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ABSTRACT OF THE DISSERTATION 

 
A Reproducing Kernel Particle Hydrodynamic Formulation for Modeling 

Strong Shock Effects in Nonlinear Solids 

 

by 

 

Michael Jason Roth 

 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2014 

Professor Jiun-Shyan Chen, Chair 

 

 

Many of today’s challenging engineering and scientific problems involve the response 

of nonlinear solid materials to high-rate dynamic loading.  Accompanying hydrodynamic 

effects are crucial, where the shock-driven pressure dominates material response.  In this 

work a hydrodynamic meshfree formulation is developed under the Lagrangian reproducing 

kernel particle method (RKPM) framework.  The volumetric stress divergence is enhanced to 
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capture the high-pressure shock response, and the deviatoric portion is retained to describe 

strength effects of the solid material.  A shock modeling formulation for scalar conservation 

laws is first constructed.   In the scalar formulation the reproducing kernel particle method is 

formulated to address two key shock modeling issues, that is, accurate representation of the 

essential shock physics and control of the numerical oscillations due to Gibbs phenomenon at 

the jump. This is achieved by forming a smoothed flux divergence under the meshfree 

stabilized conforming nodal integration (SCNI) framework, and then enriching the flux 

divergence with a Riemann solution.  The Riemann-enriched flux divergence is embedded 

into a velocity corrector adaptively applied at the shock front.  As a consequence the shock 

solution is locally corrected while the smooth solution away from the shock is unaffected.  

For shocks in solids, developments from the scalar formulation were extended to the 

Cauchy’s equation of motion.  Shock effects in solids are pressure dominated, so that the 

shock solution is enhanced through the volumetric stress divergence.  The volumetric stress 

divergence correction is formulated using a Rankine-Hugoniot enriched Riemann solution 

that introduces the essential shock physics to the formulation.  Oscillation control is 

introduced through the state and field variable approximations that utilize the Riemann 

problem initial conditions, and therefore non-physical numerical parameters and length 

scales required in the traditional artificial viscosity technique are avoided.  Further, because 

the proposed method for oscillation control is linked to the essential physics, the two key 

issues for accurate shock modeling are addressed in a unified and consistent way.  For the 

nonlinear solids formulation, several benchmark problems are solved and the numerical 
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results are verified by comparison to experimental data or analytical solutions.  A range of 

shock conditions are studied to show the versatility of the proposed method for modeling 

conditions ranging from weak elastic-plastic shocks to strong shocks generated by 

hypervelocity impact. 
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CHAPTER 1 INTRODUCTION 

1.1  Motivation 

Material and structure response to impulsive dynamic loads is important in many 

commercial and defense applications.  Examples include explosive cutting and welding [1, 

2], vehicle and aircraft component design for impact and collision [3, 4], mining and earth 

cratering applications [5, 6], design and analysis of containment structures [7, 8], armor 

development [9, 10, 11], and the design and analysis of protective structures exposed to 

impact and blast [12, 13].  Large strain gradients, high strain rates, large deformation, and 

material fracture are commonly encountered, and are often accompanied by strong 

hydrodynamic effects.  In many cases pressure-dominated material response leads to fluid-

like behavior in the solid; shock wave formation is a particularly important aspect of this 

hydrodynamic behavior.  Large velocity and/or pressure gradients cause transient 

discontinuities in pressure, material velocity, density and internal energy that propagate as 

shock waves through the material.  Interface wave reflections according to the change in 

material impedance can lead to large tensile stresses and consequent dynamic tensile failure.   

Analytical methods are insufficient to model the complex conditions that are present in 

strong dynamic problems of practical interest.  Empirical approaches are limited to 

experimental constraints and do not address the governing physics.  Consequently, robust 

numerical methods that accurately represent the essential physics and are constructed in a 
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framework equipped to model the complex response phenomena of the solid continuum are 

required. 

Lagrangian structured-mesh methods, like the finite element (FE) method, are generally 

well suited to model solid dynamics problems.  Their construction in the material coordinate 

system provides a distinct advantage for the description of complex solid geometry, material 

interfaces, and contact surfaces.  The key issues for FE application in fields like impact and 

blast are largely associated with mesh instability, sensitivity, and subjectivity in the presence 

of severe material deformation and weak or strong discontinuities.  Techniques such as 

element erosion [14, 15] and extrinsic enrichment of the approximation functions [16, 17] 

have been developed to help alleviate these artificial mesh dependencies.  However, issues 

such as phenomenological failure criteria, mass conservation in the presence of numerical 

erosion, contact surface erosion, and efficient means to model high-density crack growth 

remain.  In contrast, Eulerian finite difference (FD) and finite volume (FV) methods are 

typically well-suited to model large deformation and material flow.  However, the fixed grid 

characteristic of these methods generally limits their ability to sharply resolve complicated 

material interfaces, contact surfaces, and evolving free surfaces, which are common in high-

rate solid dynamics problems.  Regardless of the numerical framework, stability in the 

presence of shock-induced discontinuities is a critical issue.  Field and state variable 

discontinuities give rise to oscillatory instabilities in the form of Gibbs phenomenon at the 

jump.  Techniques such as artificial viscosity [18, 19], streamline upwinding [20, 21], and 
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adaptive stencil definitions [22, 23] are used as mechanisms to limit oscillation in these 

traditional numerical methods. 

Meshfree methods are emerging as a new class of numerical methods that are well suited 

to model high-rate solid dynamics phenomena such as large deformation, material 

fragmentation, and evolving contact conditions.  In the meshfree framework, the solution of 

the governing equation or equations is approximated using a non-conforming discretization, 

where discrete points or nodes interact through non-conforming kernels of compact support.  

Relaxation of the conforming constraint on the discretization yields strong reduction of mesh 

dependency in the solution, while a Lagrangian approximation maintains sharp resolution of 

material boundaries and interfaces.  Flexibility in selection of the approximation continuity 

and locality afford further advantage for problems in the field of high-rate solid dynamics.  

With these benefits acknowledged, techniques to accurately model the hydrodynamic effects 

of shocks in solids have yet to be addressed in the meshfree framework.  The artificial 

viscosity technique is most commonly used by traditional methods to aid in shock modeling.  

However, the approach relies on subjective length scales and numerical parameters, and lacks 

a rigorous tie to the fundamental shock physics.  Therefore, new techniques are required for 

meshfree methods to ensure that the essential shock physics are correctly represented and the 

fine-scale shock front is accurately resolved without oscillatory instability at the jump.  This 

need for an enhanced meshfree formulation that is adequately equipped to accurately model 

strong shock effects in solids provides the motivation for this research.  
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1.2  Objectives and Outline 

The purpose of this research is to develop a multi-dimensional, hydrodynamic 

reproducing kernel particle method (RKPM) [24, 25] formulation to accurately model strong 

shock effects in nonlinear solid materials.   The formulation will be constructed to ensure 

satisfaction of the essential shock physics and accurately resolve the shock front motion 

while avoiding the formation of oscillatory instabilities at the jump.  The shock-capturing 

enrichment is introduced through the volumetric stress divergence while the deviatoric 

portion is retained to describe shear response; consequently, the formulation is considered to 

be a type of hydrocode [26].  Specific research objectives include: 

1. Develop a technique to automatically detect and track shock waves in a multi-

dimensional domain.  With this automatic detection capability, local enrichments 

can be applied at the shock front to enforce the shock physics and provide 

oscillation control.  To construct the detection algorithm, the intrinsic spectral 

decomposition property of the reproducing kernel approximation will be used to 

isolate high-frequency spectra at jump locations.  Consistency and locality of the 

decomposed approximation is investigated to construct effective pass limits for the 

frequency filtering.  The localized high-frequency spectrum from the decomposition 

is viewed as a high-pass solution error, so that automatic shock detection follows 

from analysis of the high-pass error density. 
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2. Develop an oscillation limiting RKPM formulation to model shock-forming scalar 

conservation laws.  Development of the formulation for shock-forming scalar laws 

is used as a foundational development that will be extended to Cauchy’s equation of 

motion for nonlinear solids.  For the scalar law formulation, a Riemann-embedded 

flux divergence operator is constructed under the framework of stabilized 

conforming nodal integration [27, 28] to satisfy the second law of thermodynamics 

and ensure that the entropy-correct shock solution is obtained.  The flux divergence 

operator is embedded into a flux-corrected velocity to adaptively limit oscillation at 

the shock front and control formation of Gibbs phenomenon.  Several numerical 

examples are used to assess accuracy of the proposed formulation. 

3. Develop a new RKPM hydrodynamic formulation to model shock effects in 

nonlinear solids.  Core concepts developed in the scalar law formulation are 

extended to model shock effects in nonlinear solids.  To construct the 

hydrodynamic formulation, the volumetric stress divergence is corrected to enforce 

the essential physics and provide oscillation control.  The correction is formed using 

a Rankine-Hugoniot enriched Riemann solution that is constructed under the 

framework of stabilized conforming nodal integration; oscillation control is 

provided through the field and state variable approximations used for the Riemann 

problem initial conditions.  Artificial viscosity is avoided as a consequence.  A 

technique is also developed for update of the nodal pressures in accordance with a 
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Rankine-Hugoniot enriched volumetric strain.  The enriched strain is also derived 

from the Riemann solution and therefore provides consistency between the 

corrected volumetric stress divergence and the updated nodal pressures during 

temporal integration. 

4. Verify accuracy of proposed formulation for conditions ranging from strong shocks 

to elastic discontinuities.  The RKPM hydrodynamic formulation developed in 

Objective 3 is applied to several benchmark shock propagation problems for 

verification of the formulation accuracy.  Numerical results are compared to 

analytical solutions and experimental data to assess the accuracy.  A broad range of 

shock conditions are considered, ranging from transient elastic discontinuities to 

strong shocks resulting from hypervelocity impact. 

The outline of this dissertation is as follows.  In Chapter 2 a review is provided of the 

background literature on meshfree methods and the primary techniques that have been used 

by traditional numerical methods for modeling shocks.  Various meshfree techniques for 

improved discontinuity modeling are also reviewed.  An overview of important concepts for 

shock phenomena in solids is provided in Chapter 3, where the Rankine-Hugoniot jump 

equations, the Hugoniot thermodynamic response curves, and the effects of impedance 

mismatch at material interfaces are reviewed.  Some of the important numerical issues that 

arise in shock modeling are also reviewed, along with numerical approaches that have been 

used to address them.  In Chapter 4 the development of a proposed RKPM formulation to 
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model shock-forming scalar conservation laws is presented.  The formulation is corrected 

through a Riemann-enriched smoothed flux divergence that embeds the essential physics 

related to entropy production into the formulation.  A flux-corrected velocity is also 

formulated that adaptively controls oscillation at the shock jump and is linked to the Riemann 

enrichment.  The adaptivity is achieved through a shock detection algorithm that is also 

presented.  Numerical examples are given to assess formulation accuracy.  In Chapter 5 the 

concepts developed for the scalar law formulation are extended to the equation of motion for 

nonlinear solids.  In this chapter the variational equation is operated on to isolate the pressure 

gradient and construct a shock modeling correction that follows a Rankine-Hugoniot shock 

solution to a Riemann problem.  In this way the high-pressure shock physics for solids is 

enforced, and oscillation control is provided through approximation of the Riemann problem 

initial conditions.  Several other key issues such as a methodology to compute consistent 

nodal pressures and algorithm implementation are also discussed.  In Chapter 6 several 

benchmark problems are provided to assess accuracy of the hydrodynamic RKPM 

formulation.  In these problems a broad range of shock conditions are modeled that include 

elastic discontinuities, weak elastic-plastic shocks, and strong shocks resulting from 

hypervelocity impact.  Results from the proposed formulation are compared to experimental 

data and uncorrected results to show the improvements provided through this work.  

Conclusions and closing remarks are provided in Chapter 7, along with recommendations for 

future work.  
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CHAPTER 2 LITERATURE REVIEW 

Computational shock modeling is a topic of strong research interest and has been widely 

investigated based on traditional finite difference and finite element methods.  In comparison, 

much less research has been conducted in the field of meshfree shock modeling due to the 

relatively short history of development in this class of methods.  The purpose of this chapter 

is to first discuss the seminal developments in the field of meshfree methods, leading to the 

introduction of RKPM in 1995.  Key developments in the areas of FD and FE shock 

modeling are then reviewed, with emphasis on the source of numerical error in shock 

solutions and improvements that were developed to address these errors.   Earlier work on 

RKPM-based shock modeling in the direction of adaptive meshfree refinement for enhanced 

accuracy in sharp gradient solutions is also reviewed.   

2.1  Meshfree methods 

The first generation of modern meshfree methods was smooth particle hydrodynamics 

(SPH), introduced by Gingold and Monaghan [29] in 1977.  In SPH the numerical solution is 

obtained on a point-wise basis by transforming the governing equation with a kernel function 

that is defined on a compact smoothing domain.  The method is fast and computationally 

efficient, but suffers from low order accuracy, lack of consistency, tension instability, and 

rank instability.  This was not a significant issue in the early applications of SPH  to large-
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scale astrophysics problems, but creates significant issues for applications such as solid 

dynamics.  SPH was followed by development of the moving least squares (MLS) 

approximation by Lancaster and Salkauskas [30] in 1981.  The MLS approximation locally 

corrects the SPH kernel using a minimization of weighted residuals so that accuracy of the 

approximation is improved.  An important result is correction of the kernel at the domain 

boundary, where the kernel weighting must be adjusted due to the lack of nodes or particles 

beyond the boundary.  In 1992 Nayroles et. al [31] introduced the diffuse element method 

(DEM), where they first used the MLS approximation in the solution of partial differential 

equations.  As an improvement of DEM, Belytschko et al. [32] introduced EFG in 1994.  The 

major improvements of EFG included modification of the so-called DEM diffuse derivatives, 

introduction of Lagrange multipliers for the imposition of boundary conditions, and use of 

higher-order quadrature rules for integration of the weak form.  EFG was followed by the 

introduction of RKPM by Liu et al. [24] and Chen et al. [25].   In RKPM the key issue of 

approximation consistency or reproducibility was addressed through the construction of the 

corrected reproducing kernel (RK).  Using Taylor series expansion the RK correction was 

derived to enforce nth order polynomial completeness in the RK approximation by solving for 

a set of correction coefficients.  The result is the ability to exactly reproduce any complete 

polynomial basis that is used in the RK approximation construction.  Chen and Wang [33] 

showed that the RK correction can also be formed without use of the Taylor series expansion, 

making it possible to impose reproducing conditions for any set of non-polynomial basis 

functions.  The discrete form of the RK approximation and construction of the RK shape 
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functions is given in Chen et al. [25].  A key characteristic of the RK shape functions (and 

meshfree shape functions in general) is lack of kronecker delta properties, which is an 

important difference from the traditional FE method.  To address the imposition of boundary 

conditions without the presence of kronecker delta properties, the transformation method 

[25], mixed transformation method [33], and boundary singular kernel method [33] were 

introduced.   Domain integration is also an issue that has required special attention for 

meshfree methods.  Gauss integration, although widely used in other methods, is not 

particularly attractive for numerical integration in the meshfree framework.  The lack of a 

background mesh and the fact that the meshfree shape functions are generally rational 

functions lead to significant integration error when Gauss integration is used.  As a method 

for improved numerical integration in the meshfree framework, Chen et al. [27, 28] 

introduced stabilized conforming nodal integration (SCNI).  In SCNI nodal derivatives are 

transformed using a smoothed gradient operator that is constructed on a conforming 

integration cell structure.  As a consequence direct nodal integration (DNI) can be used 

without the introduction of significant errors that typically accompany DNI.  SCNI has been 

shown to be optimally convergent [27] and computationally efficient for numerical 

integration of the weak form.  An alternative stabilized non-conforming nodal integration 

(SNNI) technique [34] was developed for problems involving material fragmentation and 

separation, where it is inefficient to reconstruct the conforming integration cell structure as 

fragmentation surfaces evolve.  A semi-Lagrangian form of the RK approximation and new 

treatments for evolving contact conditions were presented by Guan et al. [35]. 
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2.2  FD shock modeling 

Finite difference methods are widely used to model shocks in fluids, and the numerical 

solution generally exhibits dissipation (smoothing) or dispersion (oscillation) errors 

depending on the formulation accuracy.  Dissipation error is typically dominant in first-order 

accurate methods, where order of accuracy is expressed in terms of error resulting from a 

truncated Taylor series expansion [36].  Similarly, oscillation error generally coincides with 

second-order accurate (and higher) methods [36].  An example of a first-order accurate, 

dissipation-dominated FD method is the Lax method [36, 37], while the Lax-Wendroff 

method [36, 38] is an example of a second-order accurate, dispersion-dominated scheme.  

Tannehill, Anderson and Pletcher [36] showed through Taylor series expansion that when 

truncation error is 𝑂(∆𝑡𝑡,∆𝑥𝑥), i.e., first order, the dominant error term is a function of grid 

spacing, ∆𝑥𝑥, and the second derivative of the solution, 𝑢𝑢,𝑥𝑥𝑥𝑥.  This is analogous to the 

introduction of a viscosity term into the governing equation and explains why first-order 

accurate schemes tend to exhibit smoothed shock fronts.  Similar analysis showed that 

second-order truncation error produces dominant error as a function of ∆𝑥𝑥2 and 𝑢𝑢,𝑥𝑥𝑥𝑥𝑥𝑥, which 

introduces wave dispersion and solution oscillation at the jump [36].  The presence of 

oscillation error in second-order and higher schemes is supported by Godunov’s theorem, 

which states that monotonicity preserving (i.e., non-oscillatory) linear numerical schemes can 

be at most first-order accurate [39].  In terms of solution admissibility, Lax showed that 

physically permissible solutions to scalar conservation laws must satisfy a total variation 
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diminishing (TVD) condition [36, 37].  The TVD condition states that the integral of the 

solution gradient over a problem domain should not grow in time; or otherwise stated, a 

numerical method should not generate new solution extrema in time [36].   

Given the tendency of higher-order FD schemes to exhibit oscillation error and violate 

the TVD condition, a widely-used technique for error minimization is the inclusion of slope 

or flux limiters.  Slope and flux limiters are introduced to a numerical technique as limits on 

the change in the solution or solution gradient, respectively, so as to prevent the extrapolation 

of new solution extrema [36].  Limiters can be explicitly designed so that the TVD condition 

is enforced in the presence of shock-induced discontinuities [36]; they also tend to reduce 

solution accuracy at smooth local extrema.  Examples of limiters include the van Leer limiter 

[40], the van Aldaba limiter [41], the minmod limiter [36], and the “Superbee” limiter [42].  

These various limiter formulations provide different amounts of higher-order term 

suppression as a function of the magnitude of solution or flux differences [43]. 

As an advancement beyond limiter techniques, a class of uniformly high-order accurate, 

nonoscillatory (UNO) and essentially non-oscillatory (ENO) schemes were developed by 

Harten and Osher [44] and Harten et al. [45].  The objective of the UNO and ENO schemes 

was to achieve a uniformly high-order accurate solution to shock-forming conservation laws, 

while minimizing or eliminating solution oscillation at the jump.  In other words, the UNO 

and ENO schemes were developed to achieve a non-oscillatory solution to shock problems 

without the loss of accuracy at smooth extrema that generally occurs with techniques such as 

slope or flux limiting.  In development of the UNO scheme a relaxed TVD definition was 
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adopted [44], where the method was required to prevent an increase in the number of solution 

extrema but not necessarily their magnitude.  Using this, Harten and Osher [44] presented a 

second-order accurate UNO scheme that guaranteed uniform second-order accuracy over the 

problem domain while achieving essentially non-oscillatory conditions at a shock.  The 

second-order accurate UNO scheme was later extended to achieve an arbitrarily high order of 

solution accuracy [45], which was labeled the ENO scheme.  To achieve the arbitrary order 

of accuracy, the TVD definition was further relaxed to allow for the presence of spurious 

oscillations in the solution, but with their magnitude limited to the order of the truncation 

error (i.e., 𝑂(∆𝑥𝑥𝑟𝑟) where 𝑒𝑒 is the order of solution accuracy). 

In the UNO and ENO schemes, the solution to an initial boundary value problem (IBVP) 

is formulated as an approximation to the cell-averaged solution of the problem [44, 45].  As 

such, the technique assumes that at each time, 𝑡𝑡𝑛𝑛, a set of cell-averaged solutions, 𝑢𝑢� =

{𝑢𝑢�𝑖𝑖}𝑖𝑖=1𝑛𝑛𝑖𝑖𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠, exists over the problem domain (𝑡𝑡𝑑𝑑𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒 = number of computational cells).  Using 

the cell-averages, a reconstructed solution is formed to the desired order of accuracy.  The 

reconstructed solution is used to define a set of initial conditions for a “new” IBVP, which is 

integrated forward in time to 𝑡𝑡𝑛𝑛+1.  The cell-averaged solution is then recomputed at time 

𝑡𝑡𝑛𝑛+1, which provides a new approximation of the cell-averaged solution.  By the virtue of 

cell averaging, the cell-averaged solution at 𝑡𝑡𝑛𝑛+1 is non-oscillatory with respect to the 

solution of the so-called new IBVP.  Harten and Osher [44] further showed that the new 

IBVP solution itself is non-oscillatory.  Therefore, the critical component in achieving a non-

oscillatory ENO solution is development of a non-oscillatory reconstruction of 𝑢𝑢�.  The non-
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oscillatory reconstruction is based on the development of a non-oscillatory interpolant for use 

in interpolating the cell-averaged solutions.  To construct the non-oscillatory interpolant, an 

adaptive stencil selection algorithm is introduced.  In Harten and Osher [44] the minmod 

function was utilized to form an interpolation stencil over the region of smoothest solution.  

In the vicinity of a shock, the minmod function forces the interpolant stencil to be winded 

away from the jump, so that interpolation across the discontinuity is avoided.  This avoidance 

of cross-jump interpolation correspondingly avoids generation of Gibb’s phenomenon 

oscillation.  Due to the adaptive stencil selection algorithm, ENO is a non-linear solution 

method in that the solution interpolants evolve with the solution itself.  Since Godunov’s 

theorem is stated in terms of linear solution techniques, this partly explains how higher-order 

accurate, non-oscillatory solutions are achieved without violation of the theorem. 

The ENO  scheme was extended by Liu, Osher and Chan [46] so that the interpolants 

were adaptively defined from a convex combination of all possible interpolants covering a 

calculation cell.  This was known as the weighted essentially non-oscillatory (WENO) 

scheme.  The key idea of the WENO scheme is to form the nonlinear interpolant as a 

weighted combination of all possible interpolants, where interpolants that contribute to cross-

jump interpolation are assigned a weight of zero [46].  An advantage of the WENO scheme 

over the standard ENO formulation is that through proper construction of the convex 

combination, not only is the non-oscillatory condition achieved, but a one-order increase in 

accuracy can also be obtained.  This increase in order of accuracy is achieved by combining 

the weighted interpolants so that the leading term in the truncation error is cancelled, forcing 
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the error to be one-order higher.  The ENO scheme was further developed by Shu and Osher 

[47, 48] and Osher and Shu [49] to enhance simplicity in implementation, particularly for 

application to problems in multiple dimensions.  In Shu and Osher [48] and Osher and Shu 

[49], the ENO formulation was modified so that adaptive interpolants were applied to 

numerical fluxes rather than the cell-averaged solution.  This avoided the requirement to 

reconstruct a point-wise solution from cell-averages, which simplified the solution of multi-

dimensional problems [47].  A Runge-Kutta TVD temporal integration scheme was also 

introduced in lieu of the Lax-Wendroff-type integration, simplifying implementation [47]. 

2.3  FE shock modeling  

Under the finite element framework, a major contribution towards accurate shock 

modeling was development of the upwind Petrov-Galerkin and streamline upwind/Petrov-

Galerkin (SUPG) methods [50, 51, 52].   Christie et al. [53] provided one of the earliest 

investigations towards an upwind FE scheme, where they introduced a Petrov-Galerkin 

formulation using biased weight functions in conjunction with linear and quadratic, C0 

continuous basis functions.   They showed that an oscillation free solution to a one 

dimensional shock problem could be obtained with the proper selection of biasing.  Kelly et 

al. [54] discussed the correspondence between Petrov-Galerkin upwinding and the 

introduction of additive or balanced dissipation to the system.  Kelly et al. [54] stated that the 

effects of Petrov-Galerkin upwinding were analogous to inclusion of an additional 

dissipation term in the governing equation.  However, their approach was claimed to be more 
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efficient to implement in multiple dimensions.    Brooks and Hughes [50] also presented the 

analogy between Petrov-Galerkin upwinding and additive dissipation, showing that the 

techniques were equivalent.  Brooks and Hughes [50] further stated that a FE scheme using a 

central differenced approximation in space1 is under-diffuse; therefore, the inclusion of 

additive dissipation was considered corrective in nature.  In the context of solution accuracy, 

Hughes and Brooks [51] pointed out that a central difference FE method exhibits second-

order accuracy, while upwinding reduces accuracy to first order.  Notably, oscillation-free FE 

solutions by first-order upwind schemes and the generation of solution oscillation with 

higher-order schemes are in agreement with Godunov’s theorem for monotone solutions.   

Although the upwinding techniques reduced solution oscillation, a major shortcoming 

was found to be the introduction of excessive cross-wind diffusion for problems in multiple 

dimensions [50].  The SUPG formulation was introduced to correct this cross-wind diffusion 

effect [50, 51, 52].  The essential idea behind the SUPG formulation was that additive 

diffusion (introduced to the variational equation either by a modified test function or an 

additional diffusivity term) is introduced so that it is only active in the direction of the 

streamline, i.e., in the direction of flow.  Introduction of streamline diffusion through a 

Petrov-Galerkin formulation was first studied for an advection dominated advection-

diffusion problem [50].  A modified weight function, 𝑤𝑤� , was introduced to the variational 

equation, where the weight function, 𝑤𝑤, was enriched with an additional term, 𝑝𝑝, so that 

𝑤𝑤� = 𝑤𝑤 + 𝑝𝑝.  The enrichment term, 𝑝𝑝, was a function of 1) a diffusion constant, 𝑑𝑑, 

1 The standard Galerkin FE formulation using linear, C0 continuous elements is a central difference  method. 
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2) normalized velocity vector, and 3) the gradient of 𝑤𝑤.  When 𝑤𝑤 is piecewise, C0 

continuous, 𝑤𝑤�  is C-1 continuous.  Accordingly, the enrichment, 𝑝𝑝, is only active over the 

element interiors [50].   Hughes and Tezduyar [55] extended the SUPG formulation to 

hyperbolic systems of equations and compressible flow problems.  An alternative matrix 

form of the enrichment term, 𝑝𝑝 (given as 𝑷 in Hughes and Tezduyar [55]), was also 

presented.  Here 𝑷 was a function of 1) a diffusion constant, 𝑑𝑑, 2) the flux gradient taken with 

respect to the solution, and 3) the weight function spatial gradient.  Neither Brookes and 

Hughes [50] nor Hughes and Tezduyar [55] provided a definitive theoretical basis for 

definition of the diffusion constant, 𝑑𝑑; selection was made to optimize the solution accuracy 

[50, 51].  Two definitions of 𝑑𝑑 based on temporal or spatial criteria were given in Hughes and 

Tezduyar [55].   

Further enhancement of the SUPG formulation was developed by Hughes, Mallet and 

Mizukami [56].  Although the SUPG formulation was effective in mitigating the problems of 

solution oscillation and cross-wind diffusion, it was noted that solution jumps at thin 

transition layers were not always captured with sharp resolution [56].  To improve resolution 

at these sharp jumps, an additional “discontinuity capturing term” was introduced to the 

weight function enrichment [56].  The weight function retained a form similar to that 

originally proposed in Brookes and Hughes [50], but was modified so that 𝑤𝑤� = 𝑤𝑤 + 𝑝𝑝1 + 𝑝𝑝2.  

The term 𝑝𝑝1 retained the function of providing additive dissipation in the direction of the 

streamline, while the term 𝑝𝑝2 acted only in the direction of the solution gradient to enhance 

resolution at strong gradients and shocks.  A definition for 𝑝𝑝2 was provided in similar form to 
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𝑝𝑝1 (or 𝑝𝑝 in the original SUPG formulation); however, for the new discontinuity capturing 

term only the velocity component acting in the direction of the solution gradient was 

considered.  This engenders a nonlinearity into the SUPG formulation, in that the weight 

function evolves with the solution gradient.  Although this nonlinearity leads to additional 

computational expense, its inclusion results in improved shock capturing capability [56].   

The two-term weight function enrichment has been further investigated, e.g., [57, 58], with 

focus on improved definition of the streamline diffusion, 𝑑𝑑, and discontinuity capturing 

terms. 

2.4  Artificial viscosity 

Under nearly all computational frameworks, artificial viscosity has been used as a 

mechanism to improve shock modeling results.  Artificial viscosity was first introduced by 

VonNeumann and Richtmyer [59] as a means to address the oscillatory error observed in the 

discontinuous solution of partial differential equations.  The technique was intended to 

transform a perfect discontinuity into a thin continuous transition layer so that numerical 

oscillation would be minimized.  To provide this transition layer, VonNeumann and 

Richtmyer [59] introduced an additional (artificial) pressure term, 𝑞, to the conservation 

equations, with the requirement that the magnitude of 𝑞 be on the order of the true pressure at 

the shock but negligible elsewhere.  Because the technique mimicked the dissipative effect of 

viscosity or heat loss, the technique came to be known as inclusion of artificial viscosity.  

VonNeumann and Richtmyer [59] further required that 1) the Rankine-Hugoniot jump 
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equations be satisfied across the shock, 2) thickness of the shock layer be on the order of the 

numerical cell size regardless of the shock strength, and 3) the artificial viscosity only be 

applied under compression states since shocks do not exist as rarefactions.  With these 

constraints, an expression for artificial pressure was defined as a function of 1) specific 

volume, 2) square of the grid spacing, 3) square of the velocity gradient, and 4) a 

dimensionless viscosity coefficient that is on the order of unity2.  Dependence on square of 

the velocity gradient ensured that the artificial pressure was active near shocks but negligible 

in smooth regions of the solution.  The viscosity coefficient was used to introduce a length 

scale to the artificial pressure term and govern the width of the shock transition layer [60].    

Inclusion of the viscosity coefficient (or length scale) introduced subjectivity to the approach, 

which remains an issue for the technique.  VonNeumann and Richtmyer [59] and Richtmyer 

and Morton [61] also presented a stability analysis for a set of second-order difference 

equations that included the artificial viscosity term.  Analyses showed that the inclusion of 

artificial viscosity reduced the critical time step to approximately 1 3⁄  of the typical Courant, 

Friedrichs, Lewy (CFL) stability condition. 

The technique of VonNeumann and Richtmyer [59] essentially consisted of adding a 

quadratic pressure term into the conservation equations that was activated only in regions of 

strong velocity gradient.  Landshoff [62] suggested the inclusion of an additional linear term 

to the artificial pressure definition.  Landshoff [62] showed that for a given discretization, the 

quadratic term damped the initial overshoot at a shock jump but did not effectively damp 

2 Landshoff [62]and Wilkins [60] later indicated that a better value of the viscosity coefficient is ~2 
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residual oscillations behind the shock.  On the other hand, the linear term damped the 

residual oscillations but did not strongly affect the initial overshoot.  Therefore, Landshoff 

[62] proposed a combination of the linear and quadratic terms in order to combine the 

advantages of each.  A similar two-term form was proposed by Noh [63, 64].  Wilkins [60] 

extended the two-term artificial pressure formulation to multiple dimensions under a FE 

framework, where the velocity gradient term was replaced by volumetric strain rate.  To 

address the characteristic length in multiple dimensions, Wilkins [60] stated that the square 

root of mesh area or cube root of mesh volume (in two and  three dimensions, respectively) 

was commonly used.  However, Wilkins [60] noted that these characteristic length 

definitions may lead to error in elements that were largely distorted or exhibited large aspect 

ratios.  To address this, Wilkins [60] introduced an alternative characteristic length defined in 

the direction of particle acceleration.  According to Hallquist [65], most modern codes used 

for hydrodynamic calculations continue to use a two-term artificial viscosity formulation 

similar to that of Landshoff [62] and Wilkins [60].  Characteristic lengths are typically 

defined using the simpler definitions of area square root or volumetric cube root instead of 

Wilkins’ acceleration-based approach, and volumetric strain rate is used in lieu of velocity 

gradient [65]. 

2.5  Meshfree adaptive refinement and discontinuity modeling  

Under the framework of RKPM and other meshfree methods, adaptive h-refinement 

techniques have been developed to improve solution accuracy with respect to the 
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discretization error.  Examples where adaptive h-refinement has been applied include 

problems with sharp geometric changes that induce stress concentrations [66, 67, 68, 69], 

problems involving point loads [66], calculation of crack tip stresses [70, 71], shear band 

formation [72], impact/penetration problems [73], and material extrusion [74].  The purpose 

of applying adaptive refinement in these types of problems is to reduce the discretization 

error in regions where the dependent variable is sharply changing.  This same approach can 

be used to improve accuracy in the RKPM solution of the fine-scale shock structure, by 

adaptively refining at the shock and then coarsening in the smooth region behind the jump.  

The reason that adaptive refinement is particularly attractive for meshfree methods is that due 

to the reduced mesh dependency, nodes can be inserted and removed with relative ease [67, 

75].  This is not the case for methods that utilize conforming meshes such as FE.   

Two fundamental requirements exist for adaptive refinement techniques.  First, an 

indicator is required to automatically determine what portion of the domain requires 

discretization refinement (or coarsening in the case of the smooth region behind a shock).  In 

multi-level (i.e., iterative) adaptive refinement procedures, the indicator also determines at 

what point refinement is no longer required.  The indicator is generally provided in the form 

of global and local error estimates, defined as the difference between the approximate 

solution and a reference solution.  As long as the error measure is appropriately formulated to 

measure discretization error (instead of integration error, for instance), regions of high local 

error indicate where additional refinement is required.  Because exact solutions do not exist 

for most problems of practical interest, the reference solution is commonly in the form of a 
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so-called recovered solution (error estimates in this form are typically referred to as 

recovery-based error estimates).  Recovery-based error estimators form the recovered 

solution a posteriori using the numerical approximation, and were first introduced by 

Zienkiewicz and Zhu3 [76].  The unique multiscale resolution feature intrinsic to RKPM 

provides an alternate method to perform error or strong gradient detection [66, 68].   In the 

multiscale resolution approach, the RKPM approximate solution is decomposed into low and 

high-scale components.  The high-scale component serves as an indicator of solution error at 

strong gradients [68].     

