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BEYOND HOMOGENEITY ANALYSIS

JAN DE LEEUW

Abstract. In this paper we propose various extensions of homo-

geneity analysis. These extensions call all be discussed in terms of

the geometrical representation of objects and categories. They com-

plete the system of measurement levels used in older forms of homo-

geneity analysis and nonmetric principal component analysis, mostly

by introducing various possibilities to analyze ’continuously’ varying

classifications.

This paper was originally Research Report RR-84-08 of the Department

of Data Theory, University of Leiden, 1984. An modified version was

published as De Leeuw and Van Rijckevorsel [1988]. This version has R

code added to do the computations and draw the figures. I corrected

some typos. Everything in this paper, except for the pseudo-indicators

and the continuous process restrictions, is now implemented in the

homals package in R [De Leeuw and Mair, 2009].

1. Introduction

In Gifi [1981a] a large number of multivariate analysis methods is orga-

nized in a single general framework. The key method in this system is

homogeneity analysis, also known as multiple correspondence analysis.

The Gifi system is inspired by ideas from multidimensional scaling, in

particular by the central role of Euclidean distance in the representation

of complex multivariate data. The basic data we want to represent ge-

ometrically are categorizations of n objects by m variables. Although

the assumption that the variables are discrete and assume only a fi-

nite number of values is not essential, and can even be made without

any practical loss of generality, it is true that in the current versions of

Date: Monday 27th April, 2009 — 23h 1min — Typeset in Lucida Bright.
Key words and phrases. Correspondence analysis, principal component analysis,

multidimensional scaling.
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2 JAN DE LEEUW

homogeneity analysis categorical variables with a small number of cat-

egories play a central role. Variables with a large number of possible

values, or even “continuous” variables, can be incorporated in theory,

but the implementations of the techniques more or less expect a small

number of categories. If the number of categories is very large, say close

to the number of objects that are classified, then homogeneity analysis

as currently implemented [Gifi, 1981b] does not work very well. It will

tend to produce unsatisfactory and highly unstable solutions, in which

“chance capitalization” is a major source of variation.

There have been various attempts in Gifi [1981a] to make the solutions

more stable by imposing restrictions that reflect, in some sense, the

prior information we have about the variables. In De Leeuw [1984b]

these restrictions are classified into rank-restrictions, cone-restrictions,

and additivity-restrictions. Imposing restrictions decreases the number

of free parameters. This means, roughly, that there are more data val-

ues per parameter, which can consequently be determined in a more sta-

ble manner. Rank-restrictions and cone-restrictions make it more easy

to deal with variables having a large number of categories, but in sev-

eral respects their treatment remains somewhat unsatisfactory. In many

multidimensional scaling programs there are options for transformation

of the variables that are “smooth” or otherwise “continuous”. There is no

such possibility in the current homogeneity analysis programs. In this

paper we shall try to extend the basic geometry of homogeneity analysis

in such a way that continuous variables fit in more easily. A fundamen-

tal role in this extension is played by the “B-spline basis”, which is intro-

duced here in a purely geometrical way (compare also Van Rijckevorsel

[1982]). We also introduce, as a further generalization, a “fuzzy” type of

B-spline basis, which indicates more clearly how homogeneity analysis

generalizes the various forms of nonmetric principal component analy-

sis [De Leeuw, 1982]. Combination of the various options creates a very

flexible new type of homogeneity analysis. It is highly unlikely that all

possible types will be equally important in practice, in fact we suspect

that some of the less restricted forms will again tend to produce highly

unstable or even “trivial” solutions. Nevertheless it is satisfactory from

a theoretical point of view to show exactly what the choices are that one
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has to make, even if some of the possible choices may be quite unwise

in practical situations.

2. Simple Homogeneity Analysis

We start with a brief recapitalization of the technique of homogeneity

analysis, without any of the frills discussed by Gifi [1981a] or De Leeuw

[1984a,b]. The data are m variables on n objects, i.e. there are m func-

tions defined on a common domain {1,2, · · · , n}. We suppose that the

range of function j has kj elements, and we code function j by using

the n × kj indicator matrix Gj . Matrix Gj is binary, it has exactly one

element equal to one in each row, indicating into which element of the

range the object corresponding to this row is mapped, Thus the rows of

Gj add up to one, and the matrix Dj = G′jGjis diagonal, and contains

the univariate marginals. If Gj and G` are indicator matrices of two dif-

ferent jvariables, then Cj` = G
′
jG` is the cross-table of variables j and

`, i.e. it contains the bivariate marginals. This notation is illustrated in

detail in [De Leeuw, 1973, Chapter 2], Gifi [1981a, Chapter 23], but also

in Guttman [1941] and in Burt [1950].

The purpose of homogeneity analysis is to map both objects and vari-

ables into low dimensional Euclidean space Rp (where p is dimension-

ality, chosen by the user). We want to do this in such a way that both

objects and categories of the variables are represented as points, and in

such a way that an object is relatively close to a category it is in, and rel-

atively far from the categories it is not in. Of course this implies, by the

triangle inequality, that objects mostly scoring in the same categories

tend to be close, while categories sharing mostly the same objects tend

to be close too. The extent to which a particular representation X of the

objects and particular representations Yj of the categories, satisfy the

desiderata of homogeneity analysis is measured by a least squares loss

function. This is defined as

(1) σ(X;Y1, . . . , Ym) =
m∑
j=1

tr (X −GjYj)′(X −GjYj)

In order to prevent certain obvious trivialities we require that the n× p
matrix of object scores X is normalized by u′X = 0 and X′X = nI. Here
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u is a vector with all elements equal to one, and I is the identity ma-

trix. We do not normalize them matrices of category quantifications Yj ,
which are of order kj × p. Using (1) and the normalization conventions

we can now give a more precise definition of homogeneity analysis. It

is to choose a normalized X and Y1, · · · , Ym such a way that (1) is min-

imized. For additional interpretations of the loss function, in terms of

consistency, discrimination, and homogeneity, we refer to Gifi [1981a]

and De Leeuw [1984b]. In this paper we more or less ignore the algorith-

mic and statistical aspects of the homogeneity analysis techniques, and

we concentrate on the geometry on which the loss function is based.

