 SCCM. The initial conditions for the RNN model are 25.0 A, 514 ◦C, 30.2 SCCM,

2.12 SCMM, 52.8 SCMM, and 7.18 SCMM, corresponding to the six input variables (I , T , FCH4 ,

FCO2 , FH2 , and FCO). The initial conditions of flow rates and temperature are defined by the

steady-state value collected when 25.0 A of electric current is applied to the simulated real pro-

cess. The MPC result is shown in Fig. 4.2, where the flow rates of CH4, CO2, H2, CO, and

temperature are compared between the experiment results and RNN predictions. According to

Fig. 4.2, the H2 production flow rates of both RNN predictions and results from the simulated

real-process initially maintain a steady state value for a brief period before gradually increasing to-

ward the setpoint, corresponding to the time interval before the control action starts. Subsequently,

the H2 production rates and temperature gradually increase, which is consistent with our specified

constraint on the electric current changes between consecutive control actions. At the settling time

of 33.4 min, the H2 production flow rates reached the setpoint within 1% offset. The difference

in H2 production rates between the RNN predictions and simulated real-process at the final steady

state is 0.02 SCCM, representing a 0.02% deviation from the experiment results. Overall, the RNN

predictions strongly agree with the simulated real-process, with the largest variation being 0.374

SCCM, which exhibits outstanding model performance. Consequently, the effectiveness of the

control actions demonstrated in the MPC results validates the accuracy of the RNN model, and

also its suitability for implementation in the MPC scheme to achieve the desired control results.

49

0 20 40 60 80 100 120
Time (min)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

CH
4
Fl
ow

 R
at
e
(S
CC

M
)

RNN Predictions
First-principle Predictions

0 20 40 60 80 100 120
Time (min)

2

4

6

8

10

12

14

CO
 F
lo
w
 R
at
e
(S
CC

M
)

RNN Predictions
First-principle Predictions

0 20 40 60 80 100 120
Time (min)

7

8

9

10

11

12

13

14

CO
2
Fl
ow

 R
at
e
(S
CC

M
)

RNN Predictions
First-principle Predictions

0 20 40 60 80 100 120
Time (min)

50

60

70

80

90

100

110

120

H
2
Fl
ow

 R
at
e
(S
CC

M
)

RNN Predictions
First-principle Predictions
Setpoint

0 20 40 60 80 100 120
Time (min)

520

540

560

580

600

620

640

660

Te
m
pe

ra
tu
re
 (
°C

)

RNN Predictions
First-principle Predictions

0 20 40 60 80 100 120
Time (min)

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

Cu
rr
en

t
 (
A)

Figure 4.2: Setpoint tracking control of the H2 production rate with an RNN-based model predic-
tive controller for the e-SMR process.

The PI controller was implemented to provide a comparison with the MPC scheme. It incor-

50

porates a combination of proportional and integral control terms, according to the equation:

u = Kc ·
[
(ysp − ỹ)− 1

τI
·
∫ t

0

(ysp − ỹ) dt

]
(4.1a)

I = u+ Isp (4.1b)

ysp = FH2, sp − FH2,s (4.1c)

ỹ = FH2 − FH2,s (4.1d)

0 A < I < 40 A (4.1e)

where u is the deviation form of the manipulated control input (I − Isp), ỹ is the deviation form of

the measured target output, and ysp is the deviation form of the setpoint. Kc and τi are the gain and

integral time constant, respectively. FH2,s and Is are the initial steady state value of the H2 pro-

duction rate and electric current, respectively. The proportional term adjusts the measured output

concerning the error signal, while the integral term reduces the error of the output by accumulating

the past error. The integral time constant τI and gain Kc are tuned to be 80 s and 0.0014 A/SCCM

to drive the hydrogen production rate to the setpoint without overshooting. This PI controller pa-

rameter settings also ensure the quick response of electric current while satisfying the constraint

on temperature change rate that remains below 6 ◦C/min. The comparison between the PI and

MPC process behavior is shown in Fig. 4.3, where electric currents and H2 production rates of

two control strategies are compared. The H2 production rates of both control strategies reached the

setpoint. However, the MPC took a settling time of 33.4 min to reach the setpoint, while the PI

controller took 122 min, which shows the higher efficiency of the MPC strategy. Additionally, the

MPC offers the advantage of ensuring the electric current constraint for each control step, as this

51

constraint is integrated into the optimization problem (Eq. 2.2f), while there is no guarantee that

each step of the PI control will satisfy the electric current or temperature change constraints.

0 25 50 75 100 125 150 175
Time (min)

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

Cu
rr
en

t
 (
A)

MPC
PI

(a) Current profile under PI control.

0 25 50 75 100 125 150 175
Time (min)

50

60

70

80

90

100

110

120

H
2
Fl
ow

 R
at
e
(S
CC

M
)

MPC
PI
Setpoint

(b) H2 production profile under PI control.

Figure 4.3: Current and H2 production rate behaviors under PI control and MPC for the e-SMR
process.

To test the reliability of the polynomial regression method used for data generation, the flow

rate data, generated using polynomial regression from the first three consecutive simulated mea-

surement datasets during the MPC simulation, is compared with simulated real values for each

second in Fig. 4.4, where the flow rates of CH4, CO, H2, and CO2 are analyzed. The discrepancies

between the generated data and the simulated real-process data are 0.585%, 1.14%, 0.671%, and

0.815% for CH4, CO, H2, and CO2, respectively. These results demonstrate the reliability of the

polynomial regression method, as evidenced by the close alignment between the generated data

and the simulated real-process data.