The second requirement of an adaptive refinement algorithm is a technique for nodal 

insertion.  The addition of nodes in meshfree methods is relatively simple, and techniques 

such as cell splitting (based on a background integration mesh) [66, 71, 72], Delaunay 

triangulation [70], and Voronoi cell tessellation [67, 68] have been used.  Other key issues 

that must be addressed in an adaptive refinement formulation are appropriate modification of 

integration points for numerical integration, support size adjustment, avoidance of sharp 

changes in nodal spacing and support size (to avoid artificial wave reflections), and 

field/state variable interpolation for transient analysis. 

A variety of meshfree adaptive refinement approaches have been reported in the 

literature, most of which focus on the solution of elasto-static problems.  Haussler-Combe 

and Korn [71] applied an adaptive refinement technique to the EFG method, where 

discretization error was estimated using the strain gradient.  Using Taylor series expansion 

3 Typically referred to as the Z-Z error estimation 
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and the EFG consistency conditions, Haussler-Combe and Korn [71] showed that the 

solution error could be related to the gradient in strain and correspondingly to the H2 error 

norm.  The error norm was locally computed over integration cell domains, where Gauss 

integration on a background mesh was used for numerical integration.  This was used as an a 

posteriori error estimator that provided an indicator for regions to be adaptively refined.  A 

cell division strategy was employed for node insertion, where cells with excessive local error 

were subdivided so that nodes were inserted at new subcell vertices.   

Liu and Tu [70], presented a different refinement method formulated around a 

background mesh.  The MLS approximation [30] was used, and numerical integration was 

performed over a triangular background mesh with nodes located at the triangle vertices.  Liu 

and Tu [70] used an a posteriori error indicator formulated from local strain energy 

calculated over each triangular integration cell.   The approximate strain energy solution was 

computed directly from the approximated stress/strain fields.  The reference solution was 

computed using the same stress/strain fields; however, a different number of Gauss points 

were used4.  The authors acknowledged that this technique is actually an evaluation of the 

integration error, not a direct measure of discretization error.  However, numerical 

experiments showed the method to be effective.  The claimed advantage of this approach is 

that it does not require the calculation of a second stress field as other recovery methods do, 

which reduces computational cost.  For discretization refinement, nodes were added either at 

the center of the triangular cells or at the midpoint of facets.  The background mesh was 

4 Liu and Tu recommend that the reference solution be computed with a lower number of Gauss points (as 
compared to the approximate solution) for computational efficiency. 
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locally re-triangulated using the Delaunay triangulation algorithm, and support size was 

adjusted in the refinement regions to complete the adaptive refinement step.   

Lu and Chen [67] developed an adaptive refinement technique within the RKPM 

framework.  Numerical integration of the variational equation was performed using SCNI 

[27, 28] over a background Voronoi cell tessellation of the domain.  The a posteriori stress 

recovery error estimator of Chung and Belytschko [77] was used to provide a measure of the 

relative energy error and the nodal energy error density.  Lu and Chen [67] pointed out that 

for node insertion in RKPM, re-evaluation of shape function weights are only required at 

points, 𝒙𝒙, contained within the new nodes’ supports.  Further, the re-evaluation is easily 

performed by re-calculating the moment matrix, 𝑴𝑴(𝒙𝒙), at those locations. Node insertion 

was accomplished using the Voronoi cell topology, where nodes were inserted at cell vertices 

in locally refined regions [67].  The Voronoi cell tessellation was reconstructed in these areas 

to define the integration zones, and support size adjustment was performed.   

Using wavelet analysis and Fourier transformation Liu et al. [78, 79, 80] and Li and Liu 

[81] described the multiresolution feature of RKPM, where the kernel function engendered 

the RK approximation with a frequency band decomposition property.  The RK 

approximation was shown to behave as a low-pass filter, where the filter limits were 

controlled by the kernel function dilation.  Increases in kernel size corresponded with 

reductions in the filter pass limit.  Using a family of kernels (differentiated by their size) a 

multi-band frequency decomposition of the total solution was obtained, where each band 

corresponded to a wavelet.  The high-scale wavelets were used as error indicators for 
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adaptive refinement in many applications including image analysis [79, 80], steady state 

advection-diffusion (with strong gradients) [78, 82], flow field jumps over an aerofoil [78, 

79, 80, 82], and large deformation solid mechanics [79, 80].  You and Chen et al. [68] further 

investigated adaptive refinement using the multiresolution feature of RKPM.  In their work 

the convolution of two kernels provided a filter of the RK approximation itself. The 

approximation was defined by a so-called approximation kernel and the filtered 

approximation was defined by a so-called filter kernel.  The basis order and kernel dilation of 

the filter kernel were shown to control the filter limits.  Using the filter kernel concept, You 

and Chen et al. [68] investigated the solution to a differential equation with strong gradient 

using a two-scale decomposition.  The high-scale component of the filtered approximation 

was used to identify regions requiring further h-refinement.  You and Chen et al. [68] utilized 

SCNI for the weak form integration, and therefore followed the adaptive node insertion 

procedure of Lu and Chen [67] (based on Voronoi cell tessellation).  Jun and Im [72] and Lee 

et al. [66] also investigated multiresolution-based adaptive refinement, where two-scale 

decomposition was used for error indication.  Lee et al. [66] and Jun and Im [72] used Gauss 

quadrature to integrate the weak form.  Therefore, adaptive node insertion was performed 

using a cell division (or cell splitting) strategy based on the regularly structured Gaussian 

integration zones.  Jun and Im [72] used the procedure to study adiabatic shear band 

formation while stress concentration problems were studied by Lee et al [66].   

Lee and Shuai [83, 84] proposed another technique for adaptive refinement within an 

RKPM framework.  They presented an a posteriori error indicator using so-called extraction 
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functions that provided an extracted (or recovered) stress field with a convergence rate higher 

than the RKPM approximation5 [83].   The essential idea behind this technique is that a stress 

field at any point can be expressed as the sum of two operators, 𝚿 and 𝚽, that are functions 

of displacement-induced stress and body forces, respectively.   If the stress field input to the 

extraction operator 𝚿 is the RKPM-computed stress, then the extracted stress is essentially 

an a posteriori recovered stress field. Lee and Shuai [83, 84] defined 𝚿 and 𝚽  as boundary 

and domain integral operators, respectively, which were evaluated over simple circular 

regions centered on the nodes.  The recovered and RKPM stresses were then used in the Z-Z 

estimator to determine an energy error estimate.  The energy error norm was used to drive 

automatic nodal insertion and support size adjustment  [84].  The partition of unity property 

of the RKPM approximation was used to relate global and local energy error, and the a priori 

estimate of error in the RKPM solution (namely ‖𝑒𝑒‖𝐿2 = 𝐶𝐶ℎmin (𝑛𝑛,𝜆) where 𝑝𝑝 is the basis 

order and 𝜆𝜆 is related to solution roughness) was used to derive an expression for modified 

nodal spacing [84].  Automatic support size adjustment was performed using a background 

grid and a multi-step procedure was used to ensure all points in the problem domain were 

adequately covered by nodal supports.   

Beyond the more conventional adaptive refinement methods previously described, other 

techniques for improvement of strong gradient solutions have been proposed.    For example, 

Ma et al. [85] proposed a moving point technique where the number of nodes within a 

5 Since convergence rate of the extracted solution was higher than the approximation, it provided an acceptable 
reference solution. 
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meshless domain remained constant, but nodal coordinates were automatically adjusted to 

provide greater refinement at strong gradients.  Their intent was to improve solution accuracy 

at the jump without increasing computational cost in terms of nodal degrees of freedom.  A 

so-called weighted reference radius was used to adjust the nodal coordinates [85].  The 

reference radius essentially defined a domain 1) centered on a parent node, and 2) which 

contained a set of satellite (or adjacent) nodes.  The weighted reference radius was defined as 

a product of the reference radius and a weight function, where the weight function was 

inversely proportional to the solution gradient.  As the solution gradient increased the 

weighted reference radius decreased.  Assuming all satellite nodes remained within the 

reference radius of the parent, the technique naturally caused nodal densification in large 

gradient regions.  After adjustment of all nodes in the domain, Ma et al. [85] applied a 

smoothing technique to avoid ill-conditioning in their system of linear equations.   Another 

approach was investigated by Chen and Hu [73], where interface enrichment functions were 

used to capture transient interface discontinuities in microstructure grain evolution.  For the 

evolution of grain structure in polycrystalline materials, the approximation of material 

velocity requires a discontinuity in the velocity derivative normal to the grain boundary.  To 

capture this discontinuity, Chen and Hu [73] introduced a set of enrichment functions along 

the grain boundary interface that were used to enrich the RK approximation of velocity at 

these locations.  The interface enrichment functions were formulated to be continuous across 

the grain boundary but discontinuous in their first derivative across the interface.  
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CHAPTER 3 BACKGROUND, SHOCK 

PHENOMENA AND NUMERICAL ISSUES FOR 

SHOCK MODELING 

A strong shock is defined as a transient discontinuity with velocity greater than the elastic 

wave speed of the material [86].  In solid materials the strong shock is formed by creating a 

pressure or velocity gradient that is sufficient to accelerate the plastic wave to a speed greater 

than the material’s elastic wave speed so that a shock front is formed.  In the case of plastic 

waves that are slower than the elastic wave speed a “two-step” shock is formed, where there 

is an initial discontinuity traveling at the elastic wave speed that is followed by a slower 

plastic discontinuity traveling at the plastic wave speed.  Because the plastic wave speed is 

slower than the elastic these two waves will tend to separate in time.  These two-step shocks 

are referred to as weak or elastic-plastic shocks.  Finally, it is also possible to create a 

transient discontinuity where the pressure jump remains in the material’s elastic range so that 

the wave propagates at the elastic wave speed.  This is not a true shock wave; however, it 

does create the numerical problem of oscillation at the jump, just as with strong shocks.  In 

this study these elastic discontinuities are referred to as elastic shocks. To effectively model 

the response of solid materials to strong dynamic events, strong shocks, weak shocks, and 

elastic shocks must be addressed.       
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In the general case, shock wave propagation is characterized by a continuous 

displacement field, with discontinuities in specific volume, specific internal energy, particle 

velocity, and stress at the front.  When tensile failure occurs, discontinuities in the 

displacement field are also introduced.  Due to the presence of these discontinuities, the basic 

conservation laws of mass, momentum and energy must be supplemented to define constraint 

conditions at the shock front.  These constraints are provided in the form of additional 

mathematical expressions defining the state and field variable discontinuities (or jump 

conditions) and are referred to as the Rankine-Hugoniot jump equations [86, 87].  In addition 

to the jump equations, a description of the material state behind the shock is required.  For 

solid materials under normal loading, constitutive laws that relate stress and strain and define 

failure in terms of the material’s shear strength are typically sufficient.  However, extremely 

high pressures are commonly present with shocks (35 GPa (5,076 ksi) and greater [88, 89]) 

so that material behavior is pressure governed, similar to fluids.  Therefore, an equation of 

state describing the relationship between pressure, volume, and specific internal energy is 

also required.  Alternatively, a Hugoniot thermodynamic response curve can be used to 

describe the pressure-volume relationship [86, 87].   

The purpose of this chapter is to first review key aspects of the analytical description of a 

propagating shock.  The Rankine-Hugoniot jump equations are presented, which 

mathematically define the jump constraints at the shock front.  The so-called Rayleigh line 

equations are also presented, which are derived from the jump equations.  To define the 

shock-induced material state, the Hugoniot thermodynamic response curves are discussed, 
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and equations describing three common forms are given.  The concept of impedance 

mismatch and generation of interface wave reflections is also reviewed.  Some of the key 

numerical issues related shock modeling are also reviewed, which include the numerical 

source of dissipation and dispersion errors, monotonicity, and numerical techniques that have 

been proposed to control oscillation error at the shock. 

3.1  Rankine-Hugoniot jump equations 

The Rankine-Hugoniot jump equations are most commonly derived and expressed in 

terms of the uniaxial propagation of a planar shock wave [86].  Consider a plane wave 

traveling in the positive x-direction through a one dimensional domain, as shown in Figure 1.   

Pressure, p, particle velocity, �̇�𝑥, specific volume, v, and specific internal energy, 𝜀𝜀, are 

discontinuous across the front.  Velocity of the shock front is denoted as us.  Downstream 

conditions, or conditions ahead of the front, are denoted as (∙)−.  Upstream conditions, or 

conditions behind the front, are denoted as (∙)+.  Assuming downstream conditions are 

known from the initial state, five unknowns remain; namely us, p+, �̇�𝑥+, 𝜀𝜀+, and v+.  The jump 

equations provide three equations to be applied to these five unknowns, and one of the 

unknown field variables is assumed to be defined by the boundary condition that is driving 

the shock [87]. This leaves one independent unknown to be determined by an equation 

describing the high-pressure material response, such as an equation of state or Hugoniot 

thermodynamic response curve.   
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Figure 1. One dimensional planar shock wave (discontinuities in pressure, particle velocity, 

specific volume and specific internal energy) 

3.1.1   Jump equation in mass conservation 

Derivation of the first jump equation stems from the global form of the law of mass 

conservation,  

eq. 1 

where 𝜌𝜌 is mass density (1/v) and Ω𝑥𝑥 is the problem domain.   With reference to Figure 1 and 

taking Ω𝑥𝑥 to be an arbitrary one dimensional domain in x, 𝑥𝑥𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑏𝑏, eq. 1 can be written 

as  

eq. 2 

𝑑𝑑
𝑑𝑑𝑡𝑡
� 𝜌𝜌 𝑑𝑑Ω = 0

 

Ω𝑒𝑒
 

𝑑𝑑
𝑑𝑑𝑡𝑡
� 𝜌𝜌(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥 = 0
𝑥𝑥𝑏(𝑖𝑖)

𝑥𝑥𝑎(𝑡𝑡)
 

position 
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uo
us
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𝑝𝑝+, �̇�𝑥+, 𝑣𝑣+, 𝜀𝜀+ 𝑝𝑝−, �̇�𝑥−, 𝑣𝑣−, 𝜀𝜀− 

𝑢𝑢𝑠𝑠 

𝑥𝑥𝑎𝑎 𝑥𝑥𝑠𝑠+ 𝑥𝑥𝑠𝑠− 𝑥𝑥𝑠𝑠 𝑥𝑥𝑏𝑏 
𝑥𝑥 
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where the time dependence of 𝑥𝑥𝑎𝑎(𝑡𝑡) and 𝑥𝑥𝑏𝑏(𝑡𝑡) imply use of the Eulerian form.  Dividing the 

problem domain into smooth regions ahead and behind the shock and a region which 

contains the shock discontinuity, eq. 2 can be rewritten as 

eq. 3 

where the limits of the second integral, 𝑥𝑥𝑠𝑠+ to 𝑥𝑥𝑠𝑠− , represent a small region containing the 

shock.  Considering the condition of an infinitesimally small shock transition region where 

𝑥𝑥𝑠𝑠+(𝑡𝑡) → 𝑥𝑥𝑠𝑠−(𝑡𝑡), the second integral in eq. 3 goes to zero.  Applying the Leibniz rule for 

differentiation under an integral, eq. 3 is transformed as 

 

eq. 4 

 

In eq. 4, consider 

eq. 5 

 

eq. 6 

𝑑𝑑
𝑑𝑑𝑡𝑡
�� 𝜌𝜌(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥 + � 𝜌𝜌(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥 + � 𝜌𝜌(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥

𝑥𝑥𝑏(𝑡𝑡)

𝑥𝑥𝑠𝑠−(𝑡𝑡)

𝑥𝑥𝑠𝑠−(𝑡𝑡)

𝑥𝑥𝑠𝑠+(𝑡𝑡)

𝑥𝑥𝑠𝑠+(𝑡𝑡)

𝑥𝑥𝑎(𝑡𝑡)
� = 0  

𝜌𝜌(𝑥𝑥𝑠𝑠+(𝑡𝑡), 𝑡𝑡)
𝑑𝑑𝑥𝑥𝑠𝑠+(𝑡𝑡)
𝑑𝑑𝑡𝑡

− 𝜌𝜌(𝑥𝑥𝑎𝑎(𝑡𝑡), 𝑡𝑡)
𝑑𝑑𝑥𝑥𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ �
𝜕𝜕
𝜕𝜕𝑡𝑡
𝜌𝜌(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑥𝑥 +

𝑥𝑥𝑠𝑠+(𝑡𝑡)

𝑥𝑥𝑎(𝑡𝑡)
𝜌𝜌(𝑥𝑥𝑏𝑏(𝑡𝑡), 𝑡𝑡)

𝑑𝑑𝑥𝑥𝑏𝑏(𝑡𝑡)
𝑑𝑑𝑡𝑡

 

−  𝜌𝜌(𝑥𝑥𝑠𝑠−(𝑡𝑡), 𝑡𝑡)
𝑑𝑑𝑥𝑥𝑠𝑠−(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ �
𝜕𝜕
𝜕𝜕𝑡𝑡
𝜌𝜌(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑥𝑥 = 0                         

𝑥𝑥𝑏(𝑡𝑡)

𝑥𝑥𝑠𝑠−(𝑡𝑡)
 

𝑑𝑑𝑥𝑥𝑠𝑠+(𝑡𝑡)
𝑑𝑑𝑡𝑡

=
𝑑𝑑𝑥𝑥𝑠𝑠−(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑢𝑢𝑠𝑠  

𝑑𝑑𝑥𝑥𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑡𝑡

= �̇�𝑥𝑎𝑎 ,
𝑑𝑑𝑥𝑥𝑏𝑏(𝑡𝑡)
𝑑𝑑𝑡𝑡

= �̇�𝑥𝑏𝑏 
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where 𝑢𝑢𝑠𝑠 is the Eulerian shock velocity and �̇�𝑥𝑎𝑎 and �̇�𝑥𝑏𝑏 are particle velocities at points 

upstream and downstream of the shock front, respectively.   Utilizing eq. 5 and eq. 6 into eq. 

4 the following is obtained 

 

eq. 7 

which can be rewritten as 

 

eq. 8 

From the local form of the conservation of mass, a relationship between the time rate of 

change of density and the momentum gradient is found to be [86] 

eq. 9 

Substituting eq. 9 into eq. 8 gives 

 

eq. 10 

Finally, evaluating the integrals of eq. 10 and simplifying gives 

eq. 11 

𝜌𝜌(𝑥𝑥𝑠𝑠+(𝑡𝑡), 𝑡𝑡)𝑢𝑢𝑠𝑠 − 𝜌𝜌(𝑥𝑥𝑎𝑎(𝑡𝑡), 𝑡𝑡)�̇�𝑥𝑎𝑎 + �
𝜕𝜕
𝜕𝜕𝑡𝑡
𝜌𝜌(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑥𝑥 +

𝑥𝑥𝑠𝑠+(𝑡𝑡)

𝑥𝑥𝑎(𝑡𝑡)
𝜌𝜌(𝑥𝑥𝑏𝑏(𝑡𝑡), 𝑡𝑡)�̇�𝑥𝑏𝑏

−  𝜌𝜌(𝑥𝑥𝑠𝑠−(𝑡𝑡), 𝑡𝑡)𝑢𝑢𝑠𝑠 + �
𝜕𝜕
𝜕𝜕𝑡𝑡
𝜌𝜌(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑥𝑥 = 0                                

𝑥𝑥𝑏(𝑡𝑡)

𝑥𝑥𝑠𝑠−(𝑡𝑡)
 

�
𝜕𝜕
𝜕𝜕𝑡𝑡
𝜌𝜌(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑥𝑥 +

𝑥𝑥𝑠𝑠+(𝑡𝑡)

𝑥𝑥𝑎(𝑡𝑡)
�

𝜕𝜕
𝜕𝜕𝑡𝑡
𝜌𝜌(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑥𝑥 

𝑥𝑥𝑏(𝑡𝑡)

𝑥𝑥𝑠𝑠−(𝑡𝑡)

= 𝜌𝜌(𝑥𝑥𝑎𝑎(𝑡𝑡), 𝑡𝑡)�̇�𝑥𝑎𝑎 −   𝜌𝜌(𝑥𝑥𝑏𝑏(𝑡𝑡), 𝑡𝑡)�̇�𝑥𝑏𝑏  − 𝑢𝑢𝑠𝑠[𝜌𝜌(𝑥𝑥𝑠𝑠+(𝑡𝑡), 𝑡𝑡) − 𝜌𝜌(𝑥𝑥𝑠𝑠−(𝑡𝑡), 𝑡𝑡)]    

𝜕𝜕
𝜕𝜕𝑡𝑡
𝜌𝜌(𝑥𝑥, 𝑡𝑡) = −

𝜕𝜕
𝜕𝜕𝑥𝑥

(𝜌𝜌(𝑥𝑥, 𝑡𝑡)�̇�𝑥) 

�
𝜕𝜕
𝜕𝜕𝑥𝑥

(𝜌𝜌(𝑥𝑥, 𝑡𝑡)�̇�𝑥)𝑑𝑑𝑥𝑥 +
𝑥𝑥𝑠𝑠+(𝑡𝑡)

𝑥𝑥𝑎(𝑡𝑡)
�

𝜕𝜕
𝜕𝜕𝑥𝑥

(𝜌𝜌(𝑥𝑥, 𝑡𝑡)�̇�𝑥)𝑑𝑑𝑥𝑥 
𝑥𝑥𝑏(𝑡𝑡)

𝑥𝑥𝑠𝑠−(𝑡𝑡)

= −𝜌𝜌(𝑥𝑥𝑎𝑎(𝑡𝑡), 𝑡𝑡)�̇�𝑥𝑎𝑎 +  𝜌𝜌(𝑥𝑥𝑏𝑏(𝑡𝑡), 𝑡𝑡)�̇�𝑥𝑏𝑏 +  𝑢𝑢𝑠𝑠[𝜌𝜌(𝑥𝑥𝑠𝑠+(𝑡𝑡), 𝑡𝑡) − 𝜌𝜌(𝑥𝑥𝑠𝑠−(𝑡𝑡), 𝑡𝑡)] 

�(𝜌𝜌�̇�𝑥)|𝑥𝑥𝑠𝑠+ − (𝜌𝜌�̇�𝑥)|𝑥𝑥𝑠𝑠−� = 𝑢𝑢𝑠𝑠�𝜌𝜌|𝑥𝑥𝑠𝑠+ − 𝜌𝜌|𝑥𝑥𝑠𝑠−�   𝑜𝑜𝑒𝑒   ⟦𝜌𝜌�̇�𝑥⟧ = 𝑢𝑢𝑠𝑠⟦𝜌𝜌⟧ 
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⟦ ∙ ⟧ denotes a difference operation taken across the shock front.  This is the Rankine-

Hugoniot jump equation derived from the law of conservation of mass and written in an 

Eulerian framework [86].  As seen, the equation relates the jump in momentum across the 

shock front to the jump in material density. 

3.1.2   Jump equations in linear momentum and energy conservation 

The remaining two jump equations are derived from the laws of balance of linear 

momentum and energy, respectively 

eq. 12 

 

eq. 13 

where t is surface traction, b is body force, q is heat flux, and h is the rate of body heat 

transfer per unit mass.  Reconsidering the uniaxial plane-wave problem in Figure 1, 

derivation of the jump equations from eq. 12 and eq. 13 follows a similar process as given in 

Section 3.1.1, and lead to [86] 

eq. 14 

eq. 15 

𝑑𝑑
𝑑𝑑𝑡𝑡
� 𝜌𝜌�̇�𝑥 𝑑𝑑Ω = � 𝑡𝑡 𝑑𝑑Γ

 

Γ𝑒𝑒

 

Ω𝑒𝑒
+ � 𝜌𝜌𝑏𝑏 𝑑𝑑Ω

 

Ω𝑒𝑒
 

𝑑𝑑
𝑑𝑑𝑡𝑡
� 𝜌𝜌(𝜀𝜀 +

1
2
�̇�𝑥2) 𝑑𝑑Ω = � (𝑡𝑡�̇�𝑥 − 𝑞𝑡𝑡) 𝑑𝑑Γ

 

Γ𝑒𝑒

 

Ω𝑒𝑒
+ � (𝜌𝜌𝑏𝑏�̇�𝑥 +  𝜌𝜌ℎℎ)𝑑𝑑Ω

 

Ω𝑒𝑒
 

⟦𝜌𝜌�̇�𝑥⟧𝑢𝑢𝑠𝑠 = ⟦−𝑝𝑝 + 𝜌𝜌�̇�𝑥2⟧ 

�𝜌𝜌(𝜀𝜀 +
1
2
�̇�𝑥2)� 𝑢𝑢𝑠𝑠 = �𝜌𝜌 �𝜀𝜀 +

1
2
�̇�𝑥2� �̇�𝑥 − 𝑝𝑝�̇�𝑥� 
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The jump eq. 11, eq. 14 and eq. 15 are written in scalar form following their typical 

derivation; they can be extended to multi-dimensional form following vector notation, e.g., 

[86].   

3.1.3   Jump equations in Lagrangian form 

In the preceding section the plane-wave propagation problem was derived in the Eulerian 

form.   However, the Lagrangian form may also be necessary.  For example, data from shock 

response experiments is often gathered in a Lagrangian setting (measurement devices move 

with the material) and therefore require expression of the jump equations in Lagrangian form.   

The jump eq. 11, eq. 14 and eq. 15 can be translated to a Lagrangian description utilizing 

the relationship between shock front velocity expressed in the Eulerian and Lagrangian 

forms, i.e.,  𝑢𝑢𝑠𝑠 and 𝑈𝑈𝑠𝑠, respectively [86].  Consider a shock wave propagating in the reference 

configuration from point 𝑋 at time t to 𝑋′ = 𝑋 + Δ𝑋 over a time increment ∆t.  The wave 

propagates from point x to 𝑥𝑥′ in the spatial configuration over the same period of time.  Let 

the coordinate of the point 𝑥𝑥′ at time t+∆t be defined as  

eq. 16 

where 𝑥𝑥′ is defined by 1) location of the wave, x, at time t 2) an incremental distance in the 

spatial configuration, Δ𝑥𝑥, which can be related to an incremental distance in the reference 

configuration, Δ𝑋, and 3) a displacement due to the downstream particle velocity, �̇�𝑥−, over 

𝑥𝑥′ = 𝑥𝑥 + Δ𝑥𝑥 + �̇�𝑥−Δ𝑡𝑡 
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the time increment ∆t.  Under the assumption of uniaxial deformation, mapping between ∆x 

and ∆X can be expressed as [86] 

eq. 17 

where J is the Jacobian, 𝜌𝜌𝑅𝑅 is density in the reference configuration, and 𝜌𝜌− is material 

density in the spatial configuration ahead of the shock.  Using eq. 16, shock velocity in the 

spatial configuration can be expressed as 

eq. 18 

Using eq. 17 into eq. 18 gives the relationship between shock velocities as 

eq. 19 

Substituting eq. 19 into eq. 11, eq. 14 and eq. 15 gives the Lagrangian expressions of the 

Rankine-Hugoniot jump equations [86] 

eq. 20 

eq. 21 

eq. 22 

Δ𝑥𝑥 = 𝐽𝐽Δ𝑋 =
𝜌𝜌𝑅𝑅

𝜌𝜌−
Δ𝑋 

𝑢𝑢𝑠𝑠 =
𝑥𝑥′ − 𝑥𝑥
Δ𝑡𝑡

=
Δ𝑥𝑥 + �̇�𝑥−Δ𝑡𝑡

Δ𝑡𝑡
=
Δ𝑥𝑥
Δ𝑡𝑡

+ �̇�𝑥− 

𝑢𝑢𝑠𝑠 =
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𝜌𝜌𝑅𝑅𝑈𝑈𝑠𝑠 �−
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� = ⟦�̇�𝑥⟧ 
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2
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3.1.4   Rayleigh line equations 

The so-called Rayleigh line equations are commonly used in conjunction with Hugoniot 

thermodynamic response curves6 written in the pressure-volume (p-v) and pressure-particle 

velocity (p-�̇�𝑥) planes.  These equations are used to relate the shock front velocity to the state 

and field variable discontinuities at the jump.  The Rayleigh line equations are derived 

directly from the Rankine-Hugoniot jump eq. 20, eq. 21 and eq. 22, as follows.  The first 

equation is a simple rearrangement of eq. 21 and is expressed as 

eq. 23 

where the shock front velocity is directly related to the slope of the line defining the jump 

from the state (𝑝𝑝−, �̇�𝑥−) to (𝑝𝑝+, �̇�𝑥+) in the p-�̇�𝑥 Hugoniot plane.  The second equation is 

obtained by solving for ⟦�̇�𝑥⟧ in eq. 21 and substituting into eq. 20, to give 

eq. 24 

where the shock front velocity is related to the slope of the line defining the jump from the 

state (𝑝𝑝−, 𝑣𝑣−) to (𝑝𝑝+,𝑣𝑣+) in the p-v Hugoniot plane. 

3.2  Equation of state and Hugoniot thermodynamic response curves 

The Rankine-Hugoniot jump equations provide three equations to be applied to the five 

unknown variables at the shock front.  Assuming that one of the five variables is known as 

6 Hugoniot response curves and their use discussed in Section 3.2 

𝑈𝑈𝑠𝑠 =
1
𝜌𝜌𝑅𝑅

⟦−𝑝𝑝⟧
⟦�̇�𝑥⟧

  

𝑈𝑈𝑠𝑠 =
1
𝜌𝜌𝑅𝑅

�
⟦−𝑝𝑝⟧
⟦−𝑣𝑣⟧

�
1
2�
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the driving stimulus for the shock, then one additional expression is required to fully resolve 

the jump conditions at the front [87].  The fourth equation is provided by introducing a 

material-specific description of the material state behind the front.  This relationship is can be 

obtained from an equation of state (EOS) or a Hugoniot thermodynamic response curve.   

The EOS describes the relationship between pressure, volume, and internal energy based 

on the properties of a specific material.  Equations of state are most commonly used to 

describe the state variable relationships of inviscid fluids, i.e., materials that can sustain large 

pressures but possess no shear strength.  Although solid materials do not behave in this 

manner under typical static or dynamic loads, use of an EOS to describe a solid material’s 

response to shock is appropriate due to the presence of extremely high pressures relative to 

the material shear strength.  An example of an EOS commonly used for isotropic, solid 

continua is the Mie-Grüeneisen equation of state.  In its complete form, the Mie-Grüeneisen 

EOS is given as [86] 

eq. 25 

where 𝜂𝜂 is specific entropy, 𝑝𝑝(𝜂) is pressure at constant entropy, 𝜃𝑅𝑅 is a reference 

temperature, 𝛾𝛾(𝑣𝑣) is the so-called Grüeneisen coefficient, and 𝜒(𝑣𝑣) and 𝜔(𝜂𝜂) are given as 

eq. 26 

 

eq. 27 

𝑝𝑝(𝑣𝑣, 𝜂𝜂) = 𝑝𝑝(𝜂)(𝑣𝑣) + 𝜃𝑅𝑅
𝛾𝛾(𝑣𝑣)
𝑣𝑣

𝜒(𝑣𝑣)� 𝜔(𝜂𝜂′)𝑑𝑑𝜂𝜂′
𝜂

𝜂𝑅
  

𝜒(𝑣𝑣) = 𝑒𝑒𝑥𝑥𝑝𝑝 �−�
𝛾𝛾(𝑣𝑣′)
𝑣𝑣′

𝑣𝑣

𝑣𝑣𝑅
𝑑𝑑𝑣𝑣′�  

𝜔(𝜂𝜂) = 𝑒𝑒𝑥𝑥𝑝𝑝 �−�
1

𝐶𝐶𝑣𝑣(𝜂𝜂′)

𝜂

𝜂𝑅
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where 𝑣𝑣𝑅𝑅 is a reference specific volume, 𝜂𝜂𝑅𝑅 is a reference specific entropy, and 𝐶𝐶𝑣𝑣 is specific 

heat at constant volume.  A form of the Mie-Grüeneisen EOS more commonly used in 

numerical methods is [90] 

eq. 28 

where 𝑝𝑝(𝐻)(𝑣𝑣) and 𝜀𝜀(𝐻)(𝑣𝑣) are the pressure-volume and internal energy-volume relationships 

defined by appropriate Hugoniot response curves.  The important point made from eq. 28 is 

that in practice, introduction of Hugoniot curves to a theoretical equation of state provides a 

simpler, more computationally efficient form for numerical implementation.  Further, due to 

the semi-empirical basis provided by the Hugoniot data (obtained experimentally), physical 

characteristics of the specific material considered are directly embedded into the EOS 

relationship.  For brittle materials such as concrete, it is found that use of the Hugoniot 

response curves to describe state variable relationships is often even further exploited.  In 

practice, Hugoniot relationships, such as the pressure-volume relationship, may often be used 

completely in place of a theoretical equation of state to define the material’s high-pressure 

response [91, 92, 93].  

The Hugoniot relationships are expressed in terms of the transition of two state variables 

(i.e., pressure and specific volume, pressure and particle velocity, etc.) across a shock, and 

are most often based on the so-called quiescent initial state7 [86].  In essence, the Hugoniot 

curves can be thought of as a plane taken from a three dimensional space defined by an 

7 Quiescent initial state implies that material ahead of the shock is at rest and is under simple atmospheric 
pressure, i.e., in an un-shocked state.   

