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ABSTRACT OF THE DISSERTATION

Accelerating the Quantum Optimal Control of Multi-Qubit Systems With
Symmetry-Based Hamiltonian Transformations

by

Xian Wang

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, September 2023

Dr. Bryan M. Wong, Chairperson

I developed a computationally efficient framework for accelerating the quantum

optimal control of various multi-qubit systems. This framework decomposes the Hilbert

space of the multi-qubit system and enables unitary transformations of the Hamiltonians

based on the symmetry of finite groups. The Hamiltonians are block diagonalized after

transformation, which features a natural structure for computing these blocks in parallel.

Specifically, the size of the Hamiltonians of an n-qubit system is reduced from 2n × 2n to

O(n× n) or O(2
n

n ×
2n

n ) under Sn symmetry or Dn symmetry, respectively. This approach

reduces the execution time of quantum optimal control by orders of magnitude while the

accuracy of the output is not affected. The Lie-Trotter-Suzuki decomposition generalizes

this symmetry-based approach to a more general variety of multi-qubit systems. Based

on the symmetry-induced decomposition of the Hilbert space, I propose the concept of

symmetry-protected subspaces, which are potential platforms for preparing commonly used

symmetric states, realizing simultaneous gate operations, quantum error suppression, and

simulation of other quantum systems. A perspective on ladder operators and selection
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rules is provided to facilitate the understanding of the transformation of the Hamiltonians.

I provide the Python source code for the quantum optimal control framework and the

symmetry-based methods.
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Chapter 1

Introduction

As the development of classical computers deviates from Moore’s law and ap-

proaches the limit to transistor size [1, 2, 3, 4], quantum computing becomes a promising

candidate for enhancing future supercomputers. Several algorithms for quantum computing,

including Shor’s algorithm for factorizing integers [5] and Grover’s algorithm for searching

in unstructured databases [6], have been proposed and manifest the advantage of quan-

tum computing over classical computing. Though several prototypes of quantum comput-

ers have been manufactured on multiple platforms, including superconducting transmons

[7, 8, 9, 10, 11], superconducting fluxoniums [12, 13], trapped ions [14, 15], nitrogen-vacancy

centers in diamonds [16, 17], and neutral atoms [18], quantum computing is still at its early

stage and faces various challenges. One open problem that needs to be adequately addressed

is the realization of fast and accurate quantum gates.

Quantum gates are the operations transforming quantum states. The most com-

mon method to realize quantum gates is manipulating quantum systems with external
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controls, e.g., microwaves [19, 20, 21, 22, 23, 24, 25]. The dynamics of the interaction of

quantum systems and microwaves follow the time-dependent Schrödinger equation. As such,

we are naturally directed to the following question: How should we engineer time-dependent

microwaves to realize desired quantum gates? Quantum optimal control (QOC) is developed

to solve this problem. Despite the numerous computational techniques used to accelerate

QOC calculations [26, 27], there have been much fewer works to simplify/accelerate QOC

simulations of multi-qubit systems that take advantage of their intrinsic symmetry.

In this dissertation, I present a computationally efficient approach for the QOC of

multi-qubit systems. Originating from the homogeneity and distinguishability of qubits, the

Hamiltonians of a large family of multi-qubit systems feature the symmetry of finite groups.

Based on this symmetry, I decompose the Hilbert space of the multi-qubit system and fur-

ther introduce a unitary transformation of the Hamiltonians. Although there has been prior

work on decomposing the Hilbert space of permutation-symmetric (Sn) multi-qubit systems

[28, 29, 30, 31], these studies only considered analytical methods of small qubit systems.

My work generalizes this decomposition approach to the dihedral group (Dn) symmetry

(which brings more controllability to a multi-qubit system than Sn symmetry) and provides

a mathematical justification for this approach. Multi-qubit systems with the symmetry of

other finite groups can also be analyzed and simplified with my approach. The multi-qubit

states lie in orthogonal subspaces after the decomposition, and the unitarily transformed

Hamiltonians are block diagonalized. This benefits me by computing the evolution in each

subspace in parallel, thus accelerating the QOC of multi-qubit systems. My tests on various

problems indicate that this symmetry-based approach reduces the computational runtime
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of QOC by orders of magnitude while maintaining the same accuracy of the outputs as

the conventional method. This work enriches the toolbox for facilitating the realization of

quantum gate operations with microwaves, which plays the role of firmware in quantum

computers.

Inspired by the symmetry-induced decomposition of the Hilbert space, I propose

the concept of symmetry-protected subspaces. The evolution of the quantum system is

restricted inside each subspace as long as the Hamiltonian of the system preserves the

symmetry of finite groups. Symmetry-protected subspaces provide a potential platform for

quantum error suppression since the quantum state in any subspace cannot evolve to other

subspaces. The energy levels of the eigenstates in each subspace can be manipulated by

tuning the coupling coefficient between qubit pairs, enabling more controllability over the

transitions of quantum states inside the subspaces. This allows me to simulate the Hamil-

tonians of other quantum systems with these subspaces. Symmetry-protected subspaces

also provide platforms for preparing commonly-used symmetric states [32] and realizing

simultaneous gate operations [5, 6]. Moreover, this work could potentially benefit quantum

machine learning studies employing the symmetry of data and quantum circuits [33, 34].

In a realistic scenario, the symmetry of the entire multi-qubit system is typically

broken. However, each term in the Hamiltonian preserves some reduced symmetry. The

Lie-Trotter-Suzuki decomposition approximates the exponential propagator of the multi-

qubit system with the product of multiple exponential terms, allowing me to transform

each exponential with a different unitary adjoint matrix. [35, 36] The computation of each

term then can be parallelized and accelerated with the symmetry-based transformation. As
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such, the symmetry-based approach to accelerate QOC is generalized to a larger variety of

multi-qubit systems.

In Sec. 1.1 and 1.2, I provide the background knowledge of quantum computing

and quantum optimal control, respectively. I list my publications and my presentations at

conferences during my Ph.D. study in Sec. 1.3. An outline of this dissertation is provided

in Sec. 1.4.

Some content in this chapter is part of Accelerating Quantum Optimal Control

of Multi-Qubit Systems with Symmetry-Based Hamiltonian Transformations, an article ac-

cepted for publication in AVS Quantum Science.

1.1 Quantum Computing

Quantum computing makes use of quantum bits for computational purposes. Quan-

tum bits, or qubits, are the elementary units in quantum computers. Each qubit has two

quantum states with distinct eigenenergies, and its evolution follows the fundamental prin-

ciples of quantum mechanics. Developed in the 1920s, quantum mechanics is proven to be

a complete theory for nearly all aspects of nature.

The proposal of employing quantum systems for computational purposes arose

in the 1980s [37, 38] and was later enriched by advances in quantum algorithm design.

Proposed in 1992, the Deutsch-Jozsa algorithm is the first algorithm that proves quantum

computers are more efficient than classical computers in some computing tasks. [39, 40]

Peter Shor’s 1994 algorithm factorizes integers in polylogarithmic time, which is believed

to be an NP problem on classical computers. [5] In 1996, Lov Grover proposed his algo-
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rithm for searching in unstructured databases in O(
√
N) time, which runs in O(N) time

on classical computers. [6] Protocols for quantum cryptography are also potential revolu-

tionary applications. [41, 42] These triumphs in quantum algorithms demonstrate quantum

computers are more powerful than classical computers in some practical scenarios.

Another considerable breakthrough in quantum computing is the realization of var-

ious multi-qubit systems. Powered by the achievement in manipulating particles in quantum

systems [19, 20, 21, 22, 23, 24, 25], several multi-qubit platforms, including superconduct-

ing transmons [7, 8, 9, 10, 11], superconducting fluxoniums [12, 13], trapped ions [14, 15],

neutral atoms [18], nitrogen-cavity centers in diamonds [16, 17], etc., have been built up as

prototypes of quantum computers. Though several computation tasks like boson sampling

[43] and quantum random walk [44] have been tested on different platforms, general-purpose

quantum computing remains a goal that can hardly be achieved in the short term. Increas-

ing quantum volume, coherence time extension, quantum error mitigation, etc., are among

the most significant open problems that need to be adequately addressed.

Quantum gate operations are quantum computers’ most fundamental and underly-

ing operations. Quantum gates are operations that transition quantum states in the Hilbert

space. Thus far, the fidelity of quantum gates on all platforms is not perfect, which is a

crucial problem for realizing real-world quantum computing. [45, 46, 47, 48] Inherent to the

principles of quantum mechanics, quantum gates are unitary operations. This feature guar-

antees that the norm of quantum states is conserved and quantum evolutions are reversible.

The most common approach to realizing quantum gates is manipulating the qubit system

with external controls, e.g., microwaves. [19, 20, 21, 22, 23, 24, 25] Concerning a multi-qubit
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system interacting with external controls, the time-varying Hamiltonian is a function of the

controls. Following the Schrödinger equation, the evolution of the multi-qubit system can

be calculated given the time-dependent controls.

When designing a quantum computer, instead of calculating the evolution of the

computer system with the time-dependent controls, the inverse problem is more valuable,

i.e., how should the external controls be engineered to steer a computer system towards some

desired target state or to realize some desired quantum gates? Motivated by this problem,

the study of QOC in multi-qubit systems is developed. [49, 50] The QOC for small-size

problems like single-qubit and two-qubit quantum gates is well resolved. Concerning large-

scale systems, it is proven that a small set of single-qubit and two-qubit quantum gates will

be complete for realizing any quantum circuit. As such, QOC provides the firmware in a

quantum computer since it instructs how to perform fundamental operations. Besides, QOC

typically provides a more concise solution than reducing a complicated gate into universal

gates when solving for large multi-qubit systems. I discuss the details of QOC in Sec. 1.2.

1.2 Quantum Optimal Control

Quantum optimal control, or QOC, is the study of designing the optimal controls

that drive a quantum system to undergo some prescribed transitions. It is an essential tool

for realizing gate operations in real-world quantum computing. [49, 50] Several general-

purpose QOC frameworks, including GRAPE [51], Krotov [52], CRAB [53], etc., have been

developed and applied to multi-qubit systems. In this dissertation, I implant the gradient

ascent method from GRAPE. A loss function, typically the probability of the transition or
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fidelity of the quantum gate, needs to be defined. The goal of QOC is to maximize the loss

function by optimizing the controls. The gradient ascent method iteratively evaluates the

gradient of the loss function with respect to the controls with backpropagation. Then the

controls are updated based on the gradient in each iteration until the loss function is larger

than some preset threshold.

In this dissertation, the QOC model is a semiquantum model, i.e., the Hamilto-

nians of the qubits are quantum and have eigenstates with distinct eigenenergies, and the

time-dependent controls are classical and treated as continuous waves. The Hamiltonian of

a multi-qubit system consists of two parts, the static Hamiltonian and the control Hamil-

tonian. The static Hamiltonian describes the dynamics feature of the multi-qubit system

itself, and the control Hamiltonian describes the interaction of the qubits and the external

control. In real-world quantum computers, qubits are typically realized by artificial parti-

cles, and their Hamiltonians can be complicated. However, we only employ two eigenstates

with distinct energy levels. Thus, the Hamiltonians of single qubits can always be reduced

to 2× 2 Hermitian matrices. In a multi-qubit system, the state space is the tensor product

of the state space of all single qubits. Therefore, the dimension of the Hilbert space in-

creases exponentially as the number of qubits, i.e., the Hamiltonian size of a n-qubit system

is 2n × 2n. The exponentially increasing Hamiltonian size is the most daunting challenge

common to all QOC calculations in multi-qubit systems.

It is worth noting that the qubits in a quantum computer are typically homoge-

neous and distinguishable. That is, all the qubits are described by the same Hamiltonians,

and each qubit can be distinguished from others and be assigned a unique index. Making
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use of this feature, I customized a QOC framework for multi-qubit systems. The homogene-

ity and distinguishability can be accurately described by the symmetry of finite groups. I

form the group algebra elements with the diagonal elements of the unitary irreducible repre-

sentations (irreps) of the finite groups. After that, the group algebra elements are operated

on the Fock states of spins to generate basis in orthogonal subspaces. The evolution of

the multi-qubit system is confined to each subspace as long as the Hamiltonians of the

multi-qubit system preserve the symmetry of finite groups. I further construct the unitary

adjoint matrices transforming the Hamiltonians with the symmetry-induced basis. After

transformation, the Hamiltonians are block diagonalized, enabling a natural approach for

calculating each subspace in parallel. The accuracy of the QOC computation is not affected

since the Hamiltonian transformation is unitary.

In general, the Hamiltonian of the entire multi-qubit system may not satisfy the

symmetry of any finite group. However, looking into each term in the Hamiltonian, it

typically has some reduced symmetry. This allows me to transform each term with a

different adjoint matrix. When calculating the evolution of the multi-qubit system, I divide

the time interval evenly into small steps. Then I approximate the propagator at each

time step with the product of multiple exponential terms using the Lie-Trotter-Suzuki

decomposition. [35, 36] These exponential terms can be block diagonalized by the adjoint

matrices that transform the terms in the Hamiltonian as described above, enabling me to

accelerate the QOC calculation with parallel computing. In this approach, the symmetry-

based method for accelerating QOC calculation is generalized to nearly all multi-qubit

systems with the Lie-Trotter-Suzuki decomposition.
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1.3 Publications and Presentations at Conferences During

the Ph.D. Study

I list my publications during my Ph.D. study as follows.

Xian Wang, Mahmut Sait Okyay, Anshuman Kumar, and Bryan M. Wong. Accel-

erating Quantum Optimal Control of Multi-Qubit Systems With Symmetry-Based Hamil-

tonian Transformations. Accepted for publication in AVS Quantum Science.

Xian Wang, Paul Kairys, Sri Hari Krishna Narayanan, Jan Hückelheim, and Paul

Hovland. Memory-Efficient Differentiable Programming for Quantum Optimal Control of

Discrete Lattices. In 2022 IEEE/ACM Third International Workshop on Quantum Com-

puting Software (QCS), pages 94–99, Los Alamitos, CA, USA, Nov. 2022. IEEE Computer

Society. [26]

Yuanqi Gao, Xian Wang, Nanpeng Yu, and Bryan M. Wong. Harnessing Deep

Reinforcement Learning to Construct Time-Dependent Optimal Fields for Quantum Control

Dynamics. Physical Chemistry Chemical Physics, 24(39):24012–24020, 2022. [54]

Akber Raza, Chengkuan Hong, Xian Wang, Anshuman Kumar, Christian R. Shel-

ton, and Bryan M. Wong. NIC-CAGE: An Open-Source Software Package for Predicting

Optimal Control Fields in Photo-Excited Chemical Systems. Computer Physics Communi-

cations, 258:107541, 2021. [55]

Xian Wang, Anshuman Kumar, Christian R. Shelton, and Bryan M. Wong. Har-

nessing Deep Neural Networks to Solve Inverse Problems in Quantum Dynamics: Machine-

Learned Predictions of Time-Dependent Optimal Control Fields. Physical Chemistry Chem-

ical Physics, 22(40):22889–22899, 2020. [56]
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I list my presentations at conferences during my Ph.D. study as follows.

Harnessing Quantum Information Science for Enhancing Sensors in Harsh Fossil

Energy Environment. FECM/NETL Spring R&D Project Review Meeting, Pittsburgh, PA,

April 2023.

Accelerating the Quantum Optimal Control of Large Qubit SystemsWith Symmetry-

Based Hamiltonian Transformations and Linear Unitary Propagators. APS March Meeting,

Las Vegas, NV, March 2023.

Memory-Efficient Differentiable Programming for Quantum Optimal Control of

Discrete Lattices. SC22, Quantum Computing Software Workshop, Dallas, TX, November

2022. [26]

1.4 Dissertation Outline

I provide the outline of this dissertation as follows.

In Ch. 2, I describe the dynamics of the multi-qubit system with the time-dependent

Schrödinger equation. Several explicit examples of the Hamiltonians are given. I emphasize

the symmetry of finite groups of these Hamiltonians. Besides, the framework of QOC, along

with the pseudocode for the QOC algorithm, is provided.

The mathematical methods for the symmetry-based decomposition of the Hilbert

space and the symmetry-induced unitary transformation of the Hamiltonians are provided

in Ch. 3. I specifically discuss the details of the methods associated with the permutation

group, Sn, and the dihedral group, Dn. The Clebsch-Gordan coefficients of the SU(2)

group provide an equivalent approach to the Young method. Proof that validates the Dn-
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based method is also provided. In addition, I provide details about how to combine the

symmetry-based method and the Lie-Trotter-Suzuki decomposition.

The results of the symmetry-based method are provided in Ch. 4. I present the

sparsity plots of the transformed Hamiltonians to show they are block diagonalized. A

comparison of the results of the conventional and symmetry-based methods is provided to

indicate the symmetry-based method generates the same outputs while the execution time

is reduced by orders of magnitude. I also compare the outputs and execution time between

the conventional method and the symmetry-based method combined with the Lie-Trotter-

Suzuki decomposition for general multi-qubit systems.

In Ch. 5, I discuss the concept of symmetry-protected subspaces. Details are given

about how to facilitate more controllability in the subspaces without breaking the symmetry

of finite groups. I further discuss the proposals for quantum error suppression and simulating

other quantum systems with symmetry-protected subspaces of multi-qubit systems. A

perspective on ladder operators and selection rules is discussed to help understand the

symmetry-based transformation of the Hamiltonians.

I conclude this dissertation in Ch. 6.
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Chapter 2

Dynamics and Symmetry of

Multi-Qubit Systems

In Sec. 2.1, I describe the dynamics of the multi-qubit system with the time-

dependent Schrödinger equation. The exponential propagator is the analytical solution to

the time-dependent Schrödinger equation. A summary of the QOC framework and the

pseudocode are provided in Sec. 2.2. I especially highlight a modification to the golden-

section search. I introduce the symmetry of the multi-qubit system with several example

Hamiltonians in Sec. 2.3.