Remark 7. To address the possibility that the optimizer might not obtain the optimal electric

current value within 5 seconds in real time, a proportional controller is designed to serve as a

backup controller.

52

5 10 15 20 25 30 35 40
12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

CH
4
Fl
ow

 R
at
e
(S
CC

M
)

True Value
Generated Value

5 10 15 20 25 30 35 40

2

4

6

8

10

12

14

CO
 F
lo
w
 R
at
e
(S
CC

M
)

True Value
Generated Value

5 10 15 20 25 30 35 40
Time (min)

50

60

70

80

90

100

110

H
2
Fl
ow

 R
at
e
(S
CC

M
)

True Value
Generated Value

5 10 15 20 25 30 35 40
Time (min)

6

7

8

9

10

11

12

13

CO
2
Fl
ow

 R
at
e
(S
CC

M
)

True Value
Generated Value

Figure 4.4: Comparison between the generated data from polynomial regression and simulated
measurement data for all gas species. Measurement data used for data generation are the first 3
simulated GC data points during the MPC run.

Remark 8. Polynomial regression relies on three consecutive simulated GC measurements: the

latest GC measurement combined with the two preceding ones. Consequently, both data generation

and correction estimation via RNN can only proceed when a minimum of three simulated GC

measurements are available.

53

Chapter 5

Disturbance Compensation

5.1 Disturbance Compensation

In this section, a common disturbance for the real e-SMR process is considered, resulting in a

mismatch between the real process and the RNN model. To address this issue, various approaches

for handling model inaccuracy in the presence of disturbances are explored. Each method is ap-

plied, and their respective outcomes are analyzed.

5.1.1 Model Predictive Control under Disturbance

For the e-SMR process, a key challenge is catalyst deactivation [57]. [26] stated that the

main causes of catalyst deactivation are coking and sintering, leading to a reduced ability of the

catalyst to effectively lower the activation energies of the SMR and WGS reactions. Consequently,

higher activation energies for SMR reactions (Eq. 2.1) are considered as a disturbance for the

e-SMR process. Specifically, a larger value of activation energy (Ea) is used in the simulated

real experimental process in our case. Therefore, a mismatch between the RNN model and the

54

first-principle-based real process model is observed.

In Fig. 5.1, the MPC results under a disturbance (2% increase in Ea for each reaction) are

presented. While the RNN estimation is approximately the same as in the no-disturbance case, the

simulated real-process variables change significantly due to the disturbance. Initially, the electric

current is set to be 25.0 A in both scenarios. Compared with the no-disturbance case, the temper-

ature and H2 production after adding the disturbance results in different values at the initial stage.

The H2 production decreases from 52.7 SCCM to 45.4 SCCM due to the reduced catalyst perfor-

mance. Moreover, the reactor temperature increases from 519 to 522 ◦C due to lower methane

consumption. Towards the final state, the electric current stabilizes around 28.7 A for both sce-

narios. However, in contrast to the no-disturbance case, the final simulated real H2 production

stabilizes around 110 SCCM, resulting in an offset between the setpoint and the simulated real-

process, while the RNN estimation can be driven to the setpoint (120 SCCM). This discrepancy

arises as the RNN is trained using data that does not include disturbances, resulting in a mismatch

between its estimation and the real process which is subjected to disturbances. Since the RNN

estimation is utilized as the initial condition in the MPC, the MPC can only drive the RNN estima-

tion to the setpoint instead of the actual process output. Thus, additional strategies are required to

achieve offset-less output tracking.

5.1.2 Model Predictive Control Combined with an Integrator

One approach to solve the offset issue is combining the model predictive controller with an

integrator. To correct the control action signal from the model predictive controller, an integrator

55

0 20 40 60 80 100 120

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

Cu
rr
en

t
(A
)

0 20 40 60 80 100 120

50

60

70

80

90

100

110

120

Pr
od

uc
ti
on

 R
at
e
(S
CC

M
)

True Value
Es ima ed Value
Se poin

0 20 40 60 80 100 120
Time (min)

520

540

560

580

600

620

640

660

Te
m
pe

ra
tu
re
 (
℃
)

0 20 40 60 80 100 120
Time (min)

−6

−4

−2

0

2

4

6
Te
m
pe

ra
tu
re
 C
ha

ng
e
Ra

te
 (
℃
/m

in
)

True Value
Tempera ure Ra e
 Change Limi
Tempera ure Ra e
 Change Limi

Figure 5.1: Setpoint tracking control of the H2 production rate with an RNN-based model predic-
tive controller for the e-SMR process under disturbances.

is added to the control action signal as follows:

uI =
1

τ ′I

∫ t

0

(FH2,sp − F̂H2(tn)) dτ (5.1a)

u = uMPC + uI (5.1b)

I = u+ Is (5.1c)

56

where u is the deviation form of the control action vector (electric current, I) from the newly

designed controller, uMPC is the deviation form of the control action vector from the model pre-

dictive controller, Is is the initial steady state value of the electric current, τ ′I is the tuning parameter

for the integrator, and F̂H2(tn,H2) is the simulated H2 production at t = tn,H2 , where tn,H2 is the

corresponding time instant for the measured value from the simulated GC, involving delay. The

integral term of Eq. 5.1 can compensate for the offset between the setpoint and the real-process