3. Pictures of Loss

In Table 1 we have presented a small example with 10 objects and three

variables. The objects are 10 cars, the variables are price (in $ 1000),

gas consumption (litres per 100 km, on the expresway), and weight (in

100 kg). The data are taken from a larger matrix used by Winsberg and

Ramsay [1983, Page 587], who took their data from the April, 1983 issue

of Consumer Report. In order to prevent possible misunderstandings

we must emphasize that Table 1 is not at all representative for data

usually analyzed with homogeneity analysis. In fact in most practical

applications of the technique the number of objects and the number of

variables is much larger. Moreover in our small example all variables

are numerical, which is also not typical for most homogeneity analysis

applications.

Insert Table 1 about here

The data in Table 1 cannot be used directly in homogeneity analysis.

They must first be made discrete or categorical. This is done by group-

ing the values of the variables into discrete categories, which can, of

course, be chosen in many different ways. One possible, fairly crude,

categorization is given in Table 2. Observe that there are three cars with

profile (1,1,1), and two cars with (2,1,2). Thus there are only seven differ-

ent profiles for these ten cars, out of a possible 3×3×4 = 36 profiles. A

finer discretization would give more possible profiles, more different ac-

tual profiles, and also more “empty cells”, i.e. more profiles that do not
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occur. The finest discretizations is the ranking given in Table 3. Here

there are 103 = 1000 possible profiles, of which only 10 are in use. Thus

99% of the cells is empty. Observe that in constructing Table 3 from Ta-

ble 1 we have arbitrarily broken a tie a variable 2 (Chevette and Pontiac

Phoenix both score 6.9 in gas consumption).

Insert Table 2 about here

Insert Table 3 about here

Now suppose we choose object scores X in two dimensions, and cat-

egory quantifications Yj also in two dimensions. We have plotted the

objects scores we have chosen as ten points in Figure 1. Also given in

Figure 1 are the three points corresponding with the categories of vari-

able 1, price. To make a picture of loss, for variable 1, we have connected

all objects with the category point they belong to, according to variable

1. Loss-component 1 is simply the sum of squares of the line-lengths

drawn in figure 1. We can make a similar picture for variable 2, if we

also choose Y2 It is important to realize that we have chosen X and Y1

completely arbitrary, and not by any optimality considerations. They are

not, in any sense, the solutions given by homogeneity analysis. In fact

they are merely candidates for the solutions, and it is the purpose of the

technique to find better candidates. Another important point is that we

can also make “dual” pictures, in which we plot all Yj as points together

with a single object point.

Insert Figure 1 about here

Insert Figure 2 about here

The loss “due to object i” can now be represented by drawing lines from

the object point to all category points it is in. Such plots, as well as the

plot in Figure 1, are “sub-plots” of a large plot which contains all object-

points and all category points, and which has a line for each element

equal to one in each indicator matrix. This “super-plot” will generally

look somewhat messy, so it is better to present it in “layers”. In Figure 2

we have presented the optimal solution computed by homogeneity anal-

ysis, i.e. the optimal object scores and the optimal quantifications of
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the categories of variable 1. It is clear that the line lengths are shorter

for the optimal solution. For other types of plots useful in homogeneity

analysis we refer to Gifi [1981a,b].

4. Rank Restrictions

In simple homogeneity analysis category quantifications can be anywhere

in p−space. From Equation (1) it follows that optimal category quantifi-

cations are centroids of objects points in the categories. This is illus-

trated in Figure 2. In fact in Figure 1 category quantifications of variable

1 are also optimal for the given object scores, only the object scores are

very far from optimal in this case. Because of the centroid-property of

optimal category quantifications it follows that their weighted average,

with weights equal to the marginal frequencies, is the origin. This is the

only restriction on the relative position of the quantifications of the cat-

egories within a variable. Now consider the situation in which variables

have a range which is ordinal or even numerical. This constitutes a form

of prior information which is not used by simple homogeneity analysis,

and which consequently may get lost in the representation computed by

homogeneity analysis. If we look at Figure 2 the categories of variable

1 are represented in the “correct” order. This is true if we measure or-

der along the horizontal axis, and even more clearly true if we measure

order along the “horse-shoe” on which all objects lie. For variable 2,

gas consumption, the situation is quite different, however. Only Dodge

Diplomat and AMC Eagle are in category 3, which means that the optimal

quantification of the category will be the midpoint of the line connecting

DD and AE. Category 2 contains CI, OM, and BR, and will be quantified

close to CI. Category 1 will be between cluster CC, DC, PH and cluster

PP, FM. Thus both on the horse-shoe and on the line the categories will

project in the order 1-3-2, which is contrary to our prior information.

Another property of simple homogeneity analysis is that very often two-

dimensional plots will occur which are in the form of a horse-shoe. Of

course there is nothing which is intrinsically wrong with horse-shoes.

It is just that they are somewhat wasteful. They use two dimensions

to present an essentially one-dimensional structure. Or, to put it differ-

ently, the second best dimension for discriminating the objects turns out
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to be a nonlinear transformation of the first one. In some cases we may

be interested in a more independent second dimension. We shall not

analyse the precise reasons for the regular occurrence of the horseshoe

in homogeneity analysis. They are given in Gifi [1981a]; De Leeuw [1982];

Schriever [1983]. In this paper we merely discuss geometrically inspired

methods which both get rid of the horse-shoe and make it possible to

impose our prior information.

Our first basic idea is to do this by imposing rank-one restrictions. By

this we mean that we require all category quantifications of a variable to

be on a line through the origin of p−space, with each variable having its

own line. In matrix notation this means that we require Yj = zja′j , i.e.

the kj × p matrix Yj must be of rank one. In order to distinguish the

various types of category quantifications that result from this idea we

now call the Yj multiple category quantifications, while the zj are called

single category quantifications. The aj are the loadings of variable j. We

now minimize the loss function (1), with the provision that for some

variables (but not necessarily for all) we use the restrictions Yj = zja′j .
Variables for which the restrictions are imposed are called single vari-

ables, variables without restrictions are multiple variables. A program

for homogeneity analysis with mixed multiple and single variables is

discussed by Gifi [1982].