Some content in this chapter is part of Accelerating Quantum Optimal Control

of Multi-Qubit Systems with Symmetry-Based Hamiltonian Transformations, an article ac-

cepted for publication in AVS Quantum Science, and TRAVOLTA: GPU Acceleration and

Algorithmic Improvements for Constructing Quantum Optimal Control Fields in Photo-

Excited Systems, an article submitted to Computer Physics Communications.
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2.1 Dynamics of Multi-Qubit Systems

Like other quantum systems in the non-relativistic limit, multi-qubit systems fol-

low the time-dependent Schrödinger equation

i
∂

∂t
|ψ(t)⟩ = H(t)|ψ(t)⟩, (2.1)

where H(t) is the time-dependent Hamiltonian, and |ψ(t)⟩ is the time-dependent quantum

state. Here I take the reduced Planck constant, ℏ, as 1. Treating each qubit as a spin-12

particle, the quantum state |ψ(t)⟩ of an n-qubit system lies in the Hilbert space, H(C2n),

where 2n is the dimension of the Hilbert space, and C means this is a complex space.

Other than establishing a foundation for quantum advantage, this exponential increase in

the dimension of the Hilbert space poses significant challenges for simulating multi-qubit

systems with classical computers.

In my model, the Hamiltonian H(t) has two parts, i.e.,

H(t) = H0 +Hc(t), (2.2)

where H0 is the static Hamiltonian, and Hc(t) is the time-dependent control Hamiltonian

representing the interaction between the multi-qubit system and external electromagnetic

pulse(s). Here I list several Hamiltonians as examples. The simplest static Hamiltonian for

an n-qubit system in this dissertation is

H0 = Bz ·
1

2

n∑
i=1

σ(i)z , (2.3)
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which can be realized by applying a uniform static magnetic field, Bz, that interacts with

all the qubits along the z-axis. I denote σ
(i)
z to be shorthand for the tensor product I⊗i−1

2 ⊗

σz ⊗ I⊗n−i
2 , where σz and σx, σy in the following text are the Pauli matrices, and I2 is the

rank-2 identity matrix. In many systems, such as the Ising model [57, 58, 59], each qubit

is coupled to its neighbors. For a ring-shaped Ising model lattice, the static Hamiltonian

becomes

H0 = Bz ·
1

2

n∑
i=1

σ(i)z + ccpl ·
1

4

n∑
i=1

σ(i)z σ(i+1)
z , (2.4)

where ccpl is the coupling coefficient that represents the strength at which each qubit is

coupled to its nearest neighbor. Similarly, σ
(i)
z σ

(i+1)
z is shorthand for the tensor product

I⊗i−1
2 ⊗ σz ⊗ σz ⊗ I⊗n−(i+1)

2 , where the boundary condition σ
(n+i)
z = σ

(i)
z , 1 ≤ i ≤ n holds.

One example of the control Hamiltonian,

Hc = Bx(t) ·
1

2

n∑
i=1

σ(i)x +By(t) ·
1

2

n∑
i=1

σ(i)y , (2.5)

represents the scenario of simultaneously manipulating all of the qubits with time-dependent

microwaves along the x- and y-axes. Transitions between quantum states can be realized

by optimizing Bx(t) and By(t), the controlling pulses. Some other Hamiltonians will be

introduced later when necessary.

Given the Hamiltonians H0 and Hc(t) during the control duration [0, T ] and an

initial state |ψ(0)⟩, the final state |ψ(T )⟩ can be formally calculated as follows:

|ψ(T )⟩ = exp

(
−i
∫ T

0
(H0 +Hc(t)) dt

)
|ψ(0)⟩. (2.6)
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To obtain numerical solutions of Eq. 2.6, I employ the finite-difference time-domain (FDTD)

method and discretize [0, T ] intoN time steps, i.e., τ = T
N [51, 55]. With this approximation,

the discrete propagation becomes

|ψj+1⟩ = exp

(
−iτ

(
H0 +Hc[(j +

1

2
)τ ]

))
|ψj⟩, (2.7)

where Hc[(j+
1
2)τ ] is the control Hamiltonian at time t = (j+ 1

2)τ , and |ψj⟩ is the quantum

state at time t = jτ .

2.2 Quantum Optimal Control Algorithm

In contrast to conventional initial value problems in quantum dynamics, QOC fo-

cuses on the inverse problem to construct optimal control pulses for evolving a quantum

system to undergo some desired transitions. In multi-qubit systems, this goal can be quan-

tified as the probability that the final state |ψN ⟩ transitions to the target state |ψt⟩ with

the following inner product:

P (|ψN ⟩) = |⟨ψt|ψN ⟩|2. (2.8)

Here both |ψN ⟩ and |ψt⟩ are normalized. Another common quantity is the fidelity that

evaluates the similarity between the target gate operation Kt and the unitary propagator

KN−1 of the real system:

F (KN−1) =

∣∣∣∣∣Tr(K†
tKN−1)

D

∣∣∣∣∣
2

, (2.9)
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where Tr evaluates the trace of matrices, KN−1 =
∏0

j=N−1 Uj+ 1
2
, Uj+ 1

2
is the exponential

propagator in Eq. 2.7, and D is the dimension of the Hilbert space. Both P (|ψN ⟩) and

F (KN−1) range between 0 and 1.

In this work, I implant the gradient ascent method from GRAPE into my QOC

framework. [51] The loss function is typically defined as the probability in Eq. 2.8 or fidelity

in Eq. 2.9. The QOC algorithm aims to maximize the loss function by optimizing the control

pulses, e.g., Bx(t) and By(t) in Eq. 2.5. The control pulses are initialized as zeros at all

time steps or white noise. Taking P as an example of the loss function, the control pulses

are iteratively optimized with the gradient ascent method as follows:

B
(l+1)

j+ 1
2

= B
(l)

j+ 1
2

+ γ
dP

dB
(l)

j+ 1
2

, (2.10)

where B
(l)

j+ 1
2

represents either Bx or By at t = (j + 1
2)τ in the lth iteration, and γ is the

update rate.

The gradient dP
dB

j+1
2

is evaluated using the chain rule [51, 55]. Without loss of

generality, let me assume Bj+ 1
2
is Bx at t = (j + 1

2)τ , and H0 and Hc(t) are as defined in

Eqs. 2.4 and 2.5. Then the gradient can be written down explicitly as follows.

dP

dBj+ 1
2

=
∂P

∂(⟨ψt|ψN ⟩)
· d(⟨ψt|ψN ⟩)

dBj+ 1
2

+
∂P

∂(⟨ψN |ψt⟩)
· d(⟨ψN |ψt⟩)

dBj+ 1
2

= 2 · Re

(
⟨ψN |ψt⟩ ·

d(⟨ψt|ψN ⟩)
dBj+ 1

2

)

= 2 · Re

(
⟨ψN |ψt⟩ · ⟨ψt|

d(|ψN ⟩)
dBj+ 1

2

)
,

(2.11)
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where Re evaluates the real part of complex variables. Note that |ψN ⟩ = KN−1|ψ0⟩ =

UN− 1
2
UN− 3

2
. . . Uj+ 1

2
. . . U 3

2
U 1

2
|ψ0⟩. Then

d(|ψN ⟩)
dBj+ 1

2

= UN− 1
2
UN− 3

2
. . . Uj+ 3

2

dUj+ 1
2

dBj+ 1
2

Uj− 1
2
. . . U 3

2
U 1

2
|ψ0⟩

≈ −iτUN− 1
2
UN− 3

2
. . . Uj+ 3

2

√
Uj+ 1

2
H̃x

√
Uj+ 1

2
Uj− 1

2
. . . U 3

2
U 1

2
|ψ0⟩

= −iτUN− 1
2
UN− 3

2
. . . Uj+ 3

2

√
Uj+ 1

2
H̃x

√
Uj+ 1

2
|ψj⟩

= −iτ

(
j+1∏

k=N−1

Uk+ 1
2

)√
Uj+ 1

2
H̃x

√
Uj+ 1

2
|ψj⟩,

(2.12)

where H̃x = 1
2

∑n
i=1 σ

(i)
x , and

√
Uj+ 1

2
= exp

(
−i τ2

(
H0 +Hc[(j +

1
2)τ ]

))
. The gradient with

respect to By(t) can be derived in a similar way. In case Hc(t) is defined in a different way,

I just need to make other approximations in Eq. 2.12.

It is worth noting that there is a recurrence relation in Eq. 2.12, i.e.,
∏j+1

k=N−1 Uk+ 1
2
=(∏j+2

k=N−1 Uk+ 1
2

)
Uj+ 3

2
. As such, I evaluate dP

dB
j+1

2

for j = N − 1 first, then for j = N − 2,

j = N − 3, and so on. Therefore, I claim that the gradient dP
dB

j+1
2

is evaluated with back-

propagation. In contrast, the evaluation of |ψN ⟩ with Eq. 2.7 is called forward propagation

since I evaluate |ψ1⟩ first, then |ψ2⟩, |ψ3⟩, and so on.

I employ the golden-section search to find the optimal update rate γ. The objective

of the search method is to calculate the optimal γ that maximizes the loss function P (γ)

given the gradient dP
dB

j+1
2

in each iteration. The following analysis is based on the assumption

that the maximum of P (γ) is achieved at a γ larger than zero, and P (γ) is concave near its

maximum.
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The search procedure is accomplished in two phases. First, the algorithm evaluates

P (γ(j)) at an increasing sequence of γ(j), j = 0, 1, 2, . . . which starts at γ(0) = 0 and has the

recurrence relation

γ(j+1) =
(
γ(j) + 0.3

)
× 1.8, (2.13)

where 0.3 and 1.8 are empirical coefficients and can be adjusted. The loop of the evaluation

breaks when P (γ(n)) < P (γ(n−1)) is satisfied for some integer n so that the maximum of P (γ)

in the interval [0, γ(n)]. To avoid an unrealistically large value of γ(n), it is common practice

to set a threshold value, γthres, for the upper bound of the interval. If P (γ(n)) < P (γ(n−1))

is not achieved within [0, γthres], the recurrence in Eq. 2.13 is forced to break. The second

step is to search for the approximate value of optimal γ in the interval [0, γ(n)] with the

golden-section algorithm. The function P (γ) is evaluated at 0, 3−
√
5

2 γ(n),
√
5−1
2 γ(n), and

γ(n). Since P (γ) is concave near the maximum, if P (0) or P (3−
√
5

2 γ(n)) is the largest among

the four values, the maximum is in the interval [0,
√
5−1
2 γ(n)]; otherwise, it is in the interval

[3−
√
5

2 γ(n), γ(n)]. I retain the interval containing the maximum only and recursively evaluate

P (γ) at the golden ratio point of the new interval and shrink the interval again until the

length of the interval is smaller than a threshold value. The midpoint of the final interval

is then taken as the optimal γ, and the golden-section search procedure is terminated.

It is observed that the optimal update rate γ can be extremely large in the first

iteration, which I further explain below. The transition probability, P (which ranges from

0 to 1 by definition), is typically a smooth functional of the control pulses Bx(t) and By(t).

As such, the gradients ∂P
∂Bx(t)

and ∂P
∂By(t)

are zero when P is at its minimum of 0. These small

gradient issues primarily occur in the first iteration since Bj+ 1
2
is initialized as a zero vector
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or small amplitude white noise, making P nearly 0. As a result, γ needs to be very large to

make any substantial update to Bx(t) and By(t). This forces the γ
(j) defined in Eq. 2.13 to

be a long sequence, and P (γ(j)) has to be evaluated by the forward propagation many times,

which is extremely time-consuming. To address this small gradient problem, I multiply the

gradient dP
dB

j+1
2

by an empirical coefficient β to amplify its norm. The update rate γ′ in

this amplified gradient modification satisfies γ′β ≈ γ, where γ is the update rate in the

conventional method. Therefore, γ′ can be small when the amplified gradient coefficient

β is set to a sufficiently large value. In conclusion, the amplified gradient modification

evaluates P (γ) at much fewer points and outputs the correct optimal γ′ in significantly less

execution time.

As discussed above, extremely large values of γ occur when P is very small due

to the small value of the gradient dP
dB

j+1
2

near the minimum P of zero. Besides, the optimal

γ in the first iteration increases exponentially by the number of qubits. When P > 0.001,

the optimal γ is typically less than 0.1, and the amplified gradient modification is no longer

necessary. As such, I define the empirical coefficient β as follows for the QOC calculations

when n > 3:

β =
0.1√
P
· 800n−3 if P < 0.001;

= 1 if P ≥ 0.001,

(2.14)

where n is the number of qubits. In Eq. 2.14, the gradient dP
dB

j+1
2

is amplified only when

P < 0.001 and n > 3, and β is negatively correlated to P . This definition functions well in

my dissertation study.
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The pseudocode of the QOC algorithm for constructing the optimized control

pulses is given in Algorithm 1 below.

Algorithm 1 QOC Algorithm

Input: time interval [0, T ], time step τ , static Hamiltonian H0, control Hamiltonian Hc,

initial state |ψ0⟩, target state |ψf ⟩, initial guess for control pulses B
(0)
x (t), B

(0)
y (t)

Output: final state |ψN ⟩, optimized control pulses Bx(t), By(t)

1: threshold← 0.999, maxIter ← 100
2: l← 0
3: Initialize B

(l)
j+1/2 for j ← 0, . . . , N − 1

4: while P < threshold and l < maxIter do
5: for j ← 1, . . . , N do
6: Calculate |ψj⟩ with Eq. 2.7
7: end for
8: Update P with Eq. 2.8
9: for j ← N − 1, . . . , 0 do

10: Calculate dP

dB
(l)

j+1
2

using the chain rule in Eqs. 2.11 and 2.12

11: end for
12: Calculate γ with the golden-section search method

13: Update B
(l+1)
j+1/2 for j ← 0, . . . , N − 1 with Eq. 2.10

14: l← l + 1
15: end while
16: return Bj+1/2

2.3 Symmetry of Multi-Qubit Systems

In a real-world quantum computer, the physical qubits are typically realized by

artificial or natural particles that have multiple eigenstates of distinct energy levels, e.g., su-

perconducting transmons [7, 8, 9, 10, 11], superconducting fluxoniums [12, 13], and trapped

ions [14, 15]. These particles are typically manufactured or manipulated to have the same

engineering parameters. Therefore, the physical qubits in the same system are described

by the same Hamiltonians. For computational purposes, each qubit, acting as a register,
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must be distinguished from the others and assigned a unique address. Based on these

facts, I claim the homogeneity and distinguishability of the qubits in the same system. The

symmetry of finite groups of the multi-qubit system originates from the homogeneity and

distinguishability of the qubits.

As shown in Eqs. 2.3, 2.4, 2.5, the Hamiltonian of an n-qubit system commonly

consists of the following terms: Hz =
∑n

i=1 σ
(i)
z , Hx =

∑n
i=1 σ

(i)
x , and Hy =

∑n
i=1 σ

(i)
y [57].

Writing down Hz explicitly as

Hz =
n∑

i=1

σ(i)z = σz ⊗ I⊗n−1
2 + I2 ⊗ σz ⊗ I⊗n−2

2 + · · ·+ I⊗n−1
2 ⊗ σz, (2.15)

it is obvious that any permutation of the qubit indices does not change Hz but only rear-

ranges the terms in the summation. Hx and Hy have the same feature. Therefore, these

Hamiltonian terms have the symmetry of the permutation group, Sn [60, 61, 62]. Note that

the group actions are on the indices of the qubits, which does not require repositioning the

qubits physically. When the interaction between neighboring qubits in a ring-shaped lattice

is considered, one must include the coupling term Hz,cpl =
∑n

i=1 σ
(i)
z σ

(i+1)
z . This coupling

term is invariant only under rotations and reflections of the indices of the qubits and, there-

fore, has the symmetry of the dihedral group, Dn [60, 61, 62]. Note that all terms having

Sn symmetry also have Dn symmetry since Dn is a subgroup of Sn. Fig. 2.1b visually shows

that the configuration of the non-interacting qubits is not affected by any Sn or Dn action

on the indices. However, as shown in Fig. 2.1c, when the coupling is considered, the system

is invariant only under Dn actions.
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Figure 2.1: Schematic of a multi-qubit system. (a), A 6-qubit system in the presence
of a static field Bz and time-dependent control pulses Bx(t) and By(t). Each qubit is
represented by an orange arrow, and the numbers denote the indices of the qubits. The
coupling between neighboring qubits is represented by violet bonds. (b), The 6-qubit
system without coupling after applying an S6 action (left) or a D6 action (right) on the
indices. (c), The 6-qubit system with coupling after applying an S6 action (above) or a D6

action (below) on the indices. The configurations connected with an equal sign are
equivalent.

22



In many scenarios, the entire multi-qubit system may not satisfy the symmetry of

any finite group. However, each term in the Hamiltonian may have a reduced symmetry of

Sk, Dk (k < n), or some other finite group. Examples of broken symmetry in multi-qubit

systems are presented in Sec. 3.5.

The symmetry of finite groups makes it possible to decompose the Hilbert space

H(C2n) into orthogonal subspaces. Namely, H(C2n) =
⊕

λ,j Hλ
j under Sn symmetry or

H(C2n) =
⊕

θ,j Hθ
j under Dn symmetry, where λ, j or θ, j indexes each specific subspace.

Under these decompositions, I find an orthogonal and complete basis in each subspace.

The orthogonality and completeness of the basis of the subspaces originate from the Schur

orthogonality and completeness of the irreducible representations, or irreps, of finite groups.

[60, 61, 62] Putting all the orthonormal bases together as columns, I construct the adjoint

matrix A that transforms the Hamiltonians into block diagonal matrices. I denote the Sn-

and Dn-induced adjoint matrices as ASn and ADn , respectively. In the following part of this

dissertation, I also use the notation of AS and AD when they do not cause confusion. The

procedure of decomposing the Hilbert space H(C2n) and generating the adjoint matrices

AS and AD is given in detail in Ch. 3.
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Chapter 3

Mathematical Methods

In Sec. 3.1 and 3.2, I present two equivalent methods, the Young method and the

Clebsch-Gordan Coefficients of SU(2), for Sn-induced decomposition of the Hilbert space

H(C2n). It is worth mentioning that the Sn symmetry was studied in several previous

QOC works. [29, 30, 31] However, these studies focus on analytical methods of small

qubit systems only, while I present a numerical approach for the Sn-induced method which

applies to multi-qubit systems of any size. Based on the Young method, I developed the Dn-

induced decomposition of H(C2n), which is shown in Sec. 3.3. A mathematical justification

for the Dn-induced approach is provided in Sec. 3.4. It is worth noting that multi-qubit

systems having the symmetry of other finite groups than Sn and Dn can also be analyzed

and simplified in approaches similar to the Dn-induced method. In Sec. 3.5, I introduce

how to combine the symmetry-based methods with the Lie-Trotter-Suzuki decomposition,

which generalizes the symmetry-based methods to the scenario that the symmetry of the
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entire multi-qubit system is broken. The source code in Python for the QOC of multi-qubit

systems and the symmetry-based methods is provided in Sec. 3.6.