𝑝𝑝(𝑣𝑣) = 𝑝𝑝(𝐻)(𝑣𝑣) +
𝛾𝛾(𝑣𝑣)
𝑣𝑣

�𝜀𝜀(𝑣𝑣) − 𝜀𝜀(𝐻)(𝑣𝑣)�  
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equation of state [94].  For example, consider an equation of state relationship expressed in 

terms of pressure, internal energy and density, shown schematically in Figure 2a. Taking a 

plane from the space and expressing the EOS solution along that plane solely in terms of two 

variables, pressure and density, a two dimensional curve is obtained as shown in Figure 2b.  

This curve defines all possible pressure and density states that can be achieved by “shocking-

up” from an initial state that lies on the same curve.  In other words, assuming that the initial 

material state ahead of a shock front is known, say (𝑝𝑝−,𝜌𝜌−) in Figure 2b, then the pressure-

density Hugoniot “centered” on that initial state defines all possible end states that can be 

achieved behind the front, i.e. (𝑝𝑝+,𝜌𝜌+).  With reference to section 3.1.4, the line connecting 

the state jump in the pressure-density or pressure-particle velocity Hugoniot is the Rayleigh 

line.  From eq. 23 and eq. 24 it is seen that when used in conjunction with the reference 

material density, the Rayleigh line can be used to determine the shock front velocity. 

Three commonly used Hugoniot relationships are the shock velocity-particle velocity 

Hugoniot, Us-�̇�𝑥, the pressure-particle velocity Hugoniot, p-�̇�𝑥, and the pressure-volume 

Hugoniot, p-v.  The Us-�̇�𝑥 Hugoniot is found to be generally linear for most materials.  As 

such, it is expressed in the form 

eq. 29 

where CB is the material bulk sound speed, 𝑒𝑒𝑔𝑔𝑡𝑡⟦∙⟧ is the sign of the difference operation and 

A is a dimensionless constant determined from experimental data.  The p-�̇�𝑥  

 

𝑈𝑈𝑠𝑠 = 𝐶𝐶𝐵(𝑒𝑒𝑔𝑔𝑡𝑡⟦�̇�𝑥⟧) + 𝐴𝐴⟦�̇�𝑥⟧   
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(b) 

Figure 2. (a) Equation of state relationship expressed in terms of pressure, internal energy 

and density (adapted from [94]), b) pressure-density Hugoniot plane 

pr
es

su
re

, 𝑝𝑝
 

shock Hugoniot 

Rayleigh line 

final state, ( 𝜌𝜌+,𝑝𝑝+) 

initial state ( 𝜌𝜌−,𝑝𝑝−) 

pr
es

su
re

, 𝑝𝑝
 

density, 𝜌𝜌  

41 
 



Hugoniot is obtained by substituting the definition of Us from eq. 29 into the jump eq. 21 to 

give 

eq. 30 

The p-v Hugoniot expression is derived by using eq. 29 in conjunction with the jump eq. 20 

and eq. 21 to give 

eq. 31 

The common method used to experimentally determine Hugoniot response curves is flyer 

plate impact experiments [88, 89, 95].  The flyer plate experiments are repeated with varying 

impact conditions so that a number of end shock states are achieved, all shocked from the 

same initial state.  Multiple end-state points are collected along the Hugoniot, essentially 

tracing the Hugoniot curves.  Pressure and particle velocity data are typically collected from 

the impact experiments.  Using these data, the shock front velocity may be determined from 

the Rayleigh line eq. 23.  With this information the other Hugoniot curves can be fully 

determined.    

3.3  Interface effects  

An important consideration in the study of solid materials’ hydrodynamic response to 

shock loading is wave reflections and interaction at material interfaces.  In the case of brittle 

materials these interface effects can lead to spall fracture or dynamic fracture, which occurs 

when shock-induced tensile stresses exceed the materials’ tensile strength.  Shock waves are 

⟦𝑝𝑝⟧ = 𝜌𝜌𝑅𝑅{𝐶𝐶𝐵(𝑒𝑒𝑔𝑔𝑡𝑡⟦�̇�𝑥⟧) + 𝐴𝐴⟦�̇�𝑥⟧}⟦�̇�𝑥⟧   

⟦𝑝𝑝⟧ =
(𝜌𝜌𝑅𝑅𝐶𝐶𝐵)2(𝑣𝑣− − 𝑣𝑣+)

[1 − 𝜌𝜌𝑅𝑅𝐴𝐴(𝑣𝑣− − 𝑣𝑣+)]2 
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initially generated as traveling compressive waves, such as from a blast wave impinging on a 

structure or a projectile impacting a target.  Since the initial wave generation is compressive 

in nature, additional phenomena must be responsible for the generation of tensile stresses.  

These phenomena are interface effects, or the generation of wave reflections at material 

interfaces that interact with the initial incident wave to create tensile stresses.  The location 

and magnitude of tensile stresses are driven by the wave interactions. 

Two types of material interfaces can be considered in the generation of shock wave 

reflections [96].  The simplest type occurs at the material free surface, where the interface is 

between the solid material and air.  As an incident compression wave impinges on the free 

surface, a reflected wave is generated to satisfy the traction free condition at the material 

boundary. The reflected wave, which is tensile in nature, propagates back into the material.  

Depending on the shape of the trailing portion of the incident compressive wave, interaction 

of the incident and reflected waves can result in a region of tensile stress near the free 

surface.  When the tensile stress is large enough to exceed the material’s dynamic tensile 

strength, spall fracture occurs.  The formation of shock-induced spall fracture due to free 

surface reflections is commonly observed experimentally, and is often used to measure the 

so-called spall strength of the material [97, 98, 99].  An example of shock-induced spall 

resulting from a contact detonation experiment is shown in Figure 3.  The second type of 

interface to be considered is between dissimilar components of a heterogeneous material.  

The process for generation of tensile stresses is similar to the free surface case, but here  
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(a)                                                                            (b) 

 

 

 

                                    (c)                                                                           (d) 

Figure 3. Spall due to contact detonation on concrete slab, a) time = 0 msec, b) time = 14 

msec, c) time = 53 msec, and d) final spall condition on bottom of slab (courtesy ERDC) 

reflected wave properties are governed by the so-called impedance mismatch condition of the 

materials (discussed further below).  The key interface compatibility conditions are 

continuity of pressure and particle velocity; these terms dictate the reflected wave conditions 

at the interface.  Analytically, the compatibility conditions can be enforced directly from the 

p-�̇�𝑥 Hugoniot, given in eq. 30.  The p-�̇�𝑥 Hugoniot can be written for each material at the 

 contact detonation 

spall 
formation 

spall 
formation 
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interface, where the pressure and particle velocity conditions ahead of the shock front, i.e., 

𝑝𝑝− and �̇�𝑥−, are assumed to be known from the initial state.  The compatibility conditions 

dictate that pressure and particle velocity behind the reflected wave, i.e., 𝑝𝑝+ and �̇�𝑥+, be 

continuous, giving two equations written in terms of the two unknowns. 

A term often used in the discussion of interface reflections is material shock impedance, 

commonly denoted as Z [87].  The equation for shock impedance is given as 

eq. 32 

where 𝜌𝜌𝑅𝑅 is initial density of the material and Us is the shock front velocity.  With reference 

to the Rayleigh line eq. 23, the shock impedance is the ratio between the jump in pressure 

and particle velocity across a shock front 

eq. 33 

In practice, shock impedance is used for relative comparison of the shock propagation 

characteristics of materials joined at an interface, which gives an indication of the nature of 

the reflected wave.  Graphically, shock impedance is an indicator of the shape and slope of 

the pressure-particle velocity Hugoniot, as shown in Figure 4. 
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Figure 4. Comparison of high-impedance (Z1) and low-impedance (Z2) materials in the p-�̇�𝑥 

Hugoniot plane 

Comparison of material impedances, also known as defining the so-called impedance 

mismatch, indicates whether the reflected wave will “shock-up” or “shock-down” from the 

incident wave.  According to Cooper [87], for the case of a shock wave propagating from a 

low-impedance material into a material with higher impedance, the reflected wave pressure 

will be greater than the incident, or a shock-up condition occurs.  As a general statement, 

shock-up conditions do not lead to the generation of tensile stresses [96].  Conversely, when 

a shock wave propagates across an interface from a high-impedance material to a material 

with lower impedance the reflected pressure is lower than the incident, creating a shock-

down condition [87].  Shock-down conditions can lead to regions of tensile stress [96].   
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3.4  Second law of thermodynamics and the entropy constraint 

The discontinuous solution of a conservation equation is not always uniquely determined 

solely by the numerical solution of the governing conservative equation.  For example, 

consider the one-dimensional hyperbolic conservation law 

eq. 34 

with the initial conditions 

eq. 35 

There are two possible solutions that satisfy this initial value problem 

eq. 36 

eq. 37 

where eq. 36 describes a shock solution and eq. 37 describes a rarefaction solution.  Although 

both solutions satisfy the conservation equation, only one solution (the rarefaction solution in 

this case) is admissible according to the second law of thermodynamics.  The second law of 

thermodynamics states that for an irreversible and adiabatic process in a closed 

thermodynamic system 𝜕𝜕𝑆𝑆 > 0, where 𝑆𝑆 is entropy of the system.  In this investigation the 

shock process is assumed to be irreversible and adiabatic based on the extremely short time 

scale of the shock event, as such the second law of thermodynamics requires that entropy 

must increase across a shock.  Considering this requirement of the second law, the question is 

𝑢𝑢(𝑥𝑥, 𝑡𝑡),𝑡𝑡+ (𝑢𝑢2/2),𝑥𝑥 = 0 

𝑢𝑢(𝑥𝑥, 0) = �0     𝑥𝑥 < 0
1     𝑥𝑥 ≥ 1 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = �0     𝑥𝑥/𝑡𝑡 < 0.5
1     𝑥𝑥/𝑡𝑡 ≥ 0.5 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = �
0                𝑥𝑥/𝑡𝑡 < 0
𝑥𝑥/𝑡𝑡     0 ≤ 𝑥𝑥/𝑡𝑡 ≤ 1
1                𝑥𝑥/𝑡𝑡 > 1

 

47 
 



now “what is the constraint for an increase in entropy to occur?”  To describe this entropy 

production constraint, the proof by Jeffrey and Tanuiti [100] is referred to.  First consider a 

material with a compressive shock, where the material ahead of the discontinuity has internal 

energy 𝑒𝑒0 and the material behind the discontinuity has internal energy 𝑒𝑒1.  From the 

relationship between internal state variables, 𝑝𝑝 = 𝑓𝑓(𝑣𝑣, 𝑒𝑒), where 𝑝𝑝 is pressure and 𝑣𝑣 is 

specific volume, a curve, 𝐸𝐸0, is assumed to exist in the pressure-volume space that describes 

all of the possible 𝑝𝑝 − 𝑣𝑣 states that can exist for an internal energy 𝑒𝑒0.  A similar curve, 𝐸𝐸1, is 

assumed for internal energy 𝑒𝑒1.   Letting (𝑒𝑒0,𝑝𝑝0, 𝑣𝑣0) be the state ahead of the jump and 

(𝑒𝑒1,𝑝𝑝1, 𝑣𝑣1) be the state behind, the jump from 𝐸𝐸0 to 𝐸𝐸1 is shown schematically in Figure 5.   

 

 

 

 

 

 

 

 

 

 

Figure 5. Energy jump across a compressive shock 
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The fact that curve 𝐸𝐸1 lies above 𝐸𝐸0 in Figure 5 is proven in Jeffrey and Tanuiti [100], and 

states that internal energy of a material increases across a compressive shock.  Now consider 

an isentrope, or line of constant entropy, that passes through (𝑒𝑒1,𝑝𝑝1,𝑣𝑣1) with entropy 𝑆𝑆1.  

Jeffrey and Tanuiti [100] prove that the slope of the isentrope is greater than that of 𝐸𝐸0 or 𝐸𝐸1 

at any point along these constant internal energy curves.  As a consequence, the isentrope 

intersects 𝐸𝐸1 and 𝐸𝐸0 as shown in Figure 6.  The isentropic curve intersects 𝐸𝐸0 at the point 

(𝑣𝑣′,𝑝𝑝′) so that the entropy at this point is also 𝑆𝑆1.  The entropy at the point (𝑣𝑣0, 𝑝𝑝0) is 𝑆𝑆0.  

Now all that remains in defining the nature of the entropy change across the jump is to define 

the relationship between 𝑆𝑆0 and 𝑆𝑆1.  

 

 

 

 

 

 

 

 

 

 

Figure 6. Isentropic line at a compressive shock jump  
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Consider the definition of entropy 

eq. 38 

where Θ is absolute temperature.  Along the curve 𝐸𝐸0, internal energy is constant so that 

𝑑𝑑𝑒𝑒 = 0.  Further, 𝑝𝑝 remains positive for the compressive shock so that only the change in 

specific volume, 𝑑𝑑𝑣𝑣, is considered.  Moving from the entropy state ahead of the shock, 𝑆𝑆0, to 

the entropy state behind the shock, 𝑆𝑆1, the specific volume increases from 𝑣𝑣0 to 𝑣𝑣′.  

According to eq. 38 and using the conditions stated above, this implies that 𝑑𝑑𝑆𝑆 > 0.  

Therefore, this shows that jumping from the state (𝑣𝑣0,𝑝𝑝0) to the state (𝑣𝑣1,𝑝𝑝1) results in a 

change in entropy where 𝑆𝑆1 > 𝑆𝑆0, that is to say, entropy increases.  Otherwise stated, this 

shows that in the case of a discontinuity where 𝑣𝑣1 < 𝑣𝑣0 entropy must increase.  Jeffrey and 

Tanuiti [100] further show by the same process that in the case of a discontinuity where 

𝑣𝑣1 > 𝑣𝑣0 entropy must decrease.  Now referring back to the second law of thermodynamics, 

this shows that entropy only increases for a compressive discontinuity, and therefore 

compressive discontinuities exist as shocks.  However, since entropy decreases across an 

expansion discontinuity, these types of discontinuities immediately degenerate into smooth 

expansion waves or rarefaction waves.  This relationship between specific volume and 

entropy change forms the entropy production constraint for shock wave formation and 

propagation. 

Referring back to the conservation law problem in eq. 34 and eq. 35, the entropy 

constraint indicates that the physically admissible solution can be determined by the specific 

volume change across the jump.  One straightforward way to determine this is by 

Θ 𝑑𝑑𝑆𝑆 = 𝑑𝑑𝑒𝑒 + 𝑝𝑝 𝑑𝑑𝑣𝑣 
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characteristic projections.  Using characteristic projections (discussed further in Section 

4.4.2) the specific volume change across the discontinuity is negative.  Therefore, the 

rarefaction solution is the entropy-correct solution to this conservation law problem.  Other 

techniques have been developed to enforce this entropy constraint in a numerical framework.  

Lax [101] proposed a simple constraint for convex scalar flux functions known as the Lax 

shock condition; Oleinik [102] proposed a more general form applicable to non-convex 

scalar flux functions.  Entropy inequalities, e.g. [103, 104], have been developed to enforce 

the entropy constraint.  The Riemann solution in Godunov’s method [39] guarantees entropy 

satisfaction.  Other approximate Riemann solvers for systems of equations, such as Roe’s 

method [105, 106], require an additional entropy fix [107, 108].   Chessa and Belytschko 

[109] suggested the use of a local Riemann problem to satisfy entropy production in a finite 

element formulation. 

3.5  Numerical error at the shock 

Accurately capturing the fine scale structure of the shock front is critical for numerical 

modeling of shock effects.  The desired result is sharp definition of the discontinuity without 

excessive oscillation or dissipation in the solution.  Oscillations that stem from Gibbs 

phenomenon can result in significant over-prediction of field and state variables, which may 

lead to premature material failure in the model.  Likewise, excessive dissipation can result in 

poor resolution of the front location and an under-prediction of the shock solution. 
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Spurious oscillations and/or excessive dissipation in the discontinuous solution of a 

partial differential equation (PDE) can be described by Gibbs phenomenon effects [43] and 

the presence of dissipative or dispersive terms in the approximating equations [36].  Gibbs 

phenomenon describes numerical oscillation from the perspective of frequency analysis, 

where the truncation of higher-frequency components in the approximation yields persistent 

and non-physical solution oscillation [43].  Analysis of the approximation equations, 

particularly in the FD method, also shows that dissipative or dispersive effects may result 

directly from truncation error in the approximation [36].   Methods to improve the numerical 

approximation of discontinuous solutions can be developed by mitigating both Gibbs 

phenomenon and the dissipative or dispersive effects. 

3.5.1   Gibbs phenomenon 

Gibbs phenomenon is formally defined as the presence of persistent oscillations in the 

numerical approximation of a discontinuous function by Fourier series analysis [43].  It is 

observed that when a truncated Fourier sine/cosine series is used to approximate a 

discontinuous function, oscillations arise near the discontinuity.  With the inclusion of 

additional series terms the oscillations localize to the jump, yet remain persistent (converging 

to an amplitude 1.18 times greater than the true solution at the front).  In contrast, the same is 

not true for Fourier series approximation of a smooth function, where oscillations do not 

occur even with a minimal number of series terms.   An example of Gibbs phenomenon is 

shown in Figure 7a, where a step function is approximated using 10 and 100 terms.  For 
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comparison, the Fourier series approximation of a smooth function, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2, using the 

same number of terms is shown Figure 7b.   The series approximation equations are found in 

any standard mathematical text, e.g., [110]. As seen Figure 7a, with increasing series terms 

the approximate solution behind the jump improves, but oscillations persist in the immediate 

vicinity of the discontinuity.  In Figure 7b, the smooth function approximation does not 

exhibit any persistent oscillation.  These examples show how a discontinuous function 

contains an infinite series of high-frequency components and their truncation in a numerical 

approximation results in persistent oscillation at the jump.   
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(a)  

 

 

 

 

 

(b) 

Figure 7. Fourier series approximation of a) step function showing Gibbs phenomenon, and 

b) smooth function without persistent oscillation (k = number of series terms) 
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3.5.2   Dissipation and dispersion due to truncation error 

For FD schemes in particular, the numerical error at the discontinuous solution has also 

been described in terms of dissipative and/or dispersive terms resulting from truncation error 

in the approximation [36].  To describe the presence of dissipative truncation error, consider 

a simplified model equation for the linear one dimensional wave equation 

eq. 39 

where 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is the displacement solution and 𝑑𝑑 is a constant wave speed.  Consider the Lax 

method solution of eq. 39, which provides a first-order accurate solution that is non-

oscillatory but also dissipative.  The Lax method difference equation is [36] 

eq. 40 

where the position of calculation points is 𝑗∆𝑥𝑥, ∆𝑡𝑡 is the time increment, and ∆𝑥𝑥 is the 

calculation point spacing.  Tannehill et al. [36] use Taylor series expansion of 𝑢𝑢𝑗𝑗𝑛𝑛+1, 𝑢𝑢𝑗𝑗+1𝑛𝑛 , 

and 𝑢𝑢𝑗𝑗−1𝑛𝑛 , to obtain 

eq. 41 

where 𝜐 is the Courant number 

eq. 42 
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The left hand side of eq. 41 matches the model eq. 39, and the right hand side represents the 

approximation error.  The leading error term is observed to be a function of 𝜕𝜕2𝑢𝑢 𝜕𝜕𝑥𝑥2⁄ , which 

is analogous to the presence of a viscosity term for viscous fluid flow.  Therefore, as a result 

of the truncation error a viscous term is naturally included in the approximation.  This is 

sometimes referred to as “implicit viscosity” [36].  The effect of this kind of approximation 

in problems with discontinuities is the introduction of dissipation, which naturally eliminates 

solution oscillations but also tends to reduce sharpness of the discontinuous front.  According 

to Tannehill et al. [36], first-order FD approximation schemes generally exhibit implicit 

viscosity and are therefore non-oscillatory but also exhibit reduced accuracy in resolution of 

the shock front. 

To investigate the dispersive effects of truncation error, model eq. 39 can be 

approximated by a second-order accurate FD equation.  Here the well-known Lax-Wendroff 

equation is used.  The Lax-Wendroff difference equation is [36] 

eq. 43 

Rewriting eq. 43 in the same manner as eq. 41, the following is obtained  

eq. 44 

where again, the left-hand side matches the original model equation and the right-hand side is 

the truncation error.  In this case the leading error term is a function of  𝜕𝜕3𝑢𝑢 𝜕𝜕𝑥𝑥3⁄ .  When this 

term is dominant, dispersion may occur so that phase error is introduced into the frequency 

𝑢𝑢𝑗𝑗𝑛𝑛+1 = 𝑢𝑢𝑗𝑗𝑛𝑛 −
𝑑𝑑∆𝑡𝑡
2∆𝑥𝑥

 �𝑢𝑢𝑗𝑗+1𝑛𝑛 − 𝑢𝑢𝑗𝑗−1𝑛𝑛 � +
𝑑𝑑2(∆𝑡𝑡)2

2(∆𝑥𝑥)2 �𝑢𝑢𝑗𝑗+1
𝑛𝑛 − 2𝑢𝑢𝑗𝑗𝑛𝑛 + 𝑢𝑢𝑗𝑗−1𝑛𝑛 �  

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

+ 𝑑𝑑
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

= −𝑑𝑑
(∆𝑥𝑥)2

6
(1 − 𝜐2)

𝜕𝜕3𝑢𝑢
𝜕𝜕𝑥𝑥3

−
𝑑𝑑(∆𝑥𝑥)3

8
𝜐(1 − 𝜐2)

𝜕𝜕4𝑢𝑢
𝜕𝜕𝑥𝑥4

+ ⋯   

56 
 



components of the solution and cause solution oscillation.  This form of dispersion error is 

typical of higher-order accurate schemes [36].   

From consideration of the Lax and Lax-Wendroff methods, the key point is that 

dissipation or dispersion may naturally enter the approximation through truncation error.  

Dissipative effects, typical of first-order accurate schemes, tend to introduce implicit 

viscosity which eliminates oscillations but also reduces accuracy of the shock front 

resolution.  Dispersive effects are typical of higher-order schemes and tend to yield sharp 

jumps but also induce solution oscillation.  Therefore, an approach that combines the two 

might be used to minimize both oscillation and dissipation.  This is the essential idea behind 

flux limiter improvement of shock solutions, where the solution accuracy is adaptively 

reduced at the shock front and remains higher-order accurate elsewhere.     

3.6  Monotonicity and total variation 

In the development of numerical methods to model discontinuous problems, the concept 

of monotonicity is widely used as a descriptor of oscillation-free schemes.  In general, a 

monotone scheme is one that does not spuriously produce new solution extrema.  The Lax 

method is a monotone scheme.  However, due to oscillations formed by the Lax-Wendroff 

method it is non-monotone.  The theorem of S.K. Godunov [39] formally states that linear 

numerical schemes greater than first-order accurate cannot guarantee a monotone solution.  

This is also known as Godunov’s order barrier theorem, which shows that for a linear, one-

step, higher-order accurate solution to a PDE such as 
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eq. 45 

monotonicity is only guaranteed under the condition  

eq. 46 

where 𝜐 is the Courant number, ℝ is the set of real numbers and ℕ is the set of natural 

numbers.  Adopting the CFL condition for stability, satisfaction of eq. 46 only occurs when 

𝜐 = 1.     

Total variation (TV) is used to quantify the evolution of local extrema in the solution and 

therefore provides a measure of monotonicity, or lack thereof.  The discrete form of the TV 

equation for a numerical solution at time step n is given as  

eq. 47 

Monotone schemes exhibit the total variation diminishing (TVD) condition such that 

eq. 48 

Harten proved that monotone schemes are TVD, and that TVD schemes preserve 

monotonicity in the solution [36, 111]. 
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3.7  Limiters and artificial viscosity  

Two traditionally used approaches for improvement of discontinuous solutions are the 

use of limiters and artificial viscosity.  Limiters essentially reduce higher-order accurate 

methods to a first-order scheme near a discontinuity.  This tends to minimize oscillation 

without inducing excessive dissipation.  Artificial viscosity explicitly introduces dissipation 

to the problem in order to transform the discontinuity into a smooth jump over a thin 

transition zone.  As a consequence the discontinuity is smoothed and oscillation is reduced, 

but a subjective length scale is also required for the transition zone definition.     

3.7.1   Limiters  

Limiters are constructed by modifying otherwise higher-order schemes in the vicinity of a 

discontinuity to give a first-order approximation in that region. The result is to provide 

monotone or near-monotone schemes that capture the discontinuity profile without excessive 

dissipation.  Traditionally limiters are constructed by formulating a higher-order difference 

equation so that higher-order terms are adaptively suppressed by multiplication with an 

embedded limiter function [36].  The limiter functions can be designed so that they are not 

active in smooth solution regions, but in strong gradient regions they suppress the higher-

order approximation terms.     

As an example of formulating a limiter-modified FD scheme, consider the following 

form of the Lax method solution to Burgers’ equation [36] 
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eq. 49 

where 𝑓𝑓𝑗𝑗+1 2�
𝑛𝑛  is the numerical flux given by 

eq. 50 

where 𝐹𝐹𝑗𝑗+1𝑛𝑛 = 1/2�𝑢𝑢𝑗𝑗+1𝑛𝑛 �
2
.  Also consider an expression of the Lax-Wendroff solution in the 

same form as eq. 49, but with the numerical flux given as [36] 

eq. 51 

Taking the difference between eq. 50 and eq. 51 gives the difference between the Lax and 

Lax-Wendroff fluxes.  If this difference is added back to the Lax flux in eq. 50 a modified 

flux, 𝑓𝑓𝑗𝑗+1 2�
𝑛𝑛∗ , is defined.   

eq. 52 

The modified flux can also be enriched with a limiter function, 𝜙𝜙, that acts on the higher 

order terms (reference eq. 52).  The limiter function varies between 0 and 1, where in this 

case 𝜙𝜙 = 1 recovers the second-order accurate Lax-Wendroff equation and 𝜙𝜙 = 0 recovers 

the first-order Lax equation.  As a consequence, the limiter transforms the numerical 

approximation between higher-order accuracy in smooth regions of the solution and first-

order accuracy at discontinuities.   
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3.7.2   Artificial viscosity  

The purpose of artificial viscosity is to explicitly incorporate dissipation into higher-

order numerical schemes so that perfect discontinuities are transformed into smooth 

transition layers.  Since artificial viscosity is dissipative in nature, the key is to incorporate it 

in a way to minimize oscillation without excessive smoothing of the discontinuity. This 

generally requires the definition of non-physical parameters in the viscosity expression, 

which introduces subjectivity to the formulation.  Regardless, artificial viscosity is widely 

used as an effective means to mitigate spurious solution oscillation in shock propagation 

problems.    

Artificial viscosity was initially proposed by VonNeumann and Richtmyer [59] for one 

dimensional fluid dynamics problems.  In their formulation an artificial pressure term, 𝑞, was 

added to the conservation equations of momentum and energy, and was proposed in 

quadratic form [59] 

eq. 53 

where 𝑉𝑉 is specific volume, 𝑑𝑑0 is a dimensionless parameter, and 𝑑𝑑0∆𝑥𝑥 is a length term 

governing the width of the shock transition layer.  With increasing 𝑑𝑑0∆𝑥𝑥, solution oscillations 

are reduced but at the expense of greater shock front smearing.  The value of 𝑑𝑑0 was 

proposed to be 1.5 to 2 so that the shock front is smoothed over 3 to 4 calculation cells [61].  

Since the artificial pressure is a function of the square of velocity gradient, it is active in 

strong gradient regions but negligible in regions of smooth flow.  As an example of the use of 
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artificial viscosity, the solution to a one dimensional plane wave propagation problem is 

shown in Figure 8.  Strong form of the problem statement and second-order difference 

equations were taken directly from Richtmeyer and Morton [61].  The term 𝑑𝑑0 equals 0.4 and 

2 in Figure 8a and Figure 8b, respectively.  In each figure the pressure solution and computed 

artificial pressure are given.  It is observed that once the solution is sufficiently non-

oscillatory the artificial pressure is only active at the jump.  Further, oscillations are 

significantly reduced with increasing 𝑑𝑑0∆𝑥𝑥, which is accompanied by an increase in width of 

the transition layer.  A combination of linear and quadratic terms in the artificial viscosity 

expression was later proposed [60, 62] 

eq. 54 

where 𝑑𝑑𝐿 is another dimensionless parameter (stated to be ~1) and 𝑎𝑎 is the local sound speed.  

The purpose of including the linear term in eq. 54 was to improve oscillation damping behind 

the shock front (reference the persistent, low amplitude oscillations in Figure 8b).  This 

combined form is very similar to what is currently used in many modern codes, where the 

velocity gradient is replaced by the trace of the strain rate tensor [65] 

eq. 55 

where 𝑙𝑙 is the characteristic length measurement, 𝐶𝐶0 and 𝐶𝐶1 are constants and 𝜀𝜀�̇�𝐼𝐼𝐼 is the 

volumetric strain rate.   In modern FE applications, the linear term of eq. 55 is viewed as the 

mechanism to control oscillation behind the jump.  The quadratic term is viewed as a 
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mechanism to avoid excessive volumetric strain (and so-called element collapse) by applying 

the artificial pressure at the shock jump while the hydrostatic internal force evolves through 

the shock transition. 
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(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 8. Plane wave propagation using 2nd order difference equations and artificial viscosity, 

(a) c0 = 0.4 and (b) c0 = 2; ∆x=0.1, ∆t=0.0016 in both cases 
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CHAPTER 4 RKPM FORMULATION FOR 

SHOCK-FORMING SCALAR CONSERVATION 

LAWS 

Accurate shock modeling requires that two critical issues be addressed in the numerical 

formulation: 1) correct representation of the essential shock physics, and 2) control of Gibbs 

phenomenon oscillation at the shock.  The first issue requires embedment of the correct 

shock physics into the formulation; the second deals with control on the oscillatory instability 

that results from approximation of the discontinuous solution.  The essential shock physics 

include the Rankine-Hugoniot (R-H) jump condition and the second law of thermodynamics 

for entropy production.  The relationship between shock velocity and the state or field 

variable jump at the shock is defined by the R-H condition. This provides the connection 

between continuous fields adjacent to the discontinuity and satisfaction ensures correct 

velocity of the shock front.  The second law of thermodynamics requires that entropy must 

increase during an irreversible adiabatic process.  This provides a conditional constraint on 

the physically correct shock solution, namely that discontinuities in a compressive state 

propagate as shocks and discontinuities in an expansion state degenerate to rarefactions, e.g. 

[100].  To satisfy this entropy condition, numerical formulations are typically enriched with 

an entropy production constraint [101, 102, 104, 107, 108, 112, 113].   

In this chapter a stable (oscillation limiting) and flux conserved RKPM formulation is 
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developed for shock-forming scalar conservation laws.  This formulation is developed as a 

foundation for extension to the equations of nonlinear solids in the following chapter.  To 

construct the formulation a smoothed flux divergence is formed under the framework of 

SCNI.  This new flux divergence is then locally enriched with a Riemann solution to satisfy 

the physics of entropy production.  The Riemann-enriched flux divergence is embedded into 

the meshfree formulation through a velocity correction that also provides oscillation control 

at the shock.  The correction is constrained to the shock region using an automatic shock 

detection algorithm that is constructed using the intrinsic spectral decomposition feature of 

the RK approximation.  Several numerical examples are provided at the end of the chapter to 

verify accuracy of the proposed scalar law formulation.  

4.1 Reproducing kernel approximation 

The RK approximation [24, 25] of a function, 𝑢𝑢(𝒙𝒙), is derived from the convolution  

eq. 56 

where 𝑢𝑢�(𝒙𝒙) is the approximation of 𝑢𝑢(𝒙𝒙) and 𝜙𝜙�𝑎𝑎𝑛𝑛(𝒙𝒙;𝒙𝒙 − 𝝉𝝉) is an 𝑡𝑡𝑡𝑡ℎ order complete 

reproducing kernel.  Derivation of the RK approximation from this convolution is the 

essential link to its spectral filtering property discussed in the next section. The reproducing 

kernel is defined as 

eq. 57 

𝑢𝑢�(𝒙𝒙) = 𝑢𝑢(𝒙𝒙) ∗ 𝜙𝜙�𝑎𝑎𝑛𝑛(𝒙𝒙) = ∫ 𝑢𝑢(𝝉𝝉) 𝜙𝜙�𝑎𝑎𝑛𝑛(𝒙𝒙;𝒙𝒙 − 𝝉𝝉) 𝑑𝑑𝑑𝑑∞ 
−∞   

𝜙𝜙�𝑎𝑎𝑛𝑛(𝒙𝒙;𝒙𝒙 − 𝝉𝝉) = 𝐶𝐶(𝒙𝒙;𝒙𝒙 − 𝝉𝝉)𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝝉𝝉) 

66 
 



where 𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝝉𝝉) is a kernel function of compact support size 𝑎𝑎 and 𝐶𝐶(𝒙𝒙;𝒙𝒙 − 𝝉𝝉) is a 

correction function that imposes 𝑡𝑡𝑡𝑡ℎ order reproducibility according to an 𝑡𝑡𝑡𝑡ℎ order complete 

monomial basis.  The RK approximation expressed in eq. 56 is the so-called continuous 

form.  For the numerical solution of an initial-boundary value problem, the partial differential 

equation is discretized in space with a set of 𝑡𝑡𝑝𝑝 discrete points.  Accordingly, a discrete form 

of the RK approximation is required [25] 

eq. 58 

where 𝑢𝑢ℎ(𝒙𝒙) is the RK approximation, Ψ𝐼𝐼(𝒙𝒙) is the reproducing kernel shape function, and 

𝑑𝑑𝐼𝐼 are a set of nodal coefficients to be determined. The RK shape function is defined similar 

to the continuous reproducing kernel  

eq. 59 

where 𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼) is a compact kernel function defining the approximation continuity and 

locality and 𝐶𝐶(𝒙𝒙;𝒙𝒙 − 𝒙𝒙𝐼𝐼) is the correction function that imposes the reproducing conditions.  

