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SUMMARY
Non-invasive prenatal testing (NIPT) employs ultra-low-pass sequencing of maternal plasma cell-free DNA to
detect fetal trisomy. Its global adoption has established NIPT as a large human genetic resource for exploring
genetic variations and their associations with phenotypes. Here, we present methods for analyzing large-
scale, low-depth NIPT data, including customized algorithms and software for genetic variant detection, ge-
notype imputation, family relatedness, population structure inference, and genome-wide association anal-
ysis of maternal genomes. Our results demonstrate accurate allele frequency estimation and high genotype
imputation accuracy (R2 > 0:84) for NIPT sequencing depths from 0.13 to 0.33. We also achieve effective
classification of duplicates and first-degree relatives, along with robust principal-component analysis. Addi-
tionally, we obtain an R2 >0:81 for estimating genetic effect sizes across genotyping and sequencing
platforms with adequate sample sizes. These methods offer a robust theoretical and practical foundation
for utilizing NIPT data in medical genetic research.
INTRODUCTION

Genetic variation plays a pivotal role in determining individual

susceptibility to traits and diseases, with the intricate relation-

ship between sequence variation and disease predisposition

serving as a potential tool for understanding disease pathogen-

esis and developing innovative approaches to prevention and

treatment. However, progress in genomics and multi-omics

studies is hindered, particularly in low- andmiddle-income coun-

tries, by logistical and financial constraints that impede repre-
Cell Genomics 4, 100669, Oct
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sentative sampling from the entire population.1 The predominant

focus on individuals of European descent has resulted in a gap in

explaining extensive trait variability and disease susceptibility

across diverse populations.2 Additionally, the predominantly

cross-sectional nature of studies limits our understanding of

the variability of genetic effects throughout life, subject to modi-

fication by aging, environments, and critical periods such as

pregnancy.3

In recent years, non-invasiveprenatal testing (NIPT) sequencing

has ushered in a paradigmshift in pregnancy screening programs,
ober 9, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:liusy99@mail.sysu.edu.cn
mailto:jinxin@genomics.cn
mailto:shujia.huang@bigcs.org
https://doi.org/10.1016/j.xgen.2024.100669
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2024.100669&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


maternal 
blood cell

Fetal DNA
Maternal DNA

A C

B

0.0 0.1 0.2 0.3 0.4
Depth

0

500

1000

1500

2000

2500

3000

3500

C
ou

nt

BGISEQ-500
Illumina
Ion Torrent
Blackbird

C

Figure 1. Characteristics of standard NIPT sequencing data

(A) NIPT sequencing involves the sequencing and analysis of peripheral blood samples obtained from pregnant women.

(B) Visualization of typical sequencing depth observed in clinical settings across various sequencing platforms commonly used in China, with data derived from

the cohorts listed in Table S1.

(C) The incorporation of NIPT sequencing into pregnancy screening programs in China and other countries has enabled the connection between genotypes and

diverse maternal and child phenotypes. The word cloud illustrates the distribution of sample size for maternal and child phenotypes related to NIPT data from two

Chinese hospitals, using statistics from https://monn.pheweb.com/phenotypes.html.
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offering a safer and more accurate alternative to conventional

invasive procedures.4,5 This transformative technology has been

globally integrated into pregnancy screening programs, resulting

in an unprecedented accumulation of genetic data that stand as

a significant global genetic resource.6 The core principle of NIPT

involves the non-invasive acquisition of genetic information from

peripheral blood samples from pregnant women, commencing

asearly as the 12thgestationalweek (Figure1A). Several key char-

acteristics define NIPT data. First, an average of 89.99% of the

DNA originates from mothers, while 10.01% is fetal DNA (Fig-

ure S1). Therefore, althoughNIPTwas initially developed to detect

fetal trisomy, the genetic information it contains predominantly re-

flects thematernalgenome.Second, thesequencingdepthgener-

ally ranges from 0.063 to 0.53 in common clinical settings. In

China, data from several hospitals indicate that the average

sequencing depth for NIPT is 0.06-fold for Illumina sequencers,

while the average depth ranges from 0.15-fold to 0.27-fold for

BGI sequencers (BGISEQ-500) and Ion Torrent sequencers,

respectively (Figure 1B; Table S1). Third, given the mandatory

pregnancy screening programs implemented intensively within a

40-week examination period in various countries,7 the NIPT DNA
2 Cell Genomics 4, 100669, October 9, 2024
information is associated with rich gestational phenotypes (Fig-

ure 1C). These phenotypes encompass standard physical mea-

surements like height, weight, and blood pressure; a typical set

of approximately 100 biomarkers widely utilized in pregnancy

screening programs, such as blood glucose and lipid levels; re-

corded disease conditions in electronic medical records; and

multi-omics data like metabolomes of mothers and children. The

matching of genotypes and phenotypes in vast datasets signifi-

cantly enhances the utility of NIPT data for investigating the ge-

netic basis of gestational disorders and establishing polygenic

risk scores for common biomarkers. As the volume of NIPT data

continues to escalate, it becomes increasingly evident that real-

izing its full potential requires a systematic and rigorous approach

to data analysis. However, there exists a conspicuous void char-

acterized by the absence of a comprehensive exposition andpub-

lication of methodologies tailored specifically for the analysis of

NIPT data in human genetics investigations.