Some content in this chapter is part of Accelerating Quantum Optimal Control

of Multi-Qubit Systems with Symmetry-Based Hamiltonian Transformations, an article ac-

cepted for publication in AVS Quantum Science.

3.1 Transformation of the Hamiltonians of Sn SymmetryWith

the Young Method

The static Hamiltonian without coupling in Eq. 2.3 obviously has Sn symmetry

since it is proportional to Hz =
∑n

i=1 σ
(i)
z . Similarly, the control Hamiltonian in Eq. 2.5 also

has Sn symmetry. If there are no other terms in the Hamiltonians, the whole multi-qubit

system has Sn symmetry. Each qubit is described by the same static (Bz · 12σz) and control

(Bx(t) · 12σx +By(t) · 12σy) Hamiltonian and assigned a unique index.

I temporarily specify the tensor products of the eigenstates of σz as the basis of the

Hilbert space. Since both σz and I2 are diagonal matrices, Hz is diagonal; however, Hx =∑n
i=1 σ

(i)
x and Hy =

∑n
i=1 σ

(i)
y are not. Considering the commutation relation [σj , σk] =

2iεjklσl, where j, k, l = x, y, z, it is obvious that Hx, Hy, and Hz do not commute, and, thus,

do not have eigenstates in common. Therefore, it is impossible to diagonalize Hx, Hy, and

Hz simultaneously. Nevertheless, the Sn symmetry of the Hamiltonians leads to a second-

best approach to construct another set of eigenstates of Hz. After being transformed with

the unitary adjoint matrix made up of those eigenstates, Hx and Hy are block diagonalized

while Hz is left diagonal.
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The first approach to obtain these eigenstates is to use the irreps of Sn. I briefly

introduce the Young method as follows. [60, 61, 62] Each irrep of Sn can be characterized by

a standard Young diagram made up of n boxes. I denote the shape of the Young diagram as

λ and the corresponding irrep as Aλ, where λ is an integer partition of n. For qubit systems,

I only consider the irreps characterized by Young diagrams made up of no more than two

rows, i.e., λ = [n−m,m], n−m ≥ m,m ≥ 0. I then generate standard Young tableaux by

filling each Young diagram with the integers 1, 2, 3, . . . , n. The number of different standard

Young tableaux dλ that can be generated for each Young diagram λ is the dimension of the

irrep Aλ. When λ = [n−m,m], I have

dλ =
n!(n− 2m+ 1)

(n−m+ 1)!m!
. (3.1)

I use the diagonal elements in each unitary irrep Aλ. For each group element

ei ∈ Sn, I denote its representation in Aλ as Aλ(ei). I further construct the following

elements

Oλ
j =

n!∑
i=1

Aλ
jj(ei)ei, 1 ≤ j ≤ dλ (3.2)

in the group algebraRSn for each unitary irrep Aλ, where Aλ
jj(ei) is the jth diagonal element

in the representation Aλ(ei). It should be noted that Aλ in Eq. 3.2 must be unitary. For

each standard Young tableau T λ
j with the shape λ, 1 ≤ j ≤ dλ, I define two permutation
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subgroups R(T λ
j ), C(T

λ
j ) of Sn as

R(T λ
j ) = {e ∈ Sn | e preserves the elements in each row of T λ

j },

C(T λ
j ) = {e ∈ Sn | e preserves the elements in each column of T λ

j }.
(3.3)

The Young symmetrizer of the tableau T λ
j can subsequently be defined as

Y (T λ
j ) =

∑
e∈R(Tλ

j ), e′∈C(Tλ
j )

sgn(e′)ee′, (3.4)

where sgn(e′) : Sn → {1,−1} is the sign of the permutation e′. With the Young sym-

metrizers, an irrep Aλ can be derived, but it is not generally unitary and cannot be directly

plugged into Eq. 3.2. The following recursive procedure yields the unitary irreps. Deleting

the box filled with the largest remaining number repetitively for each Young tableau T λ
j , I

can define the standard Young tableau sequence T
λ,(0)
j = T λ

j , . . . , T
λ,(i)
j , . . . , T

λ,(n−1)
j = T [1]

where λ, (i) is the shape of the Young diagram generated by deleting the boxes filled with

the largest i numbers in T λ
j . Each Young tableau T

λ,(i)
j corresponds to the group Sn−i in

the permutation group sequence Sn ⊃ Sn−1 ⊃ · · · ⊃ S1. The recurrence relation is given as
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follows:

O
λ,(n−1)
j = O[1] = e0,

O
λ,(n−2)
j =

dλ,(n−2)

2!
O[1]Y (T

λ,(n−2)
j )O[1],

...

O
λ,(i)
j =

dλ,(i)

(n− i)!
O

λ,(i+1)
j Y (T

λ,(i)
j )O

λ,(i+1)
j ,

...

O
λ,(1)
j =

dλ,(1)

(n− 1)!
O

λ,(2)
j Y (T

λ,(1)
j )O

λ,(2)
j ,

O
λ,(0)
j = Oλ

j =
dλ
n!
O

λ,(1)
j Y (T λ

j )O
λ,(1)
j ,

(3.5)

where e0 is the identity element in the group, and dλ,(i) is the dimension of the irrep Aλ,(i)

of Sn−i.

Using | ↑⟩ and | ↓⟩ to represent the spin-up and spin-down states of a single qubit,

respectively, the index-permutation group action on the Fock basis

α : Sn × {| ↑⟩, | ↓⟩}⊗n → {| ↑⟩, | ↓⟩}⊗n (3.6)

can be defined as follows. Any element e ∈ Sn can be defined by its action on the

index sequence [1, 2, . . . , i, . . . , n], i.e., e · [1, 2, . . . , i, . . . , n] 7→ [p1, p2, . . . , pi, . . . , pn], pi ∈

{1, 2, . . . , n}. Denoting any Fock state in {| ↑⟩, | ↓⟩}⊗n as |s1, s2, . . . , si, . . . , sn⟩, si = ↑, ↓,

where i is the index for the ith qubit, the index-permutation action is e·|s1, s2, . . . , si, . . . , sn⟩ 7→

|sp1 , sp2 , . . . , spi , . . . , spn⟩, e.g., (1, 2, 3, 4, 5) · | ↑ ↓ ↑ ↑ ↓⟩ 7→ | ↑2 ↓3 ↑4 ↑5 ↓1⟩ = | ↓ ↑ ↓ ↑ ↑⟩.

In terms of the group algebra elements Oλ
j =

∑n!
i=1A

λ
jj(ei)ei, λ = [n −m,m], 1 ≤ j ≤ dλ,
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which is a linear combination of group elements, I define

Oλ
j · |s1, s2, . . . , si, . . . , sn⟩ =

n!∑
i=1

(
Aλ

jj(ei)(ei · |s1, s2, . . . , si, . . . , sn⟩)
)
. (3.7)

As such, Oλ
j become operators acting on the Fock states, and it is trivial to show that for

any number m, 0 ≤ m ≤ n, the following set

{|s1, s2, . . . , si, . . . , sn⟩ | si = ↑, ↓;m of ↑, (n−m) of ↓} (3.8)

is an orbit in {| ↑⟩, | ↓⟩}⊗n since any index-permutation action e ∈ Sn does not convert a

spin-up to a spin-down or inversely but only rearranges the spins.

Each operator Oλ
j acts on no more than one element in each orbit. The elements

to be acted on can be found with the Weyl tableaux that can be generated by filling the

boxes in the Young diagram λ = [n − m,m] with ↑ and ↓ entries. I fill all the boxes in

the second row with ↓ and all the boxes right above the second row with ↑ entries. The

rest of the boxes (i.e., the boxes in the first row with no box below them) can be filled

with either ↑ or ↓ so that no ↑ is to the right of any ↓. In this way, there are n − 2m + 1

different Weyl tableaux for each operator Oλ
j . It should be noted that the Young tableau

T λ
j corresponding to Oλ

j has the same shape with the Weyl tableaux, (i.e., λ = [n−m,m]).

With the number i in each box of the Young tableau T λ
j being the index for the spin in

the same box of each Weyl tableau, n− 2m+1 elements in {| ↑⟩, | ↓⟩}⊗n will be generated.

Obviously, each of them is an eigenstate of Hz and belongs to a different orbit. Therefore,

those n − 2m + 1 elements are orthogonal to each other. Acting Oλ
j on the n − 2m + 1
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elements, I obtain the orthogonal basis for a subspace of the Hilbert space H(C2n). Each

basis vector is still an eigenstate of Hz. It can be shown that the subspaces generated by

different Oλ
j are orthogonal to each other, and I denote each subspace as Hλ

j . The procedure

above decomposes the Hilbert space H(C2n) with a dimension of 2n into

n−m≥m,m≥0∑
λ=[n−m,m]

dλ =

⌊n/2⌋∑
m=0

n!(n− 2m+ 1)

(n−m+ 1)!m!
(3.9)

orthogonal subspaces. Each subspace has a dimension of n− 2m+ 1.

Thus far, with the Young method, I generated the orthogonal basis of the subspaces

{Hλ
j }. I next normalize the basis and let them be the columns of a unitary matrix AS such

that the basis of each particular subspace is positioned together. Since all the columns

of AS are eigenstates of Hz, after the unitary similarity transformation with the adjoint

matrix AS , H
′
z = A†

SHzAS remains diagonal. Moreover, after the same unitary similarity

transformation, H ′
x = A†

SHxAS and H ′
y = A†

SHyAS are block diagonal. The nonzero

elements in each block of H ′
x and H ′

y are distributed at the minor diagonals closest to the

main diagonal (see Figs. 4.1, 4.2, 4.3, 4.4, and 4.5 in Sec. 4.1). The number of blocks equals

the number of subspaces Hλ
j as described in Eq. 3.9, while the dimension of each block is

consistent with the dimension of each subspace (i.e., (n− 2m+ 1)× (n− 2m+ 1)).

Since the Hamiltonians in Eqs. 2.3 and 2.5 are block diagonal after the unitary

similarity transformation with AS , the evolution of a pure state |ψ⟩ in any subspace Hλ
j is

strictly confined within that subspace. In other words, if the initial state |ψ(0)⟩ is in some

subspace Hλ
j , regardless of the temporal forms of the control pulses Bx(t) and By(t), the

final state |ψ(T )⟩ must also be in the same subspace. If the initial state is defined as a
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linear combination of states in multiple subspaces, i.e.,

|ψ(0)⟩ =
∑
λ,j

cλj |ψλ
j (0)⟩, cλj ∈ C, |ψλ

j (0)⟩ ∈ Hλ
j , (3.10)

the final state must also be in those subspaces with the same probabilities, i.e.,

|ψ(T )⟩ =
∑
λ,j

c′
λ
j |ψλ

j (T )⟩, c′
λ
j ∈ C, |ψλ

j (T )⟩ ∈ Hλ
j , ∥c′

λ
j ∥ = ∥cλj ∥, (3.11)

as long as the Hamiltonians preserve the Sn symmetry. This implies that λ is a good

quantum number in a multi-qubit system with Sn symmetry. Later I will show that λ is

equivalent to the quantum number J , the total spin angular momentum of the multi-qubit

system.

One disadvantage of the Young method is its computational complexity. Gener-

ating different Oλ
j can take different runtimes, while the most time-consuming one, O

[n]
1 ,

takes

O

(
n∏

i=1

(i!)2
n−i

)
(3.12)

group operations to be generated. The table below summarizes the timing of the Young

method for 3 ≤ n ≤ 7. Obviously, it is not practical to generate the complete adjoint

matrix AS with the Young method when n is large. It should be noted that the orthogonal

decomposition of the Hilbert space with the Young method,

H(C2n) =
⊕
λ,j

Hλ
j , (3.13)

31



is used to generate the representation space of unitary groups, namely SU(2), in this study.

[60, 61, 62] Therefore, the Clebsch-Gordan coefficients of SU(2), another method for gen-

erating the unitary irreps of SU(2), should lead to the same direct sum decomposition in

Eq. 3.13, as I show in the next section.

Table 3.1: Comparison of computational runtimes for generating the adjoint matrix A
with different methods

Computational Walltime (seconds)

Number of Young CG coefficients Dn group algebra
qubits n method of SU(2) elements as operators

3 0.0077 0.0024 0.0012
4 0.0178 0.0100 0.0023
5 0.4748 0.0428 0.0046
6 63.8318 0.1848 0.0356
7 21286.3550 0.8066 0.0245
8 - 3.4327 0.0581
9 - 14.5743 0.1380
10 - 61.0588 0.3467
11 - 258.1316 0.7800
12 - 1080.7927 1.8423
13 - 4436.7408 4.4299
14 - 18832.3390 11.1521

Data collected with 8 Intel Broadwell CPUs. Computational timings for the Young
method were not tested for 8 qubits and higher.

3.2 Transformation of the Hamiltonians of Sn SymmetryWith

the Clebsch-Gordan Coefficients of SU(2)

The Clebsch-Gordan (CG) coefficients are the coefficients for the direct sum de-

composition of the direct product of two group irreps. When there is no coupling be-
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tween neighboring qubits, the n-qubit system can be described with SU(2)⊗n, so I can

focus on the CG coefficients of SU(2) in this section. The CG coefficients of SU(2),

denoted as ⟨J1,M1; J2,M2 | J,M⟩, has an analytical expression. The angular momen-

tum J ∈ {0, 12 , 1,
3
2 , 2, . . . } and the angular momentum projection onto the z-axis M ∈

{−J,−J+1, . . . , J−1, J} are good quantum numbers characterizing the orthonormal basis

|J,M⟩, i.e., ⟨J ′,M ′ | J,M⟩ = δJ ′JδM ′M . ⟨J1,M1; J2,M2 | J,M⟩ is nonzero if and only if

|J1−J2| ≤ J ≤ J1+J2 andM =M1+M2. When one of the two irreps is the 2-dimensional

irrep (i.e., J2 =
1
2), the CG coefficients ⟨J1,M1;

1
2 ,M2 | J,M⟩ reduce to

〈
J1,M1;

1

2
,
1

2

∣∣∣∣ (J1 + 1

2

)
,M

〉
=

√
J1 +M + 1

2

2J1 + 1
,

〈
J1,M1;

1

2
,−1

2

∣∣∣∣ (J1 + 1

2

)
,M

〉
=

√
J1 −M + 1

2

2J1 + 1
,

〈
J1,M1;

1

2
,
1

2

∣∣∣∣ (J1 − 1

2

)
,M

〉
= −

√
J1 −M + 1

2

2J1 + 1
,

〈
J1,M1;

1

2
,−1

2

∣∣∣∣ (J1 − 1

2

)
,M

〉
=

√
J1 +M + 1

2

2J1 + 1
.

(3.14)

The eigenstates of a single qubit can be written as |12 ,
1
2⟩ = | ↑⟩ and |

1
2 ,−

1
2⟩ = | ↓⟩.

When an additional qubit is added into the system, applying the CG coefficients in Eq. 3.14

gives the eigenstates of the two-qubit system, i.e., the symmetric triplet states |1, 1⟩ = | ↑

↑⟩, |1, 0⟩ = 1√
2
(| ↑ ↓⟩ + | ↓ ↑⟩), |1,−1⟩ = | ↓ ↓⟩, and the anti-symmetric singlet state

|0, 0⟩ = 1√
2
(| ↑ ↓⟩ − | ↓ ↑⟩). In other words, the procedure of the orthogonal decomposition

of the Hilbert space H(C2n) of the combined two spin-12 systems is to decompose the direct

product of two 2-dimensional irreps of SU(2) into the direct sum of two irreps. Similarly,

when a new qubit is added to the multi-qubit system, the CG coefficients in Eq. 3.14 allow
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me to decompose the direct product of the irrep carried by each existing subspace and a

2-dimensional irrep into the direct sum of two if J1 > 0, or one if J1 = 0, irrep(s). In

this way, the orthonormal basis of new orthogonal subspaces (i.e., the eigenstates of the

multi-qubit system) can be generated.

Following the procedure above and iteratively applying Eq. 3.14, the eigenstates,

|J,M⟩, of a multi-qubit system with any number of qubits n can be generated. These

eigenstates are in different subspaces characterized by the angular momentum J , and I

denote these subspaces as HJ . Each HJ has a total of 2J + 1 basis kets |J,M⟩. It is

worth noting that different subspaces can have the same value of J . To distinguish among

the subspaces {HJ} characterized by the same J , I require the evolution history of J .

According to the CG coefficient ⟨J1,M1;
1
2 ,M2 | J,M⟩, the angular momentum J of each

subspace HJ of a n-qubit system and its counterpart J1 of the (n−1)-qubit system satisfies

the relation J = J1 +
1
2 or J = J1 − 1

2 . I denote J as J (0), J1 as J (1), and the angular

momentum in the (n− 2)-qubit system as J (2). This sequence of angular momenta J (0) =

J, J (1), J (2), . . . , J (n−1) = 1
2 indicates how the subspace HJ is evolved to and is unique

for each subspace. I can then use the evolution history of J , denoted as the sequence

J (n−1), . . . , J (i), . . . , J (0), or [J (i)] for short, to distinguish each of the HJ with the same J .

I denote each HJ with the evolution history [J (i)] as HJ
[J(i)]

. Similar to the Young method in

the previous subsection, I let the basis |J,M⟩ in each HJ
[J(i)]

be the columns of the adjoint

matrix AS . After a unitary similarity transformation with AS , H
′
z = A†

SHzAS remains

diagonal, and H ′
x = A†

SHxAS and H ′
y = A†

SHyAS are block diagonal. Only the elements in

the minor diagonals closest to the main diagonal in each block of H ′
x and H ′

y are nonzero.
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Therefore, Hx and Hy are the control Hamiltonians that change M by ±1 but keep J and

[J (i)] unchanged. Further details are provided in Sec. 5.2.