In order to study the geometry of single variables we expand the corre-

sponding loss component first. This gives

tr (X −GjYj)′(X −GjYj) = tr (X −Gjzja′j)′(X −Gjzja′j) =

= np − 2a′jX
′Gjzj + (z′jDjzj)(a′ja′j).(2)

Now let qj = Gjzj , and normalize zj such that u′qj = 0 and q′jqj = n.

Such normalization is used merely for identification purposes, because

zj only occurs in the product zja
′
j . Using the normalization we find

(3) tr (X −GjYj)′(X −GjYj) = n(p − 1)+ (qj −Xaj)′(qj −Xaj).

This shows, in the first place, that single loss cannot possibly be zero if

p is larger than one. It is always at least n(p−1). It is equal to n(p−1)
if all objects in a category project in the same point on the line through

the origin and aj . Or, to put it differently, if categories define parallel
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hyperplanes orthogonal through the line defining the variable. All ob-

jects in a category must be located in the hyperplane of the category.

The elements of zj are the signed distances to the origin of the category

hyperplanes, i.e. the locations of the projections on the line defining the

variable. In the case of nonperfect fit the loss is simply the distance of

each object point from its category hyperplane, or, more precisely, the

squared distance. Figure 3 illustrates this for a particular choice of X,

z1 and a1 in our small cars example. Again no optimality considerations

are used here, in fact we have not even paid attention to the appropriate

normalizations. It is clear that rank-one restrictions will tend to make

horse-shoes impossible, or at least highly unlikely. It may not be clear

yet how they can be used to impose ordinal or numerical prior informa-

tion. Before we proceed to explaining this, we relate the use of single

variables to performing a principal component analysis.

Insert Figure 3 about here

Suppose, for the moment, that all variables are single. Collect the qj in

the n ×m matrix Q, with u′Q = 0 and diag(Q′Q) = nI. Collect the aj
in the m× p matrix A. Then (3) implies that

(4) σ(X;Y1, · · · , Ym) = nm(p − 1)+ tr(Q−XA′)′(Q−XA′).

Now minimizing (4), which is the same thing as minimizing (1) if all

variables are single, means performing a singular value decomposition

on Q, or a principal component analysis on the correlation matrix R =
n−1Q′Q. Remember, however, that Q depends on the zj . It is thus not a

constant matrix. Minimizing (4) can be interpreted as choosing (single)

quantifications of all variables in such a way the Q is as close as possi-

ble to a rank p matrix. Or: in such a way that the sum of the p largest

eigenvalues of R is as large as possible. Homogeneity analysis, with all

variables single, is for this reason also called nonlinear principal com-

ponent analysis. It is nonlinear, not because we use nonlinear approxi-

mations, but because optimal nonlinear transformations are computed

for all variables. Compare De Leeuw [1982] or Bekker [1982] for a much

more extensive discussion.



BEYOND HOMOGENEITY ANALYSIS 9

5. Cone Restrictions

Rank one restrictions induce an order on the categories of the variable,

even if we do not know the order beforehand. The induced order is

given by the projections on the variable vector, or by the order of the

category hyperplanes. In fact the category hyperplanes even introduce

a single numerical scale for the categories of a variable, given in the

vectorzj . Now the induced ordinal or numerical information mayor may

not correspond with our prior knowledge. We use cone restrictions if

we impose the constraint that the induced order must be the same as

our prior order, and the induced scale must be the same as our prior

scale. Numerically these are restrictions on the elements of zj . Either

they must be in the “correct” order, for single ordinal variables, or they

must be equal to a given normalized vector, for single numerical vari-

ables. Observe that the type of a variable refers to the constraints we

impose, it does not reflect some intrinsic property of the variable. We

use the term “cone restrictions” because the feasible choices for zj form

a polyhedral convex cone in kj-space for ordinal variables, and a one-

dimensional subspace, which is sort of degenerate cone, for numerical

variables. It is also possible, by the way, to formulate our restrictions

in terms of qj = Gjzj , i.e. in n−space. No restrictions on zj , defining

single nominal variables, defines a kj-dimensional subspace in n−space.

Ordinal and numerical restrictions defines subcones and subspaces of

this kj−dimensional subspace.

If the zj are completely given, by restrictions taken together with nor-

malizations, then homogeneity analysis becomes identical with princi-

pal component analysis. This is, in a sense, one of the endpoints of the

continuum of homogeneity analysis techniques. All variables are single

numerical. The other endpoint has all variables multiple nominal. This is

what we have described earlier as simple homogeneity analysis or mul-

tiple correspondence analysis. In Figure 4 we give a two dimensional

principal component analysis representation of our small example, us-

ing the geometry of homogeneity analysis.

Insert Figure 4 about here
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Figure 4 results from analyzing Table 2. It is clear, of course, that the

analysis of tables 1 and 3 would give different results in general. Table 3

is quite interesting in this respect. For Table 3 the indicator matrices Gj
are permutation matrices. If we substitute them in (1) it is obvious that

loss can always be made equal to zero by letting X be an arbitrary n×p
matrix, and by setting Yj = G′jX. Then GjYj = GjG′jX = X. In the same

way single nominal variables can always be fitted perfectly. Choose X
and aj arbitrarily, and set zj = G′jXajThen qj = Xaj , and loss is mini-

mized by (3). In other words: nontrivial analysis of rankings is possible

only if we make all variables either single ordinal or single numerical.

It is also interesting to compare the single quantifications in qj = Gjzj
with the original scores in Table 1. Clearly plotting the elements of qj
versus the original scores will give a step-function. We have discreticized

our variables, and as a consequence every object in the same discretiza-

tion interval gets the same quantification in the q-vector of the variable.

The more intervals, the less crude the transformation given by the step-

function will be, but no matter how fine we choose the discretization the

transformation will always be a step function. This is one of the main

reasons why we say that homogeneity analysis as currently implemented

by! Gifi [1981a,b] has a discrete bias. Step-functions are perfectly natural

for variables which have a small number of possible values to start with,

or for purely nominal variables for which we have no prior numerical

information. For “continuous ” numerical variables, such as the three

variables in our example, transformation by step-functions ignores the

prior information that our variable was originally continuous, and can

also assume all intermediate values between the end-points. Thus we

now now how to incorporate numerical and ordinal information, but

we do not know yet how to incorporate “smoothness” into homogeneity

analysis. This problem will be discussed below, but first we have to fill a

number of gaps that have been left open in the combination of various

options we have discussed up to now.