H2 production by considering the error accumulation, utilizing the same function as the integrator

in PI control. In this approach, the initial control action from the integrator (uI) is numerically

much smaller than the initial control action obtained from MPC (uMPC), thus showing less influ-

ence on the overall control action effectiveness compared to MPC action at the beginning of the

closed-loop implementation. Therefore, the H2 production rate is driven primarily by MPC actions

initially until the uMPC control action reaches a plateau, indicating alignment with the setpoint

reached by the H2 production rate estimated by the RNN model integrated with the MPC. After the

uMPC stabilizes at a constant value, the remaining offset between the H2 production rate estimated

by the new controller and the setpoint will be eliminated by the integrator term uI . Additionally,

a smaller limit for the control action change rate in the model predictive control algorithm (uc in

Eq. 2.2f) and a sufficiently large τ ′I should be implemented to ensure the absolute value of the

temperature change rate is less than 6 ◦C/min. Based on this consideration, the limit for the change

in control action relative to its previous value is set to be 0.009 A and the τ ′I is set to be 2.71 × 105

A · s-1 · SCCM-1.

The performance of this approach is shown in Fig. 5.2. Overall, the RNN estimation reaches

the setpoint rapidly (35.9 minutes within 1% offset), which is similar to the MPC results under

57

disturbance conditions without the integrator. Compared to the final offset observed in Fig. 5.1,

the simulated real H2 production rate reaches the setpoint (top-left figure in Fig. 5.2), which

demonstrates the successful control outcomes. Moreover, the temperature behaviors observed in

the bottom two figures in Fig. 5.2 show that the controller action is within the temperature change

rate constraint (6 ◦C/min in the bottom right figure in Fig. 5.2), showing the feasibility of this

approach. However, unexpected results are also presented in Fig. 5.2. Even though the simulated

real H2 production rate reaches the setpoint, it requires 354 min to achieve the simulated real H2

production rate within 1% offset, which is significantly longer than the time required in previous

control simulations (33.4 min). Additionally, 3.47% overshoot occurs for the simulated real H2

production rate.

To further analyze this approach, various e-SMR process models under disturbances, simu-

lated by the first-principle model with different activation energies (Ea), are evaluated under the

designed controller and compared. The results for each disturbance case are illustrated in Fig. 5.3,

and Table 5.1. As evident in the results reported in Table 3, this approach performs best when the

activation energy is increased by 3%, resulting in a much shorter settling time and no overshoot.

In contrast, other cases exhibit longer settling times and larger overshoots. The reason behind this

is as follows: in the early stage of the closed-loop system simulation, the offset between the H2

production rate is large compared to the offset when the uMPC is constant. Therefore, the change

of control action by the integrator is mainly from the offset when the H2 production rate is mainly

driven by MPC, multiplied by the integrator coefficient (τ ′I). If this additive control action can

make the H2 production rate get close to the setpoint when the uMPC is constant, the time required

to further eliminate the offset should be shorter. In the case of a 3% increment in Ea for the distur-

58

bance case, uI calculated by the integration of error multiplied by the coefficient (τ ′I) can make the

real H2 production rate around the setpoint when uMPC stops changing. Therefore, there is little

effort required for the integrator to drive the real H2 production rate to the setpoint, indicating much

less time and no overshoot. For the cases of 0%, 1%, and 2% increments in Ea for the disturbance,

the additive control actions make the H2 production rate to be higher than the setpoint when the

uMPC is constant. Therefore, an overshoot and a long settling time cannot be avoided for each of

these cases. In the case of a 4% increment in Ea for the disturbance, the real H2 production rate

is lower than the setpoint when the uMPC is constant. Therefore, even though there is nearly no

overshoot, a long time to reach the setpoint is still required.

Table 5.1: Settling time and maximum overshoot for different values of activation energies (Ea)
under the model predictive controller combined with an integrator scheme.

Activation Energy Settling Time (min) Maximum Overshoot (%)
1.00 Ea 563 9.06
1.01 Ea 499 6.47
1.02 Ea 354 3.47
1.03 Ea 47 0
1.04 Ea 377 0.19

Remark 9. Tuning the τ ′I in Eq. 5.1 is challenging for the scheme of MPC with an integrator.

On one side, τ ′I cannot be too small to prevent substantial overshoots in the H2 production rate.

Additionally, a small τ ′I can significantly increase the integrator term, causing step changes in the

electric current that exceeds the constraint of the electric current changing rate. On the other side,

τ ′I cannot be too large either, since a large value of τ ′I can lead to minimal changes of electric

current, leading to a much longer time to eliminate the offset.

Remark 10. Even though a sufficiently large τ ′I is utilized to make the electric current change rate

59

0 100 200 300 400 500 600 700

25

26

27

28

29

Cu
rr
en

t
(A
)

0 100 200 300 400 500 600 700

50

60

70

80

90

100

110

120

Pr
od

uc
ti
on

 R
at
e
(S
CC

M
)

True Value
Es ima ed Value
Se poin

0 100 200 300 400 500 600 700
Time (min)

525

550

575

600

625

650

675

700

Te
m
pe

ra
tu
re
 (
℃
)

0 100 200 300 400 500 600 700
Time (min)

−6

−4

−2

0

2

4

6
Te
m
pe

ra
tu
re
 C
ha

ng
e
Ra

te
 (
℃
/m

in
)

True Value
Tempera ure Ra e
 Change Limi
Tempera ure Ra e
 Change Limi

Figure 5.2: Setpoint tracking control of the H2 production rate with an RNN-based model predic-
tive controller with an integrator for the e-SMR process under disturbances.

within the constraint, there remains a risk that the overall control action (u) could still violate the

constraints, indicating a potential concern for applying this method in real e-SMR processes.