Thus far, I have introduced two methods for transforming the Hamiltonians: uti-

lizing the group algebra elements of Sn with the Young method and decomposing the direct

product of the irreps of SU(2) into a direct sum iteratively. Both methods decompose the

Hilbert space H(C2n) into orthogonal subspaces {Hλ
j } or {HJ

[J(i)]
} and generate the or-

thonormal basis in each subspace. Since the two sets of subspaces both carry the irreps of

SU(2), the basis of either set of subspaces can be linearly transformed to the other. In fact,

denoting the adjoint matrix generated with the Young method as AY
S and that generated

with the CG coefficients of SU(2) as ACG
S , tests for up to 7 qubits show that AY

S
†
ACG

S is a

permutation matrix (i.e., there is only one element of 1 in each row and in each column of

AY
S
†
ACG

S , while the other elements are all 0, as shown in Fig. 3.1). Therefore, the adjoint

matrices generated with the two methods are mathematically equivalent and only differ in

the sorting of the subspaces.

Since the orthonormal basis of the two sets of subspaces, {Hλ
j } and {HJ

[J(i)]
}, are

the same, the quantum numbers λ = [n−m,m] and J characterizing these subspaces must

coincide with each other. It should be noted that the dimension of the subspace Hλ
j is

n − 2m + 1 and that of HJ
[J(i)]

is 2J + 1. The constraint n − 2m + 1 = 2J + 1 must

be satisfied so that the subspaces Hλ
j and HJ

[J(i)]
can be the same. The index sets, {j}

and {[J (i)]}, should also have the same number of elements so that there is a one-to-one

mapping between them. Table 3.2 shows an example of the correspondence between {Hλ
j }

and {HJ
[J(i)]
} of the 6-qubit system.
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Figure 3.1: Sparsity plots for AY
S
†
ACG

S matrices of multi-qubit systems. (a)
3-qubit system; (b) 4-qubit system; (c) 5-qubit system; (d) 6-qubit system; (e) 7-qubit
system. The x- and y-axes denote the column and row indices of the matrix elements,
respectively. Each green-colored square box contains an identity matrix. All the elements
outside the boxes are zeros.
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Table 3.2: Correspondence of good quantum numbers and indices between {Hλ
j } and

{HJ
[J(i)]
} in a 6-qubit system

Decomposition method Young method CG coefficients of SU(2)
Notation of subspace Hλ

j HJ
[J(i)]

Good quantum number of subspaces λ = [n−m,m] J

Index of subspaces with the j [J (i)] =

same good quantum number [J (5), J (4), J (3), J (2), J (1), J (0)]
Dimension of subspace n− 2m+ 1 2J + 1

Good quantum number [6, 0] 3
Index of subspaces 1, [[1, 2, 3, 4, 5, 6]] [12 , 1,

3
2 , 2,

5
2 , 3]

Good quantum number [5, 1] 2
Index of subspaces 1, [[1, 2, 3, 4, 5], [6]] [12 , 1,

3
2 , 2,

5
2 , 2]

2, [[1, 2, 3, 4, 6], [5]] [12 , 1,
3
2 , 2,

3
2 , 2]

3, [[1, 2, 3, 5, 6], [4]] [12 , 1,
3
2 , 1,

3
2 , 2]

4, [[1, 2, 4, 5, 6], [3]] [12 , 1,
1
2 , 1,

3
2 , 2]

5, [[1, 3, 4, 5, 6], [2]] [12 , 0,
1
2 , 1,

3
2 , 2]

Good quantum number [4, 2] 1
Index of subspaces 1, [[1, 2, 3, 4], [5, 6]] [12 , 1,

3
2 , 2,

3
2 , 1]

2, [[1, 2, 3, 5], [4, 6]] [12 , 1,
3
2 , 1,

3
2 , 1]

3, [[1, 2, 3, 6], [4, 5]] [12 , 1,
1
2 , 1,

1
2 , 1]

4, [[1, 2, 4, 5], [3, 6]] [12 , 1,
3
2 , 1,

1
2 , 1]

5, [[1, 2, 4, 6], [3, 5]] [12 , 1,
1
2 , 0,

1
2 , 1]

6, [[1, 2, 5, 6], [3, 4]] [12 , 0,
1
2 , 1,

1
2 , 1]

7, [[1, 3, 4, 5], [2, 6]] [12 , 1,
1
2 , 1,

3
2 , 1]

8, [[1, 3, 4, 6], [2, 5]] [12 , 0,
1
2 , 1,

3
2 , 1]

9, [[1, 3, 5, 6], [2, 4]] [12 , 0,
1
2 , 0,

1
2 , 1]

Good quantum number [3, 3] 0
Index of subspaces 1, [[1, 2, 3], [4, 5, 6]] [12 , 1,

3
2 , 1,

1
2 , 0]

2, [[1, 2, 4], [3, 5, 6]] [12 , 1,
1
2 , 1,

1
2 , 0]

3, [[1, 2, 5], [3, 4, 6]] [12 , 0,
1
2 , 1,

1
2 , 0]

4, [[1, 3, 4], [2, 5, 6]] [12 , 1,
1
2 , 0,

1
2 , 0]

5, [[1, 3, 5], [2, 4, 6]] [12 , 0,
1
2 , 0,

1
2 , 0]

The index of subspaces j is not well-defined. I can rearrange the order of the diagonal
elements in any representation of Sn with a similarity transformation. Therefore, I pursue
an index that is invariant under the similarity transformation of group representations.
Note that the subspace Hλ

j is generated with the group algebra element Oλ
j corresponding

to a standard Young tableau T λ
j with the shape λ. Here I record the Young tableau T λ

j as

a two-row list in addition to the index j, which is defined by sorting T λ
j .
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As shown in Table 3.2, I conclude that the Young method and the CG coefficients

of SU(2) lead to the same decomposition of H(C2n), and the same transformation of the

Hamiltonians Hx, Hy, Hz, whereas the CG coefficients method takes much less time, as

shown in Table 3.1. In this work, I preferably use the CG coefficients of SU(2) to generate

the adjoint matrix AS that transforms the Hamiltonians in Eqs. 2.3 and 2.5.

Although the Young method is cumbersome for transforming Hamiltonians with

Sn symmetry, it does imply that Hamiltonians with other types of finite group symmetries

may be transformed in a similar way (i.e., to act the group algebra elements on some proper

Fock states). In the following section, I introduce how Hamiltonians with Dn symmetry in

Eq. 2.4 can be transformed with the group algebra elements of RDn .

3.3 Transformation of the Hamiltonians of Dn Symmetry

The dihedral group Dn is the finite group describing the symmetry of a regular

polygon with n vertices. Dn has 2n group elements, with n rotational and n reflective

elements. The last term in Eq. 2.4 has Dn symmetry since it is invariant under the rotations

of the indices {i ∈ N|1 ≤ i ≤ n}, which are defined as

i 7→ (i+ k) mod n if (i+ k) mod n ̸= 0;

i 7→ n if (i+ k) mod n = 0,

1 ≤ i ≤ n, 0 ≤ k ≤ n− 1,

(3.15)
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and the reflections of the indices, which are defined as

i 7→ (n+ k − i) mod n if (n+ k − i) mod n ̸= 0;

i 7→ n if (n+ k − i) mod n = 0,

1 ≤ i ≤ n, 0 ≤ k ≤ n− 1.

(3.16)

One intuitive way to understand Dn symmetry is to position each qubit at the vertices of

a n-gon and take the edges as the coupling between nearest neighbors. It should be noted

that Eqs. 2.3 and 2.5 also have Dn symmetry since Dn is a subgroup of Sn. Therefore,

the adjoint matrices block diagonalizing the coupling Hamiltonian, Hcpl =
∑n

i=1 σ
(i)
z σ

(i+1)
z ,

should block diagonalizeHx, Hy, andHz as well. I provide the details about how to generate

the adjoint matrices with the irreps of Dn as follows.

The 2n elements of the Dn group are in n+3
2 conjugate classes if n is odd or

n
2 + 3 conjugate classes if n is even. Accordingly, the Dn group has the same number of

inequivalent irreps. The character tables of Dn are given in Tables 3.3 and 3.4.
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Table 3.3: Character table of the Dn group for odd n

Conjugate class

Irrep {e0} (1, 1) {Ck
n, C

n−k
n } (2, n−1

2 ) {C(k)
2 } (n, 1)

Identity (1) 1 1 1
Cn (1) 1 1 -1
θ1 =

2π
n (2) 2 2cos(kθ1) 0

...
...

...
...

θj =
2πj
n (2) 2 2cos(kθj) 0

...
...

...
...

θn−1
2

= π(n−1)
n (2) 2 2cos(kθn−1

2
) 0

Three types of conjugate classes exist: (1) the identity element {e0}, (2) rotations
{Ck

n, C
n−k
n }, 1 ≤ k ≤ n−1

2 , and (3) reflections {C(k)
2 |0 ≤ k ≤ n− 1}. The numbers in the

bracket next to the conjugate classes are the number of elements in the class and the
number of classes of that type. The irreps are 1- or 2-dimensional. Besides the identity
irrep, the other 1-dimensional irrep is formed by the fact that the cyclic group Cn is an
invariant subgroup of Dn. The

n−1
2 of 2-dimensional irreps are characterized by

θj , 1 ≤ j ≤ n−1
2 . The number in the bracket next to the irreps is the dimension of the irrep.

The 2-dimensional irreps of Dn can be constructed in the following way. In the

θj =
2πj
n representation,

A(Ck
n) =

cos(kθj) −sin(kθj)

sin(kθj) cos(kθj)

 ,

A(C
(k)
2 ) =

cos(kθj) sin(kθj)

sin(kθj) −cos(kθj)

 ,

C0
n = e0, 0 ≤ k ≤ n− 1.

(3.17)
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Table 3.4: Character table of the Dn group for even n

Conjugate class

Irrep {e0} {Ck
n, C

n−k
n } {C

n
2
n } {C(k)

2 } {C(k′)
2 }

(1, 1) (2, n−2
2 ) (1, 1) (n2 , 1) (n2 , 1)

Identity (1) 1 1 1 1 1
Cn (1) 1 1 1 -1 -1
Dn

2
(1) 1 1 if k is even 1 if n

2 is even -1 1

-1 if k is odd -1 if n
2 is odd

D′
n
2
(1) 1 1 if k is even 1 if n

2 is even 1 -1

-1 if k is odd -1 if n
2 is odd

θ1 =
2π
n (2) 2 2cos(kθ1) -2 0 0

...
...

...
...

...
...

θj =
2πj
n (2) 2 2cos(kθj) 2cos(jπ) 0 0

...
...

...
...

...
...

θn−2
2

= π(n−2)
n (2) 2 2cos(kθn−2

2
) 2cos(n−2

2 π) 0 0

Five types of conjugate classes exist: (1) the identity element {e0}, (2) rotations
{Ck

n, C
n−k
n }, 1 ≤ k ≤ n−2

2 , (3) rotation {C
n
2
n }, (4) reflections changing all the indices of the

qubits {C(k)
2 |k = 2l, 0 ≤ l ≤ n

2 − 1}, and (5) reflections keeping two indices of the qubits

unchanged {C(k′)
2 |k′ = 2l + 1, 0 ≤ l ≤ n

2 − 1}. The numbers in the bracket next to the
conjugate classes are the number of elements in the class and the number of classes of that
type. The irreps are 1- or 2-dimensional. Besides the identity irrep, the other
1-dimensional irreps are formed by the fact that the cyclic group Cn and Dn

2
are invariant

subgroups of Dn. The
n−2
2 of 2-dimensional irreps are characterized by θj , 1 ≤ j ≤ n−2

2 .
The number in the bracket next to the irreps is the dimension of the irrep.
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Here I clarify the definition of Ck
n and C

(k)
2 with their action on the sequence of the indices

of qubits [1, 2, 3, . . . , j, . . . , n]:

Ck
n · [1, 2, 3, . . . , n− 1, n] 7→ [1 + k, 2 + k, . . . , n− 1, n, 1, 2, . . . , k − 1, k],

C
(k)
2 · [1, 2, 3, . . . , n− 1, n] 7→ [k, k − 1, . . . , 2, 1, n, n− 1, . . . , 2 + k, 1 + k],

C
(k)
2 = R ◦ Ck

n, 0 ≤ k ≤ n− 1,

(3.18)

where R is the action reversing the sequence and ◦ is the group operation. It is easy to

verify that the matrices defined in Eq. 3.17 form the θj =
2πj
n 2-dimensional representation

and are compatible with the character tables in Tables 3.3 and 3.4.

Similar to the procedure in Sec. 3.1, I construct the elements

Oθ
j =

2n∑
i=1

Aθ
jj(ei)ei, 1 ≤ j ≤ dθ (3.19)

in the group algebra RDn for each unitary irrep Aθ. Here θ ∈ {Id, Cn, θ1, . . . , θn−1
2
} (for

odd n) or θ ∈ {Id, Cn, Dn
2
, D′

n
2
, θ1, . . . , θn−2

2
} (for even n) is the index identifying the irrep,

and Aθ
jj(ei) is the jth diagonal element in the representation Aθ(ei) of the element ei ∈ Dn,

and dθ = 1 or 2 is the dimension of the representation Aθ. It is trivial to show there

are n + 1 elements if n is odd, or n + 2 elements if n is even, in the group algebra RDn .

These elements can be regarded as operators acting on the Fock basis. With the group

actions defined in the mapping in Eq. 3.18, the action of any e ∈ Dn on any Fock state

42



|s1, s2, s3, . . . , si, . . . , sn⟩ ∈ {| ↑⟩, | ↓⟩}⊗n can be defined as

Ck
n · |s1, s2, s3, . . . , sn−1, sn⟩ 7→ |s1+k, s2+k, . . . , sn−1, sn, s1, s2, . . . , sk−1, sk⟩,

C
(k)
2 · |s1, s2, s3, . . . , sn−1, sn⟩ 7→ |sk, sk−1, . . . , s2, s1, sn, sn−1, . . . , s2+k, s1+k⟩,

0 ≤ k ≤ n− 1, si ∈ {| ↑⟩, | ↓⟩}, 1 ≤ i ≤ n.

(3.20)

The action of the operator Oθ
j =

∑2n
i=1A

θ
jj(ei)ei is the linear combination of the action of

each ei ∈ Dn, i.e.,

Oθ
j · |s1, s2, s3, . . . , si, . . . , sn⟩ =

2n∑
i=1

Aθ
jj(ei)(ei · |s1, s2, s3, . . . , si, . . . , sn⟩). (3.21)

With respect to the group action of Dn, {| ↑⟩, | ↓⟩}⊗n is decomposed into orbits.

Since Dn has rotation and reflection elements only, it is not guaranteed that any two ele-

ments in the set {|s1, s2, s3, . . . , si, . . . , sn⟩ | si = ↑, ↓;m of ↑, (n−m) of ↓} are equivalent

to each other. Therefore, the set above is typically not an orbit of {| ↑⟩, | ↓⟩}⊗n under

the group action of Dn. However, it is trivial to show that the orbit Dn · |s1, . . . , sn⟩ is a

subset of the orbit Sn · |s1, . . . , sn⟩ since any Dn action also does not convert a spin-up to

a spin-down or vice versa but only rearranges the spins. In other words, the fact that Dn

is a subgroup of Sn results in the Dn orbits being subsets of the Sn orbits.

With the orbit-stabilizer theorem [63], I claim that for any |s1, . . . , sn⟩ ∈ {| ↑

⟩, | ↓⟩}⊗n, the number of elements in the orbit Dn · |s1, . . . , sn⟩ is either a factor of n if

Cn · |s1, . . . , sn⟩ = (Dn\Cn) · |s1, . . . , sn⟩ or a factor of 2n if Cn · |s1, . . . , sn⟩ ∩ (Dn\Cn) ·

|s1, . . . , sn⟩ = ∅. Here, Dn\Cn = R ◦Cn is the difference of Dn and Cn. The Hilbert space
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H(C2n) is decomposed into subspaces by acting each operator Oθ
j on some proper element(s)

in the orbits. If Cn · |s1, . . . , sn⟩ = (Dn\Cn) · |s1, . . . , sn⟩, each operator Oθ
j acts on no more

than one element in each orbit. In contrast, if Cn · |s1, . . . , sn⟩ ∩ (Dn\Cn) · |s1, . . . , sn⟩ = ∅,

each operator Oθ
j acts on zero or two elements in each orbit. Following the procedure above,

the orthogonal basis of all the subspaces is generated. Each subspace is defined by the group

action of the operator Oθ
j , and I denote that subspace asHθ

j . I then normalize the orthogonal

basis in each subspace Hθ
j and let them be the columns of such a unitary matrix AD such

that the basis of each particular subspace is positioned together. All the orthonormal

basis vectors are the eigenstates of Hcpl and Hz. Therefore, after the unitary similarity

transformation with the adjoint matrix AD, H
′
cpl = A†

DHcplAD and H ′
z = A†

DHzAD remain

diagonal, while H ′
x = A†

DHxAD and H ′
y = A†

DHyAD are block diagonal. It should be noted

that the dimensions of the subspaces in the decomposition

H(C2n) =
⊕
θ,j

Hθ
j (3.22)

are generally larger than those in the decomposition in Eq. 3.13. In fact, the dimension

of H[n]
1 in the Sn decomposition is ∼ O(n), whereas the dimension of HId

1 in the Dn de-

composition is ∼ O(2
n

n ). Therefore, the sizes of the blocks in H ′
x and H ′

y after the Dn

transformation (which are equal to the dimensions of the subspaces) are generally larger

than those corresponding to the Sn-induced transformation. Table 4.1 in Sec. 4.1 shows a

comparison of the dimensions of H(C2n), H[n]
1 , HId

1 for 3 ≤ n ≤ 14.