6. Gaps in Gifi

In the previous sections we have discussed single numerical, single ordi-

nal, single nominal, and multiple nominal variables. We did not discuss
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multiple ordinal and multiple numerical. If only for esthetic reasons it is

interesting to investigate if these remaining types of variables can also

be given a simple meaning. Moreover we have distinguished single and

multiple variables. For single variables we required that rank(Yj) was

less than or equal to one, For multiple variables there were no rank re-

strictions, which means that we “required” that rank(Yj) was less than

or equal to min(p, kj − 1). It is kj − 1 and not kj in this upper bound,

because of the fact that the rows of Yj have a weighted mean of zero.

Now if p = 1 there is no difference between multiple and single. If p = 2

then for variables with more than two categories single requires that

rank(Yj) is less than or equal to one and multiple that rank(Yj) is less

than or equal to two. There is no gap between the two options. But for

p = 3, and kj larger than three, single requires rank one and multiple re-

quires rank three as the upper bound. Thus there is a gap. We can insert

another option, which requires rank(Yj) to be less than or equal to two.

This general rank restriction, which can be between single and multiple,

was already discussed in De Leeuw (1976), but it was not incorporated

in the subsequent developments of the Gifi-system.

The loss function, with general rank constraints, can be written as

(5) σ(X;Y1, · · · , Ym) =
m∑
j=1

tr (X −GjZjA′j)′(X −GjZjA′j)

Here Zj is kj × rj , and Aj is p × rj The rj are the required ranks for

variable j. Geometrically the constraint means, of course, that the cat-

egory quantifications must be in a rj-dimensional hyperplane through

the origin. If Z′jDjZj = nI, then loss for variable j satisfies

(6) σj(X, Yj) = n(p − rj)+ tr (XAj −GjZj)′(XAj −GjZj).

If A = (A1 | · · · | Am) and Q = (Q1 | · · · | Qm) = (G1Z1 | · · · | GmZm)
then

(7) σ(X;Y1, · · · , Ym) = nm(p − r)+ tr (XA−Q)′(XA−Q).

This looks very similar to (4), but remember that in (7) each Qj consists

of rj orthogonal quantifications of the same variable, i.e. of rj copies

(compare De Leeuw [1984b]; Tijssen [1985]). Again, geometrically, we

have minimum loss if the category points are in an rj-plane, and all
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object points are on lines perpendicular to the plane, which cross the

plane in the kj -category points.

General rank restrictions now make it possible to define rj-nominal, in

which there are no further restrictions on Zj .There is also rj-numerical,

in which the rj columns of Zj are known orthogonal kj-vectors. And,

finally, there is rj-ordinal, in which all columns of Zj must be in the ap-

propriate order. For rj-nominal and rj-numerical we can require, with-

out loss of generality, that Z′jDjZj = nI. For rj-ordinal such a constraint

cannot be imposed, and we have to refrain from normalizing Zj and/or

Aj 1 . It is clear, of course, that general rank constraints, coupled with

measurement restrictions, generalize our previous notions of single and

numerical, and fill the gaps in the system. In fact it opens completely

new possibilities: we can require that the first “copy” in Zj is ordinal,

while the remaining copies are nominal, and so on. Again we do not

know how practical these new options are. We have discussed them

because they fit naturally into the gaps, and also because they can be in-

corporated without much ado into the homogeneity analysis algorithms

that are already there.

7. Pseudo Indicators

A more satisfactory analysis of continuous variables becomes possible

if we generalize the notion of an indicator matrix. Suppose we continue

to use the same notion of loss, with the same types of restrictions on

the category transformations, but we do not soppose that the Gj are

indicator matrices. They must still be known n × kj matrices, but they

need not be binary any more. In a sense we have already gone a step

in this direction. If a variable is rj-numerical, then Yj = Gj(ZjA′j) =
(GjZj)A

′
j . Suppose, for instance, that the Zj are polynomials, orthogonal

with respect to the marginals. Then GjZj are orthogonal polynomials in

n−space, and we can interpret our analysis as an unrestricted analysis

using an n× rj basis of orthogonal polynomials instead of the indicator

1In the current homals package [De Leeuw and Mair, 2009] we require for rj-ordinal

variables that only the first column of Zj is in the correct order, while the other

columns are orthogonal to the first. Thus we also have Z′jDjZj = nI in this case.
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matrix Gj . Although this is clearly a valid interpretation, it is not exactly

what we have in mind.

In this section we concentrate on so called fuzzy codings, collected in

pseudo-indicator matrices. Fuzzy codings were first introduced, in full

generality by Martin [1980a,b], although various special cases were al-

ready studied earlier by other investigators. The most important special

case is the B-spline basis, which was used by Lafaye de Michaux [1978];

De Leeuw et al. [1981]; Van Rijckevorsel [1982]. Winsberg and Ramsay

[1980, 1983] have used I-splines, which are not entirely in the class we

discuss, although they are closely related. A pseudo-indicator matrix Gj ,
to give a precise definition, is an n× kj nonnegative matrix whose rows

add up to one. Thus the mass, concentrated in a single category for

simple indicator matrices, can be spread over the categories for pseudo-

indicators. The bandwidth of a pseudo-indicator is the largest number

of nonzero elements in a row. Thus indicator matrices are characterized

as pseudo-indicators with bandwidth unity. Piecewise linear B-splines

define pseudo-indicators with bandwidth two, and so on. In this paper

we do not care about the origin of the pseudoěindicators, for this we

refer to the publications of Martin and Van Rijckevorsel. We simply as-

sume that data are coded in this way, and we look for the geometrical

interpretations of such a coding. In Table 4 we have a fuzzy coding of

our small example, which is actually the result of piecewise linear cod-

ing. The idea behind our generalization of homogeneity analysis now is

that we can combine all our previous options and restrictions with this

new coding as well. In particular we can impose rank-constraints, and

impose ordinal or numerical restrictions.