In response to this critical gap, our study is dedicated to ad-

dressing the methodological challenges associated with NIPT

data analysis. Unlike our previous study, which did not include

simulation or real-life data evaluations of the methods,6 we

https://monn.pheweb.com/phenotypes.html
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present here a systematic evaluation of various analytical

methods, encompassing methodological advances in genetic

detection, genotype imputation, the assessment of family relat-

edness, principal-component analysis, and genome-wide asso-

ciation studies (GWASs). Recognizing the imperative nature of

resource sharing and collaboration in scientific endeavors, we

are releasing our analytical workflow, along with a comprehen-

sive protocol, to facilitate the analysis of NIPT data. Through

these efforts, our objective is to provide researchers and scien-

tists worldwide with a robust framework that empowers them to

derive meaningful insights from NIPT data.

RESULTS

Maximum-likelihood model for SNP discovery and allele
frequency estimation with NIPT data
The traditional multi-sample variation-calling algorithms (sam-

tools-bcftools8 and gatk unifiedgenotyper9) typically concentrate

on bi-allelic alleles. These algorithms employ Bayesian ap-

proaches for variant discovery and genotyping, simultaneously

estimating the probability that the two alleles—the reference

allele and the alternative allele—are segregating in a sample of

N individuals and the likelihoods for each of the AA, AB, BBgeno-

types for each individual. In scenarios involving multi-allelic

probability estimations, each individual can have a maximum of

10 potential combinations of genotypes. However, for very low-

coverage sequencing, such as 0.13, computation of genotype

likelihood is error prone. Therefore, instead of estimating the like-

lihood of 10 possible genotype combinations, we simplify the

complexity by estimating the likelihood of four possible bases

for the sampled one read from each individual. For a specific lo-

cus, the overallmarginal data likelihoodofN individuals, given the

observed bases, base quality, and estimated population allele

frequency, can be aggregated by individual base likelihood,

which is the sumof the probability of the four possible bases (Fig-

ureS2;STARMethods). The variant detection algorithmhasbeen

implemented in BaseVar (STAR Methods). In a simulation study,

we demonstrate that BaseVar can robustly identify variants given

a specific allele frequency threshold (Figure 2). The call rate and

accuracy depend on the sample size, true alternative allele fre-

quency, and allelic type of the variant (bi-allelic, tri-allelic, and

tetra-allelic). For sample sizes of 44,000, 140,000, and one

million, we detected 100% of the bi-allelic variants with a mini-

mum alternative allele frequency of 0.015, 0.006, and 0.003,

respectively (Figure 2A; Table S2). For a fixed sample size of

140,000, we identified 100% of the bi-allelic, tri-allelic, and

tetra-allelic variants with minimum alternative allele frequencies

of 0.006, 0.008, and0.008, respectively (Figure 2B). The accuracy

of alternative allele frequency estimation is high for all scenarios,

with root-mean-square deviation (RMSD) ranging from 0.001 to

0.007 and normalized RMSD ranging from 0 to 1.3 (Figures 2C

and 2D; Tables S2 and S3). In a comparison of the accuracy of

variant detection and allele frequency estimation for the down-

sampled data (0.13) of 2,504 individuals from the 1KG project10

among the BaseVar algorithms, UnifiedGenotyper, and sam-

tools-bcftools, all three algorithms provide accurate variant

detection and allele frequency estimation (Pearson0s R> 0:94)

(Figure S3; STAR Methods). Regarding computational perfor-
mance, BaseVar demonstrates shorter CPU times and reduced

memory usage for variant detection and allele frequency estima-

tion compared to UnifiedGenotyper and samtools-bcftools

across sample sizes of 1,000, 10,000, 100,000, and one million

(Table S4). Notably, when the sample size approaches one

million, UnifiedGenotyper and samtools-bcftools are unable to

complete the computation, thus only allowing for the computa-

tional performance evaluation of BaseVar (Table S4).
Gibbs sampling and hidden Markov model for genotype
imputation
To leverage NIPT data for investigating the genetic architecture

of maternal genomes and diverse clinical phenotypes, genotype

imputation is indispensable. QUILT11 and GLIMPSE12 present

two algorithms specifically designed for low-pass whole-

genome sequencing data, accommodating the genotype uncer-

tainty inherent in non-invasive prenatal sequencing data. Both

methods employ a hidden Markov model with Gibbs sampling,

utilizing prior allele frequency information derived from a haplo-

type reference panel. An essential question arises: what factors

optimize genotype imputation accuracy?We conducted an eval-

uation of these two algorithms using three Chinese reference

panels, using the 100 high-coverage NIPT samples (the true

set). These three reference panels consist of the 1000 Genome

Project (1KGP) reference panel (N = 504 unrelated East Asians,

including 301 Chinese),10 the Born in Guangzhou Cohort Study

(BIGCS) reference panel (N = 2,245 Chinese with high-quality,

long-range, phased haplotypes from duo and trio information),13

and the Stroke Omics Atlas (STROMICS) reference panel (N =

10,241 unrelated Chinese)14 (STAR Methods).