Similar to what I concluded in Sec. 3.1, with the Hamiltonians in Eqs. 2.4 and 2.5

block diagonalized with the Dn-induced unitary similarity transformation, it is clear that

44



the evolution of a pure state |ψ⟩ in any subspace Hθ
j is strictly confined within that subspace

regardless of the temporal forms of the control pulses Bx(t) and By(t). Furthermore, if the

initial state is defined as a linear combination of states in multiple subspaces, i.e.,

|ψ(0)⟩ =
∑
θ,j

cθj |ψθ
j (0)⟩, cθj ∈ C, |ψθ

j (0)⟩ ∈ Hθ
j , (3.23)

the final state must also be in those subspaces with the same probabilities, i.e.,

|ψ(T )⟩ =
∑
θ,j

c′
θ
j |ψθ

j (T )⟩, c′
θ
j ∈ C, |ψθ

j (T )⟩ ∈ Hθ
j , ∥c′

θ
j∥ = ∥cθj∥. (3.24)

Since the subspaces {Hθ
j} are characterized by θ, I conclude that θ is a good

quantum number in a multi-qubit system with Dn symmetry. It is worth noting that θ is

no longer equivalent to the total spin angular momentum J ; however, it can be shown that

the angular momentum projection onto the z-axisM is still a good quantum number for the

eigenstates of H0 in Eq. 2.4. For Sn symmetry, where each M ∈ {−J,−J +1, . . . , J − 1, J},

there is only one eigenstate characterized with M in each subspace HJ
[J(i)]

. In contrast,

for Dn symmetry, there may be more than one eigenstate characterized by the same M

in each subspace Hθ
j . It should be noted that Hx and Hy have Sn symmetry and change

M by ±1. One consequence is that there may be nonzero elements not only in the minor

diagonals closest to the main diagonal but also in further minor diagonals in the blocks

of H ′
x = A†

DHxAD and H ′
y = A†

DHyAD (see Figs. 4.1, 4.2, 4.3, 4.4, and 4.5 in Sec. 4.1).

I discuss the profile of H ′
x and H ′

y with the theory of creation/annihilation operators in

Sec. 5.2.
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3.4 Mathematical Proof of the Orthogonality and Complete-

ness of the Basis Vectors Generated by the Dn-Induced

Decomposition of the Hilbert Space

In this subsection, I show that the basis vectors generated in the procedure in

Sec. 3.3 are orthogonal and complete in the Hilbert space H(C2n). For the proof, I construct

the following complex 2-dimensional irreps of Dn. In the θj =
2πj
n representation,

A(Ck
n) =

exp(ikθj) 0

0 exp(−ikθj)

 ,

A(C
(k)
2 ) =

 0 exp(ikθj)

exp(−ikθj) 0

 ,

C0
n = e0, 0 ≤ k ≤ n− 1,

(3.25)

where i is the imaginary unit. The same as in Eq. 3.18, I clarify the definition of Ck
n and

C
(k)
2 with their action on the sequence of the indices of qubits [1, 2, 3, . . . , j, . . . , n]:

Ck
n · [1, 2, 3, . . . , n− 1, n] 7→ [1 + k, 2 + k, . . . , n− 1, n, 1, 2, . . . , k − 1, k];

C
(k)
2 · [1, 2, 3, . . . , n− 1, n] 7→ [k, k − 1, . . . , 2, 1, n, n− 1, . . . , 2 + k, 1 + k],

C
(k)
2 = R ◦ Ck

n, 0 ≤ k ≤ n− 1,

(3.26)

where R is the action reversing the sequence and ◦ is the group operation. It is straight-

forward to verify that the matrices defined in Eq. 3.25 form the θj = 2πj
n , 2-dimensional
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representation and are compatible with the character tables in Tables 3.3 and 3.4. This

complex irrep makes the proof simpler.

Lemma 1. For any |s1, . . . , sn⟩ ∈ {| ↑⟩, | ↓⟩}⊗n, Cn · |s1, . . . , sn⟩ and (Dn\Cn) ·

|s1, . . . , sn⟩ either are the same set or have no element in common.

Proof. Note that the reflection elements are defined by C
(k)
2 = R ◦ Ck

n. Then

R = R ◦ e0 is also a reflection element. Considering that Cn is an invariant subgroup of Dn,

all the reflection elements form the coset R ◦ Cn = Cn ◦R = Dn\Cn.

If R · |s1, . . . , sn⟩ ∈ Cn · |s1, . . . , sn⟩, I obviously have (Dn\Cn) · |s1, . . . , sn⟩ =

(Cn ◦R) · |s1, . . . , sn⟩ = Cn · (R · |s1, . . . , sn⟩) = Cn · |s1, . . . , sn⟩.

Otherwise, if R · |s1, . . . , sn⟩ /∈ Cn · |s1, . . . , sn⟩, I have (Dn\Cn) · |s1, . . . , sn⟩ =

(Cn◦R)·|s1, . . . , sn⟩ = Cn·(R·|s1, . . . , sn⟩). Assume that some element Ck
n ·(R·|s1, . . . , sn⟩) ∈

Cn · |s1, . . . , sn⟩; then (Ck
n)

−1 · (Ck
n · (R · |s1, . . . , sn⟩)) = ((Ck

n)
−1 ◦ Ck

n) · (R · |s1, . . . , sn⟩) =

R · |s1, . . . , sn⟩ is in (Ck
n)

−1 ·(Cn · |s1, . . . , sn⟩) = ((Ck
n)

−1◦Cn) · |s1, . . . , sn⟩ = Cn · |s1, . . . , sn⟩,

which is contradictory with R · |s1, . . . , sn⟩ /∈ Cn · |s1, . . . , sn⟩. I can then conclude that

(Dn\Cn) · |s1, . . . , sn⟩ and Cn · |s1, . . . , sn⟩ have no element in common if R · |s1, . . . , sn⟩ /∈

Cn · |s1, . . . , sn⟩.

Lemma 2. For any element Oθ
j =

∑2n
i=1A

θ
jj(ei)ei in the group algebra RDn as an

operator on |s1, . . . , sn⟩ ∈ {| ↑⟩, | ↓⟩}⊗n as defined in Eq. 3.21, considering two different

elements |s′1, . . . , s′n⟩ and |s′′1, . . . , s′′n⟩ in Cn · |s1, . . . , sn⟩, I have Oθ
j · |s′1, . . . , s′n⟩ = c × Oθ

j ·

|s′′1, . . . , s′′n⟩, where c ∈ C is a complex coefficient that can be zero.

Proof. I discuss the operators Oθ
j by their corresponding irreps.
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In the situation of the identity irrep, OId =
∑2n

i=1 ei. Obviously, for any element

|s′1, . . . , s′n⟩ ∈ Dn · |s1, . . . , sn⟩, OId · |s′1, . . . , s′n⟩ is the same.

In the situation of the Cn irrep, OCn =
∑n

i=1 ei−
∑2n

i=n+1 ei, where the elements in

the first sum are rotations, and the elements in the second sum are reflections. Obviously,

for any |s′1, . . . , s′n⟩ ∈ Cn · |s1, . . . , sn⟩, OCn · |s′1, . . . , s′n⟩ is a zero vector if Cn · |s1, . . . , sn⟩ =

(Dn\Cn) · |s1, . . . , sn⟩. Otherwise, for any |s′1, . . . , s′n⟩ ∈ Cn · |s1, . . . , sn⟩, OCn · |s′1, . . . , s′n⟩

is the same if Cn · |s1, . . . , sn⟩ ∩ (Dn\Cn) · |s1, . . . , sn⟩ = ∅.

When n is even, I need to discuss the two irreps formed by the fact that Dn
2

is an invariant subgroup of Dn. Following the notations in Table 3.4, I take these two

operators as O
Dn

2 =
∑2n

i=1A
Dn

2 (ei)ei and O
D′

n
2 =

∑2n
i=1A

D′
n
2 (ei)ei. Note that 1 and −1

appear alternately as the coefficients of the Cn elements and the Dn\Cn elements. Also,

Cn · |s1, . . . , sn⟩ and (Dn\Cn) · |s1, . . . , sn⟩ always have the same number of elements. Then

for any |s′1, . . . , s′n⟩ ∈ Cn · |s1, . . . , sn⟩, O
Dn

2 · |s′1, . . . , s′n⟩ and O
D′

n
2 · |s′1, . . . , s′n⟩ must be zero

vectors if Cn · |s1, . . . , sn⟩ has an odd number of elements.

For O
Dn

2 · |s′1, . . . , s′n⟩ or O
D′

n
2 · |s′1, . . . , s′n⟩ to be a nonzero vector, I also need to

ensure that the coefficients of the Cn elements and those of the Dn\Cn elements, appearing

as 1 and −1, do not cancel each other. If Cn · |s1, . . . , sn⟩ ∩ (Dn\Cn) · |s1, . . . , sn⟩ = ∅, it

is obvious that those coefficients will not cancel each other since they are the coefficients

of the elements in the two different sets Cn · |s1, . . . , sn⟩ and (Dn\Cn) · |s1, . . . , sn⟩. Acting

O
Dn

2 or O
D′

n
2 on other elements |s′′1, . . . , s′′n⟩ ∈ Cn · |s1, . . . , sn⟩ will result in a collinear basis

vector with a global phase factor of 1 or −1.
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I then discuss the situation of Cn · |s1, . . . , sn⟩ = (Dn\Cn) · |s1, . . . , sn⟩ where each

has an even number of elements. In this case, there must be an element Ck
n ∈ Cn such that

Ck
n · |s′1, . . . , s′n⟩ = R · |s′1, . . . , s′n⟩, where R ∈ Dn\Cn is the element reversing the sequence

|s′1, . . . , s′n⟩. I notice that, following the notations in Table 3.4, the element R is in the

conjugate class C
(k)
2 . For the case that the coefficient of Ck

n is 1, O
Dn

2 · |s′1, . . . , s′n⟩ is a zero

vector, and O
D′

n
2 · |s′1, . . . , s′n⟩ is a nonzero vector. Otherwise, if the coefficient of Ck

n is −1,

O
Dn

2 · |s′1, . . . , s′n⟩ is a nonzero vector, and O
D′

n
2 · |s′1, . . . , s′n⟩ is a zero vector. Acting O

Dn
2 or

O
D′

n
2 on other elements |s′′1, . . . , s′′n⟩ ∈ Cn · |s1, . . . , sn⟩ will result in a collinear basis vector

with a global phase factor of 1 or −1.

I now discuss the last situation where Oθ
j is generated by the diagonal elements in

the 2-dimensional irrep. With the irreps as constructed in Eq. 3.25, the operators become

Oθ
j =

∑n
i=1A

θ
jj(ei)ei.

I first discuss the operators O
θj
1 =

∑n−1
k=0 exp(ikθj)C

k
n. It is trivial to see that

the number of elements in the set {exp(ikθj)|0 ≤ k ≤ n − 1, θj = 2πj
n } must be a fac-

tor of n if it is noticed that Ck
n 7→ exp(ikθj) is an irrep of Cn. Per the orbit-stabilizer

theorem [63], the number of elements in Cn · |s1, . . . , sn⟩ is also a factor of n. Denoting

the number of elements in Cn · |s1, . . . , sn⟩ as d, the group actions of C0
n, C

d
n, . . . , C

n−d
n

will keep |s′1, . . . , s′n⟩ unchanged. In O
θj
1 · |s′1, . . . , s′n⟩, the coefficient of |s′1, . . . , s′n⟩ will be

1 + exp(idθj) + · · · + exp(i(n − d)θj). This coefficient is nonzero if and only if dθj is a

multiple of 2π, or equivalently, if and only if the number of elements in {exp(ikθj)|0 ≤

k ≤ n − 1, θj = 2πj
n } is a factor of the number of elements in Cn · |s1, . . . , sn⟩. In fact,
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1, exp(idθj), . . . , exp(i(n − d)θj) are equally spaced complex numbers on the unit circle in

the complex plane, and they sum up to zero if dθj is not a multiple of 2π.

The coefficient of another |s′′1, . . . , s′′n⟩ ∈ Cn · |s1, . . . , sn⟩ in O
θj
1 · |s′1, . . . , s′n⟩ is

exp(ik′θj) + exp(i(d+ k′)θj) + · · ·+ exp(i(n− d+ k′)θj), which is exp(ik′θj) multiplied by

the sum in the previous paragraph, where Ck′
n · |s′1, . . . , s′n⟩ = |s′′1, . . . , s′′n⟩. The condition

for this coefficient to be zero is the same as that given in the last paragraph. In conclusion,

I claim that for any |s′1, . . . , s′n⟩ ∈ Cn · |s1, . . . , sn⟩, O
θj
1 · |s′1, . . . , s′n⟩ is a nonzero vector if

and only if the number of elements in {exp(ikθj)|0 ≤ k ≤ n− 1, θj =
2πj
n } is a factor of the

number of elements in Cn · |s1, . . . , sn⟩.

The discussion of the operators O
θj
2 =

∑n−1
k=0 exp(−ikθj)Ck

n is similar if it is

noticed that exp(−ikθj) is the complex conjugate of exp(ikθj). For any |s′1, . . . , s′n⟩ ∈

Cn · |s1, . . . , sn⟩, O
θj
2 · |s′1, . . . , s′n⟩ is a nonzero vector if and only if the number of ele-

ments in {exp(−ikθj)|0 ≤ k ≤ n − 1, θj = 2πj
n } is a factor of the number of elements in

Cn · |s1, . . . , sn⟩. When O
θj
1 · |s′1, . . . , s′n⟩ and O

θj
2 · |s′1, . . . , s′n⟩ are nonzero, acting O

θj
1 or O

θj
2

on another |s′′1, . . . , s′′n⟩ ∈ Cn · |s1, . . . , sn⟩ will result in collinear basis vectors with a global

phase factor of exp(ik′θj) or exp(−ik′θj), respectively, where Ck′
n · |s′1, . . . , s′n⟩ = |s′′1, . . . , s′′n⟩.

When Cn · |s1, . . . , sn⟩ ∩ (Dn\Cn) · |s1, . . . , sn⟩ = ∅, the operators O
θj
1 or O

θj
2 need to act on

two elements in Dn ·|s1, . . . , sn⟩ to generate two basis vectors: one element in Cn ·|s1, . . . , sn⟩

and the other in (Dn\Cn) · |s1, . . . , sn⟩.

Corollary. Each group algebra element Oθ
j necessarily acts on zero or one element

in the orbit Dn · |s1, . . . , sn⟩ if Cn · |s1, . . . , sn⟩ = (Dn\Cn) · |s1, . . . , sn⟩; or it necessarily

acts on zero or two elements in the orbit if Cn · |s1, . . . , sn⟩ ∩ (Dn\Cn) · |s1, . . . , sn⟩ = ∅ to
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generate the basis vectors. Acting the operator on other elements in the orbit generates a

zero vector or a collinear basis vector with no other difference than a global phase factor.

I am now ready to show that these generated basis vectors are orthogonal and

complete in the Hilbert space H(C2n).

Orthogonality. When two different group algebra elements Oθ
j and Oθ′

j′ in Eq. 3.19

act on two elements |s1, . . . , sn⟩ and |s′1, . . . , s′n⟩ in two different orbits, respectively, it is

obvious that

(⟨s′1, . . . , s′n|Oθ′
j′ )(O

θ
j |s1, . . . , sn⟩) = 0 (3.27)

because Oθ
j |s1, . . . , sn⟩ and Oθ′

j′ |s′1, . . . , s′n⟩ are in two orthogonal subspaces spanned by the

two different orbits.

I discuss the case that the elements |s1, . . . , sn⟩ and |s′1, . . . , s′n⟩ are in the same

orbit Dn · |s′′1, . . . , s′′n⟩. If Oθ
j and Oθ′

j′ are both formed by 2-dimensional irreps, obviously,

Eq. 3.27 holds when |s1, . . . , sn⟩ ∈ Cn · |s′′1, . . . , s′′n⟩ and |s′1, . . . , s′n⟩ ∈ (Dn\Cn) · |s′′1, . . . , s′′n⟩.

Otherwise, if |s1, . . . , sn⟩ and |s′1, . . . , s′n⟩ are both in Cn·|s′′1, . . . , s′′n⟩ or (Dn\Cn)·|s′′1, . . . , s′′n⟩,

without loss of generality, I can assume that |s1, . . . , sn⟩ = |s′1, . . . , s′n⟩ since it results in

no other difference than a global phase factor. Letting Oθ
j =

∑n
i=1A

θ
jj(ei)ei and Oθ′

j′ =∑n
i=1A

θ′
j′j′(ei)ei, the left-hand side of Eq. 3.27 becomes

∑n
i=1(A

θ
jj(ei)A

θ′
j′j′(ei)). I can easily

see that this is zero with the Schur orthogonality of the irreps of finite groups [60, 61, 62].

When at least one of the operators is formed by 1-dimensional irreps, without loss

of generality, I can still assume that |s1, . . . , sn⟩ = |s′1, . . . , s′n⟩ in the orbit Dn · |s′′1, . . . , s′′n⟩

since it results in no other difference than a global phase factor. Letting Oθ
j =

∑2n
i=1A

θ
jj(ei)ei
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and Oθ′
j′ =

∑2n
i=1A

θ′
j′j′(ei)ei, the left-hand side of Eq. 3.27 becomes

∑2n
i=1(A

θ
jj(ei)A

θ′
j′j′(ei)).

Again, I directly determine that this is zero with the Schur orthogonality.

Completeness. All the elements in all the orbits Dn · {| ↑⟩, | ↓⟩}⊗n together form

a complete basis in the Hilbert space H(C2n). As such, it is sufficient to show that the

operators act on the elements in each orbit the same number of times as the number of

elements in that orbit.

The character tables in Tables 3.3 and 3.4 list the number of irreps. I first discuss

the situation that the orbit Dn · |s1, . . . , sn⟩ has n elements and Cn · |s1, . . . , sn⟩ = (Dn\Cn) ·

|s1, . . . , sn⟩. If n is odd, the n−1 operators generated by the n−1
2 2-dimensional irreps each

act on one element in the orbit once. OId also acts on the orbit element once. In total, n

operators act on the orbit elements.

Otherwise, if n is even, the n − 2 operators generated by the n−2
2 2-dimensional

irreps each act on one element in the orbit once. OId also acts on the orbit element once.

In addition, one of O
Dn

2 and O
D′

n
2 acts on the orbit element once. In total, n operators act

on the orbit elements.

I then discuss the situation that the orbit Dn · |s1, . . . , sn⟩ has 2n elements and

Cn · |s1, . . . , sn⟩ ∩ (Dn\Cn) · |s1, . . . , sn⟩ = ∅. If n is odd, the n− 1 operators generated by

the n−1
2 of 2-dimensional irreps each act on two elements in the orbit once. OId and OCn

each acts on one orbit element once. In total, there are 2n actions on the orbit elements.

Otherwise, if n is even, the n− 2 operators generated by the n−2
2 of 2-dimensional

irreps each act on two elements in the orbit once. OId and OCn each acts on one orbit
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element once. In addition, both O
Dn

2 and O
D′

n
2 act on one orbit element once. In total,

there are 2n actions on the orbit elements.