Because p = 2 in our example it suffices to distinquish single and mul-

tiple. Consider multiple nominal. The loss component for variable j
vanishes if X = GjYj . In the coding used in Table 4 each X corresponds

with two categories, because the bandwidth in our example is two. The

two category quantifications are the endpoints of a line segment, all line

segments for a particular variable are connected. The object scores must

be on the line segment corresponding to the categories they are in. And

not only must they be on the segment, they must also be in a precise

location on the segment, where the location is dictated by the masses of
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the endpoints in the coding. This is indicated in Figure ??, which is not

an optimal solution of any kind, but it is used to illustrate the loss of

variable 1 in the coding of Table 4. The points on the two line segments

indicate where the cars must be given the coding. and given the loca-

tion of the endpoints of the segments. In the single case the endpoints

must be on the same straight line, and the object points must project

on the places fixed by the coding. Thus there are parallel lines perpen-

dicular to the line connecting the category points, which intersect this

line at the appropriate places. In the ordinal case the endpoints must

be ordered along the line. such that both within-category and between-

category quantifications are ordered. In the single nominal case only

within-category quantification is ordered (which makes this a somewhat

peculiar option, perhaps).

If we study the transformation which considers qj = Gjzj as a function

of the original data values, then transformations from pseudo-indicators

will indeed be more smooth than those from indicators. The precise na-

ture of the smoothness depends on the nature of the pseudo-indicators,

for instance on the bandwidth. In our example the transformations are

continuous and piecewise linear. If we use piecewise quadratic splines,

joined in such a way that they are differentiable at the endpoints, then

we get more smoothness (and a bandwidth of three). The geometry be-

comes more complicated, because object points must be at the appro-

priate places in the triangle spanned by three endpoints. Successive tri-

angles are interlocked, because they have one side in common. And so

on, for larger bandwidths, and/or in higher dimensions. It follows from

this picture that bandwidth three or more does not combine naturally

with single quantification, because single quantification makes the trian-

gles degenerate to straight lines. This is no problem analytically, but it

makes the geometry of loss far less interesting. In general we think that

for practical purposes a bandwidth larger than two is probably not very

interesting, unless data are very well behaved indeed.

8. Process

In the developments so far the data were coded as (pseudo)-indicators,

and these pseudo-indicators were fixed during the computations. Now
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let us look at single ordinal piecewise linear again. We have already seen

that the order of the category points on the line is fixed in this case,

although their precise location is free. Given the location of the cat-

egory points, however, the location of the preferred projection of the

object points on the line is fixed by the coding. This is what we mean

by fixedness of within-category order. This fixedness is contrary to what

is called the primary apporach to ties in multidimensional scaling liter-

ature, and also the continuous ordinal option (compare De Leeuw et al.

[1976]; Young et al. [1980]; Young [1981]). In this option, which is incor-

porated in various nonmetric principal component programs, we fix the

order between categories but not within categories. Or, geometrically,

given the line and the location of the category points on the line, the

object-point can project anywhere between the end-points of its cate-

gory. Loss only occurs if they project outside their assigned interval.

Given our previous discussion it is easy to see how the idea of continu-

ous ordinal data can be incorporated easily into our form of homogene-

ity analysis. The elements of the pseudoěindicators are not considered

fixed any more, only the location of the nonzero elements is fixed. Thus

we know which elements must be nonzero, we also know that they must

be nonnegative and they must add up to one for each row, but their

precise values are additional parameters over which the loss function is

minimized. In the single ordinal piecewise linear case this gives exactly

continuous ordinal data as treated in PRINCIPALS, for instance [Young

et al., 1978]. But because we have fitted the possibility of varying the el-

ements of the Gj into our general homogeneity analysis framework, we

can combine this option with all other previous options that we already

had. It can be combined with multiple quantification, and with single

numerical quantification. In this last case it gives the continuous numer-

ical scaling earlier discussed by De Leeuw and Walter [1977]. There is

very little need to elaborate on the geometry of the continuous versions.

It is basically the same as the discrete geometry, only points are not

fixed in intervals, but they can be anywhere in the interval. It becomes

perhaps a bit more interesting to use larger bandwidths with single op-

tions, because the bandwidth now controls the amount of overlap of the

intervals corresponding with the categories. If bandwidth is two, there
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is no overlap. In bandwidth is three successive categories have one com-

mon subinterval, and so on. Multiple options with bandwidth three, in

two dimensions, are interpreted in terms of triangles (or convex hulls).

Objects in category 1 must be in the convex hull of category points 1,

2, and 3, objects in category 2 in the convex hull of 2,3, and 4, and so

on. Successive triangles have one side in common, if they degenerate to

line segments this becomes the overlapping subinterval. It is not at all

clear (yet) if these conceptually very nice options are useful in practice.

Their conceptual nicety may be a bit misleading in this respect. A theo-

rem in Gifi [1981a] is useful to illustrate their limitation. It refers to the

continuous ordinal option, with all variables single. The results shows

that with this option degenerate solutions, which locate one object very

far away from the others, which are collapsed into a single point, will be

quite comnon. In fact Gifi shows that in the situation in which objects

are a random sample the minimum of loss is almost surely equal to zero

if the sample size tends to infinity. We do not know yet how devastating

this results is in practice, but it certainly indicates that we have to be

careful.

Computationally our new options do not introduce any trouble at all.

We must introduce a new subproblem into the alternating least squares

cycles of homogeneity analysis in which the Gj are adjusted. This is

done for each row of each Gj separately, defining a very small special

quadratic programming problem. Of course we have to exert a little self-

control in combining our options. We have the possibility, in principle, to

take a different bandwidth for each object, or a different rank for each

Yj . In fact, looming large in the distance, is the possibility of further

generalizations. We can fix the bandwidth of each variable, for instance,

and determine the optimum location of the nonzero elements. This is

probably very unwise, because the program output will become almost

independent of the data.

It is perhaps convenient to relate existing programs to our general form

of homogeneity analysis, in which we choose (a) quantification rank, (b)
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measurement level, (c) bandwidth, (d) process for each variable sepa-

rately. HOMALS [Gifi, 1981b] has quantification rank equal to dimen-

sionality, measurement level nominal, bandwith unity, and process dis-

crete. Of course if bandwidth is unity there is no distinction between

discrete and continuous process. Ordinary principal component analysis

has quantification rank unity, measurement level numerical, bandwidth

unity, process discrete. PRINCALS [Gifi, 1982] has quantification rank

either one or dimensionality, and measurement level numerical, ordinal,

or nominal (but ordinal/numerical cannot occur together with multiple).