5.1.3 Model Predictive Control with RNN Real-Time Online Retraining

Instead of modifying the control actions of an MPC scheme, which is built based on a mis-

matched RNN model with an additional controller term, the real-time online retraining method

60

0 100 200 300 400 500 600 700
Time (min)

50

60

70

80

90

100

110

120

130

Pr
od

uc
ti
on

 R
at
e
(S
CC

M
)

True Value
Estimated Value
Setpoint

(a) Ea = 1.00 Ea.

0 100 200 300 400 500 600 700
Time (min)

50

60

70

80

90

100

110

120

130

Pr
od

uc
ti
on

 R
at
e
(S
CC

M
)

True Value
Estimated Value
Setpoint

(b) Ea = 1.01 Ea.

0 100 200 300 400 500 600 700
Time (min)

40

50

60

70

80

90

100

110

120

Pr
od

uc
ti
on

 R
at
e
(S
CC

M
)

True Value
Estimated Value
Setpoint

(c) Ea = 1.03 Ea.

0 100 200 300 400 500 600 700
Time (min)

40

50

60

70

80

90

100

110

120

Pr
od

uc
ti
on

 R
at
e
(S
CC

M
)

True Value
Estimated Value
Setpoint

(d) Ea = 1.04 Ea.

Figure 5.3: Setpoint tracking control of the H2 production rate with RNN-based model predictive
controller combined with an integrator under different disturbances.

can be utilized to correct this mismatched RNN model directly. Specifically, the mismatched

RNN model will be corrected by using real-time data from the past. Eventually, the corrected

RNN model will be implemented within the MPC scheme and estimation of the initial condition

61

of MPC. Therefore, the obtained control action from MPC can be more accurate and the offset

between the RNN model and the simulated real process can be eliminated.

For the control scheme employed in this approach, the components and processing flow of

the online RNN retraining-based MPC are depicted in Fig. 5.4. Generally, the left orange box

represents the MPC of this system every 5 seconds, while the right blue box signifies the online

retraining and re-estimation process occurring every sampling time of the GC (18 minutes). Re-

training and re-estimation are initiated only upon receiving new GC data. The MPC for the e-SMR

process follows a similar scheme as shown in Fig. 4.1, but utilizes a simulated process model under

disturbances.

Figure 5.4: Setpoint tracking control of the H2 production rate with an RNN-based model predic-
tive controller using online RNN retraining by utilizing real-time data for the e-SMR process under
disturbances: components and processing flow.

For the online retraining and re-estimation process shown in the blue box, this process is

62

launched when new simulated measurement data becomes available. These new data are first

used for generating the flow rates for each second by applying two consecutive past simulated

measurement data points into the polynomial function (detailed descriptions of this process are

shown in Section 4). These generated data have two applications. First, the last 10 generated data

points are used as the initial conditions from 15 min ago (delayed time, td) which are utilized to

estimate the corrected 10 data points for the current time step by the RNN model. Subsequently,

these 10 data points are used to estimate the corrected initial condition of the RNN model and also

serve as the corrected feedback to the controller. Another application for this data is the adaptive

online retraining of the RNN.

The adaptive online retraining process involves several key steps:

• Buffering module preparation [36]: For the online adaptive RNN strategy, the buffering

module is utilized to identify and store useful data batches when the RNN model has poor

performance. Additionally, this buffering module can also have an initial data batch to pre-

vent unexpected behavior of the RNN model after retraining. However, this initial batch

should not contain a large number of data, as the real-time data is typically limited in prac-

tice. A large number of data in the buffering module would reduce the retraining impact of

the real-time data. In general, the size of the buffering module can be designed and con-

strained by the data drift concept. Specifically, by using the data drift concept, data with the

lowest error will be replaced by the newly collected data when the buffer module reaches its

maximum size. In our case, the data drift concept is not utilized since the maximum size of

the buffering model has not been reached.

63

• Data collection and processing: For real-time control, reactor temperatures from the TC are

obtained every second, while data from the GC are collected every 18 minutes. The data

generation process uses polynomial regression to estimate flow rates for each gas species

every second. However, data collected from the GC and TC must be denoised before being

fitted by the polynomial regression. Additionally, any infeasible data should be removed to

ensure high data quality for training the RNN.

• Error-triggering mechanism: An error-triggering mechanism [58] is applied to evaluate

whether the estimated data set generated by polynomial regression should be incorporated

into the buffering module. This mechanism compares the error between the model and mea-

surement data against a predefined threshold to determine if online retraining should be ini-

tiated. The Mean Relative Error (MRE) serves as the metric for this comparison, calculated

as follows:

MREn =
1

Nk

·
∑Nk−1

i=0 |FH2,RNN(tk −∆GC · i− td,GC)− FH2,rp,n−i|
FH2,rp,ave

(5.2)

where MREn is the mean relative error when the nth measurement data are received, Nk

is the number of measurement data points that are utilized for calculating the error (in our

case, Nk = 3), FH2,RNN is the RNN estimation of H2 production rate, tk is the time moment

for the newly received data point, ∆GC is the GC sampling time (18 min), td,GC is the

time delay for the GC measurement (15 min), FH2,rp,n−i is the (n− i)th real H2 production

rate measurement, FH2,rp,ave is the average of last 3 consecutive real H2 production rate

measurements. If the MRE is less than the threshold (C), the generated data will not be