As depicted in Figure 3, imputation accuracy depends on the

sample size in the reference panels and the average depth of

theNIPTsamples.Focusingonwell-imputedvariants (Impute’s in-

formation measure, INFO score > 0.4) present in chromosome 20

with the 1KGP reference panel, the QUILT algorithm achieved

average genotype imputation accuracy of 0.80, 0.86, and 0.91 at

average sequencing depths of 0.13, 0.23, and 0.33 (Figure 3A;

Table S5A). GLIMPSE performs slightly better than QUILT, exhib-

itingaveragegenotype imputationaccuracyof0.82,0.87, and0.92

for a sequencing depth of 0.13, 0.23, and 0.33, respectively (Fig-

ure3B;TableS5B).Withanexpansionof the referencesamplesize

to thousands of related individuals (63), genotype imputation ac-

curacy improved. The average imputation accuracy increased to

0.84, 0.89, and 0.93 for NIPT sequencing depths of 0.13, 0.23,

and 0.33 with the GLIMPSE algorithm. Further improvement

was observed when expanding the reference sample size to

10,000 individuals with high-coverage sequencing (�403), such

as the STROMICS reference panel.14 This demonstrated an

average imputation accuracy increase to 0.84, 0.90, and 0.94 for

a NIPT sequencing depth of 0.13, 0.23, and 0.33 with the

GLIMPSEalgorithm.Performance is highly consistent for chromo-

some1 (FigureS4; TablesS5CandS5D).Given theoptimal perfor-

mance with the STROMICS reference panel and assuming that a

million individuals are involved in a GWAS, a 900,000 effective

sample size can be achieved following genome-wide association

power calculations (STAR Methods), which enables robust

genome-wide association investigations (Figure S5).
Cell Genomics 4, 100669, October 9, 2024 3
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Family relatedness
In GWASs, cryptic family relatedness and population stratifica-

tion are two crucial confounding factors.15 A key question is

whether standard software, such as the population-based link-

age analyses and whole-genome association toolset (PLINK),16

is suitable for examining family relatedness and population strat-

ification in NIPT data and whether to use pre- or post-imputation

data for analyzing genetic relationships. To establish a protocol

for assessing family relatedness, we included 2,205 identical

NIPT participants, tested multiple times, and evaluated the

kinship coefficient using data before and after genotype imputa-

tion. The results indicated that correct estimates of the kinship

coefficient could not be generated with pre-imputation geno-

types (Figure 4A). However, post-imputation genotypes allowed
4 Cell Genomics 4, 100669, October 9, 2024
accurate calculation, with kinship coefficients for all identical in-

dividuals exceeding 0.43, surpassing the theoretical cutoff of

>0.354 for identifying duplicates or monozygotic twins17

(Figure 4B).

In addition to duplicate samples, we further evaluated the pro-

tocol’s performance on first- and second-degree relatives from

the Born in Guangzhou birth cohort.13 We used 35-bp single-

end sequencing data at 0.13, 0.23, and 0.33 coverage from

420 pairs of first-degree relatives (408 mother-offspring pairs

and 12 sister pairs) and 218 pairs of second-degree relatives

(children and their grandmothers) and computed the kinship

coefficient for these pairs. The kinship coefficient (f) measures

the probability that two random alleles, each selected from one

in a pair of individuals, are identical by descent. For the 408



0.0 0.2 0.4 0.6

Non-reference allele frequency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Im
pu

ta
tio

n
ac

cu
ra

cy
(R
2 )

A QUILT

Depth
0.1
0.2
0.3

Panel
STROMICS
BIGCS
1KGP

0.0 0.2 0.4 0.6

Non-reference allele frequency

B GLIMPSE

Depth
0.1
0.2
0.3

Panel
STROMICS
BIGCS
1KGP

Figure 3. Imputation accuracy of NIPT sam-

ples compared to high-coverage true ge-

nomes for variants in chromosome 20

(A and B) Imputation accuracy attained by the

QUILT algorithm (A) and the GLIMPSE algorithm

(B) for variants in chromosome 20. The evaluation is

performed against the reference panels of the

1KGP, BIGCS, and STROMICS using bcftools. The

NIPT sequencing depth spans from 0.13 to 0.33.

Article
ll

OPEN ACCESS
mother-offspring pairs, only 4 of 408 pairs (0.98%) at 0.13

coverage and 2 of 12 sister pairs (16.7%) at 0.33 coverage

had a kinship coefficient outside the typical range of [0.177,

0.354]17 (Figures 4C and 4D). Among second-degree relatives,

all 218 pairs demonstrated a kinship coefficient below 0.15.

However, 125 pairs (57.34%) at 0.13, 36 pairs (16.5%) at 0.23

, and 10 pairs (4.6%) at 0.33 coverage had coefficients below

the expected range of [0.0884, 0.1777]17 (Figure 4E).

Therefore, when using the kinship coefficient, classification

of first-degree relatives is relatively accurate, while second-

degree relatives tend to be underestimated. We also assessed

the use of k0—the probability that two diploid individuals

share zero alleles identical by descent—to separate the

parent-offspring pairs from full siblings. Full siblings had a

higher average k0 compared to parent-offspring pairs (Fig-

ure 4F), but the two groups could not be reliably distinguished

using k0 alone. However, the plot suggests a potential for a

supervised learning approach with sufficient NIPT data with

known relationships. In conclusion, NIPT-like data are robust

for detecting duplicates and first-degree relatives even at

low sequencing depths. Improved methods are needed to

enhance detection performance for second-degree and

more distant relatives.