Bandwidth is unity, and process is discrete. SPLINALS [Van Rijckevorsel,

1982; Coolen et al., 1982] has quantification rank either one or dimen-

sionality, measurement level nominal, bandwidth either one or two, and

process discrete. Winsberg and Ramsay [1983] have, with some minor

qualifications, measurement level ordinal, quantification rank unity, ar-

bitrary bandwidth, and process discrete. PRINCIPALS [Young et al., 1978]

has quantification rank one, measurement level nominal, ordinal or nu-

merical, bandwidth either one or two, process continuous or discrete.

But if the process is continuous the measurement level must be ordinal,

and if the process is discreet the bandwidth must be one. It is clear that

our new homogeneity analysis program, which only exists in preliminary

APL-versions yet, encompasses all these possibilities and has all previ-

ous programs as special cases. Of course it will be more expensive in

terms of time and storage, and more liable to produce degeneracy.

9. Words of Caution

Homogeneity analysis is a dangerous technique. We use very little in-

formation from the data, and we do not impose restrictions of a strong

type on the representation. This type of program traditionally appeals

greatly to many social scientists, who are very unsure about the value of

their prior knowledge. They prefer to delegate the decisions to the com-

puter, and they expect programs to generate knowledge. This strategy

leads, all too often, to chance capitalization, triviality, and degeneracy.

Hypotheses are never rejected, and investigators and constantly making

errors of the second kind. As a consequence results can, of course, never

be replicated. Generalized homogeneity analysis, as we have developed
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it here, is a very powerful tool which can contribute greatly to a fur-

ther inflation of social science results. By choosing the least restrictive

options we can make the results almost completely independent of the

data.

On the other hand it is well known that if we pay too much attention to

errors of the second kind, then social scientists can say absolutely noth-

ing. This is also considered to be an undesirable state of affairs. It can be

circumvented by concentrating on minute aspects of well-defined small

problems, as in laboratory situations, or it can be circumvented by intro-

ducing vast quantities of prior knowledge, as in sociology. Of course in

most cases the prior knowledge is nothing but prejudice, and it so dom-

inates the investigation that the results become equally independent of

the data.

This defines the dilemma of applied empirical social science. Accord-

ing to the canons of scientific respectability we can say almost nothing,

and the things we can say are likely to be trivial. There are two ways

out of this situation. Either we impose so much prior knowledge on

our problem that the data only marginally make a difference. This is

the rationalistic solution, popular in sociology. Or we impose so little

prior knowledge that the data, including all outliers, stragglers, idiosyn-

cracies, coding errors, missing data, completely determine the solution.

In this case the technique is supposed to generate theory. This is the

empiristic and technological approach, popular in applied psychology.

Both approaches have, up to now, not produced much of interest.

Homogeneity analysis is firmly in the empiristic and technological tradi-

tion. Thus it is clear what dangers we have to guard against especially.

If we have reliable prior knowledge, we must incorporate it. It is abso-

lutely necessary to investigate the stability of the results [Gifi, 1981a;

De Leeuw, 1984a]. Observe, however, that stability is not sufficient. A

program that responds to any data matrix by drawing the unit circle is

very stable indeed. We also need to gauge the technique, by comparing

analysis with different options on data whose most important properties

are known. For some forms of homogeneity analysis this has already be

done quite extensively [Gifi, 1981a; De Leeuw, 1984c], but very little is
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known in this respect about the more general options discussed here.

One strategy, that seems promising, is to analyze the same data which

various options, and to see what is gained and what is lost if we switch

from numerical to ordinal, from bandwidth one to bandwidth two, from

discrete to continuous, and so on. In fact this defines another form

of stability analysis, which seems indispensable in situations with little

prior knowledge.
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Appendix A. Tables

Price Gas Weight

Chevette 5.6 6.9 9.7

Dodge Colt 5.7 5.1 8.8

Plymouth Horizon 6.3 5.5 9.9

Fort Mustang 7.6 6.7 12.0

Pontiac Phoenix 8.6 6.9 12.1

Dodge Diplomat 9.4 10.2 15.5

Chevrolet Impala 10.1 7.5 16.9

Buick Regal 10.5 7.8 15.0

AMC Eagle 10.7 11.7 15.7

Oldsmobile 98 13.3 8.7 18.3

Table 1. Car Data

Price Gas Weight

Chevette 1 1 1

Dodge Colt 1 1 1

Plymouth Horizon 1 1 1

Fort Mustang 2 1 2

Pontiac Phoenix 2 1 2

Dodge Diplomat 2 3 2

Chevrolet Impala 3 2 3

Buick Regal 3 2 2

AMC Eagle 3 3 2

Oldsmobile 98 4 2 3

Table 2. Car Data, Discrete

Price Gas Weight

Chevette 1 4 2

Dodge Colt 2 1 1

Plymouth Horizon 3 2 3

Fort Mustang 4 3 4

Pontiac Phoenix 5 5 5

Dodge Diplomat 6 9 7

Chevrolet Impala 7 6 9

Buick Regal 8 7 6

AMC Eagle 9 10 8

Oldsmobile 98 10 8 10

Table 3. Car Data, Ranked
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Price Gas Weight

Chevette 0.88 0.12 0.00 0.62 0.38 0.00 0.06 0.94 0.00 0.00

Dodge Colt 0.86 0.14 0.00 0.98 0.02 0.00 0.24 0.76 0.00 0.00

Plymouth Horizon 0.74 0.26 0.00 0.90 0.10 0.00 0.02 0.98 0.00 0.00

Fort Mustang 0.48 0.52 0.00 0.66 0.34 0.00 0.00 0.60 0.40 0.00

Pontiac Phoenix 0.28 0.72 0.00 0.62 0.38 0.00 0.00 0.58 0.42 0.00

Dodge Diplomat 0.12 0.88 0.00 0.00 0.96 0.04 0.00 0.00 0.90 0.10

Chevrolet Impala 0.00 0.98 0.02 0.50 0.50 0.00 0.00 0.00 0.62 0.38

Buick Regal 0.00 0.90 0.10 0.44 0.56 0.00 0.00 0.00 1.00 0.00

AMC Eagle 0.00 0.86 0.14 0.00 0.66 0.34 0.00 0.00 0.86 0.14

Oldsmobile 96 0.00 0.34 0.66 0.26 0.74 0.00 0.00 0.00 0.34 0.66

Table 4. Piecewise linear coding car data
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Appendix B. Figures
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Figure 1. loss variable 1, arbitrary solution
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Figure 2. loss variable 1, optimal solution
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Figure 3. single nominal loss, variable 1, arbitrary solution
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Figure 4. single numerical loss, variable 1, optimal solution
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Appendix C. Code

C.1. Figure 1.