Using a set of 𝑡𝑡𝑡𝑡ℎ order complete monomials, the correction function is 

eq. 60 

eq. 61 

where|𝛼𝛼| ≡ 𝛼𝛼1 + 𝛼𝛼2 + 𝛼𝛼3, (𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝛼𝛼 ≡ (𝑥𝑥1 − 𝑥𝑥1𝐼𝐼)𝛼𝛼1(𝑥𝑥2 − 𝑥𝑥2𝐼𝐼)𝛼𝛼2(𝑥𝑥3 − 𝑥𝑥3𝐼𝐼)𝛼𝛼3, and 

𝑏𝑏𝛼𝛼(𝒙𝒙) ≡ 𝑏𝑏𝛼𝛼1𝛼𝛼2𝛼𝛼3(𝒙𝒙).  The 𝑡𝑡𝑡𝑡ℎ order complete basis functions are contained in 𝑯𝑯𝑇𝑇(𝒙𝒙 − 𝒙𝒙𝐼𝐼)  

𝑢𝑢ℎ(𝒙𝒙) = ∑ Ψ𝐼𝐼(𝒙𝒙) 𝑑𝑑𝐼𝐼
𝑛𝑛𝑛𝑛
𝐼𝐼=1   

Ψ𝐼𝐼(𝒙𝒙) = 𝐶𝐶(𝒙𝒙;𝒙𝒙 − 𝒙𝒙𝐼𝐼) 𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼)  

C(𝒙𝒙;𝒙𝒙 − 𝒙𝒙𝐼𝐼) = ∑ (𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝛼𝛼𝑛𝑛
|𝛼𝛼|=0  𝑏𝑏𝛼𝛼(𝒙𝒙)  

= 𝑯𝑯𝑇𝑇(𝒙𝒙 − 𝒙𝒙𝐼𝐼) 𝒃𝒃(𝒙𝒙)  
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eq. 62 

The vector 𝒃𝒃(𝒙𝒙) contains coefficients that are obtained by imposition of the reproducing 

conditions 

eq. 63 

which can be transformed to 

eq. 64 

Now eq. 59 and eq. 61 are introduced to eq. 64 to obtain 

eq. 65 

eq. 66 

where 𝑴𝑴(𝒙𝒙) is the moment matrix, 𝑯𝑯𝑇𝑇(0) = [1,0, … ,0], and the coefficients 𝒃𝒃(𝒙𝒙) are 

determined by eq. 66.  The RK shape function is then  

eq. 67 

For time dependent problems the discrete RK approximation is written as 

eq. 68 

where the nodal coefficients, 𝑑𝑑𝐼𝐼(𝑡𝑡), are a function of time. 

In the RK approximation the domain discretization is meshfree.  As such, nodal interaction 

𝑯𝑯𝑇𝑇(𝒙𝒙 − 𝒙𝒙𝐼𝐼) = [1, (𝑥𝑥1 − 𝑥𝑥1𝐼𝐼), (𝑥𝑥2 − 𝑥𝑥2𝐼𝐼), (𝑥𝑥3 − 𝑥𝑥3𝐼𝐼), (𝑥𝑥1 − 𝑥𝑥1𝐼𝐼)2, … , (𝑥𝑥3 − 𝑥𝑥3𝐼𝐼)𝑛𝑛]  

∑ Ψ𝐼𝐼(𝒙𝒙) 𝑥𝑥1𝐼𝐼
𝛼𝛼1𝑥𝑥2𝐼𝐼

𝛼𝛼2𝑥𝑥3𝐼𝐼
𝛼𝛼3𝑛𝑛𝑛𝑛

𝐼𝐼=1 = 𝑥𝑥1
𝛼𝛼1𝑥𝑥2

𝛼𝛼2𝑥𝑥3
𝛼𝛼3         |𝛼𝛼| = 0,1,⋯ , 𝑡𝑡     

∑ Ψ𝐼𝐼(𝒙𝒙) (𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝛼𝛼
𝑛𝑛𝑛𝑛
𝐼𝐼=1 = 𝛿𝛿𝛼𝛼10𝛿𝛿𝛼𝛼20𝛿𝛿𝛼𝛼30        |𝛼𝛼| = 0,1,⋯ ,𝑡𝑡     

∑ [𝑯𝑯(𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝑯𝑯𝑇𝑇(𝒙𝒙 − 𝒙𝒙𝐼𝐼) 𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼)]𝒃𝒃(𝒙𝒙)𝑛𝑛𝑛𝑛
𝐼𝐼=1 = 𝑴𝑴(𝒙𝒙)𝒃𝒃(𝒙𝒙) = 𝑯𝑯(0)     

𝒃𝒃(𝒙𝒙) = 𝑴𝑴−1(𝒙𝒙)𝑯𝑯(0)     

Ψ𝐼𝐼(𝒙𝒙) = 𝑯𝑯𝑇𝑇(𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝑴𝑴−1(𝒙𝒙)𝑯𝑯(0)𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼)   

𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡) = ∑ Ψ𝐼𝐼(𝒙𝒙) 𝑑𝑑𝐼𝐼(𝑡𝑡)
𝑛𝑛𝑛𝑛
𝐼𝐼=1   
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occurs according to the overlap of kernel supports that is governed by the prescribed kernel 

locality.  In this way the discretization is geometrically non-conforming.  In contrast to mesh-

based methods that impose strict conforming requirements on the element or cell 

discretization, mesh sensitivity is significantly reduced in the meshfree method.  

Consequently, meshfree methods like RKPM are well suited for problems involving large 

deformation, fragmentation, and evolving contact surfaces [35, 114, 115, 116].  A typical 

meshfree RKPM discretization for a large deformation impact problem is shown in Figure 9, 

where compact spherical kernels are used.  Locality of the meshfree approximation is 

governed by kernel support size and the weighting function used in the kernel definition.  

The reproducing kernel shape function using a B-spline kernel and power function kernel is 

also shown.  The B-spline is a smooth function that yields smooth weighting over the kernel 

support; the power function localizes weighting toward the node and is useful in rough 

solutions.  The kernel selection can be specifically designed based on the desired continuity 

and locality properties of the meshfree approximation. 
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Figure 9.  Typical meshfree discretization and RK shape functions using different kernel 
locality 
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4.2 Shock detection using RK spectral filters 

For accurate shock modeling, automatic identification of the shock region is an important 

first step.  In this formulation shock detection is used to identify regions where a local 

correction is applied to enforce the shock physics and oscillation control.  Conveniently, the 

RK approximation possesses a unique spectral decomposition feature that behaves similarly 

to frequency filtering in wavelet filter analysis [68, 81].  This filtering property can be used 

in conjunction with the high frequency response spectra at a discontinuity to design a new 

algorithm for strong shock detection. 

A wavelet filter is constructed through the convolution of an input signal, 𝑔𝑔(𝒙𝒙), and filter 

function, 𝑓𝑓(̅𝒙𝒙) 

eq. 69 

where �̅�𝑔(𝒙𝒙) is the low-pass output of the filtering operation.  The essential ingredient is the 

filter function that defines the pass band limit for the filtering operation.  The RK 

approximation possesses an intrinsic spectral filtering property according to the 

correspondence between the convolution in eq. 56 and the filter defined in eq. 69.  Through 

the convolution in eq. 56, the reproducing kernel 𝜙𝜙�𝑎𝑎𝑛𝑛(𝒙𝒙;𝒙𝒙 − 𝝉𝝉), referred to as the 

approximation kernel hereon, is also a filter operating on 𝑢𝑢(𝒙𝒙).  Polynomials up to order 𝑡𝑡 

are unfiltered in 𝑢𝑢�(𝒙𝒙) according to the reproducing condition.  In this way the RK 

approximation is the filtered low-pass output, and the filter limit is defined according to the 

kernel basis. For functions that cannot be exactly reproduced (say a rational function), the 

�̅�𝑔(𝒙𝒙) = 𝑔𝑔(𝒙𝒙) ∗ 𝑓𝑓(̅𝒙𝒙) = ∫ 𝑔𝑔(𝝉𝝉) 𝑓𝑓̅(𝒙𝒙 − 𝝉𝝉) 𝑑𝑑𝑑𝑑∞ 
−∞    
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RK filter limit is also influenced by the support size dilation.  In these cases the 

approximation kernel behaves as a low-pass filter where the filter limit contracts with a 

decrease in basis order or an increase in support size.  You, Chen and Lu [68] defined another 

filter of the RK approximation 

eq. 70 

where 𝜙𝜙�𝑏𝑏𝑚𝑚(𝒙𝒙) is called a filter kernel that is constructed with basis order 𝑚𝑚 (not necessarily 

equal to 𝑡𝑡) and support dilation 𝑏𝑏 (not necessarily equal to 𝑎𝑎).  The eq. 70 is a filter of the 

RK approximation itself, where 𝑢𝑢�(𝒙𝒙) is the low-pass output of the initial RK approximation.  

The discrete form of eq. 70 is [68] 

eq. 71 

eq. 72 

where Ψ𝐼𝐼
𝑛𝑛,𝑎𝑎�𝒙𝒙𝐽𝐽� and Ψ𝐽𝐽

𝑚𝑚,𝑏𝑏(𝒙𝒙) are RK shape functions computed with the indicated basis 

order and support size, and 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝒙𝒙, 𝑡𝑡) is the low-pass component of 𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡).  In eq. 72 

Ψ𝐼𝐼∗(𝒙𝒙) is the filtering RK shape function, and the pass limit is designed according to the 

selected basis order and support size.  The significance of this second filtering operation is 

that it provides a two-scale spectral decomposition of the discrete numerical solution   

eq. 73 

𝑢𝑢�(𝒙𝒙) = 𝑢𝑢�(𝒙𝒙) ∗ 𝜙𝜙�𝑏𝑏𝑚𝑚(𝒙𝒙)   

𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝒙𝒙, 𝑡𝑡) = ∑ �∑ Ψ𝐼𝐼
𝑛𝑛,𝑎𝑎�𝒙𝒙𝐽𝐽� Ψ𝐽𝐽

𝑚𝑚,𝑏𝑏(𝒙𝒙)𝑛𝑛𝑛𝑛
𝐽𝐽=1 � 𝑑𝑑𝐼𝐼(𝑡𝑡)

𝑛𝑛𝑛𝑛
𝐼𝐼=1    

= ∑ Ψ𝐼𝐼∗(𝒙𝒙) 𝑑𝑑𝐼𝐼(𝑡𝑡)
𝑛𝑛𝑛𝑛
𝐼𝐼=1    

𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎℎ (𝒙𝒙, 𝑡𝑡) = 𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡) − 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝒙𝒙, 𝑡𝑡)   
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where 𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎℎ (𝒙𝒙, 𝑡𝑡) is the high-pass component of the RK approximation.   

For shock forming problems the focus is on the approximate solution to discontinuities 

that form naturally according to the governing physics.  Fourier series analysis shows that the 

solution spectrum for discontinuous approximations contains an infinite series of high 

frequency terms that localize toward the jump.  Consequently, with a properly designed filter 

the high-pass component of the RK approximation can also be used as a high-pass error 

indicator at a shock.  Therefore, it is necessary to determine appropriate filter limits for the 

RK approximation.  That is to say, an appropriate basis order and support dilation must be 

determined for use in eq. 71 when shocks are to be detected.  Numerical experiments were 

conducted in one- and two-dimensions to study the behavior of the two-scale decomposition 

as a function of the filtering RK shape function pass limit.  As an example, an approximation 

of the function   

eq. 74 

is shown in Figure 10.  The approximation kernel was formed using a linear basis (𝑡𝑡 = 1).  

In Figure 10a the two-scale decomposition is shown with a constant filter kernel basis 

(𝑚𝑚 = 0) and filter kernel support 𝑏𝑏 = 2𝑎𝑎.  The high-pass component of the approximation, 

𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎℎ (𝑥𝑥), is localized to within two nodes of the discontinuity.  Figure 10b shows the 

decomposition with a constant filter kernel basis, but with the filter kernel support increased 

to 𝑏𝑏 = 3𝑎𝑎.  The high-pass component is still localized, but in this case is contained within 

three nodes of the discontinuity according to the increase in the filter kernel pass limit.  The 

𝑢𝑢(𝑥𝑥) = �1     0 ≤ 𝑥𝑥 ≤ 1
0     1 < 𝑥𝑥 ≤ 2   
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results of additional studies followed similar and showed that with a single-order reduction in 

the degree of the filter kernel, 𝑚𝑚 = 𝑡𝑡 − 1, and filter support dilation 𝑏𝑏 = 2𝑎𝑎 or 𝑏𝑏 = 3𝑎𝑎, a 

sharp high-pass signal that is localized to the shock is consistently obtained.  

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

Figure 10. Two-scale RK spectral decomposition, a) filter kernel 𝑚𝑚 = 0 and 𝑏𝑏 = 2𝑎𝑎, b) filter 

kernel 𝑚𝑚 = 0 and 𝑏𝑏 = 3𝑎𝑎 
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Using the high-pass component of the RK approximation formed from an appropriately 

constructed two-scale decomposition, an automatic shock detection algorithm can be 

developed.  In this work two approaches were considered.  The first considers the high-pass 

component as a high-pass error and constructs a shock indicator based on relative error 

density.  A measure of the global high-pass error is defined by the L2 norm  

eq. 75 

so that the high-pass global error density is obtained 

eq. 76 

Similar local error measures, �̅�𝑒𝑙𝑙𝑙𝑙𝑖𝑖𝑎𝑎𝑙𝑙(𝑡𝑡), are defined for computational sub-domains that can 

be constructed in various ways (e.g., cell topology used for numerical integration).  A relative 

local error density can be obtained 

eq. 77 

which is utilized as an automatic shock detector based on limiting criterion for 𝑒𝑒𝑟𝑟𝑟𝑟𝑙𝑙 in this 

work.  Another approach was developed herein where detection was based solely on the 

magnitude of the nodal high-pass error.  This technique is similar to one used by Lee et al. 

[66] for adaptive refinement in stress concentration problems, and it minimizes 

computational cost by avoiding integration of the local and global error at each time step.  

Both approaches have been used successfully for automatic shock detection in this research 

𝑒𝑒𝑖𝑖𝑙𝑙𝑙𝑙𝑏𝑏𝑎𝑎𝑙𝑙(𝑡𝑡) = �𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡) − 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝒙𝒙, 𝑡𝑡)�
0

= �∫ �𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡) − 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝒙𝒙, 𝑡𝑡)�
2 

Ω  𝑑𝑑Ω�
1/2

   

�̅�𝑒𝑖𝑖𝑙𝑙𝑙𝑙𝑏𝑏𝑎𝑎𝑙𝑙(𝑡𝑡) =
𝑒𝑒𝑖𝑖𝑙𝑙𝑙𝑙𝑏𝑏𝑎𝑎𝑙𝑙(𝑡𝑡)
∫ 𝑑𝑑Ω 
Ω

 

   

𝑒𝑒𝑟𝑟𝑟𝑟𝑙𝑙 =
�̅�𝑒𝑙𝑙𝑙𝑙𝑖𝑖𝑎𝑎𝑙𝑙(𝑡𝑡)
�̅�𝑒𝑖𝑖𝑙𝑙𝑙𝑙𝑏𝑏𝑎𝑎𝑙𝑙(𝑡𝑡)
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as will be shown below.   

An example of using the RK spectral decomposition feature to detect a shock is shown 

in Figure 11.  The non-linear Burgers’ equation was used to simulate a shock with magnitude 

of 1.0 traveling in a two-dimensional domain from the origin at 𝑥𝑥 = 0, 𝑦𝑦 = 0 diagonally to 

the point 𝑥𝑥 = 2,𝑦𝑦 = 2.  The location of the shock at time 𝑡𝑡 = 0.6 is shown Figure 11a.  The 

high-pass component of the RK approximation at the same time is shown in Figure 11b, 

where the high-pass approximation is localized to the region in the immediate vicinity of the 

shock.  The detection algorithm based on magnitude of the nodal high-pass error was used to 

automatically detect the transient shock, which is shown in Figure 11b as the larger white 

nodes.  A detection constraint of �𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎℎ (𝒙𝒙, 𝑡𝑡)� > 0.03 was used to automatically identify the 

shock region.  In the transient calculation this technique accurately tracked the shock as it 

travelled through the problem domain. 
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(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 11. Shock detection algorithm applied to Burgers’ equation a) shock location, and b) 

high-pass component of RK approximation at shock front 

𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎℎ (𝒙𝒙) 

(2,2) 

(0,0) 

detected shock region 

𝑢𝑢ℎ(𝒙𝒙) 

(0,0) 

(2,2) 
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4.3 Weak form and stabilized conforming nodal integration  

4.3.1 Weak form and Galerkin equation 

Consider the following inviscid conservation equation in the multi-dimensional domain, Ω, 

eq. 78 

where 𝑭𝑭�𝑢𝑢(𝒙𝒙, 𝑡𝑡)�
𝑇𝑇

= �𝑓𝑓�𝑢𝑢(𝒙𝒙, 𝑡𝑡)�,𝑔𝑔�𝑢𝑢(𝒙𝒙, 𝑡𝑡)�,ℎ�𝑢𝑢(𝒙𝒙, 𝑡𝑡)�� and 𝑓𝑓�𝑢𝑢(𝒙𝒙, 𝑡𝑡)�,  𝑔𝑔�𝑢𝑢(𝒙𝒙, 𝑡𝑡)�, and 

ℎ�𝑢𝑢(𝒙𝒙, 𝑡𝑡)� are analytical flux functions defined in the principal directions.  The eq. 78 is 

shock forming in the presence of non-linear flux as defined by the physics of the problem.  

To construct the RKPM weak formulation a test function, 𝑤𝑤(𝒙𝒙, 𝑡𝑡) ∈ 𝐻𝐻𝑖𝑖1, is introduced to eq. 

78, which is integrated over the domain, Ω, to obtain 

eq. 79 

Here integration by parts on the flux divergence term is avoided for the purpose of 

constructing the Riemann-enriched smoothed flux divergence, which is addressed in a later 

section.  The Galerkin equation is obtained by introducing the approximation of the test and 

trial functions 

eq. 80 

where the approximated trial function is defined in eq. 68, and the approximated test function 

is defined similarly.  The numerical solution of eq. 80 is prone to strong oscillation when 

𝑢𝑢(𝒙𝒙, 𝑡𝑡),𝑡𝑡+ 𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢(𝒙𝒙, 𝑡𝑡)� = 0   

∫ 𝑤𝑤(𝒙𝒙, 𝑡𝑡)�𝑢𝑢(𝒙𝒙, 𝑡𝑡),𝑡𝑡+ 𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢(𝒙𝒙, 𝑡𝑡)��  𝑑𝑑Ω 
Ω = 0   

∫ 𝑤𝑤ℎ(𝒙𝒙, 𝑡𝑡) �𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡),𝑡𝑡+ 𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)��   𝑑𝑑Ω 
Ω = 0  
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higher-order spatial approximations are introduced at the shock.  To control these oscillations 

a correction is constructed according to the essential shock physics that will engender the 

formulation with an oscillation limiting feature. 

4.3.2 Rankine-Hugoniot jump condition 

A key ingredient of the essential shock physics is satisfaction of the Rankine-Hugoniot 

(R-H) jump condition at the shock.  The jump condition is satisfied by the weak formulation 

of the governing equation in conservative form, which is shown by considering eq. 79 with 

integration over the arbitrary space-time domain, Υ (ref. Figure 12) 

eq. 81 

Only one spatial dimension is considered for discussion.  With the test function bounded 

according to the 𝐻𝐻𝑖𝑖1 space, it is referred to as a compact test function with the properties 

𝑤𝑤(∞, 𝑡𝑡) = 𝑤𝑤(−∞, 𝑡𝑡) = 𝑤𝑤(𝑥𝑥,∞) = 0.  Further, with specified initial conditions over Υ the 

test function exhibits the property 𝑤𝑤(𝑥𝑥, 0) = 0.  Now apply integration by parts to 

∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡)𝑢𝑢(𝑥𝑥, 𝑡𝑡),𝑡𝑡  𝑑𝑑𝑡𝑡∞
0  and ∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡)𝑓𝑓(𝑢𝑢(𝑥𝑥, 𝑡𝑡)),𝑥𝑥  𝑑𝑑𝑥𝑥∞

−∞  in eq. 81 to obtain 

eq. 82 

eq. 83 

 

 

∫ ∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡)�𝑢𝑢(𝑥𝑥, 𝑡𝑡),𝑡𝑡 +  𝑓𝑓�𝑢𝑢(𝑥𝑥, 𝑡𝑡)�,𝑥𝑥 �
∞
𝑥𝑥=−∞

∞
𝑡𝑡=0  𝑑𝑑𝑥𝑥 𝑑𝑑𝑡𝑡 = 0  

∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡)𝑢𝑢(𝑥𝑥, 𝑡𝑡),𝑡𝑡
∞
0  𝑑𝑑𝑡𝑡 = 𝑤𝑤(𝑥𝑥, 𝑡𝑡)𝑢𝑢(𝑥𝑥, 𝑡𝑡)|0∞ − ∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡),𝑡𝑡 𝑢𝑢(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑡𝑡∞

0   

= −∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡),𝑡𝑡 𝑢𝑢(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑡𝑡    ∞
0   
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eq. 84 

 

eq. 85 

which is substituted back into eq. 81 to obtain 

eq. 86 

In the presence of a shock, a discontinuity forms in Υ along the boundary 𝛤𝛤𝑠𝑠 such that the 

space-time domain is divided into two smooth sub-domains, Υ− and Υ+.  Normal to the 

discontinuity is 𝖓𝖓 = [𝑡𝑡𝑥𝑥,  𝑡𝑡𝑡𝑡], which is a function of space and time as shown in Figure 12.  

Solutions to the left and right of the discontinuity are 𝑢𝑢−(𝑥𝑥, 𝑡𝑡) and 𝑢𝑢+(𝑥𝑥, 𝑡𝑡), respectively.  

Considering the discontinuity, eq. 86 can be written as 

eq. 87 

Again using integration by parts and the divergence theorem and making use of the weak 

form expression of eq. 79 applied to the smooth sub-domains, eq. 87 is transformed to the 

contour integral over the discontinuity 

eq. 88 

Due to arbitrariness of the test function and considering that 𝖓𝖓− = −𝖓𝖓+, eq. 88 implies 

eq. 89 

∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡)𝑓𝑓�𝑢𝑢(𝑥𝑥, 𝑡𝑡)�,𝑥𝑥
∞
−∞ 𝑑𝑑𝑥𝑥 = ∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡)𝑓𝑓�𝑢𝑢(𝑥𝑥, 𝑡𝑡)�𝑡𝑡𝑥𝑥

∞
−∞ 𝑑𝑑Γ −

∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡),𝑥𝑥 𝑓𝑓�𝑢𝑢(𝑥𝑥, 𝑡𝑡)�∞
−∞ 𝑑𝑑𝑥𝑥  

= −∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡),𝑥𝑥 𝑓𝑓�𝑢𝑢(𝑥𝑥, 𝑡𝑡)�∞
−∞ 𝑑𝑑𝑥𝑥   

∫ ∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡),𝑡𝑡 𝑢𝑢(𝑥𝑥, 𝑡𝑡) + 𝑤𝑤(𝑥𝑥, 𝑡𝑡),𝑥𝑥 𝑓𝑓�𝑢𝑢(𝑥𝑥, 𝑡𝑡)� 𝑑𝑑𝑥𝑥∞
𝑥𝑥=−∞

∞
𝑡𝑡=0  𝑑𝑑𝑡𝑡 = 0  

∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡),𝑡𝑡 𝑢𝑢(𝑥𝑥, 𝑡𝑡) + 𝑤𝑤(𝑥𝑥, 𝑡𝑡),𝑥𝑥 𝑓𝑓�𝑢𝑢(𝑥𝑥, 𝑡𝑡)� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑡𝑡 + 
Υ−

 ∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡),𝑡𝑡 𝑢𝑢(𝑥𝑥, 𝑡𝑡) + 𝑤𝑤(𝑥𝑥, 𝑡𝑡),𝑥𝑥 𝑓𝑓�𝑢𝑢(𝑥𝑥, 𝑡𝑡)� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑡𝑡 
Υ+ = 0    

∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡)�𝑢𝑢−(𝑥𝑥, 𝑡𝑡)𝑡𝑡𝑡𝑡− + 𝑓𝑓�𝑢𝑢−(𝑥𝑥, 𝑡𝑡)�𝑡𝑡𝑥𝑥−� 𝑑𝑑Γ = 
Γ𝑠𝑠

−∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡)�𝑢𝑢+(𝑥𝑥, 𝑡𝑡)𝑡𝑡𝑡𝑡+ + 𝑓𝑓�𝑢𝑢+(𝑥𝑥, 𝑡𝑡)�𝑡𝑡𝑥𝑥+� 𝑑𝑑Γ
 
Γ𝑠𝑠

  

𝑢𝑢−(𝑥𝑥, 𝑡𝑡)𝑡𝑡𝑡𝑡 + 𝑓𝑓�𝑢𝑢−(𝑥𝑥, 𝑡𝑡)�𝑡𝑡𝑥𝑥 = 𝑢𝑢+(𝑥𝑥, 𝑡𝑡)𝑡𝑡𝑡𝑡 + 𝑓𝑓�𝑢𝑢+(𝑥𝑥, 𝑡𝑡)�𝑡𝑡𝑥𝑥  
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Figure 12. Arbitrary space-time domain, Υ 

The shock velocity, 𝜉𝜉, is related to 𝖓𝖓 by 𝜉𝜉 =  𝑑𝑑𝑥𝑥 𝑑𝑑𝑡𝑡 = −𝑡𝑡𝑡𝑡 𝑡𝑡𝑥𝑥⁄⁄ , which is used with eq. 89 to 

obtain 

eq. 90 

The Rankine-Hugoniot jump equation is given by eq. 90, and shows that the R-H jump 

condition is naturally embedded in the weak form of eq. 79.   

4.3.3 Stabilized conforming nodal integration 

Chen et al. [27, 28] introduced a type of stabilized conforming nodal integration for 

stable direct nodal integration of the weak form that achieves optimal convergence with 

linear basis.  This method avoids the loss of accuracy associated with Gauss integration in a 

meshfree framework and stabilizes direct nodal integration to avoid spurious modes that arise 

from integration of the nodal derivatives.  In this work SCNI is further used as a framework 

𝜉𝜉 =
𝑓𝑓�𝑢𝑢−(𝑥𝑥, 𝑡𝑡)� − 𝑓𝑓�𝑢𝑢+(𝑥𝑥, 𝑡𝑡)�

𝑢𝑢−(𝑥𝑥, 𝑡𝑡) − 𝑢𝑢+(𝑥𝑥, 𝑡𝑡)
 

Υ 

Υ− Υ+ 𝑢𝑢−(𝑥𝑥, 𝑡𝑡) 𝑢𝑢+(𝑥𝑥, 𝑡𝑡) 

Γ𝑠𝑠 

𝑡𝑡𝑥𝑥  

𝑡𝑡𝑡𝑡  𝖓𝖓  

𝑥𝑥 

𝑡𝑡 
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to construct a locally corrected flux divergence operator that is flux conserving and embeds 

the essential shock physics for entropy production into the meshfree formulation. 

To build the SCNI framework, first consider an arbitrary discretization of the domain Ω 

with a set of 𝑡𝑡𝑝𝑝 nodes as shown in Figure 13.  The domain is tessellated to construct a set of 

conforming integration cells that are centered on the nodes; Voronoi cell tessellation can be 

used to construct this type of domain sub-division.  The integration cell associated with the Ith 

node is Ω𝐼𝐼, which has a boundary Γ𝐼𝐼 composed of a set of line segments with outward normal 

𝒏𝒏.  The integration cells are conforming so that ∪ Ω𝐼𝐼=1…𝑛𝑛𝑛𝑛 = Ω and ∩ Ω𝐼𝐼=1…𝑛𝑛𝑛𝑛 = { }. 

In the SCNI framework the gradient at the node is approximated using a smoothed 

gradient operator, which can be defined in a general form as 

eq. 91 

where 𝛁𝛁�𝜍𝜍𝐼𝐼(𝑡𝑡) is the smoothed gradient of 𝜍𝜍(𝒙𝒙, 𝑡𝑡)|𝒙𝒙𝐼𝐼and 𝜍𝜍(𝒙𝒙, 𝑡𝑡) is a sufficiently differentiable 

function defined in Ω𝐼𝐼. The kernel function 𝜑𝜑(𝒙𝒙;𝒙𝒙 − 𝒙𝒙𝐼𝐼) is defined according to the desired 

characteristics of the gradient approximation.  If the kernel function is constant over Ω𝐼𝐼, then 

the divergence theorem transforms the smoothed gradient operation to the contour integral 

eq. 92 

where 𝒏𝒏 is the outward normal to Γ𝐼𝐼; eq. 92 can be evaluated using any desired numerical 

integration technique. By eq. 92 the smoothed gradient approximation requires the evaluation 

of 𝜍𝜍(𝒙𝒙, 𝑡𝑡) over Γ𝐼𝐼, and not its derivative, which is an appealing attribute of this technique. 

𝛁𝛁𝜍𝜍(𝒙𝒙, 𝑡𝑡)|𝒙𝒙𝐼𝐼 ≈ ∫ 𝛁𝛁𝜍𝜍(𝒙𝒙, 𝑡𝑡) 𝜑𝜑(𝒙𝒙;𝒙𝒙 − 𝒙𝒙𝐼𝐼) 𝑑𝑑Ω 
Ω𝐼𝐼

≡ 𝛁𝛁�𝜍𝜍𝐼𝐼(𝑡𝑡)  

𝛁𝛁�𝜍𝜍𝐼𝐼(𝑡𝑡) = ∫ 𝜍𝜍(𝒙𝒙, 𝑡𝑡)𝜑𝜑(𝒙𝒙;𝒙𝒙 − 𝒙𝒙𝐼𝐼) 𝒏𝒏 𝑑𝑑Γ 
Γ𝐼𝐼
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Figure 13. Discretization and Voronoi cell tessellation of domain, Ω 

4.4 Smoothed flux divergence with local Riemann enrichment 

4.4.1 Smoothed flux divergence 

In the proposed formulation the weak form is integrated using SCNI, which engenders it 

with the benefits of this integration technique.  To utilize SCNI a flux divergence 

approximation is introduced, similar to the smoothed gradient approximation in eq. 91; this is 

referred to as the smoothed flux divergence (SFD).  Under the SCNI framework the SFD will 

Ω𝑋𝑋 

𝑥𝑥 

𝑦𝑦 

∂Ω𝑋𝑋 

𝑿𝑿𝐼𝐼𝐼𝐼 

Γ𝐼𝐼𝑋𝑋 

Ω𝐽𝐽𝑋𝑋 

Ω𝐼𝐼𝑋𝑋 

𝑿𝑿𝐽𝐽 

𝐿𝐿𝐼𝐼𝐼𝐼 𝑿𝑿𝐼𝐼 

𝑵𝑵 

83 
 



be locally enriched at the shock to enforce the entropy-related shock physics and ensure the 

physically correct shock propagation. Consider the flux divergence term in eq. 80 and 

construct a smoothed flux divergence using the approximation 

eq. 93 

A piecewise constant kernel is introduced to the approximation 

eq. 94 

where 𝑉𝑉𝐼𝐼 is the volume of Ω𝐼𝐼. Using the divergence theorem with the piecewise constant 

kernel definition, eq. 93 is transformed to  

eq. 95 

where 𝛁𝛁� ∙ 𝑭𝑭𝐼𝐼ℎ(𝑡𝑡) is the SFD.  

This formulation is flux conserving when a) the SFD in eq. 95 is computed on an underlying 

cell structure that is conforming, and b) the numerical flux calculation on the integration cell 

boundaries is consistent for the adjacent cells. To show this, eq. 95 is transformed back to a 

domain integral 

eq. 96 

If according to the first requirement the sub-domains, Ω𝐼𝐼, are conforming so that ∪

Ω𝐼𝐼=1…𝑛𝑛𝑛𝑛 = Ω and  for I≠ 𝐽𝐽, then we have  

𝛁𝛁� ∙ 𝑭𝑭𝐼𝐼ℎ(𝑡𝑡) =
1
𝑉𝑉𝐼𝐼
� 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� ∙

 

Γ𝐼𝐼
𝒏𝒏 𝑑𝑑Γ 

𝛁𝛁� ∙ 𝑭𝑭𝐼𝐼ℎ(𝑡𝑡) =
1
𝑉𝑉𝐼𝐼
� 𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)�

 

Ω𝐼𝐼
 𝑑𝑑Ω 

𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)��
𝒙𝒙𝐼𝐼
≈ ∫ 𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)�𝜑𝜑(𝒙𝒙;𝒙𝒙 − 𝒙𝒙𝐼𝐼) 𝑑𝑑Ω 

Ω𝐼𝐼
≡ 𝛁𝛁� ∙ 𝑭𝑭𝐼𝐼ℎ(𝑡𝑡)  

𝜑𝜑(𝒙𝒙;𝒙𝒙 − 𝒙𝒙𝐼𝐼) = �1 𝑉𝑉𝐼𝐼⁄      𝒙𝒙 ∈ Ω𝐼𝐼  
0       𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒
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eq. 97 

This yields 

eq. 98 

eq. 99 

 

Now consider Figure 13 where the boundary between sub-domains Ω𝐼𝐼 and Ω𝐽𝐽 is the line 

segment 𝐿𝐿𝐼𝐼𝐽𝐽.  The contour integral along this line segment with respect to the sub-domain Ω𝐼𝐼 

is 

eq. 100 

where (⋯⋯ )[𝐼𝐼] implies evaluation of the contour integral when approaching the boundary 

from Ω𝐼𝐼.  Similarly, the contour integral along 𝐿𝐿𝐼𝐼𝐽𝐽 when approaching the boundary from Ω𝐽𝐽 is    

eq. 101 

Using 𝒏𝒏𝐼𝐼 = −𝒏𝒏𝐽𝐽, the following holds as long as the second requirement for consistency in 

the numerical flux is satisfied, i.e., �𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)��
[𝐼𝐼]

= �𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)��
[𝐽𝐽]

   

eq. 102 

If the condition in eq. 102 holds true for all Γ𝐼𝐼, then flux is conserved. 