Now I discuss the situation where Dn · |s1, . . . , sn⟩ has fewer than n elements and

Cn · |s1, . . . , sn⟩ = (Dn\Cn) · |s1, . . . , sn⟩. Let the number of elements in Dn · |s1, . . . , sn⟩ be

d, which must be a factor of n. In order for an operator O
θj
1 or O

θj
2 from a 2-dimensional

irrep to act on one element in the orbit and generate a nonzero basis vector, d must be a

multiple of the number of elements in {exp(ikθj)|0 ≤ k ≤ n− 1, θj =
2πj
n }. This requires θj

to be a multiple of 2π
d , or equivalently, j must be a multiple of n

d . If n is odd, there are d−1
2

of such j satisfying 1 ≤ j ≤ n−1
2 ; i.e., θj =

2π
d ,

4π
d , . . . ,

π(d−1)
d ; then d−1 operators generated

by the corresponding d−1
2 of 2-dimensional irreps each act on one element in the orbit once.

OId also acts on the orbit element once. In total, d operators act on the orbit elements.

Otherwise, if n is even, I need to discuss the two situations where d is odd and

d is even. When d is odd, there are d−1
2 multiples of n

d satisfying 1 ≤ j ≤ n−2
2 (i.e.,

θj = 2π
d ,

4π
d , . . . ,

π(d−1)
d ). Then d − 1 operators generated by the corresponding d−1

2 of 2-

dimensional irreps each act on one element in the orbit once. OId also acts on the orbit

element once. In total, d operators act on the orbit elements. When d is even, there are d−2
2

multiples of n
d satisfying 1 ≤ j ≤ n−2

2 (i.e., θj = 2π
d ,

4π
d , . . . ,

π(d−2)
d ). Then d − 2 operators

generated by the corresponding d−2
2 2-dimensional irreps each act on one element in the

orbit once. OId and one of O
Dn

2 and O
D′

n
2 also each act on the orbit element once. In total,

d operators act on the orbit elements.

Lastly, I discuss the situation where Dn · |s1, . . . , sn⟩ has fewer than 2n elements,

and Cn·|s1, . . . , sn⟩∩(Dn\Cn)·|s1, . . . , sn⟩ = ∅. This situation is very similar to the situation
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where Dn · |s1, . . . , sn⟩ has 2n elements. In this case, OCn makes one additional action to

OId, and both O
Dn

2 and O
D′

n
2 make actions if it applies, and each operator generated by

the 2-dimensional irreps acts twice if it applies. As a result, the number of actions on the

orbit elements is doubled compared with the previous situation.

I have shown that the number of actions on the elements in each orbit is the same

as the number of elements in that orbit. These actions generate orthogonal basis vectors,

which I have proved. Since all the orbits Dn ·{| ↑⟩, | ↓⟩}⊗n together form a complete basis in

the Hilbert space H(C2n), the basis vectors generated by acting the operators on the orbit

elements must also form a complete basis in the Hilbert space H(C2n).

Q.E.D.

The irreps constructed in Eq. 3.17 differ from those constructed in Eq. 3.25; how-

ever, they can be transformed into each other with linear unitary transformations. My

conclusion then holds that the basis vectors generated in the procedure of Sec. 3.3 are

orthogonal and complete in the Hilbert space H(C2n).

It is worth noting that the Schur orthogonality plays an essential role in the proof.

Therefore, I claim that the Schur orthogonality and completeness of the irreps of finite

groups is the origin of the orthogonality and completeness of the basis vectors generated

in the procedure in Sec. 3.3. I further conjecture that for any subgroup G of Sn, a similar

procedure of acting the operators defined with the group algebra RG on the elements in

the orbits {G · |s1, . . . , sn⟩ | |s1, . . . , sn⟩ ∈ {| ↑⟩, | ↓⟩}⊗n} will generate an orthogonal and

complete basis in the Hilbert space H(C2n), and the Schur orthogonality and completeness

of the irreps of finite groups will play an essential role in the proof.
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3.5 Generalizing the Symmetry-Based Method With the Lie-

Trotter-Suzuki Decomposition

In Secs. 3.1, 3.2, 3.3, 3.4, I discussed how to decompose the Hilbert space H(C2n)

of an n-qubit system and transform the Hamiltonians when the system has Sn or Dn

symmetry. In general, the symmetry of the entire system may be low. For example, consider

the following control Hamiltonian,

H ′
c(t) =

1

2

n∑
i=1

(
B(i)

x (t) · σ(i)x +B(i)
y (t) · σ(i)y

)
. (3.28)

The Sn symmetry of the n-qubit system is broken since each qubit is tuned by a different

control pulse. Therefore, this Hamiltonian cannot be block diagonalized with the AS-

transformation. However, each term in the sum, i.e., H
′(i)
c (t) = B

(i)
x (t) · σ(i)x + B

(i)
y (t) · σ(i)y

satisfies S1 symmetry. When the static Hamiltonian has no coupling terms as in Eq. 2.3, I

can calculate the evolution of each qubit separately in the Hilbert spaceH(C2). As such, the

Hilbert space is decomposed from H(C2n) to H(C2)
⊗n

, simplifying the QOC computation.

The following example is more complicated. When the n-qubit system has coupling

terms as in Eq. 2.4, the complete Hamiltonian becomes

H0 +H ′
c(t) =

1

2

n∑
i=1

(
Bz · σ(i)z +B(i)

x (t) · σ(i)x +B(i)
y (t) · σ(i)y

)
+ ccpl ·

1

4

n∑
i=1

σ(i)z σ(i+1)
z . (3.29)

This system is inseparable, and therefore, the QOC computation cannot be simplified with

the tensor product decomposition of the Hilbert space. However, each term in the Hamilto-
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nian preserves some reduced symmetry. Specifically, the ith qubit terms have S1 symmetry,

and all the coupling terms together have Dn symmetry. Then I am allowed to generalize

my symmetry-based method with the Lie-Trotter-Suzuki decomposition, or Trotterization,

of the propagators.

Trotterization is a decomposition that approximates the exponential of a summed-

up operator with the product of the exponential of each element in the sum. [35, 36] For the

system described by Eq. 3.29, defining H
(i)
0 = Bz · 12σ

(i)
z and Hcpl = ccpl · 14

∑n
i=1 σ

(i)
z σ

(i+1)
z ,

the discretized propagator at the jth time step as defined in Eq. 2.7 can be written as

Uj = exp

(
−iτ

n∑
i=1

(
H

(i)
0 +H ′(i)

c [(j +
1

2
)τ ] +

1

n
Hcpl

))
. (3.30)

Then I Trotterize Eq. 3.30 by the symmetry of the terms as

Uj =
n∏

i=1

[
exp

(
−iτ

(
H

(i)
0 +H ′(i)

c [(j +
1

2
)τ ]

))
exp

(
−i τ
n
Hcpl

)]
+O(n2τ2), (3.31)

where the first and second exponentials in the bracket have S1 and Dn symmetries, respec-

tively. I transform each exponential term so that the number of blocks is maximized and

the size of each time-dependent block is minimized. The transformation is given by

Uj ≈
n∏

i=1

[
Aiexp

(
−iτA†

i

(
H

(i)
0 +H ′(i)

c [(j +
1

2
)τ ]

)
Ai

)
A†

iADexp
(
−i τ
n
A†

DHcplAD

)
A†

D

]
,

(3.32)

where Ai = A(i,n) is the permutation matrix that swaps the ith and the nth qubit. Either

H
(i)
0 or H

′(i)
c [(j + 1

2)τ ] is proportional to σ
(i)
α , α = x, y, z, so I discuss the transformation of
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σ
(i)
α here. After transformation, A†

(i,n)σ
(i)
α A(i,n) is equal to σ

(n)
α which has 2n−1 size-2-by-

2 blocks that are exactly the same. The matrices Ai and ADexp(−i τnA
†
DHcplAD)A

†
D are

constant and only need to be calculated one time. As such, I reduce the time-dependent

term from one size-2n-by-2n matrix to n size-2-by-2 matrices.

I present several examples to further illustrate the method above. The coupling

terms in the form of σ
(i)
α σ

(j)
α , i ̸= j can be transformed with A(i,n−1)A(j,n). The transformed

term A†
(j,n)A

†
(i,n−1)σ

(i)
α σ

(j)
α A(i,n−1)A(j,n) is equal to σ

(n−1)
α σ

(n)
α and has 2n−2 blocks, with

each block having a size of 4 × 4. This term can be further block diagonalized with its S2

symmetry. More specifically, letting A = A(i,n−1)A(j,n)(I2n−2 ⊗ AS2), each 4 × 4 block in

A†
(j,n)A

†
(i,n−1)σ

(i)
α σ

(j)
α A(i,n−1)A(j,n) can be transformed into one 1 × 1 and one 3 × 3 block.

Similarly, the terms in the form of σ⊗i−1
α ⊗ σβ ⊗ σ⊗j−i−1

α ⊗ σβ ⊗ σ⊗n−j
α can be transformed

with index permutation and S2⊗Sn−2 symmetry. In general, I2, σx, σy, σz and their tensor

products form the orthogonal basis of any 2n × 2n Hermitian matrix under the Hilbert-

Schmidt inner product [64]. Accordingly, the Hamiltonian of an n-qubit system can always

be decomposed so that each component can be transformed into I⊗l
2 ⊗σ⊗m

x ⊗σ⊗p
y ⊗σ⊗q

z , l+

m + p + q = n by an adjoint matrix AI permuting the indices. I can then transform this

term with the adjoint matrix AG = I2l ⊗ASm ⊗ASp ⊗ASq where G = Sm ⊗ Sp ⊗ Sq is the

finite group indicating the symmetry of this term.

Based on the examples above, I provide a general framework for parallel com-

puting with the Lie-Trotter-Suzuki decomposition and the symmetry-based transformation

of the Hamiltonian of any multi-qubit system. The propagator of the quantum system

is Trotterized so that terms sharing the same symmetry of finite groups are put together
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and block diagonalized by the same adjoint matrix. The principle of block diagonalizing

each exponential term is to maximize the number of blocks and minimize the size of each

time-dependent block. Specifically, a general Hamiltonian H can be decomposed into a sum

H =
∑

G,I [H
(G,I)
0 +H

(G,I)
c ] by the symmetry characterized by the finite group G and the

indices of the qubits I (I denotes the indices of the qubits coupled to either static fields or

controlling pulses simultaneously). The propagator of H
(G,I)
0 +H

(G,I)
c can be transformed

by the adjoint matrix AG,I = AIAG. As such, a general symmetry-based transformed and

Trotterized propagator at t = (j + 1
2)τ can be written as

Uj =
∏
G,I

[
exp

(
−iτ

(
H

(G,I)
0 +H(G,I)

c [(j +
1

2
)τ ]

))
+O(τ2)

]

≈
∏
G,I

[
AG,Iexp

(
−iτA†

G,I

(
H

(G,I)
0 +H(G,I)

c [(j +
1

2
)τ ]

)
AG,I

)
A†

G,I

]
.

(3.33)

When AG = I2l ⊗ AGn−l
satisfies l ≥ 1, the blocks repeat themselves 2l times in the

transformed Hamiltonian, allowing me to calculate the exponential of a 2n−l × 2n−l matrix

rather than that of a full 2n × 2n matrix when computing the propagator. It is worth

noting that each exponential in the Trotterized propagator in Eq. 3.33 is independent of

the others, which allows them to be trivially computed in parallel. Also, the exponential

of each block (not counting the repetitive blocks) is independent, allowing me to parallelize

the computation further.

All of the AG,I adjoint matrices and the blocks in all of the exponentials are unitary,

allowing me to easily calculate the inverse of the transformed propagators in parallel. Also,

the derivative of each exponential exp(−iτA†
G,I(H

(G,I)
0 +H

(G,I)
c [(j+ 1

2)τ ])AG,I) with respect
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to the time-dependent control Bα[(j +
1
2)τ ] can be approximated as

d
(
exp

(
−iτA†

G,I

(
H

(G,I)
0 +H

(G,I)
c [(j + 1

2)τ ]
)
AG,I

))
d(Bα[(j +

1
2)τ ])

≈− iτA†
G,IH̃

(G,I)
c AG,I · exp

(
−iτA†

G,I

(
H

(G,I)
0 +H(G,I)

c [(j +
1

2
)τ ]

)
AG,I

) (3.34)

when τ is small and the control Hamiltonian has the simple expression of H
(G,I)
c [(j +

1
2)τ ] = Bα[(j +

1
2)τ ] · H̃

(G,I)
c , which is a common situation. As such, I can easily apply the

transformed propagator Uj in Eq. 3.33 to gradient-based methods with backpropagation.

[51, 55]

3.6 Source Code Availability

The Python code used for the QOC of multi-qubit systems and the symmetry-

based methods is available at https://github.com/xwang056/qoc_multi-qubits.
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Chapter 4

Results and Analysis

In Sec. 4.1, I present the sparsity plots of several example Hamiltonians. A com-

parison of the dimensions of H(C2n), H[n]
1 , and HId

1 for 3 ≤ n ≤ 14 is provided. Compar-

isons of the optimal controlling pulses and the power spectra generated by the conventional

method and the symmetry-based method are presented in Sec. 4.2. In addition, I present a

comparison of the execution time of these two approaches. These comparisons lead to the

conclusion that the symmetry-based method reduces the execution time by orders of mag-

nitude and generates the same optimal controlling pulses. Comparisons between the con-

ventional method and the symmetry-based method combined with the Lie-Trotter-Suzuki

decomposition are provided in Sec. 4.3.

Some content in this chapter is part of Accelerating Quantum Optimal Control

of Multi-Qubit Systems with Symmetry-Based Hamiltonian Transformations, an article ac-

cepted for publication in AVS Quantum Science.
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4.1 Decomposition of the Hilbert Space and Transformation

of the Hamiltonians

In Figs. 4.1, 4.2, 4.3, 4.4, and 4.5, I present the sparsity plots of the original

and the transformed Hamiltonians of 3-, 4-, 5-, 6-, and 7-qubit systems, respectively. The

transformed Hamiltonians A†
SHxAS and A†

DHxAD are block diagonal, while the original

Hamiltonian Hx is not. A†
SHzAS and A†

DHzAD remain diagonal after transformation, and

they follow the same subspace decomposition with A†
SHxAS and A†

DHxAD, respectively.

The distribution of the nonzero elements in the complex-valued Hy matrix is the same as

those in Hx. In systems of 4 qubits and above, Hz,cpl can be transformed into a block

diagonal matrix by only AD since it does not have Sn symmetry. However, A†
SHz,cplAS in

the 3-qubit system is block diagonalized because S3 = D3 and consequently, AS3 = AD3 .

Note that the dimension of a subspace in the Hilbert space decomposition (the subspaces

Hλ
j or Hθ

j ) equals the size of the corresponding square block in the transformed Hamiltonian

(the green box from top-left to bottom-right in Figs. 4.1, 4.2, 4.3, 4.4, and 4.5). The first

subspace (H[n]
1 or HId

1 ) contains the significant | ↑⟩⊗n and | ↓⟩⊗n states of the multi-qubit

system. Table 4.1 shows a comparison between the dimension of the complete Hilbert space

and the dimension of the first subspace for systems with various numbers of qubits. While

the dimension of H(C2n) is 2n, the dimensions of HS
1 and HD

1 are reduced to n + 1 and

∼ O(2
n

n ), respectively.
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Figure 4.1: Sparsity plots for Hamiltonians of a 3-qubit system. (a), Hx; (b),

A†
SHxAS ; (c), A

†
DHxAD; (d), Hz; (e), A

†
SHzAS ; (f), A

†
DHzAD; (g), Hz,cpl; (h),

A†
SHz,cplAS ; and (i), A†

DHz,cplAD. The x- and y-axes denote the column and row indices
of the matrix elements, respectively. The color bars indicate the value of the matrix
elements. Each block for the matrices in panels (b), (c), (e), (f), (h), and (i) is enclosed by
a green-colored square box.
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Figure 4.2: Sparsity plots for Hamiltonians of a 4-qubit system. (a), Hx; (b),

A†
SHxAS ; (c), A

†
DHxAD; (d), Hz; (e), A

†
SHzAS ; (f), A

†
DHzAD; (g), Hz,cpl; (h),

A†
SHz,cplAS ; and (i), A†

DHz,cplAD. The x- and y-axes denote the column and row indices
of the matrix elements, respectively. The color bars indicate the value of the matrix
elements. Each block for the matrices in panels (b), (c), (e), (f), and (i) is enclosed by a
green-colored square box.
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Figure 4.3: Sparsity plots for Hamiltonians of a 5-qubit system. (a), Hx; (b),

A†
SHxAS ; (c), A

†
DHxAD; (d), Hz; (e), A

†
SHzAS ; (f), A

†
DHzAD; (g), Hz,cpl; (h),

A†
SHz,cplAS ; and (i), A†

DHz,cplAD. The x- and y-axes denote the column and row indices
of the matrix elements, respectively. The color bars indicate the value of the matrix
elements. Each block for the matrices in panels (b), (c), (e), (f), and (i) is enclosed by a
green-colored square box.
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Figure 4.4: Sparsity plots for Hamiltonians of the 6-qubit system. (a), Hx; (b),

A†
SHxAS ; (c), A

†
DHxAD; (d), Hz; (e), A

†
SHzAS ; (f), A

†
DHzAD; (g), Hz,cpl; (h),

A†
SHz,cplAS ; and (i), A†

DHz,cplAD. The x- and y-axes denote the column and row indices
of the matrix elements, respectively. The color bars indicate the value of the matrix
elements. Each sub-block for the matrices in panels (b), (c), (e), (f), and (i) is enclosed by
a green-colored square.
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Figure 4.5: Sparsity plots for Hamiltonians of a 7-qubit system. (a), Hx; (b),

A†
SHxAS ; (c), A

†
DHxAD; (d), Hz; (e), A

†
SHzAS ; (f), A

†
DHzAD; (g), Hz,cpl; (h),

A†
SHz,cplAS ; and (i), A†

DHz,cplAD. The x- and y-axes denote the column and row indices
of the matrix elements, respectively. The color bars indicate the value of the matrix
elements. Each block for the matrices in panels (b), (c), (e), (f), and (i) is enclosed by a
green-colored square box.
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Table 4.1: Comparison of the dimensions of H(C2n), H[n]
1 , and HId