1 x<-c(-1,-1,-1,0,0,0,1,1,1,2)

2 y<-c(-1,0,1,-1,0,1,-1,0,1,0)

3 xy<-cbind(x,y)

4 plot(xy,axes=FALSE,xlab="",ylab="",type="n",

5 asp=1,xlim=c(-1.25,2))

6 symbols(-1,0,circles=.1,inches=FALSE,

7 add=TRUE,fg="BLACK",bg="GREEN")

8 symbols(0,0,circles=.1,inches=FALSE,

9 add=TRUE,fg="BLACK",bg="GREEN")

10 symbols(1,0,circles=.1,inches=FALSE,

11 add=TRUE,fg="BLACK",bg="GREEN")

12 symbols(2,0,circles=.1,inches=FALSE,

13 add=TRUE,fg="BLACK",bg="GREEN")

14 text(xy,c("CC","DC","PH","FM","PP","DD","CI","BR","AE","OM"),

15 col="RED")

16 lines(matrix(c(-1,-1,-1,0),2,2,byrow=TRUE))

17 lines(matrix(c(-1,0,-1,1),2,2,byrow=TRUE))

18 lines(matrix(c(0,-1,0,0),2,2,byrow=TRUE))

19 lines(matrix(c(0,0,0,1),2,2,byrow=TRUE))

20 lines(matrix(c(1,-1,1,0),2,2,byrow=TRUE))

21 lines(matrix(c(1,0,1,1),2,2,byrow=TRUE))

22 text(matrix(c(-1.15,-.15,.85,1.85,0,0,0,0),4,2),

23 c("1","2","3","4"))

C.2. Figure 2.

1 g1<-ifelse(outer(c(1,1,1,2,2,2,3,3,3,4),1:4,"=="),1,0)

2 g2<-ifelse(outer(c(1,1,1,1,1,3,2,2,3,2),1:3,"=="),1,0)

3 g3<-ifelse(outer(c(1,1,1,2,2,2,3,2,2,3),1:3,"=="),1,0)

4 p1<-g1%*%((1/colSums(g1))*t(g1))

5 p2<-g2%*%((1/colSums(g2))*t(g2))

6 p3<-g3%*%((1/colSums(g3))*t(g3))

7 xx<-eigen((p1+p2+p3)/3)$vectors[,c(2,3)]

8 xx[,1]<--xx[,1]

9 y1<-crossprod(g1,xx)/colSums(g1)

10 y2<-crossprod(g2,xx)/colSums(g2)
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11 y3<-crossprod(g3,xx)/colSums(g3)

12 plot(xx,axes=FALSE,xlab="",ylab="",type="n",asp=1)

13 symbols(y1[1,1],y1[1,2],circles=.03,inches=FALSE,add=TRUE,fg="

BLACK",bg="GREEN")

14 symbols(y1[2,1],y1[2,2],circles=.03,inches=FALSE,add=TRUE,fg="

BLACK",bg="GREEN")

15 symbols(y1[3,1],y1[3,2],circles=.03,inches=FALSE,add=TRUE,fg="

BLACK",bg="GREEN")

16 symbols(y1[4,1],y1[4,2],circles=.03,inches=FALSE,add=TRUE,fg="

BLACK",bg="GREEN")

17 text(xx,c("CC,DC,PH","CC,DC,PH","CC,DC,PH","FM,PP","FM,PP","DD","

CI","BR","AE","OM"),

18 col="RED")

19 lines(matrix(c(xx[7,],y1[3,]),2,2,byrow=TRUE))

20 lines(matrix(c(xx[9,],y1[3,]),2,2,byrow=TRUE))

21 lines(matrix(c(xx[8,],y1[3,]),2,2,byrow=TRUE))

22 lines(matrix(c(xx[4,],y1[2,]),2,2,byrow=TRUE))

23 lines(matrix(c(xx[5,],y1[2,]),2,2,byrow=TRUE))

24 lines(matrix(c(xx[6,],y1[2,]),2,2,byrow=TRUE))

25 text(matrix(y1[1,]+c(0,.05),1,2),"1")

26 text(matrix(y1[2,]+c(0,.05),1,2),"2")

27 text(matrix(y1[3,]+c(0,.05),1,2),"3")

28 text(matrix(y1[4,]+c(0,.05),1,2),"4")

C.3. Figure 3.

1 g1<-ifelse(outer(c(1,1,1,2,2,2,3,3,3,4),1:4,"=="),1,0)

2 g2<-ifelse(outer(c(1,1,1,1,1,3,2,2,3,2),1:3,"=="),1,0)

3 g3<-ifelse(outer(c(1,1,1,2,2,2,3,2,2,3),1:3,"=="),1,0)

4 p1<-g1%*%((1/colSums(g1))*t(g1))

5 p2<-g2%*%((1/colSums(g2))*t(g2))

6 p3<-g3%*%((1/colSums(g3))*t(g3))

7 xx<-eigen((p1+p2+p3)/3)$vectors[,c(2,3)]

8 xx[,1]<--xx[,1]

9 d1<-colSums(g1)

10 y1<-crossprod(g1,xx)/d1

11 plot(xx,axes=FALSE,xlab="",ylab="",type="n",asp=1)

12 abline(0,-1)

13 b<-xx[c(1,6,8,10),2]-xx[c(1,6,8,10),1]

14 abline(b[1],1)
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15 abline(b[2],1)

16 abline(b[3],1)

17 abline(b[4],1)

18 symbols(-b[1]/2,b[1]/2,circles=.025,inches=FALSE,

19 add=TRUE,fg="BLACK",bg="LIGHTBLUE")