∑ ∫ 𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� 
Ω𝐼𝐼

 𝑑𝑑Ω𝑛𝑛𝑛𝑛
𝐼𝐼=1 = ∑ ∫ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� 

Γ𝐼𝐼
∙ 𝒏𝒏 𝑑𝑑Γ𝑛𝑛𝑛𝑛

𝐼𝐼=1   

�∫ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� ∙ 𝒏𝒏 
L𝐼𝐼𝐼𝐼

 𝑑𝑑Γ�
[𝐼𝐼]

  

�∫ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� ∙ 𝒏𝒏 
L𝐼𝐼𝐼𝐼

 𝑑𝑑Γ�
[𝐽𝐽]

  

�∫ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� ∙ 𝒏𝒏 
L𝐼𝐼𝐼𝐼

 𝑑𝑑Γ�
[𝐼𝐼]

= −�∫ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� ∙ 𝒏𝒏 
L𝐼𝐼𝐼𝐼

 𝑑𝑑Γ�
[𝐽𝐽]

  

∑ ∫ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� ∙ 𝒏𝒏 
Γ𝐼𝐼/𝜕𝜕𝜕𝜕

 𝑑𝑑Γ𝑛𝑛𝑛𝑛
𝐼𝐼=1 = 0  

∑ ∫ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� ∙ 𝒏𝒏 
Γ𝐼𝐼/𝜕𝜕𝜕𝜕

 𝑑𝑑Γ𝑛𝑛𝑛𝑛
𝐼𝐼=1 + ∫ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� ∙ 𝒏𝒏 

𝜕𝜕𝜕𝜕 𝑑𝑑Γ =

∫ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� ∙ 𝒏𝒏 
𝜕𝜕𝜕𝜕 𝑑𝑑Γ = ∫ 𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� 

Ω  𝑑𝑑Ω  
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 For numerical implementation, the SFD in eq. 95 is evaluated using the SCNI 

integration cell topology shown in Figure 14a.  The boundary, Γ𝐼𝐼, is composed of a set of line 

segments 𝕃𝕃𝐼𝐼 = {𝐿𝐿𝐼𝐼𝐼𝐼}𝐼𝐼=1𝑠𝑠 where 𝑒𝑒 is the number of sides of Γ𝐼𝐼, with the length, midpoint and 

outward normal of segment 𝐿𝐿𝐼𝐼𝐼𝐼 denoted as 𝑙𝑙𝐼𝐼𝐼𝐼, 𝒙𝒙𝐼𝐼𝐼𝐼 and 𝒏𝒏𝐼𝐼𝐼𝐼, respectively.  Newton-Cotes 

quadrature is used to numerically integrate eq. 95, so that 

eq. 103 

In eq. 103 the analytical flux definition is required, which is defined for the particular 

conservation problem being studied.  As examples of constructing the SFD, consider two 

model problems and their analytical flux definitions: the linear advection equation and the 

non-linear inviscid Burgers’ equation.  These same model problems will be used for 

numerical examples later.  The flux definitions and corresponding smoothed flux divergence 

expressions are as follows. 

 

 

 

 

 

 

 

 

𝛁𝛁� ∙ 𝑭𝑭𝐼𝐼ℎ(𝑡𝑡) = (1 𝑉𝑉𝐼𝐼⁄ ) ∑ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)��
𝒙𝒙𝐼𝐼𝐼𝐼

∙ 𝒏𝒏𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐼𝐼𝑠𝑠
𝐼𝐼=1   
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𝑢𝑢�𝐼𝐼+𝜍𝜍1
ℎ  

𝑢𝑢�𝐼𝐼ℎ 

𝑥𝑥� 
Ω𝐼𝐼 Ω𝐼𝐼+𝜍𝜍1 𝑥𝑥� = 0 

𝑢𝑢�ℎ(𝑥𝑥�, 𝑡𝑡𝑛𝑛) 

 

 

 

 

 

 

 

                               (a)                                                                 (b) 

Figure 14. (a) SCNI integration cell topology and b) local Riemann problem at shock 

Linear advection with constant coefficients 

Assuming a two-dimensional domain, the analytical flux definition for linear advection with 

constant coefficients is 

eq. 104 

where 𝛼𝛼 and 𝛽𝛽 are advection constants. Substituting into eq. 103 gives 

eq. 105 

Introducing the spatial approximation from eq. 58 gives 

Ω𝐼𝐼+𝜍𝜍1 

𝒙𝒙𝐼𝐼+𝜍𝜍5 𝒙𝒙𝐼𝐼+𝜍𝜍2 

𝒙𝒙𝐼𝐼+𝜍𝜍3 

𝒙𝒙𝐼𝐼+𝜍𝜍4 

𝑥𝑥� 

Ω𝐼𝐼 

𝒙𝒙𝐼𝐼𝐼𝐼 

𝒙𝒙𝐼𝐼 
Γ𝐼𝐼 

𝒏𝒏 

𝒙𝒙𝐼𝐼+𝜍𝜍1 

𝐿𝐿𝐼𝐼𝐼𝐼 

𝑥𝑥 

𝑦𝑦 

𝑭𝑭�𝑢𝑢(𝒙𝒙, 𝑡𝑡)� = �𝛼𝛼 𝑢𝑢(𝒙𝒙, 𝑡𝑡)
𝛽𝛽 𝑢𝑢(𝒙𝒙, 𝑡𝑡)�  

𝛁𝛁� ∙ 𝑭𝑭𝐼𝐼ℎ(𝑡𝑡) = (1 𝐴𝐴𝐼𝐼⁄ )∑ � 𝛼𝛼 𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)|𝒙𝒙𝐼𝐼𝐼𝐼𝑡𝑡𝑥𝑥𝐼𝐼𝐼𝐼 𝑙𝑙𝐼𝐼𝐼𝐼 + 𝛽𝛽 𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)|𝒙𝒙𝐼𝐼𝐼𝐼𝑡𝑡𝑦𝑦𝐼𝐼𝐼𝐼 𝑙𝑙𝐼𝐼𝐼𝐼�𝑠𝑠
𝐼𝐼=1   
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eq. 106 

eq. 107 

Let 

eq. 108 

so that the smoothed flux divergence for the linear advection equation at 𝒙𝒙𝐼𝐼 is 

eq. 109 

Non-linear Burgers’ equation 

Again assuming a two-dimensional domain, the analytical flux definition for Burgers’ 

equation is 

eq. 110 

The flux in eq. 110 presents a complexity due to the requirement for an approximation of 𝑢𝑢2.  

To address this, consider that  

eq. 111 

so that for Burgers’ equation 

eq. 112 

𝛁𝛁� ∙ 𝑭𝑭𝐼𝐼ℎ(𝑡𝑡) =
(1 𝐴𝐴𝐼𝐼⁄ )∑ � 𝛼𝛼 �∑ 𝛹𝛹𝐽𝐽(𝒙𝒙𝐼𝐼𝐼𝐼)𝑑𝑑𝐽𝐽(𝑡𝑡)𝑛𝑛𝑛𝑛

𝐽𝐽=1 �𝑡𝑡𝑥𝑥𝐼𝐼𝐼𝐼 𝑙𝑙𝐼𝐼𝐼𝐼 + 𝛽𝛽 �∑ 𝛹𝛹𝐽𝐽(𝒙𝒙𝐼𝐼𝐼𝐼)𝑑𝑑𝐽𝐽(𝑡𝑡)𝑛𝑛𝑛𝑛
𝐽𝐽=1 �𝑡𝑡𝑦𝑦𝐼𝐼𝐼𝐼 𝑙𝑙𝐼𝐼𝐼𝐼�𝑠𝑠

𝐼𝐼=1   

= (1 𝐴𝐴𝐼𝐼⁄ )∑ ∑ Ψ𝐽𝐽(𝒙𝒙𝐼𝐼𝐼𝐼)�𝛼𝛼 𝑡𝑡𝑥𝑥𝐼𝐼𝐼𝐼 𝑙𝑙𝐼𝐼𝐼𝐼 + 𝛽𝛽𝑡𝑡𝑦𝑦𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐼𝐼�𝑠𝑠
𝐼𝐼=1 𝑑𝑑𝐽𝐽(𝑡𝑡)𝑛𝑛𝑛𝑛

𝐽𝐽=1   

𝑏𝑏𝐽𝐽𝐼𝐼 = (1 𝐴𝐴𝐼𝐼⁄ )∑ Ψ𝐽𝐽(𝒙𝒙𝐼𝐼𝐼𝐼)�𝛼𝛼 𝑡𝑡𝑥𝑥𝐼𝐼𝐼𝐼 𝑙𝑙𝐼𝐼𝐼𝐼 + 𝛽𝛽𝑡𝑡𝑦𝑦𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐼𝐼�𝑠𝑠
𝐼𝐼=1   

𝛁𝛁� ∙ 𝑭𝑭𝐼𝐼ℎ(𝑡𝑡) = ∑ 𝑏𝑏𝐽𝐽𝐼𝐼 𝑑𝑑𝐽𝐽(𝑡𝑡)𝑛𝑛𝑛𝑛
𝐽𝐽=1   

𝑭𝑭�𝑢𝑢(𝒙𝒙, 𝑡𝑡)� = �
0.5 �𝑢𝑢(𝒙𝒙, 𝑡𝑡)�

2

0.5 �𝑢𝑢(𝒙𝒙, 𝑡𝑡)�
2�  

𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� =
𝜕𝜕𝐹𝐹𝑖𝑖
𝜕𝜕𝑢𝑢ℎ

 
𝜕𝜕𝑢𝑢ℎ

𝜕𝜕𝑥𝑥𝑖𝑖
 

𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� = 𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡),𝑥𝑥+ 𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡),𝑦𝑦 
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eq. 113 

where 𝐈𝐈𝐓𝐓 = [1 1].   Considering a discrete numerical solution in space and time, the 

coefficient 𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡) in eq. 113 can be approximated by the discrete solution at the previous 

time step, which is denoted as 𝜁𝜁𝐼𝐼.  Introducing this approximation along with a smoothed 

gradient operator gives 

eq. 114 

where 𝛁𝛁�𝑢𝑢𝐼𝐼ℎ(𝑡𝑡) is defined according to eq. 92 using the piecewise constant kernel defined in 

eq. 94.  Using Newton-Cotes quadrature for numerical integration gives 

eq. 115 

eq. 116 

where the spatial approximation from eq. 58 was introduced.  Substituting eq. 116 into eq. 

114 gives 

eq. 117 

Let 

eq. 118 

The smoothed flux divergence for Burgers’ equation at 𝒙𝒙𝐼𝐼 is obtained by substituting eq. 118 

= 𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)[𝐈𝐈 ∙ 𝛁𝛁𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)] 

𝛁𝛁� ∙ 𝑭𝑭𝐼𝐼ℎ(𝑡𝑡) = 𝜁𝜁𝐼𝐼�𝐈𝐈 ∙ 𝛁𝛁�𝑢𝑢𝐼𝐼ℎ(𝑡𝑡)� 

𝛁𝛁�𝑢𝑢𝐼𝐼ℎ(𝑡𝑡) = (1 𝐴𝐴𝐼𝐼⁄ ) ∑ 𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)|𝒙𝒙𝐼𝐼𝐼𝐼𝒏𝒏𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐼𝐼 𝑠𝑠
𝐼𝐼=1   

= (1 𝐴𝐴𝐼𝐼⁄ ) ∑ �∑ 𝛹𝛹𝐽𝐽(𝒙𝒙𝐼𝐼𝐼𝐼)𝑑𝑑𝐽𝐽(𝑡𝑡)𝑛𝑛𝑛𝑛
𝐽𝐽=1 �𝒏𝒏𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐼𝐼𝑠𝑠

𝐼𝐼=1   

𝛁𝛁� ∙ 𝑭𝑭𝐼𝐼ℎ(𝑡𝑡) = (𝜁𝜁𝐼𝐼 𝐴𝐴𝐼𝐼⁄ )�∑ ∑ 𝛹𝛹𝐽𝐽(𝒙𝒙𝐼𝐼𝐼𝐼)�𝑡𝑡𝑥𝑥𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐼𝐼 + 𝑡𝑡𝑦𝑦𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐼𝐼�𝑑𝑑𝐽𝐽(𝑡𝑡)𝑠𝑠
𝐼𝐼=1

𝑛𝑛𝑛𝑛
𝐽𝐽=1 �  

𝑏𝑏𝐽𝐽𝐼𝐼 = (𝜁𝜁𝐼𝐼 𝐴𝐴𝐼𝐼⁄ )∑ Ψ𝐽𝐽(𝒙𝒙𝐼𝐼𝐼𝐼)� 𝑡𝑡𝑥𝑥𝐼𝐼𝐼𝐼 𝑙𝑙𝐼𝐼𝐼𝐼 + 𝑡𝑡𝑦𝑦𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐼𝐼�𝑠𝑠
𝐼𝐼=1   
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into eq. 109. 

4.4.2 Riemann-enriched boundary flux 

To enforce the essential physics corresponding with the entropy production constraint 

and to control Gibbs phenomenon at the jump, a correction of the meshfree solution is 

required at the shock.  The correction is formed using a Godunov-type approach, where the 

smoothed flux divergence is enriched in the local shock region with a Riemann solution.  The 

solution of the Riemann problem inherently satisfies the entropy production constraint and 

therefore guarantees the physically correct shock propagation in .the numerical solution.  The 

enrichment is limited to the shock region according to the shock detection algorithm, and is 

therefore referred to as a local Riemann enrichment of the SFD in this work. 

The Riemann problem is a special initial value problem (IVP) constructed in a domain, 

Ω, where initial conditions are piecewise constant over a series of conforming sub-domains, 

{Ω𝐼𝐼}𝐼𝐼=1
𝑛𝑛𝑛𝑛 , due to the use of lower order approximation to limit the oscillation.  These 

piecewise constant initial conditions (ICs) create numerical discontinuities at the sub-domain 

boundaries, which are viewed as a local shock problem in this research.  As a consequence, 

the updated solution at the sub-domain boundary can be determined in straightforward 

manner using characteristic projections.  The important point is that the physically correct 

shock or rarefaction solution is guaranteed from analysis of the characteristic projections, and 

as a result the solution naturally enforces the entropy production constraint.  If the piecewise 

constant smoothed flux divergence in each cell is reconstructed at each time step, then in the 
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detected shock region the Riemann solution can be used to determine 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)��
𝒙𝒙𝐼𝐼𝐼𝐼

 in eq. 

103 so that the smoothed flux divergence is locally enriched.  Furthermore, since the 

Riemann problem can be naturally constructed on the SCNI cell topology it is easily 

incorporated into the meshfree framework. 

To construct a general Riemann problem, consider the piecewise constant ICs, 𝑢𝑢(𝑥𝑥, 𝑡𝑡𝑛𝑛), 

shown in Figure 15a.  The ICs are discontinuous at the sub-domain boundary, 𝑥𝑥∗, which is 

located at the junction of Ω𝐼𝐼 and Ω𝐽𝐽.   

eq. 119 

The characteristic speed of the wavelet projections is           

             eq. 120                                        

where 𝑓𝑓�𝑢𝑢(𝑥𝑥, 𝑡𝑡)� is the analytical flux function.  These projections or characteristic lines are 

shown in Figure 15b and Figure 15c, where each characteristic line describes how 𝑢𝑢(𝑥𝑥, 𝑡𝑡𝑛𝑛) 

projects in space and time for 𝑡𝑡 > 𝑡𝑡𝑛𝑛.   If, as shown in Figure 15b, the characteristics 

converge as a result of 𝜆𝜆(𝑢𝑢𝐼𝐼) >  𝜆𝜆�𝑢𝑢𝐽𝐽� then a shock forms and the discontinuity propagates 

with a velocity, 𝜉𝜉.  The Riemann shock solution for 𝑥𝑥 ∈ Ω𝐼𝐼 ∪ Ω𝐽𝐽 is 

eq. 121 

 

𝜆𝜆�𝑢𝑢(𝑥𝑥, 𝑡𝑡𝑛𝑛)� =
𝜕𝜕𝑓𝑓�𝑢𝑢(𝑥𝑥, 𝑡𝑡𝑛𝑛)�
𝜕𝜕𝑢𝑢(𝑥𝑥, 𝑡𝑡𝑛𝑛)  

𝑢𝑢(𝑥𝑥, 𝑡𝑡𝑛𝑛) = �
𝑢𝑢𝐼𝐼     𝑥𝑥 ∈ Ω𝐼𝐼
𝑢𝑢𝐽𝐽     𝑥𝑥 ∈ Ω𝐽𝐽

 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = �
𝑢𝑢𝐼𝐼      (𝑥𝑥 − 𝑥𝑥∗) (𝑡𝑡 − 𝑡𝑡𝑛𝑛)⁄ < 𝜉𝜉
𝑢𝑢𝐽𝐽      (𝑥𝑥 − 𝑥𝑥∗) (𝑡𝑡 − 𝑡𝑡𝑛𝑛)⁄ > 𝜉𝜉 
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 (a) 

 

 

 

 

                        (b)                                                               (c) 

Figure 15. General Riemann IVP, a) piecewise constant initial conditions, b) shock due to 

converging characteristics, and c) rarefaction due to diverging characteristics 

 

which is derived directly from the characteristic projections.  The solution at the sub-domain 

boundary is found by evaluating at 𝑥𝑥 = 𝑥𝑥∗.  If, as shown in Figure 15c, the characteristics 

diverge as a result of 𝜆𝜆(𝑢𝑢𝐼𝐼) <  𝜆𝜆�𝑢𝑢𝐽𝐽� then a rarefaction forms and the discontinuity 

degenerates into a fan.  The Riemann rarefaction solution is 

 

𝑢𝑢𝐽𝐽 

𝑢𝑢𝐼𝐼 

𝑢𝑢(𝑥𝑥, 𝑡𝑡𝑛𝑛) 

𝑥𝑥 
𝑥𝑥∗ Ω𝐼𝐼 Ω𝐽𝐽 

Ω𝐽𝐽 Ω𝐼𝐼 

𝜆𝜆(𝑢𝑢𝐼𝐼) 

𝜆𝜆�𝑢𝑢𝐽𝐽� 

𝑡𝑡 

𝑡𝑡 = 𝑡𝑡𝑛𝑛 𝑥𝑥 
𝑥𝑥∗ 

𝑓𝑓𝑎𝑎𝑡𝑡 

Ω𝐽𝐽 Ω𝐼𝐼 
𝑡𝑡 = 𝑡𝑡𝑛𝑛 

𝜆𝜆�𝑢𝑢𝐽𝐽� 

𝜉𝜉 
𝜆𝜆(𝑢𝑢𝐼𝐼) 

𝑡𝑡 

𝑥𝑥 
𝑥𝑥∗ 
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eq. 122 

The solution at the boundary is again found by substituting 𝑥𝑥 = 𝑥𝑥∗.  In eq. 122, 

𝑢𝑢((𝑥𝑥 − 𝑥𝑥∗) (𝑡𝑡 − 𝑡𝑡𝑛𝑛)⁄ ) is the general solution inside of the fan, where (𝑥𝑥 − 𝑥𝑥∗) (𝑡𝑡 − 𝑡𝑡𝑛𝑛)⁄  is 

the slope of characteristic lines inside of the fan.  It can be shown for that for convex flux 

functions, the expression for 𝑢𝑢((𝑥𝑥 − 𝑥𝑥∗) (𝑡𝑡 − 𝑡𝑡𝑛𝑛)⁄ ) is found by solving 

𝜕𝜕𝑓𝑓�𝑢𝑢(𝑥𝑥, 𝑡𝑡)� 𝜕𝜕𝑢𝑢(𝑥𝑥, 𝑡𝑡) =⁄ (𝑥𝑥 − 𝑥𝑥∗) (𝑡𝑡 − 𝑡𝑡𝑛𝑛)⁄ , where the analytical flux function is defined 

according to the problem being considered [103]. 

To capture shocks in the meshfree formulation, the local Riemann problem is 

constructed on boundary segments of each SCNI integration cell in the shock region.  

Consider an integration cell, Ω𝐼𝐼, as previously described in Figure 14a, which is now 

assumed to be located near a shock.  The cell topology is described in section 4.4.1, where Γ𝐼𝐼 

is composed of a set of line segments, 𝕃𝕃𝐼𝐼.  The set of nodes whose cell boundaries intersect 

with 𝕃𝕃𝐼𝐼 is 𝕏𝕏𝐼𝐼 = �𝒙𝒙𝐼𝐼+𝜍𝜍𝐼𝐼| 0 < 𝐼𝐼 + 𝜍𝜍𝐼𝐼 ≤ 𝑡𝑡𝑝𝑝, 𝐼𝐼 = 1 … 𝑒𝑒, 𝜍𝜍𝐼𝐼 ≠ 0 �.  To construct the piecewise 

constant initial conditions for the Riemann problem, a cell-averaged solution in Ω𝐼𝐼 at time 

𝑡𝑡 = 𝑡𝑡𝑛𝑛 is defined 

eq. 123 

Similar cell-averaged solutions are defined for each of the adjoining cells, which are denoted 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = �
𝑢𝑢𝐼𝐼                                         (𝑥𝑥 − 𝑥𝑥∗) (𝑡𝑡 − 𝑡𝑡𝑛𝑛)⁄ ≤ 𝜆𝜆(𝑢𝑢𝐼𝐼)                                        
𝑢𝑢((𝑥𝑥 − 𝑥𝑥∗) (𝑡𝑡 − 𝑡𝑡𝑛𝑛)⁄ )           𝜆𝜆(𝑢𝑢𝐼𝐼) < (𝑥𝑥 − 𝑥𝑥∗) (𝑡𝑡 − 𝑡𝑡𝑛𝑛)⁄ < 𝜆𝜆�𝑢𝑢𝐽𝐽�               
𝑢𝑢𝐽𝐽                                       (𝑥𝑥 − 𝑥𝑥∗) (𝑡𝑡 − 𝑡𝑡𝑛𝑛)⁄ ≥ 𝜆𝜆�𝑢𝑢𝐽𝐽�                                        

 

 𝑢𝑢�𝐼𝐼ℎ�𝑡𝑡𝑛𝑛 = (1 𝑉𝑉𝐼𝐼⁄ )∫ 𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡𝑛𝑛) 𝑑𝑑Ω  
Ω𝐼𝐼
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as 𝑢𝑢�𝐼𝐼+𝜍𝜍𝐼𝐼
ℎ �

𝑡𝑡𝑛𝑛
.  To evaluate the smoothed flux divergence in eq. 103, the Riemann solution is 

sought at the midpoint, 𝒙𝒙𝐼𝐼𝐼𝐼, of each boundary segment, 𝐿𝐿𝐼𝐼𝐼𝐼.  A variety of techniques can be 

used to construct the local Riemann problem, such as dimensional splitting [117], unsplit 

finite volume approaches [117], or a rotated Riemann problem aligned with dominant flow 

features [118].  Regardless of the specific solution technique, the local Riemann problem for 

each boundary segment is constructed along a local coordinate axis,  𝑥𝑥�, with its origin located 

at the midpoint, 𝒙𝒙𝐼𝐼𝐼𝐼.  An example of the local Riemann problem centered on 𝒙𝒙𝐼𝐼𝐼𝐼 is shown in 

Figure 14b.  The solution is sought at the integration cell boundary, which coincides with 

𝑥𝑥� = 0 in the local coordinate system.  Referencing the general Riemann solutions in eq. 121 

and eq. 122, the local Riemann solution at the midpoint, 𝑢𝑢𝑅𝑅𝑅𝑅(𝒙𝒙𝐼𝐼𝐼𝐼, 𝑡𝑡𝑛𝑛), is defined as 

for 𝜆𝜆(𝑢𝑢�𝐼𝐼ℎ) > 𝜆𝜆(𝑢𝑢�𝐼𝐼+𝜍𝜍1
ℎ ) (shock):          

eq. 124 

 for 𝜆𝜆(𝑢𝑢�𝐼𝐼ℎ) < 𝜆𝜆(𝑢𝑢�𝐼𝐼+𝜍𝜍𝐼𝐼
ℎ ) (rarefaction):      

eq. 125 

 

Introducing this Riemann solution to eq. 103 gives the locally enriched smoothed flux 

divergence 

eq. 126 

 𝑢𝑢𝑅𝑅𝑅𝑅(𝒙𝒙𝐼𝐼𝐼𝐼, 𝑡𝑡𝑛𝑛) = �
𝑢𝑢�𝐼𝐼ℎ�𝑡𝑡𝑛𝑛           0 < 𝜉𝜉

𝑢𝑢�𝐼𝐼+𝜍𝜍𝐼𝐼
ℎ �

𝑡𝑡𝑛𝑛
     0 > 𝜉𝜉

 

𝑢𝑢𝑅𝑅𝑅𝑅(𝒙𝒙𝐼𝐼𝐼𝐼, 𝑡𝑡𝑛𝑛) = �

𝑢𝑢�𝐼𝐼ℎ�𝑡𝑡𝑛𝑛               0 ≤ 𝜆𝜆�𝑢𝑢�𝐼𝐼ℎ�            

𝑢𝑢|𝑡𝑡𝑛𝑛       𝜆𝜆�𝑢𝑢�𝐼𝐼ℎ� < 0 < 𝜆𝜆�𝑢𝑢�𝐼𝐼+𝜍𝜍𝐼𝐼
ℎ �

𝑢𝑢�𝐼𝐼+𝜍𝜍𝐼𝐼
ℎ �

𝑡𝑡𝑛𝑛
        0 ≥ 𝜆𝜆�𝑢𝑢�𝐼𝐼+𝜍𝜍𝐼𝐼

ℎ �      
  

𝛁𝛁� ∙ 𝑭𝑭𝐼𝐼ℎ(𝑡𝑡) = (1 𝑉𝑉𝐼𝐼⁄ ) ∑ 𝑭𝑭�𝑢𝑢𝑅𝑅𝑅𝑅(𝒙𝒙𝐼𝐼𝐼𝐼, 𝑡𝑡𝑛𝑛)� ∙ 𝒏𝒏𝐼𝐼𝐼𝐼 𝑙𝑙𝐼𝐼𝐼𝐼𝑠𝑠
𝐼𝐼=1   
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where 𝑭𝑭�𝑢𝑢𝑅𝑅𝑅𝑅(𝒙𝒙𝐼𝐼𝐼𝐼, 𝑡𝑡𝑛𝑛)� is referred to as the Riemann-enriched boundary flux. 

 4.5 Flux-corrected velocity  

The smoothed flux divergence was constructed under the SCNI framework in eq. 103, 

and a local Riemann enrichment was introduced in eq. 126 to enforce the entropy-correct 

shock solution.  It is now desired to adaptively apply the Riemann enrichment at the shock, 

and couple with that enrichment a mechanism to control Gibbs phenomenon oscillations at 

the jump.  These objectives are achieved in the proposed formulation through the 

construction of a Godunov-type of flux-corrected velocity.  To construct the flux-corrected 

velocity, the governing eq. 78 is integrated over the domain Ω𝐼𝐼  ×  [𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛+1] to obtain 

eq. 127 

Integrating the time derivative gives 

eq. 128 

Considering the domain integral in eq. 128, introduce the meshfree approximation at 𝒙𝒙𝐼𝐼 as an 

approximation of the cell-averaged solution 

eq. 129 

and denote V𝐼𝐼𝑢𝑢𝐼𝐼𝑛𝑛 ≡ V𝐼𝐼𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡𝑛𝑛)|𝒙𝒙𝐼𝐼.  Introducing the approximation from eq. 129 into eq. 128 

gives 

∫ ∫ �𝑢𝑢(𝒙𝒙, 𝑡𝑡),𝑡𝑡 + 𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢(𝒙𝒙, 𝑡𝑡)��  𝑑𝑑𝑡𝑡 𝑑𝑑Ω𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
 
Ω𝐼𝐼

= 0  

∫ �𝑢𝑢(𝒙𝒙, 𝑡𝑡𝑛𝑛+1) − 𝑢𝑢(𝒙𝒙, 𝑡𝑡𝑛𝑛)� 𝑑𝑑Ω +  ∫ ∫ 𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢(𝒙𝒙, 𝑡𝑡)� 𝑑𝑑Ω 𝑑𝑑𝑡𝑡 
Ω𝐼𝐼

𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛
 
Ω𝐼𝐼

= 0  

𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡𝑛𝑛)|𝒙𝒙𝐼𝐼 ≈ (1/𝑉𝑉𝐼𝐼)∫ 𝑢𝑢(𝒙𝒙, 𝑡𝑡𝑛𝑛) 
Ω𝐼𝐼

𝑑𝑑Ω → ∫ 𝑢𝑢(𝒙𝒙, 𝑡𝑡𝑛𝑛) 
Ω𝐼𝐼

𝑑𝑑Ω ≈ V𝐼𝐼𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡𝑛𝑛)|𝒙𝒙𝐼𝐼  
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eq. 130 

where the meshfree approximation was also introduced to the flux divergence term.  Now 

consider the domain integral in eq. 130 and introduce the smoothed flux divergence from eq. 

95, the Riemann-enriched boundary flux from eq. 126, and with employment of explicit time 

integration we have 

eq. 131 

where 

eq. 132 

The eq. 131 is equivalent to the Godunov evolution equation, where the solution is projected 

forward in time using the flux-corrected velocity, 𝛾𝛾𝐼𝐼𝑛𝑛/𝑉𝑉𝐼𝐼, which is a first order oscillation 

limiter embedded with the Riemann-enriched smoothed flux divergence.  To adaptively apply 

the flux-corrected velocity at the shock front, the temporal evolution equation is constructed 

eq. 133 

where 𝑑𝑑𝐼𝐼(𝑡𝑡) is the nodal coefficient of the RK approximation in eq. 58, 𝛼𝛼 is the generalized 

Trapezoidal rule parameter and  

eq. 134 

Here 𝜗𝜗𝐼𝐼 controls the adaptive flux-corrected velocity at the shock according to the RK shock 

V𝐼𝐼𝑢𝑢𝐼𝐼𝑛𝑛+1 − V𝐼𝐼𝑢𝑢𝐼𝐼𝑛𝑛 + ∫ ∫ 𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢ℎ(𝒙𝒙, 𝑡𝑡)� 𝑑𝑑Ω 𝑑𝑑𝑡𝑡 
Ω𝐼𝐼

𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛 = 0  

  𝛾𝛾𝐼𝐼𝑛𝑛 = 𝑉𝑉𝐼𝐼𝛁𝛁� ∙ 𝑭𝑭𝐼𝐼ℎ(𝑡𝑡) =  ∑ 𝑭𝑭�𝑢𝑢𝑅𝑅𝑅𝑅(𝒙𝒙𝐼𝐼𝐼𝐼, 𝑡𝑡𝑛𝑛)� ∙ 𝒏𝒏𝐼𝐼𝐼𝐼 𝑙𝑙𝐼𝐼𝐼𝐼𝑠𝑠
𝐼𝐼=1   

V𝐼𝐼𝑢𝑢𝐼𝐼𝑛𝑛+1 − V𝐼𝐼𝑢𝑢𝐼𝐼𝑛𝑛 + ∆𝑡𝑡 𝛾𝛾𝐼𝐼𝑛𝑛 = 0  →   𝑢𝑢𝐼𝐼𝑛𝑛+1 = 𝑢𝑢𝐼𝐼𝑛𝑛 − ∆𝑡𝑡 𝛾𝛾𝐼𝐼𝑛𝑛/𝑉𝑉𝐼𝐼  

𝑑𝑑𝐼𝐼𝑛𝑛+1 = 𝑑𝑑𝐼𝐼𝑛𝑛 + ∆𝑡𝑡�(1 − 𝛼𝛼)�̇�𝑑𝐼𝐼𝑛𝑛 + 𝛼𝛼�̇�𝑑𝐼𝐼𝑛𝑛+1 + 𝜗𝜗𝐼𝐼��𝛼𝛼 − 1)�̇�𝑑𝐼𝐼𝑛𝑛 − 𝛼𝛼�̇�𝑑𝐼𝐼𝑛𝑛+1 − 𝛾𝛾𝐼𝐼𝑛𝑛/𝑉𝑉𝐼𝐼���  

𝜗𝜗𝐼𝐼 = �1     𝒙𝒙𝐼𝐼  ∈ 𝑑𝑑𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑𝑡𝑡𝑒𝑒𝑑𝑑 𝑒𝑒ℎ𝑜𝑜𝑑𝑑𝐼𝐼 𝑒𝑒𝑒𝑒𝑔𝑔𝑒𝑒𝑜𝑜𝑡𝑡
0                       𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒                 
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detection algorithm.  This flux-corrected velocity provides oscillation control at the shock 

front, enforces the essential shock physics, and maintains RKPM higher-order accuracy away 

from the shock region.   

 4.6 Numerical examples  

In this section several numerical examples are provided to verify performance of the 

proposed formulation.  Each example solves the conservation equation  

eq. 135 

with the flux defined according to the selected model problem.  In the following examples, 

the flux divergence is calculated based on the proposed SFD technique, while the correction 

of the velocity field is invoked only when shocks are detected.  The first example solves the 

linear advection equation using the smoothed flux divergence from eq. 103.  Plane wave 

propagation in a two-dimensional domain is modeled to verify convergence for smooth wave 

propagation and confirm higher-order accuracy for smooth solutions in accordance with the 

adaptive flux correction.  The second example solves the non-linear Burgers’ equation with 

jump conditions selected to degenerate into a rarefaction wave.  The corrected and 

uncorrected RKPM solutions are compared to a fine-scale Lax-Friedrichs reference solution 

to evaluate performance for fan formation.  In the third example Burgers’ equation is solved 

with smooth initial conditions that evolve into a plane shock wave.  This example evaluates 

performance of the automatic shock detection algorithm and performance of the flux-

𝑢𝑢(𝒙𝒙, 𝑡𝑡),𝑡𝑡+ 𝛁𝛁 ∙ 𝑭𝑭�𝑢𝑢(𝒙𝒙, 𝑡𝑡)� = 0  
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corrected velocity for adaptive limiting of solution oscillation in the presence of shock 

formation.  The uncorrected RKPM, corrected RKPM, and full Godunov solutions are 

compared to a fine-scale Lax-Friedrichs reference solution to evaluate accuracy 

improvement.  The last example solves Burgers’ equation for a two-dimensional shock wave 

propagation that travels skew to the principal axes over a two-dimensional domain.  In this 

case performance of the formulation with respect to oscillation control in the presence of 

multi-dimensional flow is verified. 