Population stratification
To investigate performance of NIPT data for inference of popula-

tion stratification, we assessed principal-component analysis

(PCA) using the widely used PLINK algorithm and the EM-PCA

for ultra-low coverage sequencing data (EMU) method employ-

ing individual allele frequency (which do not reply on exact geno-

types)18 for NIPT-like data (average 0.23) from 2,229 individuals

with higher-depth whole-genome sequencing data (�6.73

WGS) from the Born in Guangzhou birth cohort13 (Figure 5A).

Compared to the PCA derived from the 6.73 WGS, where PC1

represents latitudinal and PC2 represents linguistic variation,

NIPT data effectively capture the first principal component, re-

flecting latitudinal variation (Figures 5B–5D). However, NIPT

data did not resolve linguistic variation in the second principal

component, such as distinguishing Min speakers in the south-

eastern Fujian province from Cantonese speakers in the south-

ern Guangdong province (Figures 5B–5D). Procrustes analysis
Cell
of the first 10 PCs revealed that PCA using

PLINK on imputed NIPT genotypes

yielded the smallest RMSD compared to

the 6.73 WGS dataset (Figure 5C).

In analyzing large-scale NIPT data from

Longgang hospital in Shenzhen (n =
65,181) (the BGISEQ-ShenzhenLG in Table S1), we observed

that both the EMU algorithm and PLINK analysis on unimputed

genotypes detected genotype missingness that manifested as

outliers, corroborating our above findings (Figure S6).

High replicability of GWAS using NIPT sequencing data
One of the most important applications of NIPT data lies in con-

ducting GWASs, particularly for traits accessible in maternal and

child cohorts. Accurate genotype imputation is crucial for con-

ducting robust GWASs. However, the replicability and reliability

of significant loci identified through GWASs remain uncertain. To

address this, we conducted three analyses: two focused on

maternal height and one on metabolite phenotypes of mothers

and infants.

First, maternal height, which is not expected to be influenced

by pregnancy, was used to serve as a model trait to evaluate ge-

netic effect estimates acrossdifferent datasets.Weassessedge-

netic effect estimates for maternal height from two independent

hospital datasets: BGISEQ-ShenzhenLG (n = 65,181) and

BGISEQ-ShenzhenBA2 (n = 47,162)19 (Table S1). The genetic ef-

fect estimates were highly consistent, with a squared Pearson’s

correlation coefficient of R2 = 0:93 for genome-wide associated

variants in themeta-analysis (Figure 6A; Table S6). The observed

regression coefficientwassmaller than1, consistentwith thewin-

ner’s curse situation.20 Second, we assessed genetic effect esti-

mates for maternal height of two independent batches of data

from the same hospital: BGISEQ-ShenzhenBA1 (n = 30,695)21

and BGISEQ-ShenzhenBA2 (n = 47,162)19 (Table S1)21

again finding high consistency between datasets (Figure 6B;

Table S7).

Furthermore, we compared the genetic effect estimates for

maternal height from an NIPT dataset with 112,343 partici-

pants19 to those from an array-based height GWAS using data

from the Taiwan Biobank (n = 92,615).22 We observed a high de-

gree of consistency between the NIPT and Taiwan datasets, with

a squared Pearson’s correlation coefficient of R2 = 0:93 for

genome-wide significant loci in the Taiwan dataset (Figure 6C;

Table S8) and R2 = 0:81 for genome-wide significant loci in the

NIPT dataset (Figure 6D; Table S9). The 95% confidence inter-

vals for the regression coefficient estimates were substantially
Genomics 4, 100669, October 9, 2024 5
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(A) Distribution of kinship coefficients for identical samples using PLINK without genotype imputation.

(B) Distribution of kinship coefficients for identical samples using PLINK with genotype imputation.
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(F) Visualization of relatedness using k0 and kinship coefficient.
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smaller than 1, suggesting that the differences cannot be solely

explained by the winner’s curse (Figures 6C and 6D). This

discrepancy is likely due to model differences between the data-

sets. Specifically, because NIPT samples are exclusively female,

no adjustment for sex was necessary in the GWAS model

(varðyNIPT Þ = 1 = h2 + s2E ), resulting in the variance of standard-

ized height (varðyNIPT ÞÞ being equal to 1 and comprising genetic

heritability (h2) and environmental variance (s2E ). In contrast, the

Taiwan model (varðyTWÞ = 1 = h2 + s2sex + s2E ) includes an addi-

tional term for sex variance (s2sex), leading to a reduction in ge-

netic effect bTW � N

�
0; h2

h2+s2sex+s
2
E

�
in the Taiwan GWAS

compared to the genetic effect bNIPT � N

�
0; h2

h2+s2
E

�
from the

NIPT GWAS due to height differences between males and fe-

males. When recalibrating bTW with a shrinkage parameter

of 1.49, which represents the mean of the calibration ratio

dividing the observed estimated standard error by the expected

standard error assuming a variance model composing heritabil-

ity and environmental variance, the regression coefficient be-

tween bTW and bNIPT approached 1 (Figures S7 and S8; STAR

Methods). Similar results were observed when comparing the

NIPT datasets with the Biobank of Japan and the GIANT

consortium datasets (Figures S7 and S8). The genetic correlation

computed with the software tool for the LD score estimation and

estimation of variance components from summary statistics

(LDSC) for height between all of the datasets is close to 1

(Table S10). As expected, the correlation of genetic effect esti-

mates for significant loci from the Taiwan study decreased with
Cell
smaller sample sizes when we included

three additional NIPT datasets (R2 = 0:77

for n = 30,096 BGI-seq500, R2 = 0:74 for

n = 19,041 Hiseq CN500, and R2 = 0:78

for n = 8,744 Ion Proton; Figures S9A–

S9C).21,23 Conversely, larger sample sizes

provided greater power for discovering

genetic loci in the NIPT data

(Figures S9D–S9F).