20 symbols(-b[2]/2,b[2]/2,circles=.025,inches=FALSE,

21 add=TRUE,fg="BLACK",bg="LIGHTBLUE")

22 symbols(-b[3]/2,b[3]/2,circles=.025,inches=FALSE,

23 add=TRUE,fg="BLACK",bg="LIGHTBLUE")

24 symbols(-b[4]/2,b[4]/2,circles=.025,inches=FALSE,

25 add=TRUE,fg="BLACK",bg="LIGHTBLUE")

26 text(matrix(c(-b[1]/2,b[1]/2),1,2),"1")

27 text(matrix(c(-b[2]/2,b[2]/2),1,2),"2")

28 text(matrix(c(-b[3]/2,b[3]/2),1,2),"3")

29 text(matrix(c(-b[4]/2,b[4]/2),1,2),"4")

30 lines(matrix(c(xx[7,],(sum(xx[7,])-b[3])/2,(sum(xx[7,])+b[3])/2)

,2,2,byrow=TRUE))

31 lines(matrix(c(xx[9,],(sum(xx[9,])-b[3])/2,(sum(xx[9,])+b[3])/2)

,2,2,byrow=TRUE))

32 lines(matrix(c(xx[6,],(sum(xx[6,])-b[2])/2,(sum(xx[6,])+b[2])/2)

,2,2,byrow=TRUE))

33 lines(matrix(c(xx[4,],(sum(xx[4,])-b[2])/2,(sum(xx[4,])+b[2])/2)

,2,2,byrow=TRUE))

34 text(xx,c("CC,DC,PH","CC,DC,PH","CC,DC,PH","FM,PP","FM,PP","DD","

CI","BR","AE","OM"),col="RED")

C.4. Figure 4.

1 h<-cbind(

2 c(1,1,1,2,2,2,3,3,3,4),

3 c(1,1,1,1,1,3,2,2,3,2),

4 c(1,1,1,2,2,2,3,2,2,3))

5 lbs<-c("CC,DC,PH","CC,DC,PH","CC,DC,PH","FM,PP","FM,PP","DD","CI"

,"BR","AE","OM")

6 q<-scale(h)/3

7 s<-svd(q)

8 xx<-s$u[,c(1,2)]

9 a<-crossprod(q,x)[1,]

10 plot(xx,axes=FALSE,xlab="",ylab="",type="n",asp=1)

11 text(xx,lbs,col="RED")
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12 abline(0,a[2]/a[1])

13 d<-c(3,3,3,1)

14 z<-1:4

15 z<-z-sum(d*z)/10

16 z<-z/sqrt(sum(d*z^2))

17 y<-outer(z,a)

18 symbols(y[1,1],y[1,2],circles=.025,inches=FALSE,

19 add=TRUE,fg="BLACK",bg="LIGHTBLUE")

20 symbols(y[2,1],y[2,2],circles=.025,inches=FALSE,

21 add=TRUE,fg="BLACK",bg="LIGHTBLUE")

22 symbols(y[3,1],y[3,2],circles=.025,inches=FALSE,

23 add=TRUE,fg="BLACK",bg="LIGHTBLUE")

24 symbols(y[4,1],y[4,2],circles=.025,inches=FALSE,

25 add=TRUE,fg="BLACK",bg="LIGHTBLUE")

26 text(matrix(c(y[1,1],y[1,2]),1,2),"1")

27 text(matrix(c(y[2,1],y[2,2]),1,2),"2")

28 text(matrix(c(y[3,1],y[3,2]),1,2),"3")

29 text(matrix(c(y[4,1],y[4,2]),1,2),"4")

30 abline(sum(y[1,]*a)/a[2],-a[1]/a[2])

31 abline(sum(y[2,]*a)/a[2],-a[1]/a[2])

32 abline(sum(y[3,]*a)/a[2],-a[1]/a[2])

33 abline(sum(y[4,]*a)/a[2],-a[1]/a[2])

34 r<-c(-a[2],a[1]); r<-r/sqrt(sum(r^2))

35 lines(rbind(xx[1,],y[1,]+sum((xx[1,]-y[1,])*r)*r))

36 lines(rbind(xx[4,],y[2,]+sum((xx[4,]-y[2,])*r)*r))

37 lines(rbind(xx[6,],y[2,]+sum((xx[6,]-y[2,])*r)*r))

38 lines(rbind(xx[7,],y[3,]+sum((xx[7,]-y[3,])*r)*r))

39 lines(rbind(xx[8,],y[3,]+sum((xx[8,]-y[3,])*r)*r))

40 lines(rbind(xx[9,],y[3,]+sum((xx[9,]-y[3,])*r)*r))

41 lines(rbind(xx[10,],y[4,]+sum((xx[10,]-y[4,])*r)*r))

C.5. Figure 5.

1 xx<-matrix(c(0,0,1,1,2,0),3,2,byrow=TRUE)

2 plot(xx,axes=FALSE,xlab="",ylab="",type="n",asp=1)

3 symbols(xx[1,1],xx[1,2],circles=.05,inches=FALSE,add=TRUE,fg="

BLACK",bg="GREEN")

4 symbols(xx[2,1],xx[2,2],circles=.05,inches=FALSE,add=TRUE,fg="

BLACK",bg="GREEN")
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5 symbols(xx[3,1],xx[3,2],circles=.05,inches=FALSE,add=TRUE,fg="

BLACK",bg="GREEN")

6 text(xx,c("1","2","3"))

7 lines(matrix(c(xx[1,],xx[2,]),2,2,byrow=TRUE))

8 lines(matrix(c(xx[2,],xx[3,]),2,2,byrow=TRUE))

9 g<-matrix(

10 c(

11 .88,.12,0,

12 .86,.14,0,

13 .74,.26,0,

14 .48,.52,0,

15 .28,.72,0,

16 .12,.88,0,

17 0,.98,.02,

18 0,.90,.10,

19 0,.86,.14,

20 0,.34,.66),10,3,byrow=TRUE)

21 y<-g%*%xx

22 points(y,pch=23,bg="BLUE",cex=.5)

23 text(y,c("CC","DC","PH","FM","PP","DD","CI","BR","AE","OM"),col="

RED")
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