64

added to the buffering module, indicating that the RNN model is accurate. Conversely, if

the MRE exceeds the threshold, it signifies that the RNN model is inaccurate and requires

retraining based on newly generated data. In this case, the threshold is chosen as the 2% of

the average of the 3 consecutive GC measurement data:

C = 2% ·
∑Nk−1

i=0 FH2,rp,n−i

Nk

(5.3)

• Retraining: The retraining process, also known as the transfer learning process, adjusts the

RNN model based on real-time data. The training process is detailed in Section ??. Before

retraining, the data in the buffering module must be preprocessed by the window-sliding

technique and normalization techniques. It is crucial to ensure that data from different

batches are not mixed within the same sliding window. Additionally, a much lower learning

rate (α = 6 × 10-6) and fewer epochs (10) are utilized to prevent the dramatic changes in the

behavior of the RNN model resulting from retraining with new data.

Upon completion of retraining, the new RNN model will replace the existing RNN model that is

used for state variable estimation as inputs to the MPC, and also the RNN model integrated within

the MPC which predicts state variables within the prediction horizons. Additionally, the new RNN

model is used to re-estimate all initial state values for the MPC and the initial state values for the

RNN model.

The simulation results of this control scheme are presented in Fig. 5.5. At the initial elec-

tric current value of 25.0 A, there is a significant difference between the RNN estimation of the

H2 production rate (52.7 SCCM) and the actual process (45.5 SCCM), as shown in the top-right

65

sub-figure. This discrepancy arises because the RNN model fails to reflect the real process un-

der process conditions subjected to disturbances. This difference persists until the first retraining

process is triggered when the third GC sample is obtained at t = 54 min. Subsequently, the RNN

estimation aligns more closely with the actual process value, indicating improved accuracy. After

the first retraining process, the feedback and predicted values of the H2 production rate fall below

the setpoint, successfully reflecting the process behavior under disturbances due to the RNN model

parameter adaptation. Consequently, the electric current increases, as shown in the top-left sub-

figure, leading to a rise in the simulated reactor temperature, depicted in the bottom-left sub-figure.

These adjustments occur every 18 minutes until the MRE, calculated by Eq. 5.2, falls below the

threshold determined by Eq. 5.3. Ultimately, the H2 production rate reaches the setpoint with a

settling time of 58.9 minutes and zero overshoot. The bottom-right sub-figure demonstrates that

the control is maintained within the temperature constraint, preventing damage to the Ni-based

catalyst.

Remark 11. In the case of real-time control, the online retraining process and MPC simulation

must be executed concurrently when the retraining event is triggered to ensure the MPC oper-

ates within the five-second sampling time. In the Python implementation, the command "sub-

process.Popen" is utilized to execute a separate Python script, thereby preventing the retraining

process from interfering with the control process. A 2-minute sampling time is applied to the re-

training process to ensure its completion, assuming that this duration is sufficient for the training

process. Specifically, the RNN is replaced with the newly trained model 2 min after the beginning

of the retraining process. After the replacement, subsequent RNN estimations are generated from

66

0 20 40 60 80 100 120

25

26

27

28

29
Cu

rr
en

t
(A
)

0 20 40 60 80 100 120

50

60

70

80

90

100

110

120

Pr
od

uc
ti
on

 R
at
e
(S
CC

M
)

True Val e
Estimated Val e
Setpoint

0 20 40 60 80 100 120
Time (min)

520

540

560

580

600

620

640

660

680

Te
m
pe

ra
tu
re
 (
℃
)

0 20 40 60 80 100 120
Time (min)

−6

−4

−2

0

2

4

6

Te
m
pe

ra
tu
re
 C
ha

ng
e
Ra

te
 (
℃
/m

in
)

Tr e Val e
Temperat re Rate
 Change Limit
Temperat re Rate
 Change Limit

Figure 5.5: Setpoint tracking control of the H2 production rate with an RNN-based model predic-
tive controller using online RNN retraining by utilizing real-time data for the e-SMR process under
disturbances: simulation results.

this retrained RNN model

5.1.4 Offset-Free Model Predictive Control

The offset-free model predictive controller is also designed to eliminate the offset. The

detailed algorithm for this approach is shown in Section. 2.4. Specifically, in Eq. 2.3, F (·) is

67

the RNN model and θ is used to compensate for the error between the RNN estimation and the

experimental data. This error vector can be combined with the vector of state variables to form

a new vector of state variables, x̄ in Eq. 2.4. Additionally, the new corrected model can also be

written as Eq. 2.4c. These new versions of the state variable vector and the model are utilized in

the MPC.

The Luenberger observer is employed to improve the estimation of state variables and mini-

mize error accumulation (Eq. 2.5). Specifically, the differences in temperature and H2 production

rate between the process measurements and model estimates are used as the error.