Finally, we compared GWAS results for

the same maternal or newborn metabolite

levels across four different sequencing

platforms, evaluating the consistency of

genetic effect estimates at significant loci

(Figures 6E and 6F; Table S11). Our anal-

ysis revealed remarkable consistency in
genome-wide association estimates between the BGI-seq500

and BlackBird sequencing platforms, with a squared Pearson’s

correlation coefficient of r2 = 0:927 for a maternal metabolite

GWAS based on NIPT data.24 However, we observed a

differentiation in the regression coefficient between the two

sequencing platforms (b = 1:15; 95% CI : 1:06 to 1:24), likely

due to residual genotype imputation errors associated with

sequencing depth and inaccuracies in generating precise

estimates. Continuous improvements in genotype imputation

methods and increasing sample sizes may mitigate this issue.

Similarly, we observed high consistency between the Illumina

and Ion Torrent sequencing platforms, with r2 = 0:943 for a

neonatal metabolite GWAS based on NIPT data.23 These statis-

tics underscore the high replicability and reliability of GWAS us-

ing NIPT sequencing data.
DISCUSSION

NIPT data represent a new category of genomic data that has

rapidly gained prominence as a result of the widespread adop-

tion of NIPTs, which sequences cell-free DNA from maternal

plasma. Because of its fast accumulation in hospitals, the sam-

ple size of a single NIPT cohort, typically around 50,000 samples,

surpass that of chipped or sequenced cohorts. Despite the lim-

itations of low-depth sequencing in driving individual discov-

eries, its potency for population and statistical genetic analyses

is evident. This study presents a comprehensive suite of analyt-

ical methods tailored for human genetic investigations using

extensive NIPT data. Thesemethods encompass genetic variant
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detection, allele frequency estimation, genotype imputation,

assessment of family relatedness, PCA, and genome-wide asso-

ciation analyses.
By leveraging probabilistic modeling through maximum-likeli-

hood and likelihood ratio test algorithms, we achieve accurate

genetic variant detection and precise allele frequency estima-

tion. This enables in-depth exploration of site-specific allele fre-

quencies in genomic databases25 and the derivation of regional

allele frequencies and polygenic risk scores, contributing to the

understanding of genetic susceptibility among different popula-

tions.26 Notably, our findings underscore the impact of NIPT

sequencing depth and reference panel scale on genotype impu-

tation performance, providing insights into achieving optimal ac-

curacy. We observe that genotype imputation performance im-

proves with increasing NIPT sequencing depth and the scale

of the reference panel. The highest imputation accuracy

achieved for the Chinese population is 0.84, 0.90, and 0.94 for

NIPT data depths of 0.1-, 0.2-, and 0.3-fold, respectively, using

a reference panel comprising over 10,000 individuals with high-

depth sequencing. Accurate inference of family relatedness,

including identical individuals and first-degree relatives, is

achieved with common software like PLINK, providing a uniform

solution for NIPT data where multiple pregnancies for the same

individual are common, especially with large sample sizes.

PCA on unimputed and imputed genotypematrices as well as in-

dividual allele frequency matrices reveal distinct data structures.

PCA based on the unimputed genotype and individual allele

frequency matrix captures both missingness levels and popula-

tion genetic structure, while PCA based on the imputed geno-

type matrix alleviates the missingness patterns. Importantly,

GWASs based on NIPT data from different sequencing platforms

demonstrate highly consistent genetic effect estimation and

show strong concordance with genetic effect estimates from

array data for maternal height. These systematic evaluations

provide the current best protocol for analyzing NIPT data for hu-

man genetics research, representing significant advances over

our prior study in 20186 by benchmarking the BaseVar algorithm,

offering protocols for family relatedness and PCAs, employing

the latest imputation approaches, and evaluating the accuracy

of genetic effect estimates. The integratedmethods are provided

under data and code availability.

In several companion papers stemming from this investiga-

tion, we delve into the genetic associations with approximately

100 anthropometric and biomarker phenotypes used in preg-

nancy screening.27 Of notable importance is our exploration

of the genetic basis underlying common pregnancy disorders,

such as gestational diabetes,21,28 gestational thrombocyto-
Figure 6. Consistency of genetic effect estimates for height phenotyp

array, and across different NIPT sequencing platforms

(A) Consistency of genetic effect estimates for height GWAS between two indepe

the meta-analysis.

(B) Consistency of genetic effect estimates for height GWAS between an addition

(C) Consistency of genetic effect estimates between array and the meta-analysis

Taiwan Biobank.

(D) Consistency of genetic effect estimates between array-based and NIPT sequ

(E) Scatterplot illustrating the consistency of genetic effect estimates for 34matern

(F) Scatterplot illustrating the consistency of genetic effect estimates for 13 neon

Error bars indicate the standard errors of the genetic effect estimates.
penia,19 intrahepatic cholestasis of pregnancy,29 gestational

thyroid functions and disorders,30 as well as gestational ane-

mia in the genetically underrepresented Chinese population.