1

Dimension of space

Number of qubits n H(C2n) H[n]
1 HId

1

3 8 4 4
4 16 5 6
5 32 6 8
6 64 7 13
7 128 8 18
8 256 9 30
9 512 10 46
10 1024 11 78
11 2048 12 126
12 4096 13 224
13 8192 14 380
14 16384 15 687

The subspace H[n]
1 is generated with the operator O

[n]
1 of the identity representation of Sn,

whereas the subspace HId
1 is generated with the operator OId

1 of the identity
representation of Dn. As such, they are listed together and compared to the complete
Hilbert space H(C2n).
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When the Hamiltonians have no coupling terms as in Eqs. 2.3 and 2.5, they are

block diagonal after the unitary similarity transformation with AS . The evolution of the

multi-qubit system is strictly confined within each subspace, Hλ
j . It is common that the

initial state is orthogonal to some subspaces. I can then restrict the calculation of the

Schrödinger equation (Eq. 2.1) within only necessary subspaces; i.e., instead of using the

complete adjoint matrix AS , I can define such an adjoint matrix A′
S such that its columns

consist of only the orthonormal basis of the subspaces in which the initial state |ψ(0)⟩

lies. Then the transformed Hamiltonians A′†
SHxA

′
S , A

′†
SHyA

′
S , and A

′†
SHzA

′
S will have fewer

blocks and a smaller size, while the calculation is not affected because the orthogonality of

the subspaces guarantees that all omitted subspaces will not be transitioned into. Similarly,

when the Hamiltonians have coupling terms as in Eq. 2.4, they are block diagonalized with

the Dn-induced unitary similarity transformation. The evolution of the multi-qubit system

in any subspace Hθ
j is strictly confined within that subspace regardless of the temporal

forms of the control pulses Bx(t) and By(t). As such, instead of using the complete adjoint

matrix AD, I can define such an adjoint matrix A′
D such that its columns consist of only the

orthonormal basis of the subspaces in which the initial state |ψ(0)⟩ lies. After the similarity

transformation, the Hamiltonians in Eqs. 2.4 and 2.5 (i.e., A′†
DH0A

′
D and A′†

DHcA
′
D) will

have a smaller size without affecting the calculation results.
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4.2 Comparision of Conventional and Symmetry-Based Meth-

ods

In this section, I present comparisons of the optimal control pulses, the corre-

sponding power spectra, and the execution time between conventional and symmetry-based

methods. As examples, I solve for the temporal forms of the control pulses, Bx(t) and

By(t), that excite the multi-qubit system from the initial ‘all-spin-up’ (| ↑⟩⊗n) state to the

final ‘all-spin-down’ (| ↓⟩⊗n) state in the non-coupled and coupled multi-qubit systems, re-

spectively, with conventional and symmetry-based methods. The initial controlling pulses

are initialized as white noise with the same seeds so that the results are comparable. The

comparison in this section indicates that the symmetry-based methods generate exactly the

same results as the conventional method, while the execution time and RAM requirement

are reduced by orders of magnitude.

When the multi-qubit system is non-coupled as described by Eqs. 2.3 and 2.5,

the multi-qubit system is separable, and the evolution of each qubit is independent of any

other qubit. In this case, the Hilbert space can be decomposed into the tensor product of

n of 2-dimensional spaces, i.e., H(C2n) =
⊗n

i=1H(i)(C2), and each space H(i)(C2) can be

treated independently. However, in my study, I make use of the direct sum decomposition

H(C2n) =
⊕

λ,j Hλ
j as it is allowed by the symmetry of the n-qubit system. As the two

states | ↑⟩⊗n and | ↓⟩⊗n both lie and evolve in the first subspace H[n]
1 , only the first block

of A†
SH0AS and A†

SHcAS are necessary and sufficient in the calculations. As shown in

Fig. 4.6a, the symmetry-based method reduces the runtime by orders of magnitude due to

the decreased size of the Hamiltonian from 2n× 2n to (n+1)× (n+1). It should be noted
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that the separable system with Sn symmetry also has Dn symmetry, and I also compare the

computational runtime with the first block of the AD-transformed Hamiltonians. Although

it is much more efficient than the original Hamiltonian, the computational runtime is longer

than the AS-transformed Hamiltonian since the dimension of HId
1 is larger than H[n]

1 (see

Table 4.1 in Sec. 4.1).

Figure 4.6: Comparison of computational runtimes between the conventional
and symmetry-based methods. The Hamiltonians have (a) no coupling and (b)
nearest-neighbor coupling.

When the Hamiltonians have nearest-neighbor coupling terms as in Eqs. 2.4 and

2.5, the evolution of each qubit is correlated to the other qubits, and the system is no longer

separable, and I cannot use the tensor product decomposition. However, the direct sum

decomposition H(C2n) =
⊕

θ,j Hθ
j can still be leveraged to accelerate the calculation, and

I can use the first block of A†
DH0AD and A†

DHcAD. Fig. 4.6b shows that compared with

the conventional method, the runtime is significantly reduced by the Dn-symmetry-based

method as well.
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Figure 4.7: Comparison of optimal control pulses between the conventional and
Sn-symmetry-based methods. The Hamiltonians have no coupling as defined in
Eqs. 2.3, 2.5. (a), 3 qubits; (b), 4 qubits; (c), 5 qubits; (d), 6 qubits; (e), 7 qubits; (f), 8
qubits; (g), 9 qubits.
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Figure 4.8: Comparison of optimal control pulses between the conventional and
Dn-symmetry-based methods. The Hamiltonians have no coupling as defined in
Eqs. 2.3, 2.5. (a), 3 qubits; (b), 4 qubits; (c), 5 qubits; (d), 6 qubits; (e), 7 qubits; (f), 8
qubits; (g), 9 qubits.
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Figure 4.9: Comparison of optimal control pulses between the conventional and
Dn-symmetry-based methods. The Hamiltonians have nearest-neighbor coupling as
defined in Eqs. 2.4, 2.5. (a), 3 qubits; (b), 4 qubits; (c), 5 qubits; (d), 6 qubits; (e), 7
qubits; (f), 8 qubits; (g), 9 qubits.
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Since both AS and AD are unitary matrices, the unitary transformation of the

Hamiltonians with AS or AD does not affect the QOC results. To demonstrate this, I

carried out numerical tests for systems ranging from 3 to 14 qubits and found the original

and transformed Hamiltonians give exactly the same optimal control pulses Bx(t), By(t),

and power spectra |εx(ω)|, |εy(ω)|. As examples, Figs. 4.7, 4.8, 4.9 compare the optimal

control pulses for multi-qubit systems between the conventional and the symmetry-based

methods. The data points from the symmetry-based method lie exactly on top of the curves

from the conventional method, regardless of whether coupling is present or not. It is worth

noting that the optimal Bx(t), By(t) for all numbers of qubits in Fig. 4.7 are exactly the

same. That is because the multi-qubit system without coupling is separable, i.e., the Hilbert

space can be decomposed with the tensor product H(C2n) =
⊗n

i=1H(i)(C2). As such, the

profile of the optimal pulses does not depend on the number of qubits, n.

A comparison of the corresponding power spectra, |εx(ω)| and |εy(ω)|, is shown in

Figs. 4.10 and 4.11. It should be noted that Bx(t) has the same resonance frequency and

amplitude as By(t). The only difference between Bx(t) and By(t) is a
π
2 phase shift, which

arises from the circular polarization of the control pulses (see Sec. 5.2). Fig. 4.11 indicates

that the nearest-neighbor coupling terms result in three resonance frequencies in the power

spectra. This arises from the energy difference of the transitions in the H[n]
1 subspace being

degenerate when the system has no coupling, whereas the nearest-neighbor coupling terms

partially break the degeneracy of the energy differences in the Dn-induced HId
1 subspace.

In Fig. 4.12, I present the comparison of probability vs. iteration between multi-

qubit systems with nearest-neighbor coupling and without coupling. When there is no
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Figure 4.10: Comparison of power spectra between the x- and y-directions. The
Hamiltonians have no coupling as defined in Eqs. 2.3, 2.5. (a), 3 qubits; (b), 4 qubits; (c),
5 qubits; (d), 6 qubits; (e), 7 qubits; (f), 8 qubits; (g), 9 qubits.
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Figure 4.11: Comparison of power spectra between the x- and y-directions. The
Hamiltonians have nearest-neighbor coupling as defined in Eqs. 2.4, 2.5. (a), 3 qubits; (b),
4 qubits; (c), 5 qubits; (d), 6 qubits; (e), 7 qubits; (f), 8 qubits; (g), 9 qubits.
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coupling, the multi-qubit system is separable. The QOC algorithm converges in only one

iteration (i.e., P > 0.999) no matter what the size of the multi-qubit system is, as shown

in Fig. 4.12. Note that the optimal pulses of all non-coupled systems are exactly the same

(see Fig. 4.7). Therefore it is trivial that the convergence progress of P does not depend

on the number of qubits, n. In contrast, when the nearest-neighbor coupling term exists,

the convergence of P becomes more difficult as n increases. Especially, P does not exceed

0.999 in 100 iteration when n ≥ 7. I discuss how to make P converge in fewer iterations by

introducing coupling between further qubits in Sec. 5.1.

4.3 Symmetry-Based Method CombinedWith the Lie-Trotter-

Suzuki Decomposition

In this section, I demonstrate that the accuracy of the Trotterized and trans-

formed propagator in Eq. 3.32 is very close to that of the original propagator in Eq. 3.30.

To prove this, I let an n-qubit (3 ≤ n ≤ 13) system evolve for 20, 000 time steps with

τ = 0.05 a.u. I then evaluate the fidelity F = |Tr(K
LTS
j

†
Kori

j )

2n |2 [26] of the unitary matrix

Kori
j =

∏1
m=j U

ori
m calculated with the original propagator in Eq. 3.30 and the unitary ma-

trix KLTS
j =

∏1
m=j U

LTS
m calculated with the Trotterized propagator in Eq. 3.32. Figs. 4.13

and 4.14 show that in varied multi-qubit systems, the fidelity F is always above 0.996 during

the control duration [0, 1000] a.u., which is highly accurate.

I also compared the runtime for calculating the original and transformed propa-

gator per time step. Here I calculated the exponentials in the transformed propagator in
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Figure 4.12: Comparison of convergence between coupled and non-coupled
multi-qubit systems. The Hamiltonians of coupled systems are defined as in Eqs. 2.4
and 2.5. The Hamiltonians of non-coupled systems are defined as in Eqs. 2.3 and 2.5. (a),
3 qubits; (b), 4 qubits; (c), 5 qubits; (d), 6 qubits; (e), 7 qubits; (f), 8 qubits.
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Figure 4.13: Fidelity of the Trotterized and transformed propagator in
multi-qubit systems. (a) The fidelity vs. control duration in the 3-qubit system; (b) 4
qubits; (c) 5 qubits; (d) 6 qubits; (e) 7 qubits; (f) 8 qubits.
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Figure 4.14: Fidelity of the Trotterized and transformed propagator in
multi-qubit systems. (a) The fidelity vs. control duration in the 9-qubit system; (b) 10
qubits; (c) 11 qubits.
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series. To approximate the runtime in an in-parallel computing setup, I divided the runtime

for calculating the transformed propagator by n. As Fig. 4.15 shows, the transformed prop-

agator is more time-efficient since each exponential term in Eq. 3.32 is block diagonalized

into exactly the same blocks, and I need to calculate the matrix exponential of only one

block. Collectively, the tests above show that the transformed propagator in Eq. 3.32 is

highly accurate and time-efficient.

Figure 4.15: Comparison of computational runtime between the original and the
Trotterized and transformed propagator. The number of qubits n ranges from 3 to
13.
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Chapter 5

Discussion

I propose the concept of symmetry-protected subspaces in Sec. 5.1. By introducing

the coupling between further qubits without breaking the symmetry of finite groups, I can

gain more controllability in each subspace. In addition, I list several potential applications

of symmetry-protected subspaces, including preparing permutation-symmetric states [32],

realizing simultaneous quantum gate operations [5, 6], quantum error suppression, and

quantum simulation of other quantum systems [37, 38]. A point of view based on ladder

operators is presented in Sec. 5.2 to help understand the dynamics of multi-qubit systems.

The selection rules of the transitions in the multi-qubit system can easily be derived from

the ladder-operator-based approach.

Some content in this chapter is part of Accelerating Quantum Optimal Control

of Multi-Qubit Systems with Symmetry-Based Hamiltonian Transformations, an article ac-

cepted for publication in AVS Quantum Science.

82



5.1 Symmetry-Protected Subspaces of the Hilbert Space

I discuss the concept of symmetry-protected subspaces inspired by the finite-group-

induced decomposition of the Hilbert space H(C2n). The system described by Eqs. 2.3 and

2.5, and Eqs. 2.4 and 2.5 has Sn/Dn symmetry, respectively. Denoting the state of a single

qubit as |ψ⟩sq, all the |ψ⟩
⊗n
sq states lie in the first subspace H[n]

1 /HId
1 of Sn/Dn symmetry. In

fact, H[n]
1 is a subspace of HId

1 . It should be noted that transitions among the |ψ⟩⊗n
sq states

can be enabled with quantum gates U⊗n
sq , where Usq is a single-qubit gate. As such, all U⊗n

sq

transitions are restricted within the specific subspace; i.e., a state in one subspace cannot

transition into another subspace as long as the Hamiltonian preserves the symmetry of

finite groups. Therefore, I claim that the subspaces generated by decomposing the Hilbert

space H(C2n) are protected by the symmetry of the finite groups. Given an initial | ↑⟩⊗n

state, some important multi-qubit states, such as the Greenberger–Horne–Zeilinger (GHZ)

state and the W state [32], can be realized in the first subspace HS
1 /HD

1 . Some essential

simultaneous gates in Shor’s algorithm for factorizing integers in polylogarithmic time [5]

and Grover’s algorithm for unstructured search [6], such as H⊗n (where H denotes the

Hadamard gate), can also be realized in HS
1 /HD

1 .

Physical qubits have been realized in several platforms, such as superconducting

qubits [10, 11], trapped ions [14, 15], nitrogen-vacancy centers in diamonds [16, 17], and

neutral atoms [18]. Thus far, all types of physical qubits do not possess an ideal fidelity,

which hinders the realization of practical quantum computers. A proposed approach to

quantum error correction is to encode one logical qubit with multiple physical qubits. [65,

66, 67, 7] In a symmetry-protected n-qubit system, |ψ⟩⊗n
sq states are always in the first
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subspace regardless of whether the system has Sn symmetry, Dn symmetry, or the symmetry

of another subgroup of Sn. Therefore, a natural approach is to encode | ↑⟩ and | ↓⟩ with

| ↑⟩⊗n and | ↓⟩⊗n, respectively, in the first subspace. I find that the error rate can be

greatly reduced not only because the logical qubit is n-fold encoded but also because the

first subspace is protected by the symmetry of the finite group. In short, the quantum error

is significantly suppressed since the quantum state cannot evolve to other subspaces even if

the control pulses deviate from the optimized amplitude, resonance frequency, or duration.

Turning the attention to the first subspace, when the multi-qubit system has Sn

symmetry, n + 1 eigenstates exist in H[n]
1 with equally-spaced energy levels, as shown in

Figs. 5.1a, 5.2a, 5.4a. Thus, there is only one resonance frequency, which corresponds to

the single peak in Fig. 4.10. It should be noted that a direct transition is not possible

from | ↑⟩⊗n to | ↓⟩⊗n due to selection rules (see Sec. 5.2). Such a transition can only be

realized via a cascade consisting of multiple intermediate eigenstates. Since there is only

one resonance frequency in the transition cascade, any pulse exciting one transition in the

cascade also enables all other transitions. As a result, given the initial state is | ↑⟩⊗n, the

only possible final eigenstate is | ↓⟩⊗n lying at the other end of the transition cascade, which

is realized by the gate σ⊗n
x , and vice versa. It is, therefore, not possible to evolve the system

to any intermediate eigenstate because such a transition cannot be realized by any gate in

the form of U⊗n
sq .
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Figure 5.1: Comparison of energy levels, power spectra, and convergence for the
systems with nearest-neighbor coupling and full coupling. Eigenstates in the first
subspace of a 4-qubit system when the system has (a) Sn symmetry without coupling
terms, (b) Dn symmetry with nearest-neighbor coupling terms as described in Eq. 2.4,
and (c) Dn symmetry with full coupling as described in Eq. 5.1. The ‘all-up’ and the
‘all-down’ eigenstates at the two ends of the transition cascade are labeled. The
transitions permitted by the selection rules are indicated by dashed lines, and the energy
differences are shown next to each transition. (d) Power spectra of the optimized pulses
when the 4-qubit system has nearest-neighbor and full coupling. (e) Comparison of
convergence for the system with nearest-neighbor and full coupling.
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Figure 5.2: Comparison of energy levels for the systems with nearest-neighbor
coupling and full coupling. Eigenstates in the first subspace of a 5-qubit system when
the system has (a) Sn symmetry without coupling terms, (b) Dn symmetry with
nearest-neighbor coupling terms as described in Eq. 2.4, and (c) Dn symmetry with full
coupling as described in Eq. 5.1. The ‘all-up’ and the ‘all-down’ eigenstates at the two
ends of the transition cascade are labeled. The transitions permitted by the selection rules
are indicated by dashed lines, and the energy differences are shown next to each transition.
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Figure 5.3: Comparison of power spectra and convergence for the systems with
nearest-neighbor coupling and full coupling. (a) Power spectra of the optimized
pulses when the 5-qubit system has nearest-neighbor and full coupling. The frequencies of
the three resonance peaks of the nearest-neighbor-coupled system (plotted in red), i.e.,
1.2, 2, 2.8 a.u., coincide with the frequencies of the resonance peaks of the fully coupled
5-qubit system (plotted in blue). (b) Comparison of convergence for the system with
nearest-neighbor and full coupling.

To fully control transitions in the first subspace, I can introduce coupling terms

to break the degeneracy of the resonance frequencies. As shown in Fig. 4.11, using the

nearest-neighbor coupling in Eq. 2.4, there will be three resonance frequencies in the n-qubit

system when n ≥ 3. However, when n ≥ 4, three resonance frequencies are insufficient to

completely break the degeneracy of the energy differences, as shown in Figs. 5.1b, 5.2b, 5.4b.