In all examples the RK approximation was constructed using linear basis and circular 

kernel supports.  Normalized support size of 1.75 was used, where the normalized support is 

the support size divided by nodal spacing.  Temporal integration was performed by central 

differencing so that the uncorrected solution is fully second-order accurate in space and time.  

The time step for each problem was selected using a Courant number of 0.25.  For the shock 

detection algorithm the absolute value of the high-pass solution was used as the shock 

indicator, with limiting criterion �𝑢𝑢ℎ𝑖𝑖𝑖𝑖ℎℎ (𝒙𝒙𝐼𝐼)� > 0.03. 
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4.6.1 Linear advection  

The linear advection equation is solved for the propagation of a smooth wave in the x-

direction of a two-dimensional domain.  The analytical flux function is 

eq. 136 

Initial and boundary conditions were, respectively, 

 

eq. 137 

eq. 138 

Results are shown in Figure 16 and Figure 17, where the nodal spacing is ∆𝑥𝑥 = 0.0125.  

Since the solution remained smooth the detection algorithm did not detect a shock and 

therefore only the SFD is invoked in the flux divergence calculation while the velocity field 

remains uncorrected.  As seen in Figure 16 the wave solution remains smooth and propagates 

uniformly in time.  Figure 17 confirms solution convergence to the exact solution with 

refinement of the nodal spacing.  For the coarser discretizations there are small oscillations at 

the head of the wave that are reduced with refinement.  These are not considered Gibbs-type 

oscillations since they are essentially eliminated with model refinement, as compared to 

shock-induced oscillations that remain persistent at the jump.  Based on the results of this 

problem, accuracy of the proposed SFD formulation for smooth wave propagation is verified. 

𝑭𝑭�𝑢𝑢(𝒙𝒙, 𝑡𝑡)� = �𝑢𝑢(𝒙𝒙, 𝑡𝑡)
0

�  

𝑢𝑢(𝒙𝒙, 0) = �

1                       𝑧𝑧 < 0
1 − 6𝑧𝑧2 + 6𝑧𝑧3          0 ≤ 𝑧𝑧 < 0.5
     2(1 − 𝑧𝑧)3              0.5 ≤ 𝑧𝑧 < 1

0                       1 < 𝑧𝑧

          𝑧𝑧 = (𝑥𝑥 − 0.1) 0.5⁄   

𝑢𝑢(𝑥𝑥 = 0, 𝑡𝑡) = 1   &   𝑢𝑢(𝑥𝑥 = 1, 𝑡𝑡) = 0 
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(a) 

 

 

 

 

(b) 

Figure 16. Smooth advection wave, a) initial conditions, and b) RKPM solution                    

at 𝑡𝑡 = 0.4 
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Figure 17. Solution convergence for smooth advection wave using RKPM shock modeling 

formulation 
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4.6.2 Nonlinear Burgers’ equation with rarefaction formation 

In this example the nonlinear Burgers’ equation is solved with an initial condition jump 

condition selected to form a plane rarefaction wave.  The analytical flux function is 

eq. 139 

Initial and boundary conditions were, respectively, 

eq. 140 

eq. 141 

Initial conditions and results from the corrected and uncorrected RKPM solutions are given 

in Figure 18, where the nodal spacing is ∆𝑥𝑥 = 0.0125.  In this rarefaction case the initial 

discontinuity degenerates into a smoothly expanding rarefaction wave.  The corrected RKPM 

solution at time 𝑡𝑡 = 0.3 (97 time steps) is shown in Figure 18b.  The detection algorithm 

detected the initial discontinuity and applied the flux-corrected velocity for the first 15 steps.  

The corrected solution exhibited a very small oscillation behind the fan as a result of the 

initial discontinuity, with a maximum overshoot of 3 percent.  The magnitude of the 

oscillations reduced with distance from the fan.  The uncorrected solution at the same time is 

shown in Figure 18c.  The initial discontinuity caused much larger oscillation error behind 

the wave that persisted with time; the maximum overshoot was 10 percent.  These 

oscillations caused significant pollution of the solution well behind the wave.  In Figure 19 

𝑭𝑭�𝑢𝑢(𝒙𝒙, 𝑡𝑡)� = �0.5𝑢𝑢(𝒙𝒙, 𝑡𝑡)2
0

�  

𝑢𝑢(𝒙𝒙, 0) = �1          𝑥𝑥 ≤ 1
2          𝑥𝑥 > 1  

𝑢𝑢(𝑥𝑥 = 0, 𝑡𝑡) = 1    &   𝑢𝑢(𝑥𝑥 = 2, 𝑡𝑡) = 2 
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the corrected and uncorrected solutions are compared with a fine scale Lax-Friedrichs (LF) 

solution (5x finer discretization) that was provided as a reference.  The corrected RKPM 

solution closely matches the reference with nearly the same sharpness as the uncorrected.  

However, due to the locally-applied correction in the first 15 steps the oscillations driven by 

the initial discontinuity were limited.  Consequently, the corrected RKPM formulation 

provided a much more accurate rarefaction solution in comparison to the uncorrected. 
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         (a) 

 

 

 

        (b) 

 

 

 

         (c)  

Figure 18. Rarefaction wave, a) initial conditions, b) corrected RKPM solution  at 𝑡𝑡 = 0.3, 

and c) uncorrected RKPM solution at 𝑡𝑡 = 0.3 
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Figure 19. Rarefaction wave, comparison of corrected and uncorrected RKPM solutions to 

LF reference solution 
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4.6.3 Nonlinear Burgers’ equation with plane shock formation 

In this example nonlinear Burgers’ equation with the flux in eq. 139 is solved again, but 

with smooth initial conditions that evolve into a shock according to the flux non-linearity.  

Initial conditions and boundary conditions were, respectively, 

eq. 142 

 

eq. 143 

Results from the corrected and uncorrected RKPM solutions are shown in Figure 20 and 

Figure 21, respectively.  Nodal spacing was ∆𝑥𝑥 = 0.00625.  The smooth initial conditions 

are shown in Figure 20a and the corrected RKPM solution at time 𝑡𝑡 = 0.6 (385 steps) is 

shown in Figure 20b.  Due to the non-linear flux the initially smooth conditions transformed 

into a shock wave traveling towards the right.  In the corrected solution the shock formation 

was detected after 240 steps.  Using the flux-corrected velocity in the shock region, 

oscillations were controlled while maintaining a sharp front.  Prior to that time the solution 

was sufficiently smooth to use the uncorrected solution without loss of accuracy due to 

oscillation.  The uncorrected solution at the same time is shown in Figure 21, which 

oscillated strongly.    The corrected and uncorrected RKPM solutions are compared to a first-

order Godunov solution and a fine-scale Lax-Friedrichs (LF) reference solution in Figure 22a 

and Figure 22b.  Figure 22a shows the solution after 190 steps, just before the shock 

𝑢𝑢(𝒙𝒙, 0) = �
0.25(1 − 6𝑧𝑧2 + 6𝑧𝑧3)          0 ≤ 𝑧𝑧 < 0.5
          0.5(1 − 𝑧𝑧)3                 0.5 ≤ 𝑧𝑧 < 1

       0                            1 < 𝑧𝑧
          𝑧𝑧 = |𝑥𝑥 − 0.3| 0.2⁄   

𝑢𝑢(𝑥𝑥 = 0, 𝑡𝑡) = 0    &   𝑢𝑢(𝑥𝑥 = 1, 𝑡𝑡) = 0 
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formation occurs.  Here the corrected and uncorrected solutions are the same because the 

shock has not formed and consequently no correction was made.  The dissipative effect of the 

fully first-order accurate Godunov solution is observed; the Godunov method under-

predicted the wave peak even for the smooth solution.  Figure 22b compares the solutions 

after shock formation.  The uncorrected solution oscillates strongly, and the Godunov 

solution is excessively dissipative.  Using the adaptive flux-corrected velocity, the corrected 

RKPM solution gave a more accurate smooth solution and sharper shock peak while 

avoiding strong oscillations at the jump.  
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    (b)  

Figure 20. Plane shock wave, a) initial conditions, and b) corrected RKPM solution at 

𝑡𝑡 = 0.6 
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Figure 21. Plane shock wave, uncorrected RKPM solution at 𝑡𝑡 = 0.6 
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(a) 

 

 

 

 

 

 

 

(b) 

Figure 22. Plane shock wave, comparison of corrected and uncorrected RKPM solutions to 

Godunov and LF reference solution a) before shock formation and b) after shock formation 
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4.6.4 Nonlinear Burgers’ equation with 2D shock propagation 

In this example the nonlinear Burgers’ equation is solved, but with the flux definition 

eq. 144                                                       

which yields two-dimensional wave propagation.  Accordingly, this example tests the 

proposed formulation’s ability to capture multi-dimensional shock wave propagation.  Initial 

and boundary conditions were, respectively, 

eq. 145 

eq. 146 

Results from the corrected RKPM solution are shown in Figure 23, where the nodal spacing 

was ∆𝑥𝑥 = 0.025.  The initial conditions with a regular nodal discretization are shown in 

Figure 23a.  The corrected RKPM solution at time 𝑡𝑡 = 0.6 with a regular discretization is 

shown in Figure 23b, and the same with an irregular discretization is shown in Figure 23c.  

The irregular discretization was constructed by using a random number generator operating 

on the regular nodal spacing in order to shift the nodal locations.  Both of the corrected 

solutions are free of oscillation and sharply capture the wave which is propagating oblique to 

the discretization direction.  In Figure 23c the wave front has a slight roughness transverse to 

the wave direction.  This was caused by the way the initial conditions were specified on the 

irregular discretization, where the initial conditions had the same roughness.  It is not a result 

𝑭𝑭�𝑢𝑢(𝒙𝒙, 𝑡𝑡)� = �0.5𝑢𝑢(𝒙𝒙, 𝑡𝑡)2

0.5𝑢𝑢(𝒙𝒙, 𝑡𝑡)2
�  

𝑢𝑢(𝒙𝒙, 0) = �1           𝑦𝑦 ≤ (0.5 − 𝑥𝑥)
0             𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒    

  

𝑢𝑢(𝑥𝑥 = 0, 𝑡𝑡) = 1   &    𝑢𝑢(𝑦𝑦 = 0, 𝑡𝑡) = 1 
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of the shock modeling formulation.  Therefore, this example shows that by using the flux-

corrected velocity to adaptively correct the RKPM solution at the shock front, oscillations 

were controlled for both regular and randomly distributed discretizations in the presence of 

multi-dimensional shock propagation.   
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(a) 

 

 

 

 

 

 

 

                           (b)                                                                               (c) 

Figure 23. 2D shock wave at 𝑡𝑡 = 0.6, a) initial conditions, b) corrected RKPM solution at 

with regular discretization, and c) corrected RKPM solution with irregular discretization 
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CHAPTER 5 RKPM FORMULATION FOR 

SHOCKS IN NONLINEAR SOLIDS 

Many challenging engineering and scientific problems involve the response of nonlinear 

solid materials to extreme dynamic loading.  The accompanying hydrodynamic effects are 

crucial, where the shock-driven pressure can dominate material response.  In this chapter the 

RKPM shock modeling formulation for scalar conservation laws is extended to Cauchy’s 

equation of motion for accurate shock modeling in nonlinear solids.  Decomposition of the 

internal force vector into deviatoric and volumetric parts is employed, where the deviatoric 

part retains the material shear response and the volumetric part is corrected to embed the 

shock physics and provide oscillation control.  Correction of the volumetric internal force 

vector is accomplished by introducing the Rankine-Hugoniot (R-H) jump equation for 

momentum conservation to the volumetric stress divergence through a smooth divergence 

operator.  The divergence operator correction follows a Godunov-type approach using a 

Riemann problem formulated under the framework of SCNI.  The Riemann solution is 

obtained from the R-H jump equation and enforces the physically correct shock propagation 

in accordance with the physics of entropy production.  Through the embedded Riemann 

problem, the corrected divergence operator also engenders the formulation with an 

oscillation-limiting feature.  Appropriate construction of the Riemann problem in the state 

and field variable approximations are used to control oscillation at the jump, without 
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requiring arbitrary parameters and length scales as in the traditional artificial viscosity 

approach.  A new power function kernel for construction of the RK approximation is also 

introduced, which assists in controlling oscillation of the numerical solution at the jump.  

Nodal pressures are updated according to a Hugoniot-based deformation measure, which 

provides consistency with the Hugoniot-corrected volumetric stress divergence.   

5.1 Power function kernel for approximation of discontinuities 

Locality and smoothness of the RK approximation are governed by the behavior of the 

kernel function, 𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼) in eq. 67.  A typically used set of kernels are the family of B-

spline functions, which provide high levels of continuity and accuracy for smooth solutions 

due to the functions’ inherent smoothness.  In this research, a different type of kernel function 

was investigated, referred to herein as a power function kernel.  The power function kernel is 

designed to be highly localized for use in approximating the rough, discontinuous solutions 

that are of importance in shock models.  The increased localization provides a more accurate 

jump approximation and yields a reduced Gibbs phenomenon.   

The power function is used as the kernel weighting over the compact support in the 

reproducing kernel approximation.  In contrast to the cubic B-spline, weighting with distance 

from the kernel centroid is significantly reduced with this power function.  The power 

function kernel is defined in eq. 147; the cubic B-spline kernel is given in eq. 148 for 

comparison.  The measure of normalized distance from the kernel centroid, 𝑧𝑧, is defined in 

eq. 149, where 𝒙𝒙𝐼𝐼 is the coordinate of the Ith node located at the kernel center and 𝑎𝑎 is the 
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size of the compact support.  

eq. 147 

 

eq. 148 

 

eq. 149 

In the power function kernel, the power term 𝛼𝛼 controls the amount of kernel 

localization; increasing values of 𝛼𝛼 result in increased locality.  The kernel imparts C0 

continuity to the RK approximation due to the discontinuous derivative at the kernel centroid 

(i.e., at 𝑧𝑧 = 0).  However, the discontinuous derivative is not an issue for integration 

techniques such as the meshfree SCNI [27] or SNNI [34], where nodal derivatives are not 

required.  Away from the centroid the power function kernel provides arbitrarily high order of 

continuity according to the power term, but remains localized about the centroid.   

An example of the power function kernel with power term values of 𝛼𝛼 = 2, 4, and 24  is 

shown in Figure 24.  The kernel is plotted over a kernel support domain with support size of 

𝑎𝑎 = 1.  A cubic B-spline kernel is plotted over the same domain for comparison.  The 

localized nature of the power function kernel is clear, where the weighting localizes towards 

the kernel centroid with increasing values of 𝛼𝛼.  Weighting towards the edges of the support 

is significantly reduced in comparison to the B-spline.   

𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼) = �(1 − 𝑧𝑧)𝛼𝛼         0 ≤ 𝑧𝑧 ≤ 1
0                      1 < 𝑧𝑧

  

𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼) = �
1 − 6𝑧𝑧2 + 6𝑧𝑧3     0 ≤ 𝑧𝑧 ≤ 1 2⁄
2(1 − 𝑧𝑧)3              1 2⁄ < 𝑧𝑧 ≤ 1

0                             1 < 𝑧𝑧
 

𝑧𝑧 =
‖𝒙𝒙 − 𝒙𝒙𝑰𝑰‖

𝑎𝑎
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Figure 24. Comparison of power function (varying 𝛼𝛼) and B-spline kernels 

 

The RK shape functions computed from eq. 67 with the power and B-spline kernels are 

compared in Figure 25; power function kernels with varying 𝛼𝛼 values are shown alongside 

the corresponding shape functions.  The shape functions were constructed with a linear basis, 

and the normalized support, defined as the support size divided by nodal spacing (𝑎𝑎/ℎ), was 

2.  According to this normalized support size the kernel support spans the distance of two 

nodal spaces away from the kernel centroid.  In both cases the shape function is continuous 

over the full support domain.  However, due to locality of the power function kernel, for 

increasing values of 𝛼𝛼 the shape function value is essentially zero beyond the first pair of 

nodes adjacent to the centroid.  In contrast, the shape function calculated from the cubic B-

spline generates a much smoother weight distribution over the entire support.  In the presence 
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of a discontinuity this will result in a stronger cross-jump interpolation.  Another beneficial 

property of the power function kernel is recovery of a near kronecker delta condition, which 

is not generally obtained with the RK shape functions.  Increasing values of the power term 

yield convergence toward the kronecker delta property, as shown in Figure 25.  
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Figure 25. RK shape functions computed using the power function and B-spline kernels 
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To compare the approximation properties of the power function and B-spline kernels, the 

one-dimensional step function  

eq. 150 

was approximated over the domain 𝑥𝑥 ∈ [0,1].  The set of nodal coefficients {𝑑𝑑𝐼𝐼}𝐼𝐼=1
𝑛𝑛𝑛𝑛  was 

solved by least squares minimization of 

eq. 151 

where 𝑒𝑒 is the squared residual to be minimized, 𝑢𝑢𝐼𝐼 is the solution of eq. 150 at 𝑥𝑥𝐼𝐼, and 𝑢𝑢𝐼𝐼ℎ is 

the RK approximation from eq. 58 evaluated at 𝑥𝑥𝐼𝐼.  The RK shape functions were constructed 

using linear basis and a normalized support of 2.  The power function and B-spline kernel 

approximations are compared in Figure 26. The cubic B-spline exhibits a strong overshoot at 

the jump with oscillations behind it.  The power function approximation reduces oscillation 

with increasing values of 𝛼𝛼; for the approximation using 𝛼𝛼 = 24 there is a very small 

overshoot near the first node adjacent to the jump and is essentially non-oscillatory over the 

remainder of the domain.  In Figure 26 the jump is located between the nodes, showing that 

there is no requirement for the discretization points to exactly coincide with the discontinuity 

in order for the power function to control oscillation.   

 

 

 

𝑢𝑢(𝑥𝑥) = �2     0 ≤ 𝑥𝑥 ≤ 0.5
1     0.5 < 𝑥𝑥 ≤ 1    

𝑒𝑒 = ∑ �𝑢𝑢𝐼𝐼 − 𝑢𝑢𝐼𝐼ℎ�
2𝑛𝑛𝑛𝑛

𝐼𝐼=1   
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Figure 26. Discontinuity approximation using power function and B-spline kernels 

An error measure is defined to quantify the jump error  

eq. 152 

where 𝑢𝑢𝑚𝑚𝑎𝑎𝑥𝑥ℎ  and 𝑢𝑢𝑚𝑚𝑖𝑖𝑛𝑛ℎ  are shown in Figure 26.  The jump error for the approximation with 

the cubic B-spline was approximately 21 percent; the jump error for the power function 

approximation (𝛼𝛼 = 24) was less than 1 percent. 

uh
max 

uh
min 

𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑚𝑚𝑛𝑛 = �𝑢𝑢𝑚𝑚𝑎𝑎𝑥𝑥ℎ − 𝑢𝑢𝑚𝑚𝑖𝑖𝑛𝑛ℎ � − 1  
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Approximation behavior of the power function kernel was also investigated in two 

dimensions.  As an example, the two dimensional step function 

eq. 153 

was approximated using the power function and B-spline kernels.  The shape functions were 

formed with linear basis and normalized support of 2.  Approximation results are compared 

in Figure 27; note that the color scale is limited to a range of 0.75-1.25 to focus on the 

oscillations behind the jump.  Similar to the one-dimensional results, the cubic B-spline 

approximation is oscillatory in the directions parallel and transverse to the discontinuity.  In 

comparison, the power function approximation is non-oscillatory.  The roughness in the 

power function approximation parallel with the discontinuity is due to interpolation between 

the discrete RK points, it is not oscillation due to the discontinuity. 

 

 

 

 

 

 

 

 

 

𝑢𝑢(𝒙𝒙) = �1      𝑥𝑥 + 𝑦𝑦 ≤ 1
0     𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒  
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(a) 

 

 

 

 

 

 

 

 

 
 
 
 

(b) 

Figure 27. 2D discontinuity approximation using a) power function and b) B-spline kernels 

 

𝑢𝑢(𝒙𝒙) = 0 

𝑢𝑢(𝒙𝒙) = 1 

𝑢𝑢(𝒙𝒙) = 0 

𝑢𝑢(𝒙𝒙) = 1 
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To investigate the kernel functions’ influence on convergence behavior, an error analysis was 

performed using the L2 error norm.  First the approximation of a smooth sine function was 

considered 

eq. 154 

where linear basis and normalized support of 1.5 were used.  The convergence analysis using 

power function (varying 𝛼𝛼 values) and B-spline kernels is shown in Figure 28a.  The 

convergence rate using both kernels is 2.0, which matches the theoretically expected rate.  

This shows that the power function kernel does not affect the solution convergence, since 

only continuity and locality are governed by the kernel.  Accuracy of the power function 

kernel was not significantly affected by a change in power value, and the power function 

kernel accuracy for both 𝛼𝛼 is somewhat lower than the B-spline because of the increased 

kernel locality.  However, the design intent for the power function is application to rough 

solutions as in shocks, so this is not considered an issue.  Convergence analysis was also 

performed for approximation of the discontinuous function in eq. 150.  To focus on the 

oscillatory error, the analysis was limited to the subdomain upstream of the jump, i.e., from 

𝑥𝑥 = 0 to the first node upstream of the jump.  The convergence analysis using various power 

term values is shown in Figure 28b.  For this rough function, accuracy of the power function 

approximation significantly increases with increases in 𝛼𝛼.  As with the smooth sine function, 

convergence rate is not affected by the change in kernel locality.  The lower convergence rate 

in Figure 28b is due to the step function roughness. 

𝑢𝑢(𝑥𝑥) = sin(𝜋𝜋𝑥𝑥)    𝑥𝑥 ∈ [0,1]  
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(b) 

Figure 28. Comparison of L2 convergence, a) smooth sine function, and b) discontinuous 

function 
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5.2 Weak form equation and Galerkin approximation 

The shock modeling formulation for non-linear solids is constructed as a weak form of 

Cauchy’s equation of motion 

eq. 155 

where 𝜌𝜌 is the material density, �̈�𝒖(𝒙𝒙, 𝑡𝑡) is acceleration of the solid, 𝝉𝝉(𝒙𝒙, 𝑡𝑡) is Cauchy’s stress 

tensor, and 𝒃𝒃(𝒙𝒙, 𝑡𝑡) is the body force per unit mass.  Here the notation 𝒙𝒙 indicates a term in 

the deformed configuration; this is distinguished from the notation 𝑿𝑿 used later in reference 

to the undeformed configuration.  In the proposed formulation for solids the volumetric stress 

divergence (or equivalently the pressure gradient) is corrected to embed the essential shock 

physics and enforce oscillation control at the jump.  To facilitate this correction, Cauchy’s 

stress is decomposed into volumetric and deviatoric parts so that eq. 155 becomes 

eq. 156 

where 𝝉𝝉𝑑𝑑(𝒙𝒙, 𝑡𝑡) and 𝝉𝝉𝑣𝑣(𝒙𝒙, 𝑡𝑡) are the deviatoric and volumetric parts of Cauchy’s stress, 

respectively.  The volumetric stress divergence correction is constructed under the framework 

of SCNI [27, 28].  SCNI utilizes a conforming integration cell topology, and as a 

consequence is most efficiently used in conjunction with a total Lagrangian formulation to 

avoid topology reconstruction.  Accordingly, the weak form of eq. 156 is expressed in the 

undeformed configuration as 

 

𝜌𝜌�̈�𝒖(𝒙𝒙, 𝑡𝑡) − 𝛁𝛁 ∙ 𝝉𝝉(𝒙𝒙, 𝑡𝑡) + 𝜌𝜌𝒃𝒃(𝒙𝒙, 𝑡𝑡) = 𝟎𝟎  

𝜌𝜌�̈�𝒖(𝒙𝒙, 𝑡𝑡) − 𝛁𝛁 ∙ 𝝉𝝉𝑑𝑑(𝒙𝒙, 𝑡𝑡) − 𝛁𝛁 ∙ 𝝉𝝉𝑣𝑣(𝒙𝒙, 𝑡𝑡) + 𝜌𝜌𝒃𝒃(𝒙𝒙, 𝑡𝑡) = 𝟎𝟎   
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eq. 157 

where 𝒘𝒘(𝑿𝑿, 𝑡𝑡) ∈ 𝐻𝐻𝑖𝑖1 is a test function, 𝜌𝜌0is the material density in the undeformed 

configuration, and ∫ ⋯ 
Ω𝑋𝑋 𝑑𝑑Ω and ∫ ⋯ 

Γℎ
𝑋𝑋 𝑑𝑑Γ indicate domain and contour integrals in the 

undeformed configuration.  In eq. 157 the terms 𝝈𝝈𝑑𝑑(𝑿𝑿, 𝑡𝑡) and 𝝈𝝈𝑣𝑣(𝑿𝑿, 𝑡𝑡) indicate stress 

measures in the undeformed configuration that are derived from an appropriate 

transformation of the Cauchy stress, such as the Piola-Kirchoff stresses or others [119].  The 

term 𝒉𝒉0(𝑿𝑿, 𝑡𝑡) is the surface traction expressed in the undeformed configuration, i.e., 

𝒉𝒉0(𝑿𝑿, 𝑡𝑡) = 𝑵𝑵(𝑿𝑿) ∙ 𝝈𝝈(𝑿𝑿, 𝑡𝑡).  In the following weak form construction, integration by parts 

was only applied to the domain integration of the deviatoric stress.  The volumetric portion 

was not integrated by parts in order to maintain the volumetric stress divergence in the 

variational equation so that its correction can be constructed later for the desired purposes.  

Although integration by parts was limited to the deviatoric stress, we have considered the 

contour integral over the natural boundary to include 𝒉𝒉0(𝑿𝑿, 𝑡𝑡), which is the total surface 

traction due to deviatoric and volumetric stresses.  Use of the volumetric stress divergence 

correction to recover the total surface traction due to volumetric and deviatoric stresses is 

given in Section 5.5. 

The approximated trial and test functions, 𝒖𝒖ℎ(𝑿𝑿, 𝑡𝑡) and 𝒘𝒘ℎ(𝑿𝑿, 𝑡𝑡) respectively, are 

introduced to the weak form equation to obtain the Galerkin approximation   

 

∫ 𝜌𝜌0𝒘𝒘(𝑿𝑿, 𝑡𝑡) ∙ 
Ω𝑋𝑋 �̈�𝒖(𝑿𝑿, 𝑡𝑡)𝑑𝑑Ω + ∫ 𝛁𝛁𝒘𝒘(𝑿𝑿, 𝑡𝑡):𝝈𝝈𝑑𝑑(𝑿𝑿, 𝑡𝑡) 

Ω𝑋𝑋 𝑑𝑑Ω − ∫ 𝒘𝒘(𝑿𝑿, 𝑡𝑡) ∙ 
Ω𝑋𝑋

�𝛁𝛁 ∙ 𝝈𝝈𝑣𝑣(𝑿𝑿, 𝑡𝑡)� 𝑑𝑑Ω − ∫ 𝒘𝒘(𝑿𝑿, 𝑡𝑡) ∙ 𝒉𝒉0(𝑿𝑿, 𝑡𝑡) 
Γℎ
𝑋𝑋 𝑑𝑑Γ + ∫ 𝜌𝜌0𝒘𝒘(𝑿𝑿, 𝑡𝑡) ∙ 𝒃𝒃(𝑿𝑿, 𝑡𝑡) 

Ω𝑋𝑋 𝑑𝑑Ω = 0   
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eq. 158 

where �̈�𝒖ℎ(𝑿𝑿, 𝑡𝑡) =  ∑ Ψ𝐼𝐼(𝑿𝑿) �̈�𝒅𝐼𝐼(𝑡𝑡)
𝑛𝑛𝑛𝑛
𝐼𝐼=1 , 𝒘𝒘ℎ(𝑿𝑿, 𝑡𝑡) =  ∑ Ψ𝐼𝐼(𝑿𝑿) 𝒄𝒄𝐼𝐼(𝑡𝑡)

𝑛𝑛𝑛𝑛
𝐼𝐼=1 ; 𝒄𝒄𝐼𝐼(𝑡𝑡) are the 

coefficients corresponding to the test function, and the RK shape functions are constructed in 

the undeformed configuration.  Since the shape functions are constructed in the undeformed 

configuration, they only need to be calculated once at the beginning of the simulation, which 

is a beneficial feature of this total Lagrangian formulation. 

For strong shock problems, eq. 158 needs to contain the essential shock physics.  

Further, this weak treatment is prone to strong oscillation when higher-order spatial 

approximations are introduced at the shock.  To address these issues the volumetric stress 

divergence is corrected, which is denoted as 𝑺𝑺�(𝑿𝑿, 𝑡𝑡) and is discussed in the next section.  The 

corresponding weak form is 

 

eq. 159 

The corrected Galerkin approximation in eq. 159 is the basis of the proposed hydrodynamic 

formulation for solids. 

 

 

∫ 𝜌𝜌0𝒘𝒘ℎ(𝑿𝑿, 𝑡𝑡) 
Ω𝑋𝑋 ∙ �̈�𝒖ℎ(𝑿𝑿, 𝑡𝑡)𝑑𝑑Ω + ∫ 𝛁𝛁𝒘𝒘ℎ(𝑿𝑿, 𝑡𝑡):𝝈𝝈𝑑𝑑(𝑿𝑿, 𝑡𝑡) 

Ω𝑋𝑋 𝑑𝑑Ω − ∫ 𝒘𝒘ℎ(𝑿𝑿, 𝑡𝑡) ∙ 
Ω𝑋𝑋

�𝛁𝛁 ∙ 𝝈𝝈𝑣𝑣(𝑿𝑿, 𝑡𝑡)� 𝑑𝑑Ω − ∫ 𝒘𝒘ℎ(𝑿𝑿, 𝑡𝑡) ∙ 𝒉𝒉0(𝑿𝑿, 𝑡𝑡) 
Γℎ
𝑋𝑋 𝑑𝑑Γ + ∫ 𝜌𝜌0𝒘𝒘ℎ(𝑿𝑿, 𝑡𝑡) ∙ 𝒃𝒃(𝑿𝑿, 𝑡𝑡) 

Ω𝑋𝑋 𝑑𝑑Ω = 0       

∫ 𝜌𝜌0𝒘𝒘ℎ(𝑿𝑿, 𝑡𝑡) 
Ω𝑋𝑋 ∙ �̈�𝒖ℎ(𝑿𝑿, 𝑡𝑡)𝑑𝑑Ω + ∫ 𝛁𝛁𝒘𝒘ℎ(𝑿𝑿, 𝑡𝑡):𝝈𝝈𝑑𝑑(𝑿𝑿, 𝑡𝑡) 

Ω𝑋𝑋 𝑑𝑑Ω − ∫ 𝒘𝒘ℎ(𝑿𝑿, 𝑡𝑡) ∙ 
Ω𝑋𝑋

𝑺𝑺�(𝑿𝑿, 𝑡𝑡) 𝑑𝑑Ω − ∫ 𝒘𝒘ℎ(𝑿𝑿, 𝑡𝑡) ∙ 𝒉𝒉0(𝑿𝑿, 𝑡𝑡) 
Γℎ
𝑋𝑋 𝑑𝑑Γ + ∫ 𝜌𝜌0𝒘𝒘ℎ(𝑿𝑿, 𝑡𝑡) ∙ 𝒃𝒃(𝑿𝑿, 𝑡𝑡) 

Ω𝑋𝑋 𝑑𝑑Ω = 0  
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5.3 Corrected volumetric stress divergence 

In the formulation for nonlinear solids to be discussed below, the volumetric stress 

divergence is corrected to introduce the essential shock physics and to also provide a 

mechanism for oscillation control.  To construct the correction, begin by forming a smoothed 

divergence operation under the framework of SCNI.  The operation is embedded with a 

Riemann problem that is formed on the SCNI integration cell topology and is solved using 

the R-H jump condition applied on the integration cell boundaries.  As a consequence, the 

Riemann solution satisfies the entropy production constraint, e.g. [100], by following 

characteristic projections and ensuring recovery of the physically correct shock or rarefaction 

solution.  Furthermore, through an appropriate approximation of the state and field variables 

used in the Riemann problem initial conditions, the formulation is made oscillation-limiting 

at the shock. 

5.3.1 Smoothed volumetric stress divergence operation 

To construct the smoothed divergence operation, consider the SCNI integration cell 

topology shown in Figure 13. The volumetric stress divergence at the 𝐼𝐼𝑡𝑡ℎ node is 

approximated as 

eq. 160 

A piecewise constant kernel function, 𝜑𝜑(𝑿𝑿;𝑿𝑿 − 𝑿𝑿𝐼𝐼), is introduced to the approximation 

eq. 161 

𝛁𝛁 ∙ 𝝈𝝈𝑣𝑣(𝑿𝑿, 𝑡𝑡)|𝑿𝑿𝐼𝐼 ≈ ∫ 𝛁𝛁 ∙ 𝝈𝝈𝑣𝑣(𝑿𝑿, 𝑡𝑡)𝜑𝜑(𝑿𝑿;𝑿𝑿 − 𝑿𝑿𝐼𝐼) 𝑑𝑑Ω ≡ 𝛁𝛁� ∙ 𝝈𝝈𝐼𝐼𝑣𝑣(𝑡𝑡) 
Ω𝐼𝐼
𝑋𝑋   

𝜑𝜑(𝑿𝑿;𝑿𝑿 − 𝑿𝑿𝐼𝐼) = �1/𝑉𝑉𝐼𝐼        𝑿𝑿 ∈ Ω𝐼𝐼𝑋𝑋   
0         𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒
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where 𝑉𝑉𝐼𝐼 = ∫  𝑑𝑑Ω 
Ω𝐼𝐼
𝑋𝑋 .  Using this kernel definition the smoothed volumetric stress divergence 

becomes 

eq. 162 

eq. 163 

To obtain eq. 163, the definition of volumetric stress, 𝝈𝝈𝑣𝑣(𝑿𝑿, 𝑡𝑡) = 𝑃𝑃(𝑿𝑿, 𝑡𝑡)𝑰𝑰, was used, where 

𝑃𝑃(𝑿𝑿, 𝑡𝑡) is pressure and 𝑰𝑰 is the identity matrix.  Using the divergence theorem, eq. 163 can be 

transformed to the contour integral 

eq. 164 

where 𝑵𝑵 is the outward normal to Γ𝐼𝐼𝑋𝑋.  To numerically integrate eq. 164, consider the 

boundary, Γ𝐼𝐼𝑋𝑋, in Figure 13 to be composed of a set of line segments, 𝕃𝕃𝐼𝐼 = {𝐿𝐿𝐼𝐼𝐼𝐼}𝐼𝐼=1𝑠𝑠 , where 𝑒𝑒 

is the total number of segments, and each segment is associated with a midpoint, length, and 

outward normal of 𝑿𝑿𝐼𝐼𝐼𝐼, 𝑙𝑙𝐼𝐼𝐼𝐼, and 𝑵𝑵𝐼𝐼𝐼𝐼, respectively.  Using Newton-Cotes quadrature, the 

numerical approximation of the smoothed volumetric stress divergence is   

eq. 165 

In eq. 165 an approximation of the pressure along the boundary of each integration cell is 

required, which is to be obtained from a Riemann problem solved with the Rankine-Hugoniot 

jump equation in the following section. 