Furthermore, we garnered insights into the genetic architec-

ture underpinning numerous molecular phenotypes, including

maternal24 and newborn metabolites.23 Combined with birth

cohort family sequencing data, the genetic effect estimates

from NIPT data also enable investigations into maternal intra-

uterine and fetal genetic effects on birth outcome and, subse-

quently, long-term children’s health.13 These studies provide

proof-of-concept evidence for utilizing accumulating NIPT

data for future medical genetic studies of important and rarer

disorders, such as preterm birth, pre-eclampsia, birth defects,

and neurodevelopmental defects.

The publication of methods and the workflow arising from this

practice lays a solid foundation and opens new avenues for

future studies. In clinical practice, maternal blood plasma sam-

ples used for NIPT are stored in hospitals. In China, cities such

as Shenzhen andBeijing have includedNIPT in the national med-

ical insurance, while in other cities, the cost is less than 200 dol-

lars. All women, regardless of risk status, can opt to undergo

NIPT. During the informed consent process, expectant mothers

are given the option to donate residual samples and data, strip-

ped of identifiable personal information, for scientific research,

technological innovation, and clinical applications approved by

the institutional ethnics committee. Outside China, Switzerland

is the first country to cover NIPT under its basic compulsory

health insurance.31 In the Netherlands, researchers have utilized

over 100,000 NIPT sequences to investigate the virome genome

of pregnancies.32 According to 2023 statistics from BGI, one of

the largest NIPT sequencing machine and service providers

globally, 43 million NIPT tests have been conducted worldwide,

with more than 27 million conducted in China. These data re-

sources will significantly benefit from the methods provided in

this study.

With informed consent, ethics approval, and authorization

from authorities such as the China Human Genetic Resources

Administration Office, continuous improvement of analytical

methods targeting important clinical questions and the sustain-

able expansion of phenotypic collection and sample sizes

should become a priority. Beyond the readily available bio-

markers and anthropometric parameters from pregnancy

screening, there is potential to broaden the panel to include im-

aging, metabolites, lipidomes, and proteomes in the maternal

plasma. Ongoing development and evaluation of analytical

methods, along with a suitable data-sharing scheme specific

to NIPT data, will ensure that researchers effectively harness
e for NIPT data across different hospitals, between NIPT data and

ndent hospitals in Shenzhen for variants significantly associated with height in

al dataset from Shenzhen Baoan hospital and the meta-analysis dataset in (A).

NIPT GWAS data in (A) for variants significantly associated with height in the

encing data for variants significantly associated with height in NIPT data.

al metabolites association signals between the BGI-seq500 and BB platforms.

atal metabolite associations between the Illumina and Ion Torrent platforms.
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this resource, facilitating more precise and meaningful genetic

research. The publication of the methods and protocols in this

study provides a foundation for these future developments.
Limitations of the study
We would like to summarize several limitations and highlight po-

tential directions for future methodological development beyond

this study. First, the current methods are primarily applied to infer

maternal genomes and study maternal phenotypes. In standard

NIPT, the fetal fraction ranges from 5% to 12% with a median of

8%, depending on the gestational age at the time of testing. Ge-

notype imputation for the fetus is more challenging than for the

mother. However, jointly modeling maternal and fetal genotypes

during imputation is theoretically feasible and could improve the

accuracy of maternal genotype imputation while estimating fetal

genotype dosage. Future research could explore an improved

genotype imputation approach by developing a hidden Markov

model that simultaneously models both genomes.

Second, while the large sample size provides strong statis-

tical power for identifying SNP associations with maternal

phenotypes, the study lacks information on insertions or dele-

tions (indels) and structural variations (SVs). This limitation

may be addressed by either enhancing the reference panel

for genotype imputation or developing new algorithms that

incorporate increased sequencing depth and read length for

specific NIPT samples to capture a broader spectrum of in-

dels and SVs alongside SNPs. Finally, the current NIPT-hu-

man-genetics workflow did not achieve optimal performance

for family relatedness and population structure inference,

potentially leading to biases in genetic effect estimates from

GWASs. An important direction is to develop a new linear

mixed model to better account for genotype-phenotype asso-

ciations using NIPT data.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

NIPT data collection
We acquired sequencing depth statistics from the following representative NIPT screening centers in China: BGI-Shenzhen Life

Science Institute (utilizing BGISEQ-500 sequencer and Blackbird sequencer, N = 39,194), Suzhou Maternal and Children’s Health

hospital (employing Illumina sequencer, N = 8,960 and Ion Torrent sequencer, N = 5,458), Wuhan Maternal and Children’s Health

Hospital (BGISEQ-500 sequencer, N = 39,178), Longgang District Maternity and Child Healthcare Hospital of Shenzhen City

(BGISEQ-500 sequencer, N = 70,739) and Shenzhen Baoan Women’s and Children’s Hospital (BGISEQ-500 sequencer, N =

50,948) (Table S1).