Due to the sampling frequency of the GC, the temperature is updated every second to com-

pensate for the discrepancy, whereas updates for the H2 production rate difference occur every 18

minutes. This difference in sampling time may lead to discrepancies in the H2 production rate. To

account for this potential discrepancy, the coefficients of the observer terms (K) are tuned suffi-

ciently small to ensure that the state values do not change excessively as a result of the correction

term. Eventually, these gain parameters result in model estimation that closely matches the simu-

lated process data. Specifically, the parameters are chosen as follows:

GT
θ = [0 − 0.004 0.003 0.025 0.001] (5.4a)

KT =

0 −0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.01

0 0.01 0 −0.01 0.01 0 0 0 0 0

(5.4b)

where G⊺
θ is the transpose of the coefficient matrix for the argument term (θ) and K⊺ is the trans-

pose of the coefficient matrix for the differences in the H2 production rate and reactor temperature

68

terms.

Results for this offset-free model predictive control of this specific e-SMR process are illus-

trated in Fig. 5.6. At t = 0 min, the same electric current (IMPC) is utilized for the RNN estimation

model and the process under disturbances. In the top-right figure of Fig. 5.6, the corresponding

offset is observed initially. While the H2 production rate estimated by RNN reaches the setpoint

(within 1% offset) at t = 33.4 min, the H2 production rate from the simulated process gradually

approaches the setpoint due to the correction of the model by the offset-free MPC approach, indi-

cating an improved control performance compared to the constant offset shown in Fig. 5.1.

As the model utilized in the MPC and the initial state value estimation is progressively cor-

rected, the IMPC calculated from the MPC is gradually corrected accordingly. The adjustment of

IMPC shown in the top-left figure of Fig. 5.6, results in the gradual alignment of the simulated

real-process H2 production rate with the setpoint, as shown in the top-right figure of Fig. 5.6. At t

= 88.2 min, the H2 production rate of the simulated real-process reaches the setpoint with a devia-

tion within 1%. The bottom two figures illustrate the reactor temperature behaviors, demonstrating

that the applied electric current from the MPC is safe for the catalyst, as the temperature change

rate remains within the permissible limit of 6 ◦C/min.

Remark 12. With the accumulation of the augmented term (θ), the H2 production rate from the

model estimation also changes. However, since the coefficients (K and Gθ) are small and the

corresponding MPC responses are frequent, the model estimation values remain nearly constant

within its sampling time.

69

0 25 50 75 100 125 150 175

25

26

27

28

29

Cu
rr
en

t
(A
)

0 25 50 75 100 125 150 175

50

60

70

80

90

100

110

120

Pr
od

uc
ti
on

 R
at
e
(S
CC

M
)

True Val e
Estimated Val e
Setpoint

0 25 50 75 100 125 150 175
Time (min)

520

540

560

580

600

620

640

660

680

Te
m
pe

ra
tu
re
 (
℃
)

0 25 50 75 100 125 150 175
Time (min)

−6

−4

−2

0

2

4

6

Te
m
pe

ra
tu
re
 C
ha

ng
e
Ra

te
 (
℃
/m

in
)

Tr e Val e
Temperat re Rate
 Change Limit
Temperat re Rate
 Change Limit

Figure 5.6: Setpoint tracking control of the H2 production rate with an RNN-based offset-free
model predictive controller for the e-SMR process under disturbances.

70

Chapter 6

Conclusion

In this work, a recurrent neural network model was developed to capture the dynamic be-

havior of an electrically heated steam methane reforming process using time-series data from an

experimentally-validated lumped parameter dynamic model. Specifically, the LSTM layer was

utilized to learn the long-term dependencies in sequential data. The accuracy of this model was

further validated. To regulate the H2 production rate, a setpoint tracking control was implemented

using an RNN-based predictive control strategy, which effectively handled infrequent and delayed

flow rate measurements. This control strategy demonstrated significantly better performance com-

pared to a PI control scheme. Building on the developed RNN-based MPC strategy, three distinct

approaches were successfully developed to manage the e-SMR process under disturbance condi-

tions: MPC combined with an integrator, MPC with transfer learning applied to the RNN model,

and offset-free MPC. These approaches have been demonstrated to effectively eliminate the offset

caused by disturbances.

71

Bibliography

[1] Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, and Chunming Xu. Green

hydrogen: A promising way to the carbon-free society. Chinese Journal of Chemical Engi-

neering, 43:2–13, 2022.

[2] Wolfgang Lubitz and William Tumas. Hydrogen: An overview. Chemical Reviews, 107:

3900–3903, 2007.

[3] Bahattin Tanç, Hüseyin Turan Arat, Ertuğrul Baltacıoğlu, and Kadir Aydın. Overview of the

next quarter century vision of hydrogen fuel cell electric vehicles. International Journal of

Hydrogen Energy, 44:10120–10128, 2019.

[4] Leon Green Jr. An ammonia energy vector for the hydrogen economy. International Journal

of Hydrogen Energy, 7:355–359, 1982.

[5] MG Rasul, MA Hazrat, MA Sattar, MI Jahirul, and MJ Shearer. The future of hydrogen:

Challenges on production, storage and applications. Energy Conversion and Management,

272:116326, 2022.

[6] María A Nieva, María M Villaverde, Antonio Monzón, Teresita F Garetto, and Alberto J

72

Marchi. Steam-methane reforming at low temperature on nickel-based catalysts. Chemical

Engineering Journal, 235:158–166, 2014.

[7] FR Pazheri, MF Othman, and NH Malik. A review on global renewable electricity scenario.

Renewable and Sustainable Energy Reviews, 31:835–845, 2014.

[8] Eugenio Meloni, Giuseppina Iervolino, Concetta Ruocco, Simona Renda, Giovanni Festa,

Marco Martino, and Vincenzo Palma. Electrified hydrogen production from methane for

pem fuel cells feeding: A review. Energies, 15(10):3588, 2022.