𝛁𝛁� ∙ 𝝈𝝈𝐼𝐼𝑣𝑣(𝑡𝑡) = (1/𝑉𝑉𝐼𝐼)∫ 𝛁𝛁 ∙ 𝝈𝝈𝑣𝑣(𝑿𝑿, 𝑡𝑡) 𝑑𝑑Ω 
Ω𝐼𝐼
𝑋𝑋   

= (1/𝑉𝑉𝐼𝐼)∫ 𝛁𝛁𝑃𝑃(𝑿𝑿, 𝑡𝑡) 𝑑𝑑Ω 
Ω𝐼𝐼
𝑋𝑋   

𝛁𝛁� ∙ 𝝈𝝈𝐼𝐼𝑣𝑣(𝑡𝑡) = (1/𝑉𝑉𝐼𝐼)∫ 𝑃𝑃(𝑿𝑿, 𝑡𝑡)𝑵𝑵 𝑑𝑑Γ 
Γ𝐼𝐼
𝑋𝑋   

𝛁𝛁� ∙ 𝝈𝝈𝐼𝐼𝑣𝑣(𝑡𝑡) = (1/𝑉𝑉𝐼𝐼)∑ 𝑃𝑃(𝑿𝑿, 𝑡𝑡)|𝑿𝑿𝐼𝐼𝐼𝐼𝑵𝑵𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐼𝐼𝑠𝑠
𝐼𝐼=1   
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5.3.2 Riemann problem and R-H enriched boundary pressure 

In the scalar law formulation a Riemann problem was formed on the SCNI integration 

cells, where the piecewise constant initial conditions formed numerical discontinuities at the 

cell boundaries.  The Riemann solution was obtained by characteristic projections.  In the 

nonlinear solids formulation a similar Riemann problem is defined on the integration cell 

topology.  However, the numerical discontinuity is now viewed as a local contact shock 

problem that can be solved using the R-H jump equation relating pressure and particle 

velocity (referred to as the 𝑃𝑃-�̇�𝑢 Hugoniot hereafter).  The solution of this boundary shock 

problem describes the behavior (velocity and magnitude) of shock waves emanating from the 

interface and is therefore similar to the solution obtained by characteristic projections.  

Consequently, the boundary shock problem ensures that the physically correct shock solution 

is embedded in the formulation, so that the properties of the second law of thermodynamics 

are enforced.    

To construct the Riemann problem at each time step, initial conditions for pressure and 

particle velocity are formed as the cell-averaged solution within each SCNI integration cell   

eq. 166 

eq. 167 

where �̇�𝒖(𝑿𝑿, 𝑡𝑡) denotes the particle velocity.  For the integration cell topology shown in 

Figure 13, a one-dimensional Riemann problem can be defined across each segment of Γ𝐼𝐼𝑋𝑋, 

𝑃𝑃�𝐼𝐼𝑛𝑛 = (1/𝑉𝑉𝐼𝐼)∫ 𝑃𝑃(𝑿𝑿, 𝑡𝑡𝑛𝑛)𝑑𝑑Ω 
Ω𝐼𝐼
𝑋𝑋   

�̇�𝒖�𝐼𝐼𝑛𝑛 = (1/𝑉𝑉𝐼𝐼)∫ �̇�𝒖(𝑿𝑿, 𝑡𝑡𝑛𝑛)𝑑𝑑Ω 
Ω𝐼𝐼
𝑋𝑋   
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where the Riemann problem is constructed along a local axis, 𝑿𝑿�, oriented parallel with the 

segment’s outward normal, 𝑵𝑵.  The particle velocity in the direction of the local axis is 

required, and is found by the projection 

eq. 168 

An example of the Riemann problem initial conditions constructed at the integration cell 

boundary between Ω𝐼𝐼 and Ω𝐽𝐽 is shown in Figure 29a.  The boundary shock solution for the 

Riemann problem is sought at the point 𝑿𝑿𝐼𝐼𝐼𝐼 in order to evaluate the smoothed volumetric 

stress divergence in eq. 165.  To find the solution of �̇�𝑢 and 𝑃𝑃 at the point 𝑿𝑿𝐼𝐼𝐼𝐼, the 𝑃𝑃-�̇�𝑢 

Hugoniot is utilized, e.g. [86] 

eq. 169 

where 𝑈𝑈𝑠𝑠 is the shock velocity and ⟦∙⟧ is the difference operator.  The experimentally 

determined relationship between shock velocity and particle velocity is also used, e.g. [86] 

eq. 170 

which is a linear relationship for most materials and is typically determined by flyer plate 

impact experiments, i.e. [120].  In eq. 170, 𝐶𝐶𝑏𝑏 is the bulk sound speed and 𝐴𝐴 is the slope of 

the experimental data relating 𝑈𝑈𝑠𝑠 and �̇�𝑢.  By inserting eq. 170 into eq. 169, the pressure-

particle velocity Hugoniot thermodynamic response curve discussed in Section 3.2 is 

obtained. 

�̇�𝑢�𝐼𝐼𝑛𝑛 = �̇�𝒖�𝐼𝐼𝑛𝑛 ∙ 𝑵𝑵  

⟦−𝑃𝑃⟧ = 𝜌𝜌0𝑈𝑈𝑠𝑠⟦�̇�𝑢⟧ 

𝑈𝑈𝑠𝑠 = 𝐶𝐶𝑏𝑏𝑒𝑒𝑒𝑒𝑔𝑔𝑡𝑡⟦�̇�𝑢⟧ + 𝐴𝐴⟦�̇�𝑢⟧ 
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(a) 

 

 

 

 

(b) 

Figure 29. Riemann problem at integration cell boundary, a) initial conditions at time 𝑡𝑡𝑛𝑛, and 

b) boundary shock solution at time 𝑡𝑡𝑛𝑛+1 

As shown in Figure 29b, the boundary shock solution consists of two discontinuities 

moving away from the interface.  In the region between the discontinuities the consistency 

condition dictates that pressure and particle velocity be continuous across the interface, that 

is, at 𝑿𝑿𝐼𝐼𝐼𝐼.  Using this consistency requirement in conjunction with eq. 169 and eq. 170, a 

jump equation can be constructed across each of the new discontinuities propagating away 

from the boundary 
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eq. 171 

eq. 172 

where 𝑃𝑃𝐼𝐼𝐼𝐼∗  and �̇�𝑢𝐼𝐼𝐼𝐼∗  are the boundary pressure and particle velocity at 𝑿𝑿𝐼𝐼𝐼𝐼, respectively.  These 

boundary terms are now available through the simultaneous solution of eq. 171 and eq. 172, 

which can be performed using a variety of techniques including Newton-Raphson methods 

and those proposed by van Leer [40] and Dukowicz [121].  The R-H enriched boundary 

pressure, 𝑃𝑃𝐼𝐼𝐼𝐼∗ , can now be introduced to the smoothed volumetric stress divergence in eq. 165 

to obtain  

eq. 173 

eq. 174 

where 𝑺𝑺�𝐼𝐼(𝑡𝑡) is the corrected volumetric stress divergence or corrected pressure gradient.  The 

R-H enriched boundary particle velocity, �̇�𝑢𝐼𝐼𝐼𝐼∗ , will be used later in a technique to obtain 

updated nodal pressures that are consistent with the corrected pressure gradient. 

5.3.3 Oscillation control 

The numerical solution of shock forming problems is prone to strong oscillation due to 

Gibbs phenomenon at the shock front; significant solution error can result.  Artificial 

viscosity [26, 59, 60] is commonly used to control shock-induced oscillations; however, 

subjective length scales and numerical parameters are required.  The proposed nonlinear 

𝑺𝑺�𝐼𝐼(𝑡𝑡) = (1/𝑉𝑉𝐼𝐼)∫ 𝑃𝑃∗(𝑿𝑿, 𝑡𝑡)𝑵𝑵 𝑑𝑑Γ 
Γ𝐼𝐼
𝑋𝑋   

= (1/𝑉𝑉𝐼𝐼)∑ 𝑃𝑃𝐼𝐼𝐼𝐼∗ (𝑡𝑡) 𝑵𝑵𝐼𝐼𝐼𝐼 𝑙𝑙𝐼𝐼𝐼𝐼 
𝑠𝑠
𝐼𝐼=1   

(𝑃𝑃𝐼𝐼𝐼𝐼∗ − 𝑃𝑃�𝐼𝐼) = 𝜌𝜌𝐼𝐼0�𝐶𝐶𝑏𝑏𝑒𝑒𝑒𝑒𝑔𝑔𝑡𝑡��̇�𝑢𝐼𝐼𝐼𝐼∗ − �̇�𝑢�𝐼𝐼� + 𝐴𝐴��̇�𝑢𝐼𝐼𝐼𝐼∗ − �̇�𝑢�𝐼𝐼�� ��̇�𝑢𝐼𝐼𝐼𝐼∗ − �̇�𝑢�𝐼𝐼� 

�𝑃𝑃𝐼𝐼𝐼𝐼∗ − 𝑃𝑃�𝐽𝐽� = 𝜌𝜌𝐽𝐽0�𝐶𝐶𝑏𝑏𝑒𝑒𝑒𝑒𝑔𝑔𝑡𝑡��̇�𝑢𝐼𝐼𝐼𝐼∗ − �̇�𝑢�𝐽𝐽� + 𝐴𝐴��̇�𝑢𝐼𝐼𝐼𝐼∗ − �̇�𝑢�𝐽𝐽�� ��̇�𝑢𝐼𝐼𝐼𝐼∗ − �̇�𝑢�𝐽𝐽� 
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solids formulation is engendered with an oscillation-limiting feature where the oscillation 

control is related to formation of the Riemann problem that is embedded in the smoothed 

volumetric stress divergence correction.  In this way oscillation control is directly related to 

the approximation of Riemann problem pressure and particle velocity initial conditions and 

avoids subjective length scales and parameters.   

Fourier series analysis shows that the solution spectrum for discontinuous 

approximations contains an infinite series of high frequency terms that localize to the 

discontinuity as persistent oscillations.  In recognition of this source of the oscillation, the 

pressure approximation in the corrected pressure gradient is utilized as a mechanism to 

control this error.  In the explicit time integration scheme the solution is projected forward in 

time according to 

eq. 175 

where 𝑚𝑚𝐼𝐼 is the lumped nodal mass, 𝒇𝒇𝐼𝐼𝑟𝑟𝑥𝑥𝑡𝑡is the external force vector, 𝒇𝒇𝐼𝐼𝑑𝑑 is the internal force 

vector due to deviatoric stress, and 𝒇𝒇𝐼𝐼𝑣𝑣 is the internal force vector related to the corrected 

pressure gradient.  When the standard linear spatial approximation (second-order spatial 

accuracy) is used to approximate the integration cell boundary pressures required for the 

smoothed pressure gradient in eq. 165, oscillatory instabilities naturally arise in the pressure 

gradient solution at a shock.  The numerical solution is consequently polluted through 

oscillation of the volumetric internal force vector in eq. 175.  In order to control this error, 

the Riemann piecewise constant initial conditions and boundary pressure solution are used as 

�̈�𝒖𝐼𝐼𝑛𝑛+1 = (1/𝑚𝑚𝐼𝐼) �𝒇𝒇𝐼𝐼𝑟𝑟𝑥𝑥𝑡𝑡
𝑛𝑛+1 − �𝒇𝒇𝐼𝐼𝑑𝑑

𝑛𝑛+1 + 𝒇𝒇𝐼𝐼𝑣𝑣
𝑛𝑛+1��  
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a natural mechanism for oscillation limiting, similar in approach to a Godunov scheme.  The 

C-1 approximation of the Riemann problem pressure and particle velocity initial conditions is 

naturally non-oscillatory in the sense that they cannot form new extrema when projected onto 

the integration cell boundaries. Furthermore, since the R-H jump equations are used to 

determine the boundary pressures based on the non-oscillatory C-1 projections, the resulting 

boundary pressures are also non-oscillatory since the R-H equations provide the fundamental 

jump solution.   As a consequence of embedding these conditions into the smoothed pressure 

gradient construction, the smoothed pressure gradient itself is non-oscillatory and therefore 

does not contribute to oscillations through eq. 175.  In this formulation the treatment for 

oscillation control is introduced to the pressure gradient and corresponding internal force 

vector, 𝒇𝒇𝐼𝐼𝑣𝑣.  No special treatment is provided for the deviatoric portion due to the pressure-

dominated material behavior in the presence of shocks.  Implementation and verification 

testing has validated that the oscillation control provided through the corrected pressure 

gradient is sufficiently strong to limit oscillations and no additional treatment is required for 

the shear term.   

Accuracy of the integration cell boundary pressure can be improved through the 

construction of more accurate Riemann problem initial conditions.  However, the issue is that 

at a shock, the higher order projection of initial conditions onto the integration cell boundary 

can lead to the formation of new extrema and consequently result in solution oscillation.  

Therefore, if a higher-order projection is used, special measures are required to prevent 

oscillation; a slope limiter such as the van Leer limiter [122] for finite difference schemes can 
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be used for this purpose.  The essential idea behind the slope limiter is that higher order 

distribution of the internal field variable is constrained (or limited) so that new extrema are 

not formed at the cell boundaries.  With proper constraint, a higher-order state variable 

projection can be used while maintaining oscillation control.  For this meshfree formulation, 

the van Leer limiting constraints have been applied to the pressure and particle velocity 

projections under the SCNI framework.  This was accomplished by modifying the Riemann 

problem initial conditions in Figure 29a according to a linear approximation of the pressure 

and particle velocity distribution within each of the integration cells.  The cell distributions 

were then modified to satisfy the van Leer constraint conditions, namely that 1) the projected 

field/state variable value at the boundary does not exceed the nodal value in the adjacent 

integration cells, 2) piecewise constant distribution is used if the nodal value is a local 

extremum with respect to the adjacent cells, and 3) piecewise constant distribution is used if 

the sign of the smoothed gradient differs from that in the adjacent cells.  Implementation was 

limited in this case to a regular discretization; techniques to apply this approach to an 

irregular meshfree discretization are recommended for future study.  Numerical 

experimentation showed that this approach can be successfully used to obtain higher-order 

pressure gradient approximations while maintaining the oscillating-limiting feature of the 

piecewise constant initial conditions.  The net result is the improved sharpness of the shock 

front solution. 
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5.4 R-H enriched nodal pressure and volumetric strain 

For the temporal integration of eq. 159, the nodal accelerations, velocities and 

displacements are obtained at each time step using the internal force vector built from the 

corrected volumetric stress divergence and the uncorrected deviatoric part.  This provides a 

complete description of the kinematic field variables; however, an update of the pressure 

state variable is also required.  This research has shown that it is necessary to perform the 

nodal pressure update at each step in a way that is consistent with the volumetric stress 

divergence correction.  If a consistent pressure update is not provided, significant error can 

arise in the solution, particularly in the presence of internal boundaries or reflecting surfaces 

where the reflected waves are driven by the R-H jump conditions.  

  To construct the consistent nodal pressure update, the R-H enriched boundary particle 

velocity computed from eq. 171 and eq. 172 is interpreted as a description of the cell 

boundary deformation (reference Figure 30).  The velocity vector at each boundary is 

obtained from the reconstruction 

eq. 176 

where the repeated index 𝐼𝐼 makes reference to the boundary segment and does not indicate a 

summation.  A strain measure is now required that can be related to the R-H enriched cell 

boundary deformation.  This is obtained through the relationship between velocity gradient, 

�̇�𝑢𝑖𝑖(𝑿𝑿, 𝑡𝑡),𝑗𝑗, and strain rate, 𝜖𝜖�̇�𝑖𝑗𝑗(𝑿𝑿, 𝑡𝑡) 

�̇�𝒖𝐼𝐼𝐼𝐼∗
𝑛𝑛+1 = �̇�𝑢𝐼𝐼𝐼𝐼∗ 𝑵𝑵𝐼𝐼𝐼𝐼  
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eq. 177 

Accordingly, the R-H enriched nodal strain rate is approximated by 

eq. 178 

where 𝜑𝜑(𝑿𝑿;𝑿𝑿 − 𝑿𝑿𝐼𝐼) is the piecewise constant kernel defined in eq. 161.  Introducing the 

piecewise constant kernel and applying the divergence theorem, eq. 178 is transformed to 

eq. 179 

which is evaluated numerically 

eq. 180 

where �̇�𝒖𝐼𝐼𝐼𝐼∗
𝑛𝑛+1 is given in eq. 176.  Using the strain rate measure in eq. 180 a measure of the 

nodal volumetric strain is obtained 

eq. 181 

where 𝜖𝜖�̃�𝑖𝑖𝑖𝐼𝐼𝑛𝑛+1 is the R-H enriched volumetric strain.  Finally, the Rankine-Hugoniot equation 

relating pressure and volume [86] is introduced 

eq. 182 

 

 

(1/2)��̇�𝑢𝑖𝑖(𝑿𝑿, 𝑡𝑡),𝑗𝑗+ �̇�𝑢𝒋(𝑿𝑿, 𝑡𝑡),𝒊 � = (1/2)
𝜕𝜕
𝜕𝜕𝑡𝑡
�
𝜕𝜕𝑢𝑢𝑖𝑖(𝑿𝑿, 𝑡𝑡)
𝜕𝜕𝑋𝑗𝑗

+
𝜕𝜕𝑢𝑢𝒋(𝑿𝑿, 𝑡𝑡)
𝜕𝜕𝑋𝑖𝑖

� = 𝜖𝜖�̇�𝑖𝑗𝑗(𝑿𝑿, 𝑡𝑡) 

     

𝜖𝜖�̇�𝑖𝑗𝑗(𝑿𝑿, 𝑡𝑡)�
𝑿𝑿𝐼𝐼
≈ ∫  (1/2)��̇�𝑢𝑖𝑖(𝑿𝑿, 𝑡𝑡),𝑗𝑗+ �̇�𝑢𝑗𝑗(𝑿𝑿, 𝑡𝑡),𝑖𝑖 �𝜑𝜑(𝑿𝑿;𝑿𝑿 − 𝑿𝑿𝐼𝐼) 𝑑𝑑Ω 

Ω𝐼𝐼
𝑋𝑋 ≡ 𝜖𝜖̇̃ 𝑖𝑖𝑗𝑗𝐼𝐼(𝑡𝑡)     

𝜖𝜖̇̃ 𝑖𝑖𝑗𝑗𝐼𝐼(𝑡𝑡) = (1/2𝑉𝑉𝐼𝐼)∫  �̇�𝑢𝑖𝑖(𝑿𝑿, 𝑡𝑡)𝑁𝑁𝑗𝑗 + �̇�𝑢𝑗𝑗(𝑿𝑿, 𝑡𝑡)𝑁𝑁𝑖𝑖 𝑑𝑑Γ
 
Γ𝐼𝐼
𝑋𝑋      

𝜖𝜖̇̃ 𝑖𝑖𝑗𝑗𝐼𝐼𝑛𝑛+1 = (1/2𝑉𝑉𝐼𝐼)∑ ��̇�𝑢𝑖𝑖𝐼𝐼𝐼𝐼∗
𝑛𝑛+1𝑁𝑁𝑗𝑗𝐼𝐼𝐼𝐼 + �̇�𝑢𝑗𝑗𝐼𝐼𝐼𝐼∗

𝑛𝑛+1𝑁𝑁𝑖𝑖𝐼𝐼𝐼𝐼�𝑙𝑙𝐼𝐼𝐼𝐼𝑠𝑠
𝐼𝐼=1      

𝑃𝑃𝐼𝐼𝑛𝑛+1 =
𝜌𝜌𝐼𝐼0𝐶𝐶𝑏𝑏2(𝜂𝜂𝐼𝐼𝑛𝑛+1 − 1)𝜂𝜂𝐼𝐼𝑛𝑛+1

[𝜂𝜂𝐼𝐼𝑛𝑛+1 − 𝐴𝐴(𝜂𝜂𝐼𝐼𝑛𝑛+1 − 1)]2
 

     

𝜖𝜖�̃�𝑖𝑖𝑖𝐼𝐼𝑛𝑛+1 =  𝜖𝜖�̃�𝑖𝑖𝑖𝐼𝐼𝑛𝑛 + ∆𝑡𝑡 𝜖𝜖̇̃𝑖𝑖𝑖𝑖𝐼𝐼𝑛𝑛+1     
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(a)                                                              (b) 

Figure 30. SCNI integration cell with a) R-H enriched boundary particle velocity at time 

𝑡𝑡𝑛𝑛+1, b) boundary motion according to �̇�𝒖𝐼𝐼𝐼𝐼∗ |𝑡𝑡𝑛𝑛+1  

where 

eq. 183 

In eq. 183 𝜂𝜂𝐼𝐼𝑛𝑛+1 is a measure of the volumetric compression at the 𝐼𝐼𝑡𝑡ℎ node, which is related 

to the R-H enriched boundary particle velocity through the R-H enriched nodal strain rate.  In 

eq. 182 𝑃𝑃𝐼𝐼𝑛𝑛+1 is referred to as the R-H enriched nodal pressure update that is consistent with 

the corrected pressure gradient in eq. 174.   

 

 

IΩ

𝑿𝑿𝐼𝐼 

𝑿𝑿𝐽𝐽 

�̇�𝒖𝐼𝐼5∗  

�̇�𝒖𝐼𝐼1∗  �̇�𝒖𝐼𝐼2∗  

�̇�𝒖𝐼𝐼3∗  

�̇�𝒖𝐼𝐼4∗  

 

𝑿𝑿𝐼𝐼 

𝑿𝑿𝐽𝐽 

𝜂𝜂𝐼𝐼𝑛𝑛+1 =
𝑉𝑉𝐼𝐼0

𝑉𝑉𝐼𝐼0(1 + 𝜖𝜖�̃�𝑖𝑖𝑖𝐼𝐼𝑛𝑛+1)
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5.5 Natural boundary condition enforcement 

To show how surface tractions on the natural boundary are enforced when the volumetric 

stress divergence correction is used, we begin by considering 

eq. 184 

which is obtained from the principle of virtual work.  The property that 𝛿𝛿𝑢𝑢𝑖𝑖 = 0 on the 

essential boundary has not been used, so that the contour integral is written over the entire 

domain boundary, Γ𝑋𝑋. Decomposing the stress in eq. 184 into volumetric and deviatoric parts 

gives 

eq. 185 

The domain integral of volumetric stress in eq. 185 is transformed to the stress divergence 

using integration by parts and the divergence theorem 

eq. 186 

eq. 187 

Now substitute eq. 187 into eq. 185 to obtain 

eq. 188 

which is re-arranged to give 

−∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌0�̈�𝑢𝑖𝑖  𝑑𝑑Ω
 
Ω𝑋𝑋 + ∫ 𝛿𝛿𝑢𝑢𝑖𝑖ℎ𝑖𝑖0 𝑑𝑑Γ 

Γ 𝑋𝑋
+ ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌0𝑏𝑏𝑖𝑖  𝑑𝑑Ω

 
Ω𝑋𝑋 = ∫ 𝛿𝛿𝑢𝑢𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗 𝑑𝑑Ω 

Ω𝑋𝑋   

−∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌0�̈�𝑢𝑖𝑖  𝑑𝑑Ω
 
Ω𝑋𝑋 + ∫ 𝛿𝛿𝑢𝑢𝑖𝑖ℎ𝑖𝑖0 𝑑𝑑Γ 

Γ 𝑋𝑋
+ ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌0𝑏𝑏𝑖𝑖  𝑑𝑑Ω

 
Ω𝑋𝑋 = ∫ �𝛿𝛿𝑢𝑢𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗𝑑𝑑 + 

Ω𝑋𝑋 

𝛿𝛿𝑢𝑢𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣�𝑑𝑑Ω  

∫ 𝛿𝛿𝑢𝑢𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑑𝑑Ω
 
Ω𝑋𝑋 = ∫ �𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣�,𝑗𝑗 𝑑𝑑Ω

 
Ω𝑋𝑋 − ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗

𝑣𝑣  𝑑𝑑Ω 
Ω𝑋𝑋   

= ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗𝑑𝑑Γ
 
Γ𝑋𝑋 − ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗

𝑣𝑣  𝑑𝑑Ω 
Ω𝑋𝑋   

−∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌0�̈�𝑢𝑖𝑖  𝑑𝑑Ω
 
Ω𝑋𝑋 + ∫ 𝛿𝛿𝑢𝑢𝑖𝑖ℎ𝑖𝑖0 𝑑𝑑Γ 

Γ 𝑋𝑋
+ ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌0𝑏𝑏𝑖𝑖  𝑑𝑑Ω

 
Ω𝑋𝑋 =

 ∫ 𝛿𝛿𝑢𝑢𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗𝑑𝑑𝑑𝑑Ω
 
Ω𝑋𝑋 + ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗𝑑𝑑Γ

 
Γ𝑋𝑋 − ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗

𝑣𝑣  𝑑𝑑Ω 
Ω𝑋𝑋   
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eq. 189 

The eq. 189 is a modified form of the variational equation in eq. 184 that has separated the 

internal forces due to shear,  ∫ 𝛿𝛿𝑢𝑢𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗𝑑𝑑𝑑𝑑Ω
 
Ω𝑋𝑋 , and volumetric stress, ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗

𝑣𝑣  𝑑𝑑Ω 
Ω𝑋𝑋 .  

However, in separating the internal force components and transforming to the volumetric 

stress divergence, an additional surface traction, ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗𝑑𝑑Γ
 
Γ𝑋𝑋 , was created that must be 

addressed.  To address this surface traction term through the volumetric stress divergence 

correction, an approximation for the volumetric stress divergence is defined as 

eq. 190 

which is the same as the smoothed volumetric stress divergence in eq. 162.  Using the 

divergence theorem, eq. 190 is transformed to 

eq. 191 

Now consider that the domain, Ω𝑋𝑋, can be decomposed into a series of conforming sub-

domains, {Ω𝐼𝐼𝑋𝑋}𝐼𝐼=1
𝑛𝑛𝑛𝑛 .  Each sub-domain is bounded by Γ𝐼𝐼𝑋𝑋, which is composed of Γ𝐼𝐼𝑋𝑋 = Γ𝐼𝐼𝑖𝑖𝑛𝑛𝑡𝑡 ∪

Γ𝐼𝐼𝑟𝑟𝑥𝑥𝑡𝑡, where Γ𝐼𝐼𝑟𝑟𝑥𝑥𝑡𝑡 is the portion of Γ𝐼𝐼𝑋𝑋 intersecting the boundary 𝜕𝜕Ω𝑋𝑋 and Γ𝐼𝐼𝑖𝑖𝑛𝑛𝑡𝑡 is the portion 

internal to Ω𝑋𝑋.  Letting ϱ𝑖𝑖𝑛𝑛𝑡𝑡 =∪ Γ𝐼𝐼𝑖𝑖𝑛𝑛𝑡𝑡 and ϱ𝑟𝑟𝑥𝑥𝑡𝑡 =∪ Γ𝐼𝐼𝑟𝑟𝑥𝑥𝑡𝑡, eq. 191 can be written as 

eq. 192 

If the sub-domains are conforming and 𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣  computed on the internal boundaries, ϱ𝑖𝑖𝑛𝑛𝑡𝑡, is 

−∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌0�̈�𝑢𝑖𝑖  𝑑𝑑Ω
 
Ω𝑋𝑋 + �∫ 𝛿𝛿𝑢𝑢𝑖𝑖ℎ𝑖𝑖0 𝑑𝑑Γ 

Γ 𝑋𝑋
− ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗𝑑𝑑Γ

 
Γ𝑋𝑋 � +

∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌0𝑏𝑏𝑖𝑖 𝑑𝑑Ω
 
Ω𝑋𝑋 =  ∫ 𝛿𝛿𝑢𝑢𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗𝑑𝑑𝑑𝑑Ω

 
Ω𝑋𝑋 − ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗

𝑣𝑣  𝑑𝑑Ω 
Ω𝑋𝑋   

𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗
𝑣𝑣 ≈ (1/𝑉𝑉)∫ 𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗

𝑣𝑣 
Ω𝑋𝑋 𝑑𝑑Ω ≡ 𝕊𝕊�𝑖𝑖  

𝕊𝕊�𝑖𝑖 = (1/𝑉𝑉)∫ 𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗
 
Γ𝑋𝑋 𝑑𝑑Γ  

𝕊𝕊�𝑖𝑖 = 𝕊𝕊�𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡 + 𝕊𝕊�𝑖𝑖𝑟𝑟𝑥𝑥𝑡𝑡 = (1/𝑉𝑉) �∫ 𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗
 
ϱ𝑖𝑖𝑛𝑛𝑖𝑖 𝑑𝑑Γ + ∫ 𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗

 
ϱ𝑒𝑒𝑒𝑒𝑖𝑖 𝑑𝑑Γ�  

142 
 



consistent, then ∫ 𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗
 
ϱ𝑖𝑖𝑛𝑛𝑖𝑖 𝑑𝑑Γ = 0 so that eq. 192 recovers eq. 191 for ϱ𝑟𝑟𝑥𝑥𝑡𝑡 ≡ Γ𝑋𝑋. The virtual 

work of the volumetric stress divergence approximation is considered by applying an 

arbitrary perturbation to eq. 190 

eq. 193 

where the decomposition in eq. 192 was used.  Integrating eq. 193 over the domain Ω𝑋𝑋 obtain 

eq. 194 

Now consider that 

eq. 195 

eq. 196 

because the contour integral solely exists on 𝜕𝜕Ω𝑋𝑋 and therefore is constant with respect to the 

domain integral over Ω𝑋𝑋.  Substituting eq. 196 into eq. 194 gives 

eq. 197 

which can be used in eq. 189 to obtain 

eq. 198 

where ϱ𝑟𝑟𝑥𝑥𝑡𝑡 ≡ Γ𝑋𝑋 was used.  The key result of eq. 198 is that by introducing the smoothed 

divergence approximation, the volumetric stress divergence is decomposed into a domain 

𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗
𝑣𝑣 ≈ 𝛿𝛿𝑢𝑢𝑖𝑖𝕊𝕊�𝑖𝑖 = 𝛿𝛿𝑢𝑢𝑖𝑖𝕊𝕊�𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡 + (1/𝑉𝑉)∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗

 
ϱ𝑒𝑒𝑒𝑒𝑖𝑖 𝑑𝑑Γ  

∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗
𝑣𝑣  𝑑𝑑Ω 

Ω𝑋𝑋 ≈ ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝕊𝕊�𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡 𝑑𝑑Ω
 
Ω𝑋𝑋 + ∫ �(1/𝑉𝑉)∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗

 
ϱ𝑒𝑒𝑒𝑒𝑖𝑖 𝑑𝑑Γ� 

Ω𝑋𝑋 𝑑𝑑Ω  

∫ �(1/𝑉𝑉)∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗
 
ϱ𝑒𝑒𝑒𝑒𝑖𝑖 𝑑𝑑Γ� 

Ω𝑋𝑋 𝑑𝑑Ω = (1/𝑉𝑉)∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗
 
ϱ𝑒𝑒𝑒𝑒𝑖𝑖 𝑑𝑑Γ ∫  𝑑𝑑Ω 

Ω𝑋𝑋   

= ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗
 
ϱ𝑒𝑒𝑒𝑒𝑖𝑖 𝑑𝑑Γ   

∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗
𝑣𝑣  𝑑𝑑Ω 

Ω𝑋𝑋 ≈ ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝕊𝕊�𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡 𝑑𝑑Ω
 
Ω𝑋𝑋 + ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗

 
ϱ𝑒𝑒𝑒𝑒𝑖𝑖 𝑑𝑑Γ   

−∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌0�̈�𝑢𝑖𝑖  𝑑𝑑Ω
 
Ω𝑋𝑋 + �∫ 𝛿𝛿𝑢𝑢𝑖𝑖ℎ𝑖𝑖0 𝑑𝑑Γ 

Γ 𝑋𝑋
− ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗𝑑𝑑Γ

 
Γ𝑋𝑋 � + ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌0𝑏𝑏𝑖𝑖 𝑑𝑑Ω

 
Ω𝑋𝑋 =

 ∫ 𝛿𝛿𝑢𝑢𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗𝑑𝑑𝑑𝑑Ω
 
Ω𝑋𝑋 − ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝕊𝕊�𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡 𝑑𝑑Ω

 
Ω𝑋𝑋 − ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗

 
Γ 𝑋𝑋

𝑑𝑑Γ   
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integral, ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝕊𝕊�𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡  𝑑𝑑Ω
 
Ω𝑋𝑋 , and a contour integral, ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗𝑣𝑣𝑁𝑁𝑗𝑗

 
Γ 𝑋𝑋

𝑑𝑑Γ.  The contour integral 

formed through the smoothed divergence approximation cancels with the extra surface 

traction term in eq. 189 so that the correct surface traction is approximately recovered.  The 

domain integral from the smoothed divergence approximation remains and is consistent in 

the sense that the integral is a domain integral and 𝕊𝕊�𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡 is evaluated only on ϱ𝑖𝑖𝑛𝑛𝑡𝑡, which is 

contained within Ω𝑋𝑋.  Letting 𝕊𝕊�𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡 ≡ �̃�𝑆𝑖𝑖 and multiplying through by -1 in eq. 198 obtain   

eq. 199 

which is equivalent to the corrected Galerkin approximation in eq. 159 when the test and trial 

function approximations are introduced. 