The NIPT sequencing protocol can be briefly summarized as follows: Peripheral whole blood (5-10mL), approximately 5ug each,

were drawn from each participant and stored in EDTA anticoagulant tubes to prevent hemolysis. Within 8 h of blood collection,

plasma was extracted from two rounds of centrifugation. The first round, conducted at 1,600g for 10 min, separated plasma from

whole blood, and the second round, at 16,000g for 10 min, removed residual cells. Subsequently, plasma samples underwent library

construction and sample quality assessment. Notably, cell-free DNA fragments were extracted from 0.6 mL plasma using the circu-

lating nucleic acid kit (Qiagen, Germany). For Blackbird or BGI-seq500 sequencing platforms, a 36-cycle single-end multiplex

sequencing approach was employed. For the Ion Proton platform, the sequencing library was constructed by an Ion plus fragment

library kit (Life Technologies, USA), quantified with a qubit fluorometer, and sequenced in a 30-cycle run. Adapter sequences of reads

were trimmed using the Ion Torrent platform-specific pipeline (Torrent Suite, version 2.0.1), generating reads of lengths ranging

from 150 to 165 bp. Illumina platform sequencing involved library construction with a ChIP Seq library protocol, quantification

with Kapa SYBR fast qPCR kit (Kapa Biosystems, Woburn, MA, USA), and single-end reads sequencing in a 37-cycle run on the Il-

lumina HiSeq-2000 platform. Adapter sequences were trimmed, resulting in reads of 35 bp length. Quality control involved the
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removal of poor-quality reads using SOAPnuke34 (v2.1.5), with reads eliminated if they containedmore than 30% low quality bases (Q

% 2) or N bases. Overall, each participant underwent whole-genome sequencing yielding 5–10 million cleaned reads, corresponding

to a sequencing depth of approximately 0.06x to 0.3x.

High-coverage whole-genome sequencing of 100 participants
To facilitate an unbiased assessment of genotype imputation accuracy, we selected 100 healthy Chinese pregnancies that had un-

dergone NIPT and utilized their remaining blood sample for high-coverage whole-genome sequencing. Sequencing was performed

using the Illumina HiSeq X10 platform with 140bp paired-end reads, yielding an average coverage of 40x. The resulting clean reads

were aligned to the GRCh38/hg38 reference genome using BWA-MEM (v0.7.17).35 Subsequently, the GATK (v4.1.8.1) best practice

joint calling protocol9 was applied to detect and genotype variants in these participants.

Following variant quality score recalibration (VQSR) and the removal of multi-allelic variants, we derived a set of 11,174,603 high-

quality genotyped biaand 1,357,810 Indels. Further refinement involved excluding SNPs located within the low-complexity regions of

GRCh38 and SNPs classified as singletons in these 100 participants. The resultant 8,303,052 SNP variants were used to access ge-

notype imputation accuracy across the STROMICS, BIGCS and 1000 KGP reference panels.

METHOD DETAILS

Simulation experiments assessing the performance of BaseVar in variant detection and allele frequency estimation across different

alternative allele frequencies, sample sizes, and allelic types.

To evaluate the mutation detection rate, false positive rate, and the discrepancy between estimated and true values of mutation

position frequency as computed by BaseVar, we simulated a total of 100 monopolymic loci, 50,000 di-allelic loci, 50,000 tri-allelic

loci, and 50,000 tetra-allelic loci. For each of the latter three groups of loci, theminimum allelic mutation frequency was set at intervals

of 1/10,000 of the loci, thereby forming the allele frequency spectrum (Columns ‘‘af’’ in Table S2) and the number of sites (Columns

‘‘total’’ in Table S2). Following the establishment of the base mutation frequency distribution as detailed in Table S2, the sample

sequencing depth was set to 0.06x, and the sequencing error rate was set to 0.01. These parameters were used to simulate the

base matrix we observed from the NIPT data.

To facilitate reproducibility, the simulation script has been made available at https://github.com/liusylab/NIPT-human-genetics/

blob/main/basevar_simulation/plugin.basevar.simulation.sh.

Sequence alignment
We applied BWA35 to align the cleaned reads to the Genome Reference Consortium Human ref. 38 (GRCh38)33 and used the rmdup

option in samtools36 to remove potential PCR duplicates. The GATK realignment and base quality recalibration method9 was utilized

to align the reads and adjust base quality scores. After that, the alignment files were stored as bam files. Bedtools37 was used to

compute the sequencing depth for each genomic coordinate.

Variant detection using real data
The performance of commonly used variant detection algorithms and software tools, including UnifiedGenotyper and Samtools,

along with the BaseVar method for detecting single nucleotide polymorphisms and estimating allele frequency from low-pass

sequencing data, was systematically assessed. This evaluation involved downsampling the genomic data of 2,504 individuals

from the 1,000 Genomes Project to sequencing depths equivalent to those observed in NIPT data, ranging from 0.1x to 0.3x. The

specific parameters employed for the three software tools are detailed below. The BaseVar algorithm is detailed in the quantification

and statistical analysis section below.

UnifiedGenotyper
The UnifiedGenotyper was executed with the following input parameters: ‘‘java -jar GenomeAnalysisTK.jar -T UnifiedGenotyper -R

reference.fasta -nt 10 -I input.bam -stand_call_conf 30.0 -stand_emit_conf 0 -glm SNP -o output.vcf’’.

Samtools-bcftools
Samtools was executed with the following input parameters: ‘‘bcftools mpileup -f reference.fa input.bam | bcftools call -mv -Ob -O

z -o output.vcf.gz’’.