When n ≥ 6, nearest-neighbor coupling terms are even insufficient to completely break the

degeneracy of the eigenstates, as shown in Figs. 5.4b. Beyond the nearest neighbors, I can

introduce further couplings between qubit pairs:

H0 = Bz ·
1

2

n∑
i=1

σ(i)z + c
(1)
cpl ·

1

4

n∑
i=1

σ(i)z σ(i+1)
z + c

(2)
cpl ·

1

4

n∑
i=1

σ(i)z σ(i+2)
z

+ · · ·+ c
(⌊n

2
⌋)

cpl · 1
4

n∑
i=1

σ(i)z σ
(i+⌊n

2
⌋)

z ,

(5.1)
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Figure 5.4: Comparison of energy levels for the systems with nearest-neighbor
coupling and full coupling. Eigenstates in the first subspace of a 6-qubit system when
the system has (a) Sn symmetry without coupling terms, (b) Dn symmetry with
nearest-neighbor coupling terms as described in Eq. 2.4, and (c) Dn symmetry with full
coupling as described in Eq. 5.1. The bold solid lines in (b) indicate degenerate
eigenstates. The ‘all-up’ and the ‘all-down’ eigenstates at the two ends of the transition
cascade are labeled. The transitions permitted by the selection rules are indicated by
dashed lines, and the energy differences are shown next to each transition.
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Figure 5.5: Comparison of power spectra and convergence for the systems with
nearest-neighbor coupling and full coupling. (a) Power spectra of the optimized
pulses when the 6-qubit system has nearest-neighbor and full coupling. (b) Comparison of
convergence for the system with nearest-neighbor and full coupling.

where c
(1)
cpl, c

(2)
cpl, and c

(⌊n
2
⌋)

cpl are the nearest-, next-nearest-, and furthest-neighbor coupling

strengths, respectively. This form can fully break the degeneracy of energy levels and energy

differences. Dn symmetry is preserved with the full coupling terms, and therefore, the

eigenstates do not change, whereas their energy levels are modified. As shown in Fig. 5.1c,

the degeneracy in the energy differences is completely broken in the 4-qubit system, resulting

in 6 resonance frequencies in the power spectra of the fully coupled system in Fig. 5.1d.

Similarly, as shown in Figs. 5.2c and 5.4c, the degeneracy in the energy differences is also

broken in the 5- and 6-qubit systems by introducing full coupling terms, resulting in more

resonance frequencies in the power spectra in Figs. 5.3a and 5.5a. As such, the cascade of

transitions from | ↑⟩⊗n to | ↓⟩⊗n becomes a series of concatenated two-level systems, and

each two-level transition can be enabled by pulses of a unique resonance frequency. [68]

This allows me to manipulate the system to be in any eigenstate, or a linear combination

of the eigenstates, with a selected route of transitions from the | ↑⟩⊗n initial state (as long

as high-quality pulses with desired resonance frequencies and profiles can be generated). In
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summary, properly tuning the coupling coefficients c
(i)
cpl, 1 ≤ i ≤ ⌊n2 ⌋ in an n-qubit system

can completely break the degeneracy of energy differences. The role of each resonance

frequency is apparent in a completely non-degenerate system since each one corresponds to

an exact transition in the excitation cascade pathway. This enables a more efficient way to

manipulate a multi-qubit system. As a demonstration, Figs. 5.1e, 5.3b, and 5.5b show that

the probability P in Eq. 2.8 converges in fewer iterations when the multi-qubit system is

fully coupled.

I propose that a subspace of the fully coupled multi-qubit system can potentially

be a platform for simulating the Hamiltonians of other quantum systems. [37, 38] In a

coupled n-qubit system, there are O(2
n

n ) eigenstates in the first subspace withDn symmetry.

With full coupling, their energy levels can be manipulated by tuning ⌊n2 ⌋ + 1 parameters,

namely the static field Bz and the coupling coefficients c
(i)
cpl. The transitions in the first

subspace can be controlled by pulses with selected resonance frequencies, which enables

me to examine the features of the Hamiltonian through the evolution of the multi-qubit

system. [69, 70] Moreover, I can tailor the “route” of transitions in the cascade when the

degeneracy of resonance frequencies is broken; i.e., even though the selection rules indicate

allowed transitions, some undesired transitions can be avoided by filtering the corresponding

resonance frequency component in the pulses. This allows more controllability in simulating

the Hamiltonian with a subspace of the multi-qubit system.
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5.2 A Perspective on Ladder Operators and Selection Rules

In this section, I present how to analyze the control Hamiltonian Hc in Eq. 2.5

from the perspective of ladder operators. The selection rule of a multi-qubit system becomes

clear with the transformed control Hamiltonians A†
SHcAS or A†

DHcAD.

In a single qubit system, σx and σy form the creation and annihilation operators

of the spin; i.e.,

a+ =
1

2
(σx + iσy);

a− =
1

2
(σx − iσy);

a+|−⟩ = |+⟩, a+|+⟩ = 0;

a−|+⟩ = |−⟩, a−|−⟩ = 0,

(5.2)

where |+⟩ = |12 ,
1
2⟩ and |−⟩ = |

1
2 ,−

1
2⟩ are in the |J,M⟩ basis. In terms of the n-qubit

system, the creation and annihilation operator become

A+ =
1

2
(Hx + iHy) =

1

2

(
n∑

i=1

σ(i)x + i

n∑
i=1

σ(i)y

)
=

n∑
i=1

a
(i)
+ ;

A− =
1

2
(Hx − iHy) =

1

2

(
n∑

i=1

σ(i)x − i
n∑

i=1

σ(i)y

)
=

n∑
i=1

a
(i)
− ;

A+|J,M⟩ = c+(J,M)|J,M + 1⟩ if M < J ;A+|J,+J⟩ = 0;

A−|J,M⟩ = c−(J,M)|J,M − 1⟩ if M > −J ;A−|J,−J⟩ = 0,

(5.3)

where c+(J,M) and c−(J,M) are coefficients depending on J,M . Here |J,M⟩ is the eigen-

state of H̃0 =
1
2

∑n
i=1 σ

(i)
z , the operator measuring the quantum number M =

∑n
i=1m

(i)
s , in
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the subspace HJ
[J(i)]

, i.e.,

H̃0|J,M⟩ =M |J,M⟩, |J,M⟩ ∈ HJ
[J(i)]

. (5.4)

When the static field Bz is applied, the eigenenergy of the |J,M⟩ states in the multi-qubit

system becomes BzM , i.e.,

H0|J,M⟩ = Bz · H̃0|J,M⟩ = BzM |J,M⟩. (5.5)

I can then manipulate the energy levels by tuning the amplitude of the static field Bz. The

creation (A+) and annihilation (A−) operators change the quantum number M by ±1 but

leave J unchanged. Therefore, the evolution of the eigenstates |J,M⟩ is restricted within

each subspace HJ
[J(i)]

when the Hamiltonians have Sn symmetry as in Eqs. 2.3 and 2.5 (this

is how the subspaces {HJ
[J(i)]
} are protected by the Sn symmetry of the system). It should

be noted that for each M ∈ {−J,−J + 1, . . . , J − 1, J}, there is only one basis vector

characterized by M (i.e., |J,M⟩) in the subspace HJ
[J(i)]

. Therefore, the nonzero elements

of A′
+ = A†

SA+AS are at the upper diagonal closest to the main diagonal only, while those

of A′
− = A†

SA−AS are at the lower diagonal closest to the main diagonal. Obviously, the

value of those nonzero elements are c+(J,M), and c−(J,M), respectively. From Eq. 5.3,

it is clear that the nonzero elements of H ′
x = A†

SHxAS and H ′
y = A†

SHyAS are at the two

minor diagonals closest to the main diagonal only, while those of the original Hx and Hy are

distributed up to the furthest of the 2n−1th minor diagonal. When the controlling pulses

Bx(t) and By(t) are applied, the distribution of the nonzero elements of Hc in Eq. 2.5 is
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the same as Hx and Hy. Thus, I conclude that the unitary similarity transformation of

the Hamiltonians with AS not only block diagonalizes the Hamiltonians but also reduces

the number of nonzero minor diagonals. The simulation of the time-dependent Schrödinger

equation in Eq. 2.1 is accelerated with these two features.

Since the energy levels {BzM |−J ≤M ≤ J} ofH0 are equally spaced, I assert that

the energy spectrum of the multi-qubit system with Sn symmetry resembles that of a simple

harmonic oscillator even though there are a finite number of energy levels in each subspace

HJ
[J(i)]

. It should be noted that the control Hamiltonians Hx and Hy can only transition

between eigenstates whoseM differ by ±1. Therefore, there is only one resonance frequency

of the controlling pulses Bx(t) and By(t) that can excite transitions between states. Many

desired transitions cannot be realized with a single resonance frequency. By removing the

degeneracy in the energy level differences, I introduce coupling terms as in Eq. 2.4.

The symmetry of the multi-qubit system is reduced to Dn with the introduction

of nearest-neighbor coupling terms. Under the action of the Dn elements, the elements in

each orbit of {| ↑⟩, | ↓⟩}⊗n have the same numbers of | ↑⟩ and | ↓⟩ entries, so M is still

a good quantum number for the basis vectors in each subspace Hθ
j . However, more than

one basis vector may be characterized by the same M in Hθ
j . This is because Dn has

much fewer elements than Sn. For two elements in {| ↑⟩, | ↓⟩}⊗n to be in the same Dn-

orbit, they should have the same pattern of spins which is invariant under the Dn actions

as well as having the same M . As explained in Sec. 3.4, each operator Oθ
j in Eq. 3.19

may act on one or two elements in every orbit characterized by the same M , and each M

may characterize more than one orbit. As such, there may be more than one orthonormal
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basis vector characterized by the same M in each subspace Hθ
j . These orthonormal basis

vectors of Hθ
j are the eigenstates of the coupling Hamiltonian Hcpl =

∑n
i=1 σ

(i)
z σ

(i+1)
z , while

their eigenvalues are functions of M and the pattern of spins. For 3 qubits and above, the

nearest-neighbor coupling terms result in 3 resonance frequencies in the power spectra of the

controlling pulses (see Fig. 4.11). Some transitions that are not possible in the Sn-symmetry

system can now be realized with more resonance frequencies.

Since there may be more than one basis vector characterized by the same M

in the subspace Hθ
j , its dimension is generally larger than that of the subspace HJ

[J(i)]
.

Note that the control Hamiltonians Hx and Hy still have Sn symmetry and change M by

±1. One consequence is that there will be more nonzero upper diagonals in the blocks of

A′
+ = A†

DA+AD. This is because any basis vector characterized by M may be partially

transitioned to more than one basis vector characterized by M ± 1. Similarly, there will be

more nonzero lower diagonals in the blocks of A′
− = A†

DA−AD. Eq. 5.3 reveals there are

more nonzero minor diagonals in H ′
x = A†

DHxAD and H ′
y = A†

DHyAD compared with those

transformed with AS , as shown in Figs. 4.2b, c, 4.3b, c, 4.4b, c, and 4.5b, c. In other words,

more controllability in a multi-qubit system results in an increased subspace dimension and

a larger number of nonzero minor diagonals that require more computational resources.

The nonzero elements in A′
+ and A′

− determine the selection rules of the multi-

qubit system. Even if two eigenstates are in the same subspace, transitions between them

can occur only when their M quantum numbers differ by ±1. When the two states have

a larger difference in M , the initial state must transition to some intermediate states step

by step before it fully transitions to the target state. Under Dn symmetry, in certain cir-
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cumstances, I am allowed to design a desired “route” (i.e., desired intermediate states) of

transitions as long as it is compatible with the selection rules (see Fig. 5.1c). Assuming

the controlling pulses can be perfectly constructed to be at the required resonance frequen-

cies (i.e., eigenenergy differences between intermediate states in the desired transition), the

transition route can be realized by progressing the entire transition with a series of inter-

mediate transitions while each intermediate transition is enabled with a different resonance

frequency. The design of the transition routes is possible because the degeneracy of the en-

ergy level differences is removed with the Dn-symmetry coupling terms. However, when the

number of qubits, n, is large and the coupling is limited to be between nearest neighbors,

some degeneracy of the energy level differences cannot be removed with nearest-neighbor

coupling only (see Fig. 5.2b). Also, some eigenstates with the same M may have the same

eigenvalues of Hcpl =
∑n

i=1 σ
(i)
z σ

(i+1)
z (see Fig. 5.4b). Consequently, controlling pulses at

some resonance frequency may excite more than one transition simultaneously. The state

will then evolve to a linear combination of eigenstates, while the ratio of the coefficients of

these eigenstates will be the ratio of the magnitude of corresponding nonzero elements in A′
+

and A′
−. In this case, none of these eigenstates can be solely transitioned into. To further

break the degeneracy of the energy level differences, I introduce the coupling between next

nearest neighbors, next next nearest neighbors, and so on.

For the case of nearest-neighbor coupling only, the number of resonance frequencies

of the controlling pulses is limited to 3. I can introduce more coupling between qubits that

are further from each other, as defined in Eq. 5.1. When n is even, I can add coupling terms

until the ith qubit is coupled to the (i + n
2 )th one because the maximum distance of the
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indices between two qubits in n
2 . In contrast, when n is odd, the ith qubit can be coupled

to the (i+ n−1
2 )th one at its extreme. These coupling terms will remove, if not completely, a

considerable amount of the degeneracy of the energy levels of the eigenstates characterized

by the same M . This occurs because the eigenstates with different patterns typically have

different eigenvalues. I can then gain more controllability of the multi-qubit system with an

increasing number of resonance frequencies. It is worth noting that the coupling strength

of each coupling term needs to be carefully tuned, or some of the resonance frequencies will

coincide (or be very close to each other), which can be experimentally challenging.

Any transition conserves the angular momentum of the entire physical system.

Since the Hx and Hy control Hamiltonians allow transitions between states withM differing

by ±1, the difference of M must be carried by the helicity; i.e., the projection of the spin

onto the direction of the momentum of the photon exciting the transition. In this work, I

simulate the evolution of the system with a semiquantum model. The controlling pulses are

modeled as continuous electromagnetic waves during a finite time span. As such, the helicity

of photons is manifested by its classical counterpart, the polarization of electromagnetic

waves. Only one handedness of the circularly polarized light, either left-handed or right-

handed, is able to excite a specific transition. If the sign of the static Hamiltonian H0 is

changed (i.e., H0 7→ −H0), the other handedness will be selected. The controlling pulses

modeled in only one direction, either along the x- or y-axis, can be linearly polarized only.

To simulate circularly polarized light, I choose to manipulate the multi-qubit system with

both Bx(t) and By(t).
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Chapter 6

Conclusions

I conclude this dissertation in this chapter. Some content in this chapter is part

of Accelerating Quantum Optimal Control of Multi-Qubit Systems with Symmetry-Based

Hamiltonian Transformations, an article accepted for publication in AVS Quantum Science.

The study in this dissertation harnessed the intrinsic symmetry of finite groups

to accelerate quantum optimal control calculations in multi-qubit systems. Based on the

Young method, I developed an approach to decompose the Hilbert space H(C2n) under

Dn symmetry or the symmetry of other finite groups. The homogeneity and distinguisha-

bility of the qubits, resulting in the symmetry of multi-qubit systems, are ubiquitous in

nearly all multi-qubit systems, which allows me to generalize my approach to a variety of

quantum computing configurations. In addition to these techniques, I developed a scheme

to generalize our symmetry-based Hamiltonian transformation to general systems with the

Lie-Trotter-Suzuki decomposition, which is naturally amenable to parallel computing.
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My results show that even in the case of inseparable multi-qubit systems, it is

possible to decompose the Hilbert space H(C2n) into a direct sum of orthogonal and com-

plete subspaces. The QOC computation of multi-qubit systems is much accelerated with

the symmetry-based approaches. The selection rules intrinsic to the finite group sym-

metry restrict the transitions within each subspace, from which I propose the concept of

symmetry-protected subspaces. Symmetry-protected subspaces provide a potential plat-

form for preparing permutation-symmetric states and realizing simultaneous quantum gate

operations. I also propose a scheme of quantum error suppression and quantum simulation

in the symmetry-protected subspaces.

A mathematical proof for the Dn-induced method is provided to guarantee the ac-

curacy of the symmetry-based methods. My approach does not impose constraints to satisfy

features of any specific quantum platform, which enables my symmetry-based approach to

be easily used for general QOC calculations up to 14 qubits and beyond.
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Glaser. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by
gradient ascent algorithms. Journal of Magnetic Resonance, 172(2):296–305, 2005.

[52] Vadim F. Krotov and I.N. Feldman. An iterative method for solving optimal-control
problems. Engineering Cybernetics, 21(2):123–130, 1983.

[53] Tommaso Caneva, Tommaso Calarco, and Simone Montangero. Chopped random-basis
quantum optimization. Physical Review A, 84(2):022326, 2011.

[54] Yuanqi Gao, Xian Wang, Nanpeng Yu, and Bryan M Wong. Harnessing deep re-
inforcement learning to construct time-dependent optimal fields for quantum control
dynamics. Physical Chemistry Chemical Physics, 24(39):24012–24020, 2022.

[55] Akber Raza, Chengkuan Hong, Xian Wang, Anshuman Kumar, Christian R. Shelton,
and Bryan M. Wong. NIC-CAGE: An open-source software package for predicting
optimal control fields in photo-excited chemical systems. Computer Physics Commu-
nications, 258:107541, 2021.

[56] Xian Wang, Anshuman Kumar, Christian R. Shelton, and Bryan M. Wong. Harnessing
deep neural networks to solve inverse problems in quantum dynamics: Machine-learned
predictions of time-dependent optimal control fields. Physical Chemistry Chemical
Physics, 22(40):22889–22899, 2020.

[57] Dawei Lu, Keren Li, Jun Li, Hemant Katiyar, Annie Jihyun Park, Guanru Feng, Tao
Xin, Hang Li, Guilu Long, Aharon Brodutch, Jonathan Baugh, Bei Zeng, and Raymond
Laflamme. Enhancing quantum control by bootstrapping a quantum processor of 12
qubits. npj Quantum Information, 3(1):45, Oct 2017.
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