[9] Sebastian T Wismann, Jakob S Engbæk, Søren B Vendelbo, Flemming B Bendixen, Win-

nie L Eriksen, Kim Aasberg-Petersen, Cathrine Frandsen, Ib Chorkendorff, and Peter M

Mortensen. Electrified methane reforming: A compact approach to greener industrial hy-

drogen production. Science, 364:756–759, 2019.

[10] Berkay Çıtmacı, Xiaodong Cui, Fahim Abdullah, Derek Richard, Dominic Peters, Yifei

Wang, Esther Hsu, Parth Chheda, Carlos G Morales-Guio, and Panagiotis D Christofides.

Model predictive control of an electrically-heated steam methane reformer. Digital Chemical

Engineering, 10:100138, 2024.

[11] Berkay Çıtmacı, Dominic Peters, Xiaodong Cui, Fahim Abdullah, Ahmed Almunaifi, Parth

Chheda, Carlos G Morales-Guio, and Panagiotis D Christofides. Feedback control of an

experimental electrically-heated steam methane reformer. Chemical Engineering Research

and Design, 206:469–488, 2024.

[12] Xiaodong Cui, Berkay Çıtmacı, Dominic Peters, Fahim Abdullah, Yifei Wang, Esther Hsu,

73

Parth Chheda, Carlos G Morales-Guio, and Panagiotis D Christofides. Estimation-based

model predictive control of an electrically-heated steam methane reforming process. Digital

Chemical Engineering, 11:100153, 2024.

[13] Iqbal H Sarker. Machine learning: Algorithms, real-world applications and research direc-

tions. SN Computer Science, 2:160, 2021.

[14] Zhe Wu, Anh Tran, David Rincon, and Panagiotis D Christofides. Machine-learning-based

predictive control of nonlinear processes. part ii: Computational implementation. AIChE

Journal, 65(11):e16734, 2019.

[15] John J Hopfield. Neural networks and physical systems with emergent collective computa-

tional abilities. Proceedings of the National Academy of Sciences, 79:2554–2558, 1982.

[16] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:

85–117, 2015.

[17] Zhe Wu, Fahad Albalawi, Junfeng Zhang, Zhihao Zhang, Helen Durand, and Panagiotis D

Christofides. Detecting and handling cyber-attacks in model predictive control of chemical

processes. Mathematics, 6:173, 2018.

[18] Yingzhe Zheng, Xiaonan Wang, and Zhe Wu. Machine learning modeling and predictive

control of the batch crystallization process. Industrial & Engineering Chemistry Research,

61:5578–5592, 2022.

[19] Tianqi Xiao, Zhe Wu, Panagiotis D Christofides, Antonios Armaou, and Dong Ni. Recur-

74

rent neural-network-based model predictive control of a plasma etch process. Industrial &

Engineering Chemistry Research, 61:638–652, 2021.

[20] Milos Miljanovic. Comparative analysis of recurrent and finite impulse response neural net-

works in time series prediction. Indian Journal of Computer Science and Engineering, 3:

180–191, 2012.

[21] Krzysztof Zarzycki and Maciej Ławryńczuk. Lstm and gru neural networks as models of

dynamical processes used in predictive control: A comparison of models developed for two

chemical reactors. Sensors, 21(16):5625, 2021.

[22] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn

encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[23] Bo Zhang, Guojian Zou, Dongming Qin, Yunjie Lu, Yupeng Jin, and Hui Wang. A novel

encoder-decoder model based on read-first lstm for air pollutant prediction. Science of the

Total Environment, 765:144507, 2021.

[24] Yi Ming Ren, Mohammed S Alhajeri, Junwei Luo, Scarlett Chen, Fahim Abdullah, Zhe Wu,

and Panagiotis D Christofides. A tutorial review of neural network modeling approaches for

model predictive control. Computers & Chemical Engineering, 165:107956, 2022.

[25] Berkay Çıtmacı, Junwei Luo, Joon Baek Jang, Carlos G Morales-Guio, and Panagiotis D

Christofides. Machine learning-based ethylene and carbon monoxide estimation, real-time

75

optimization, and multivariable feedback control of an experimental electrochemical reactor.

Chemical Engineering Research and Design, 191:658–681, 2023.

[26] Haotian Zhang, Zhuxing Sun, and Yun Hang Hu. Steam reforming of methane: Current states

of catalyst design and process upgrading. Renewable and Sustainable Energy Reviews, 149:

111330, 2021.

[27] Jason M Ginsburg, Juliana Piña, Tarek El Solh, and Hugo I De Lasa. Coke formation over a

nickel catalyst under methane dry reforming conditions: thermodynamic and kinetic models.

Industrial & Engineering Chemistry Research, 44:4846–4854, 2005.

[28] UPM Ashik, WMA Wan Daud, and Hazzim F Abbas. Methane decomposition kinetics and

reaction rate over Ni/SiO2 nanocatalyst produced through CO-precipitation cum modified

stöber method. International Journal of Hydrogen Energy, 42:938–952, 2017.

[29] Jun Yang, Wei Xing Zheng, Shihua Li, Bin Wu, and Ming Cheng. Design of a prediction-

accuracy-enhanced continuous-time mpc for disturbed systems via a disturbance observer.

IEEE Transactions on Industrial Electronics, 62:5807–5816, 2015.