5.6 Jump equation, description of smooth waves 

In the proposed hydrodynamic formulation, the corrected volumetric stress divergence is 

applied to the full problem domain that may contain strong shocks, weak shocks, elastic 

discontinuities or smooth waves.  As such, it is important to show that the corrected 

volumetric stress divergence, which derives from the Rankine-Hugoniot jump equation, can 

be applied to smooth waves as well as shocks.  Davison [86] has shown how the pressure-

particle velocity Hugoniot in eq. 169 can be used to describe the change in pressure and 

particle velocity across these different types of waves.  Noting that the volumetric stress 

∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌0�̈�𝑢𝑖𝑖 𝑑𝑑Ω
 
Ω𝑋𝑋 + ∫ 𝛿𝛿𝑢𝑢𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗𝑑𝑑𝑑𝑑Ω

 
Ω𝑋𝑋 − ∫ 𝛿𝛿𝑢𝑢𝑖𝑖�̃�𝑆𝑖𝑖  𝑑𝑑Ω

 
Ω𝑋𝑋 − ∫ 𝛿𝛿𝑢𝑢𝑖𝑖ℎ𝑖𝑖0 𝑑𝑑Γ 

Γ 𝑋𝑋
−

               ∫ 𝛿𝛿𝑢𝑢𝑖𝑖𝜌𝜌0𝑏𝑏𝑖𝑖 𝑑𝑑Ω
 
Ω𝑋𝑋 = 0   
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divergence correction is used for the pressure-dependent response of the material, consider 

the following balance equation for linear momentum for a fluid 

eq. 200 

Also consider the general form of the solution to the one-dimensional linear elastic wave 

equation 

  eq. 201 

where 𝐶𝐶 is the elastic wave speed.  For a wave propagating in the positive X direction, eq. 

201 simplifies to 

eq. 202 

where 

eq. 203 

A simple smooth wave that can be described by eq. 202 is shown in Figure 31, where two 

points are denoted at 𝑍𝑍1 and 𝑍𝑍2, which have particle velocity and pressure states of �̇�𝑢1, 𝑃𝑃1, 

�̇�𝑢2, and 𝑃𝑃2.  Applying the chain rule to eq. 202, the displacement gradient is obtained 

eq. 204 

 

 

𝜕𝜕𝑃𝑃/𝜕𝜕𝑋 − 𝜌𝜌𝑅𝑅(𝜕𝜕�̇�𝑢/𝜕𝜕𝑡𝑡) = 0     

𝑢𝑢(𝑋, 𝑡𝑡) = 𝑓𝑓(𝑋 − 𝐶𝐶𝑡𝑡) + 𝑓𝑓(𝑋 + 𝐶𝐶𝑡𝑡)     

𝑢𝑢(𝑋, 𝑡𝑡) = 𝑢𝑢(𝑍𝑍)     

𝑍𝑍 = 𝑋 − 𝐶𝐶𝑡𝑡      

𝜕𝜕𝑢𝑢
𝜕𝜕𝑋

=
𝜕𝜕𝑢𝑢
𝜕𝜕𝑍𝑍
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The particle velocity is also obtained from eq. 202 

eq. 205 

which is used to obtain 

eq. 206 

Recognizing that 𝑃𝑃 ≡ 𝑃𝑃�𝑢𝑢(𝑍𝑍)�, the chain rule can be used to define the pressure gradient 

eq. 207 

Now using eq. 206 and eq. 207 into eq. 200 the following is obtained 

eq. 208 

which is integrated to obtain 

eq. 209 

 

 

 

 

 

Figure 31. Smooth wave 
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where 𝑑𝑑1 is the integration constant.  To determine 𝑑𝑑1, eq. 209 is evaluated at the point 

𝑍𝑍 = 𝑍𝑍1 to obtain 

eq. 210 

so that eq. 209 is  

eq. 211 

Now eq. 211 can be evaluated at the point 𝑍𝑍 = 𝑍𝑍2 to obtain 

eq. 212 

which is re-arranged to give 

eq. 213 

The eq. 213 is analogous to eq. 169, but the wave speed is no longer the velocity of the shock 

discontinuity.  Rather, it is the elastic wave speed.  This shows that by using the proper wave 

speed definition, eq. 169 can be used to describe the change in pressure and particle velocity 

between two points in a smooth wave as well as across a discontinuity. 

5.7 Implementation 

A flowchart for implementation of the proposed shock modeling enhancements into an 

explicit meshfree scheme is given in Figure 32.  The integration cell topology and RK shape 

functions are calculated initially and do not require an update, which provides the same 

𝑑𝑑1 = −𝑃𝑃1 − 𝜌𝜌𝑅𝑅𝐶𝐶�̇�𝑢1 

𝑃𝑃(𝑍𝑍) + 𝜌𝜌𝑅𝑅𝐶𝐶�̇�𝑢(𝑍𝑍) = 𝑃𝑃1 + 𝜌𝜌𝑅𝑅𝐶𝐶�̇�𝑢1 

𝑃𝑃2 + 𝜌𝜌𝑅𝑅𝐶𝐶�̇�𝑢2 = 𝑃𝑃1 + 𝜌𝜌𝑅𝑅𝐶𝐶�̇�𝑢1 

(𝑃𝑃2 − 𝑃𝑃1) = 𝜌𝜌𝑅𝑅𝐶𝐶(�̇�𝑢1 − �̇�𝑢2) 
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computational efficiency as obtained in a standard SCNI meshfree calculation.  During the 

temporal integration process the SCNI smoothed strains and corresponding stresses are 

computed, but only the deviatoric portion is assembled into the deviatoric internal force 

vector.  The additional step required for the shock modeling formulation is the solution of the 

Riemann problem over the integration cell boundaries so that the corrected volumetric stress 

divergence and consistent update of nodal pressures is obtained.  The computational cost 

associated with this additional step is minimal, since the Riemann problem is cast as a one-

dimensional problem aligned with the outward normal of each boundary segment.  With the 

corrected volumetric stress divergence and updated nodal pressures, the nodal accelerations, 

velocities and displacements are projected forward in time in the same way as a typical 

explicit central difference formulation.    
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Figure 32. Flowchart, explicit RKPM scheme with shock modeling enhancements 
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CHAPTER 6 VERIFICATION OF RKPM 
HYDRODYNAMIC FORMULATION 

In this chapter the proposed RKPM hydrodynamic formulation for nonlinear solids is 

used to solve several benchmark problems for validating the formulation accuracy.  The 

benchmark problems were selected to study performance across a range of shock conditions, 

including strong shocks due to hypervelocity impact, weak shocks due to low velocity 

ballistic impact, and elastic shocks due to very low velocity impact.  This provides an 

assessment of the formulation’s ability to capture the pressure dominated response of strong 

shocks and the combined elastic and plastic response of weak shocks.  In each case the 

numerical solutions are compared to analytical solutions or experimental data for 

quantification of accuracy. 

The benchmark problems were selected to simulate flyer plate impact experiments, 

which are widely used to investigate the high-pressure response of materials when exposed to 

shock loading.  The experiments are typically conducted by firing a projectile sample from a 

large-bore gun into a stationary target sample.  Based on the impact velocity and material 

properties, shock conditions can vary from weak shocks (characterized by an elastic 

discontinuity followed by a slower plastic discontinuity) to strong shocks (where the plastic 

wave velocity is sufficient to overtake the elastic wave and form a single shock front).  

According to Davison [86], a key experimental feature is the projectile and target geometries, 
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where the diameter is designed to be  several times larger than the thickness.  The purpose is 

to create a plane wave propagating under uniaxial deformation near the center of the 

specimens, which is where the experimental measurements are made [86].  The diameter of 

the specimens is large enough to ensure that the experimental measurements are obtained 

without being influenced by lateral deformation at the edges [86]. In consideration of the 

uniaxial deformation condition achieved in the experimental setup, the kinematic constraints 

used in these numerical examples were also based on the assumption of uniaxial deformation.  

Model problems were constructed as one-dimensional uniaxial strain and two-dimensional 

plane strain problems, where the two-dimensional problems were constrained with slider 

boundary conditions to achieve uniaxial deformation for plane wave propagation.  A 

schematic flyer plate experimental setup and corresponding model problem is shown in 

Figure 33.   

 

 

 

 

 

 

 

 

Figure 33. Flyer plate experimental setup and corresponding model problem 
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The RK approximation in each numerical example was constructed using linear basis 

and normalized support size of 1.75, where the normalized support is the support size divided 

by the nodal spacing.  The approximation locality was defined according to the power 

function kernel with a power term 𝛼𝛼 = 12.  The equation of motion was temporally 

integrated using an explicit central difference scheme with row summation to form the 

lumped mass matrix.  With linear basis and central difference time integration, the 

uncorrected RKPM formulation was fully second-order accurate in space and time.  The time 

step for each problem was selected using a Courant number of approximately 0.25.  Metallic 

material was used in all numerical examples, and the material stress-strain response was 

modeled using a J2 plasticity constitutive law with objective stress obtained using the 

Jaumann stress rate.  The implementation followed a Total Lagrangian formulation as 

described in Chapter 5.  Deviatoric stress in the undeformed configuration was computed 

using the first Piola-Kirchoff stress tensor. 

The first problem studies the formulation accuracy for hypervelocity impact of an 

aluminum projectile into an aluminum target plate.  Under hypervelocity impact conditions a 

strong shock is formed that can be compared to an analytical solution.  In the second and 

third example problems a set of flyer plate impact experiments are simulated, and the 

numerical results are compared to the experimental for validation.  The second example 

follows experiments that were conducted with impact velocities in the ballistic impact 

regime, so that the numerical results validate the formulation accuracy for weak shock 

solutions.  The third example is similar, but the experimental impact velocities were low 
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enough so that only elastic waves were generated; this was used to validate the formulation’s 

ability to model elastic discontinuities.  In the fourth example a high velocity plate impact is 

modeled, where the free edges are unconstrained so that the traction free surfaces form 

rarefaction waves due to lateral deformation at the impact plane.  Peak pressure behind the 

wave is compared to experimental data, and ability of the formulation to capture the plates’ 

lateral deformation and resulting rarefaction wave are evaluated.  For all of the example 

problems the corrected RKPM solutions are compared to the standard uncorrected solution to 

show the improvements in solution accuracy.  All of the example problems were conducted 

with 6061 T-6 aluminum; material properties are given in Table 1. The properties Cb and A 

are obtained from flyer plate impact experiments in Marsh [120].  The elastic constants and 

yield strength were obtained from Lundergan and Herrmann [123].   

Table 1. 6061 T-6 aluminum material properties 

Property Value 

Density, kg/m3 2,703 

Shear modulus, GPa 28.9 

Bulk modulus, GPa 77.5 

Tensile yield, MPa 270 

Cb, m/s 5350 

A 1.34 
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6.1 Hypervelocity plate impact 

In this benchmark problem an aluminum target plate was impacted with an aluminum 

projectile; impact velocity was 2,000 m/s.  The thickness for the model projectile and target 

was 15 mm and the height of both was 12.5 mm.  The model problem was constructed by 

discretizing the 30 mm × 12.5 mm domain and assigning an initial velocity of 2,000 m/s to 

the left half.  This replicated the contact condition at the moment of impact but avoided the 

requirement for a contact algorithm.  The domain was discretized with 241 nodes in the 

direction of projectile motion and 101 nodes in the transverse, for a total of 24,341 nodes in 

the model.  Model results using the proposed hydrodynamic formulation are compared to the 

uncorrected in Figure 34, Figure 35, and Figure 36.  The solutions are compared at times of 

0.048 µsec, 0.4 µsec, and 1.6 µsec after impact, respectively, and show the progressive 

propagation of the compression wave away from the impact plane.  The peak pressure behind 

the shock is approximately 19 GPa, which is nearly two orders of magnitude greater than the 

material’s shear strength.  This shows how strong shocks cause hydrodynamic behavior in 

solids.  Oscillation in the uncorrected solution is seen immediately after impact in Figure 34.  

As the solution progresses the uncorrected solution continues to oscillate while the solution 

from the proposed formulation remains monotone throughout.  Furthermore, the jump 

solution from the proposed formulation remains nearly as sharp as the uncorrected, and could 

be further sharpened with adaptive refinement at the shock front.  In Figure 35 and Figure 36 

the uncorrected solution also has a dispersive error that propagates from the domain edges.  

This dispersive error is due to spurious non-zero energy modes that have been previously 
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reported by Chen et al. [41].  This error is not observed in the corrected solution, which 

suggests that the volumetric stress divergence correction provides a control on this error as 

well.  The corrected and uncorrected solutions are compared to the analytical solution at 1.6 

µsec in Figure 37a, where the analytical solution was computed according to eq. 169 and eq. 

170.  The corrected solution is non-oscillatory and closely matches the analytical wave speed 

and peak pressure.  The uncorrected solution exhibits strong oscillatory error, and also shows 

significant error in the wave speed and shock pressure due to the lack of the essential shock 

physics in the uncorrected formulation.  The corrected solution in Figure 37b was computed 

using a van Leer limiter [40] to construct the Riemann problem initial conditions; the 

computed shock front is sharper as a result of increased accuracy in the pressure and particle 

velocity initial condition approximations.   
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(b) 

Figure 34. Hypervelocity impact at 0.048 µsec after impact, solution with a) proposed 

hydrodynamic formulation, and b) uncorrected formulation 

Pressure, Pa 

impact plane 
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(a) 

 

 

 

 

 

(b) 

Figure 35. Hypervelocity impact at 0.400 µsec after impact, solution with a) proposed 

hydrodynamic formulation, and b) uncorrected formulation 

Pressure, Pa 

impact plane 
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(b) 

Figure 36. Hypervelocity impact at 1.6 µsec after impact, solution with a) proposed 

hydrodynamic formulation, and b) uncorrected formulation 
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(b) 

Figure 37. Hypervelocity impact example, solution comparison at 1.6 µsec using a) 

piecewise constant Riemann initial conditions, and b) van Leer limiter 
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6.2 Ballistic velocity impact 

For this set of benchmark problems a set of flyer plate impact experiments from 

Lundergan and Herrmann [123] were modeled.  The experiments were conducted at lower 

impact velocities (< 300 m/s) in the ballistic range to investigate equation of state properties 

for weak elastic-plastic shocks.  These experiments were selected to validate accuracy of the 

hydrodynamic formulation when weak shocks are present, which can be generated by 

ballistic impact.  The experiments were conducted by firing a 6061 T-6 aluminum impact 

plate into a target of the same material.  Target thicknesses ranged between 12.5 mm and 25 

mm.  Free surface velocities on the back of the target plates were monitored, and the initial 

shock velocities (for both the elastic and plastic waves), particle velocities and axial stresses 

were determined and reported in Lundergan and Herrmann [123].  Three experiments were 

selected for simulation and are summarized in Table 2.  Average values for the shock 

velocities and elastic axial stress (i.e., yield stress) are also given.  The average values are 

used for comparison to the numerical results in order to reduce the effect of experimental 

variability in the comparisons.   
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Table 2. Summary, ballistic velocity impact experiments [123] 

Experiment 

No. 

Impact 

Vel., m/s 

Elastic Shock 

Velocity, m/s 

Plastic Shock 

Velocity, m/s 

Elastic Axial 

Stress, GPa 

Plastic Axial 

Stress, GPa 

124 92 6,210 5,560 0.553 0.767 

115 150 6,310 5,380 0.720 1.205 

108 273 6,220 5,320 0.697 2.097 

Average  6,247 5,420 0.657  

 

To validate formulation accuracy in this ballistic impact range, the initial shock wave 

propagation in the impact and target plates was computed and compared to the experimental 

data.  The thickness of the model target and impact plates was 15 mm; the model was 

constructed  using a one-dimensional uniaxial strain implementation in accordance with the 

experimental design for uniaxial plane wave propagation.  The domain was discretized with 

481 nodes, and the experimental impact velocity was applied over one-half of the domain to 

replicate the initial conditions at impact.  The Riemann problem initial conditions were 

constructed using the van Leer slope limiter technique [40] in order to increase the fine-scale 

resolution of the wave structure at the elastic-plastic transition.  The computed and 

experimental axial stress waves at 1.6 µsec after impact are compared in Figure 38 through 

Figure 40 for impact velocities of 273 m/s, 150 m/s and 92 m/s, respectively.  The computed 

and experimental particle velocities at 1.6 µsec after impact are compared in Figure 41 
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through Figure 43 for the same impact velocities.   Models results with and without the shock 

modeling correction are given for each of the three impact velocities.  In each of the 

experiments the impact velocity was sufficient to cause the yield strength to be exceeded so 

that an elastic precursor wave was formed, which was followed by a plastic wave.  However, 

in contrast to the previous hypervelocity impact example, the peak stress did not significantly 

exceed the yield strength so that a two-step shock was formed.  With reduced impact velocity 

the magnitude of the plastic stress also reduced, so that at an impact velocity of 92 m/s the 

peak stress only marginally exceeded the yield strength.  As a consequence, these problems 

provided a good test of formulation accuracy for weak shocks.  In all three cases the RKPM 

solution with the shock modeling correction accurately modeled the elastic and plastic wave 

speeds, the yield stress, and the peak stress behind the plastic wave.  For the case with impact 

velocity of 92 m/s, a refined model with 961 nodes was also used to increase the accuracy in 

capturing the structure of the small elastic-plastic wave transition.  The error in shock wave 

speed and peak stress was less than 3 percent in all models.  In addition to accurately 

capturing the physics of the weak shock wave formation, the oscillation-limiting mechanism 

eliminated Gibb’s phenomenon oscillations.  In comparison, the uncorrected solution showed 

greater error in the wave speeds and peak stresses, where the error increased with increasing 

impact velocity.  This increased error is expected since the shock wave strength increases 

with increasing impact velocity, and the shock physics are not accounted for in the 

uncorrected formulation.  The uncorrected solution also oscillated strongly in all cases, with 

oscillations increasing with increased impact velocity.    A final benefit of the proposed shock 
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modeling correction was observed in the resolution of the shock jump.  For both the elastic 

and plastic jumps, the corrected solution with the van Leer limiter provided a sharper shock 

discontinuity than the uncorrected and fully second-order accurate solution.   
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(a) 

 

   

 

 

 

 

(b) 

Figure 38. Ballistic velocity impact, comparison of numerical and experimental axial stress 

for impact velocity of 273 m/s 
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(b) 

Figure 39. Ballistic velocity impact, comparison of numerical and experimental axial stress 

for impact velocity of 150 m/s 
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(b) 

Figure 40. Ballistic velocity impact, comparison of numerical and experimental axial stress 

for impact velocity of 92 m/s 
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(b) 

Figure 41. Ballistic velocity impact, comparison of numerical and experimental particle 

velocity for impact velocity of 273 m/s 
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(b) 

Figure 42. Ballistic velocity impact, comparison of numerical and experimental particle 

velocity for impact velocity of 150 m/s 
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(b) 

Figure 43. Ballistic velocity impact, comparison of numerical and experimental particle 

velocity for impact velocity of 92 m/s 
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6.3 Elastic impact 

In this problem set, another group of flyer plate impact experiments from Lundergan and 

Herrmann [123] were modeled, where the impact velocities were low enough for the material 

response to remain in the elastic range.  These represent very low velocity impact conditions 

and were used to verify the proposed formulation accuracy in the presence of an elastic 

discontinuity.  As with the previous example, the experiments were performed by firing a 

6061 T-6 aluminum impact plate into a target of the same material.  The experimental setup 

was the same as discussed in the previous verification problem.  Two experiments were 

simulated for the elastic wave case and are summarized in Table 3. 

Table 3. Summary, elastic wave impact experiments [123] 

Experiment 

No. 

Impact 

Vel., m/s 

Elastic Shock 

Velocity, m/s 

Elastic Axial 

Stress, GPa 

128 29 6,090 0.242 

105 53 6,050 0.442 

 

The thickness of the model target and impact plates was 15 mm; the model was 

constructed using a one-dimensional strain implementation as in the previous example.  Each 

of the experiments was initially modeled using 481 nodes; a refined model using 961 nodes 

was also used to show solution convergence and the effects of refinement on increased 

sharpness of the shock front.  For these elastic cases it was found that the van Leer limiter 
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was not strong enough to control the solution oscillation.  Consequently, piecewise constant 

pressure and particle velocity approximations were used in construction of the Riemann 

problem initial conditions; oscillations were controlled accordingly.  The computed and 

experimental axial stress waves at 1.6 µsec after impact are compared in Figure 44 and 

Figure 45; models results with and without the shock modeling correction are given for each 

of the impact velocities.  For both experiments, the corrected model provided a close match 

to the elastic wave speed and peak stress behind the discontinuity.  Error in the corrected 

solution for peak stress and wave velocity was approximately 6 percent and 7 percent, 

respectively.  It is notable that the difference between the experimental and theoretical elastic 

wave speed (based on the material constants in Table 1) is also approximately 7 percent.  

Therefore, it is expected that the majority of error is due to variability between the elastic 

properties used in the model and the exact elastic properties of the experimental material.  

This is confirmed by comparison to the exact elastic solution for uniaxial wave propagation 

(also given in the figures), which was computed using the material properties from Table 1.  

In both of the models, the corrected solution was oscillation free.  The uncorrected solution 

showed similar error in the wave speed and peak stress, which is expected since the elastic 

solution is not dependent on the strong shock physics.  However, the uncorrected solution 

was also highly oscillatory with a peak stress overshoot of approximately 33 percent.  The 

initial model, with discretization of 481 nodes, provided a reasonably sharp jump, which was 

sharpened with the model refinement.  To further assess the sharpness of the jump solution, 

the corrected and uncorrected solutions for impact velocity of 29 m/s are compared in Figure 
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46.  The initial model with 481 nodes is compared to the fully second-order accurate solution, 

and it is seen that the corrected solution is slightly more dissipative due to the reduced 

accuracy in approximation of the Riemann problem initial conditions.  The refined model is 

also compared to the uncorrected solution and it is seen that the jump sharpness is very 

nearly the same.  This shows that the correction provides significant solution improvement 

through control of the oscillations, and minimal accuracy is lost through the dissipative effect 

at the jump.  Adaptive h-refinement at the jump could be used to further improve the jump 

sharpness.   
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(b) 

Figure 44. Elastic impact, comparison of numerical and experimental axial stress for impact 

velocity of 53 m/s 

173 
 



 

 

 

 

 

 

(a) 

 

   

 

 

 

 

(b) 

Figure 45. Elastic impact, comparison of numerical and experimental axial stress for impact 

velocity of 29 m/s 
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(b) 

Figure 46. Comparison of corrected and uncorrected solution dissipation at shock front, a) 

481 nodes, and b) 961 nodes. 
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6.4 High velocity plate impact 

In this problem, a 2D plane strain high velocity plate impact problem is considered 

where the edges are unconstrained to allow lateral deformation at the impact surface.  Peak 

pressure behind the shock wave is compared to the experimental from Marsh [120].  The 

unconstrained edges result in multi-dimensional wave propagation as the traction free 

boundary condition generates a rarefaction wave propagating in from the edges.  

Consequently, this problem assesses the formulation accuracy for multi-dimensional wave 

propagation and rarefaction formation.  The model was constructed as two plates impacting 

vertically at a velocity of 1,000 m/s; this velocity is typical of a high velocity ballistic impact.  

Each plate is 8 mm wide by 2 mm thick and was discretized with 161 nodes across the width 

and 41 nodes through the thickness.  All boundaries are unconstrained so that rarefaction 

waves can form from the traction free edges.  Both plates were modeled as 6061 T-6 

aluminum with material properties given in Table 1.  With an impact velocity of 1,000 m/s, 

the peak pressure behind the compression shock wave is 8.0 GPa based on data reported in 

Marsh [120].  Model results for the corrected solution are shown in Figure 47 at 0.04 µsec 

and 0.24 µsec after impact.  The peak pressure behind the compression wave for the 

corrected solution is 8.0 GPa, which exactly matches the experimental data.  The initial 

compression wave formation is shown in Figure 47a; the formulation correctly enforces the 

traction free boundary condition as seen at the left and right edges of the impact plane.  The 

wave structure at 0.24 µsec after impact is shown in Figure 47b.  The leading compression 

wave continues to propagate with the initial wave structure while the rarefaction wave grows 
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from the edges and relieves the pressure in the initially compressed region.  This shows why 

flyer plate experimental data is measured at the center of the material samples and their 

diameter is much larger than the width; otherwise the measured compression wave would be 

attenuated by the rarefaction wave.   The uncorrected solution at the same time intervals is 

shown in Figure 48.  The uncorrected solution is strongly oscillatory as in previous examples.  

The corrected and uncorrected peak pressure solutions are compared in Table 4, where the 

uncorrected peak pressure is 9.0 GPa due to the solution oscillation.  This is an approximate 

13 percent overshoot of the experimentally determined pressure.   Lateral deformation at the 

impact plane is greater than for the corrected solution, which is a result of the pressure 

oscillations at the shock front.  The uncorrected solution also captures the rarefaction wave 

propagating from the free surface, but it is polluted due to the oscillations.  For the corrected 

solution, piecewise constant Riemann initial conditions were used.  This caused the corrected 

solution to be slightly more dissipative than the uncorrected, particularly at the corners where 

the rarefaction wave interacts with the leading compression wave.  Use of a technique to 

improve the initial condition approximation can be used to sharpen the corrected solution. 

Table 4. Comparison of shock pressure solutions 

Solution 
Computed Peak Shock 

Pressure, GPa 

Experimental Shock 

Pressure, GPa 
Error, % 

Corrected 8.0 8.0 0 

Uncorrected 9.0 8.0 13 
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Figure 47. High velocity plate impact with edge rarefactions, corrected solution at a) 0.04 

µsec and b) 0.24 µsec after impact 
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(b) 

Figure 48. High velocity plate impact with edge rarefactions, uncorrected solution at a) 0.04 

µsec and b) 0.24 µsec after impact 
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CHAPTER 7 CONCLUSIONS AND FUTURE 

WORK 

Many of the current, challenging research and real world problems involve high-rate 

material response to extreme dynamic loading such as impact and blast, where shock effects 

play a key role.  New meshfree methods are being developed to model this class of problems, 

and techniques to accurately model the shock-induced hydrodynamic response must be 

developed in the process.  The key issues that must be addressed are appropriate 

representation of the essential shock physics and control of the oscillatory numerical error 

that forms at the discontinuity.  Neither of these are addressed in a standard numerical 

formulation for statics or low-rate dynamics, and therefore an enhancement is required to 

accurately model strong shock effects.  Accordingly, the over-arching objective of this 

research was to develop an approach that addresses both of these issues in a unified manner, 

so that the RKPM shock modeling accuracy is certified and a strong foundation is developed 

for future applications.   

A powerful attribute of the RK meshfree approximation is the ability to control locality 

and continuity based on the desired approximation characteristics.  Since Gibbs phenomenon 

occurs as a result of approximation across a discontinuity, the behavior of a new localized 

power function kernel was investigated for use in problems with discontinuous solutions.  

Through numerical investigations it was found that the power function kernel provided a 
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strong localization of the RK approximation, even when enlarged kernel supports were used.  

The result was reduced oscillatory error in the approximation of a discontinuous solution as 

compared to approximation results using other smooth kernels such as the cubic B-spline.  

Another appealing attribute of the power function kernel is that kronecker delta properties are 

approached with increasing values of the power term, even in the presence of enlarged 

support size.  As a consequence, issues such as imposition of essential boundary conditions 

and reconstruction of the nodal solutions are simplified when the power function kernel is 

used. 

Towards the development of a shock modeling enrichment, a new approach to model 

shock-forming scalar conservation laws in the meshfree RKPM framework was first 

investigated.  The essential ingredient is an enrichment of the flux divergence according to a 

Godunov-type of scheme.  The flux divergence enhancement is constructed by forming a 

smoothed divergence operator on the SCNI integration cell topology and then enriching the 

divergence operation with a Riemann shock solution.  As a consequence of the embedded 

Riemann problem, the essential physics of the second law of thermodynamics are enforced 

and the entropy-correct shock solution is obtained.  Oscillation control is also tied to the 

enriched flux divergence through a velocity corrector, which was termed the flux-corrected 

velocity.  The flux corrected velocity is a first-order velocity correction that is embedded 

with the Riemann-enriched flux divergence and is locally applied at the shock.  Localization 

of the corrector is achieved with an automatic shock detection algorithm so that the solution 

at the shock front is corrected while regions of smooth solution remain uncorrected and thus 
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higher order accurate.  Numerical examples showed that the uncorrected RKPM solution 

exhibited large oscillatory errors in the presence of shocks.  The corrected RKPM solution on 

the other hand provided a significant improvement by achieving non-oscillatory behavior at 

the shock front and accurately capturing both the shock speed and jump solution. 

The framework developed for scalar conservation laws was extended to Cauchy’s 

equation of motion to achieve a hydrodynamic formulation for modeling shocks in nonlinear 

solids.  Because the shock response of solids is inherently pressure dominated, in the 

nonlinear solids formulation a volumetric-deviatoric decomposition of the internal force 

vector was utilized to construct a shock modeling correction that operates on the pressure 

part.  The correction is formed by enriching the volumetric stress divergence (or equivalently 

the pressure gradient) with a Rankine-Hugoniot solution to a Riemann problem.  The 

Riemann problem solves for the jump solution of pressure and particle velocity on the SCNI 

integration cell boundaries, and therefore takes advantage of the existing topologic structure 

used for weak form integration.  The essential shock physics are introduced through the 

Rankine-Hugoniot enrichment so that the correct nonlinear shock response is obtained.  The 

mechanism for oscillation control is also linked to the Rankine-Hugoniot enrichment through 

the state and field variable approximations used to define the Riemann problem initial 

conditions.  Through numerical examples, it was shown that resolution of the fine-scale 

shock structure can be controlled through the accurate treatment of the approximated initial 

conditions.  Other techniques such as adaptive h-refinement at the shock front can also be 

used, where the adaptive refinement is activated by the automatic shock detection algorithm.  
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An important finding of the research was the requirement for consistency between the nodal 

pressures and the enriched pressure gradient calculation.  This requirement was addressed by 

forming a Rankine-Hugoniot enriched volumetric strain measure that is also derived from the 

Riemann solution.  The volumetric strain measure is used in conjunction with the Rankine-

Hugoniot pressure-volume relationship to obtain updated nodal pressures at each time step. 

Accuracy of the nonlinear solids formulation was validated through several benchmark 

problems, where the numerical solutions were compared to experimental data or an analytical 

solution.  The benchmark problems covered a broad range of shock conditions, ranging from 

weak elastic and elastic-plastic shocks to strong shocks due to hypervelocity impact.  Across 

this spectrum, the formulation remained accurate and oscillation-free with maximum error of 

6 percent, which is primarily attributed to variability in the experimental material properties.  

This is a significant improvement over the uncorrected solution, which showed oscillation 

error of over 30 percent and significant error in the shock pressure and wave speed for strong 

shocks.   

The primary objective of constructing a meshfree RKPM hydrodynamic formulation, 

where the essential shock physics and oscillation control were addressed in a unified way, 

was achieved for both scalar conservation laws and the equation of nonlinear solids.  This is a 

significant improvement in contrast to the artificial viscosity approach for modeling shocks 

in solids, that uses arbitrary numerical parameters and subjective length scales.  Oscillation 

control in the present formulation stems from the definition of the Riemann problem initial 

conditions, so that the oscillation control mechanism is linked to the physics-based 
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enrichment of the formulation.  With regard to implementation into a meshfree framework, 

because the shock-capturing enrichments are constructed on the SCNI topology the inclusion 

into a meshfree method is straightforward.  Furthermore, the increase in computational cost 

is minimal, where it was found that computation time is increased approximately 15-20 

percent; it is expected that this could be further reduced with more efficient coding structure.    

Based on the accomplishments of this research, several areas are recommended as topics 

of future study for extension of these new meshfree shock modeling capabilities.   

1. It was shown that accuracy in capturing the fine-scale shock structure is directly 

related to the accuracy of the Riemann problem initial conditions.  In this work, it 

was shown how a limiter technique can be integrated into the meshfree framework 

to increase sharpness of the jump solution.  Although the limiter technique was 

effective, the efficiency of this approach for an irregular, multi-dimensional 

meshfree discretization is not known.  This issue should be investigated to 

determine how a limiter would be used in this situation.  Alternatively, control of 

the RK approximation locality or continuity to achieve improved approximations of 

the Riemann problem initial conditions can also be studied.   

2. A second issue that should be considered for further research is extension of the 

formulation to three-dimensional fragmentation problems.  The key issue that must 

be addressed for this extension is translation of the technique from the SCNI 

framework to the SNNI.  Under SNNI the integration cells are no longer 

conforming, which will require further investigation on how the Riemann problems 
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are formed and the enriched boundary solution is obtained.  This extension will be 

key for strong dynamics applications, particularly for impact and shock in brittle 

materials such as concrete where spall and material fracture are common.   

3. Finally, a third topic recommended for future study is application of the technique 

to fluid-structure interaction problems, such as a blast wave impacting a solid 

structure.  The advantage that this formulation may provide for these types of 

problems is that the Rankine-Hugoniot problem solved on the integration cell 

boundary is in essence an interface problem.  Otherwise stated, the Rankine-

Hugoniot problem is already solved for the shock solution at the interface between 

two materials.  Therefore, the contact surface of the blast wave on a structure could 

be considered as a material interface and the Rankine-Hugoniot problems should 

naturally capture the shock transmission due to the impedance mismatch.  

Application of the hydrodynamic formulation solely to blast waves in air may also 

be of interest, as the development of Lagrangian methods to model blast in air is of 

current interest to military research groups.    
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