[30] Liuping Wang et al. Model predictive control system design and implementation using MAT-

LAB, volume 3. Springer, 2009.

[31] S Joe Qin and Thomas A Badgwell. A survey of industrial model predictive control technol-

ogy. Control Engineering Practice, 11:733–764, 2003.

[32] Kenneth R Muske and Thomas A Badgwell. Disturbance modeling for offset-free linear

model predictive control. Journal of Process Control, 12:617–632, 2002.

76

[33] Gabriele Pannocchia and James B Rawlings. Disturbance models for offset-free model-

predictive control. AIChE Journal, 49:426–437, 2003.

[34] Urban Maeder, Francesco Borrelli, and Manfred Morari. Linear offset-free model predictive

control. Automatica, 45(10):2214–2222, 2009.

[35] Zhe Wu, David Rincon, and Panagiotis D Christofides. Real-time adaptive machine-learning-

based predictive control of nonlinear processes. Industrial & Engineering Chemistry Re-

search, 59:2275–2290, 2019.

[36] Mohammad Navid Fekri, Harsh Patel, Katarina Grolinger, and Vinay Sharma. Deep learning

for load forecasting with smart meter data: Online adaptive recurrent neural network. Applied

Energy, 282:116177, 2021.

[37] Junmei Wei and Enrique Iglesia. Isotopic and kinetic assessment of the mechanism of

methane reforming and decomposition reactions on supported iridium catalysts. Physical

Chemistry Chemical Physics, 6(13):3754–3759, 2004.

[38] Junmei Wei and Enrique Iglesia. Mechanism and site requirements for activation and chem-

ical conversion of methane on supported pt clusters and turnover rate comparisons among

noble metals. The Journal of Physical Chemistry B, 108:4094–4103, 2004.

[39] Junmei Wei and Enrique Iglesia. Reaction pathways and site requirements for the activation

and chemical conversion of methane on ru-based catalysts. The Journal of Physical Chemistry

B, 108:7253–7262, 2004.

77

[40] Junmei Wei and Enrique Iglesia. Structural and mechanistic requirements for methane acti-

vation and chemical conversion on supported iridium clusters. Angewandte Chemie Interna-

tional Edition, 43:3685–3688, 2004.

[41] Jianguo Xu and Gilbert F Froment. Methane steam reforming, methanation and water-gas

shift: I. intrinsic kinetics. AIChE Journal, 35:88–96, 1989.

[42] Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. Review on model predictive

control: An engineering perspective. The International Journal of Advanced Manufacturing

Technology, 117(5):1327–1349, 2021.

[43] Matt Wallace, Steven Spielberg Pon Kumar, and Prashant Mhaskar. Offset-free model pre-

dictive control with explicit performance specification. Industrial & Engineering Chemistry

Research, 55(4):995–1003, 2016.

[44] Junwei Luo, Berkay Çıtmacı, Joon Baek Jang, Fahim Abdullah, Carlos G Morales-Guio, and

Panagiotis D Christofides. Machine learning-based predictive control using on-line model

linearization: Application to an experimental electrochemical reactor. Chemical Engineering

Research and Design, 197:721–737, 2023.

[45] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,

9:1735–1780, 1997.

[46] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-

nov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine

Learning Research, 15:1929–1958, 2014.

78

[47] Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Automated machine

learning: Methods, systems, challenges, pages 3–33, 2019.

[48] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Jour-

nal of Machine Learning Research, 13:281–305, 2012.

[49] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[50] Imrus Salehin and Dae-Ki Kang. A review on dropout regularization approaches for deep

neural networks within the scholarly domain. Electronics, 12(14):3106, 2023.

[51] Hao Wu and Jinsong Zhao. Fault detection and diagnosis based on transfer learning for

multimode chemical processes. Computers & Chemical Engineering, 135:106731, 2020.

[52] Yang Zhou, Li Jia, and Yilan Zhang. A transfer learning approach using improved copula

subspace division for multi-mode fault detection. The Canadian Journal of Chemical Engi-

neering, 101(12):7015–7030, 2023.

[53] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in

deep neural networks? Advances in Neural Information Processing Systems, 27:3320–3328,

2014.

[54] Mohammed S Alhajeri, Yi Ming Ren, Feiyang Ou, Fahim Abdullah, and Panagiotis D

Christofides. Model predictive control of nonlinear processes using transfer learning-based

recurrent neural networks. Chemical Engineering Research and Design, 205:1–12, 2024.

79

[55] Antonio Gulli and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd, 2017.

[56] Arushi Saini, Santu Panday, Neha Gupta, et al. Polynomial based linear regression model to

predict covid-19 cases. In 2021 International Conference on Recent Trends on Electronics,

Information, Communication & Technology (RTEICT), pages 66–69, Bangalore, India, 2021.

IEEE.

[57] Samrand Saeidi, András Sápi, Asif Hussain Khoja, Sara Najari, Mariam Ayesha, Zoltán

Kónya, Bernard Baffour Asare-Bediako, Adam Tatarczuk, Volker Hessel, Frerich J Keil, et al.

Evolution paths from gray to turquoise hydrogen via catalytic steam methane reforming: Cur-

rent challenges and future developments. Renewable and Sustainable Energy Reviews, 183:

113392, 2023.

[58] Fahim Abdullah and Panagiotis D Christofides. Real-time adaptive sparse-identification-

based predictive control of nonlinear processes. Chemical Engineering Research and Design,

196:750–769, 2023.

80