BaseVar
The detailed algorithm of BaseVar is presented in Supplementary Notes. It was executed with the following input parameters: ‘‘base-

var basetype -R reference.fasta –batch-count 50 -L bamfile.list –output-vcf test.vcf.gz –output-cvg test.cvg.tsv.gz –nCPU 4‘‘.
e2 Cell Genomics 4, 100669, October 9, 2024

https://github.com/liusylab/NIPT-human-genetics/blob/main/basevar_simulation/plugin.basevar.simulation.sh
https://github.com/liusylab/NIPT-human-genetics/blob/main/basevar_simulation/plugin.basevar.simulation.sh


Article
ll

OPEN ACCESS
Genotype imputation
QUILT and STITCH

WeemployedQUILT (version 1.0.4) to infer genotype probabilities fromNIPT data. This processwas performed in 5-Mbp chunkswith

250 kbp flanking buffers, targeting either chromosome 20 (1–64,444,167bp) or chromosome 1 (1–248,956,422bp). Hap and legend

format files of reference haplotypes were generated from three haplotype VCFs (1KGP, BIGCS and STROMICS) using the bcftools

‘‘convert –haplegendsample’’ command. The CHS recombination rates file from 1KGP served as the genetic map file, with liftOver

utilized to transition from chromosome position hg37 to hg38. Additional parameters, including ‘‘–nGibbsSamples = 7, –n_seek_its =

3, –nGen = 1240, –save_prepared_reference = TRUE’’ were set for the QUILT imputation. The initial values for the EM optimization of

model parameters were based on allele frequency information from the 1KGP Chinese population (–reference_populations = CHB,

CHS, CDX, N = 301), the BIGCS reference panel (–reference_populations = BIGCS_PhaseI, N = 2,243, constructed with family data)

and the STROMICS reference panel (–reference_populations = STROMICS,N = 10,241). Filtration thresholds were applied, requiring

genotype quality greater than GQ15, depth (DP) greater than 10, IMPUTE2-style info score greater than 0.4, and a minor allele fre-

quency greater than 0.001. It is noteworthy that QUILT and STITCH are two algorithms developed by the same author. While STITCH

focuses on genotype imputation without a reference panel,38 QUILT was specifically designed for genotype imputation with a refer-

ence panel.11 Importantly, we would specifically note that starting from STITCH (version 1.2.7), the QULIT algorithm has been incor-

porated, representing a stable method before formally named QUILT.

GLIMPSE

For GLIMPSE (version 1.1.1),39 input data in the form of Genotype Likelihoods (GLs) was required. GLs were computed from

sequencing data using BCFtools with the following commands: "bcftools mpileup -f ${REFGEN} -I -E -a ’FORMAT/DP’ -T ${referen-

ce_panel_VCF} -r chr$chr ${BAM} -Ou" and "bcftools call -Aim -C alleles -T ${reference_panel_TSV} -Oz -o ${OUT}." These com-

mands were applied to all target individuals and variant sites present in the reference panel of haplotypes used for imputation. Before

initiating imputation and phasing, chunks for these processes were defined, with the minimal size of the imputation region was set at

2,000,000 base pairs, with a buffer region of at least 200,000 base pairs (GLIMPSE_chunk –input reference_panel –region chr20 –win-

dow-size 2,000,000 –buffer-size 200,000 –output output_file). Subsequently, GLIMPSE_phase was run for each imputation chunk as

separate jobs (GLIMPSE_phase –input ${VCF} –reference ${REF} –map ${MAP} –input-region ${IRG} –output-region ${ORG} –output

${OUT}), utilizing genetic maps from "genetic_maps.b38" in GLIMPSE’s maps file. Finally, different chunks of the sample chromo-

some were merged using GLIMPSE_ligate.

Family relatedness
PLINK2 (v2.00a3LM) was used to select SNPs with a minor allele frequency (MAF) of at least 5%. Kinship was calculated using

PLINK2 based on the KING-robust kinship estimator with the following command: "plink2 –vcf vcf_file dosage = DS –maf

0.05 –make-king-table –out out_file." In the results, first-degree relations (parent-child, full siblings) correspond to approximately

0.25, second-degree relations correspond to about 0.125, and so forth. It is customary to use a cutoff of approximately 0.354 (the

geometric mean of 0.5 and 0.25) to identify monozygotic twins and duplicate samples.16

Population stratification
We applied PLINK2 (v2.00a3.6LM) for PCA both before and after genotype imputation. Additionally, EMU (v.0.9) was used for PCA

specifically before genotype imputation, aiming to assess the genetic structure of a dataset comprising 70,608 samples from one of

the sequencing centers.19 All PCA analyses were conducted on a set of non-duplicated 3,843,382 biallelic SNP variants with MAF

R5%. The PCA procedures were executed with the following commands for PLINK2 (plink2 –maf 0.05 –vcf vcf_file dosage = DS

–pca 10 –remove duplicated.txt –out $outfile) and for EMU (EMU –mem –plink $infile –n_eig 10 –out $outfile).

Evaluation of consistency in genetic effect estimates in genome-wide association analyses
We conducted a comparison of genetic effects for a combined total of 53 loci significantly associated with maternal metabo-

lites24 and 30 loci significantly associated with neonate metabolites.23 These loci were identified in independent sets of

individuals assessed with different sequencing platforms. Linear regression analyses were performed on the genetic effects

obtained from the BGISEQ-500 and Blackbird sequencers for maternal metabolites. Similarly, linear regression analyses

were conducted on the genetic effect obtained from the Illumina and Ion Torrent sequencing platforms for neonate metabolites.

QUANTIFICATION AND STATISTICAL ANALYSIS

The BaseVar algorithm
Likelihood function for a single site

The likelihood function for a single site can be computed using Equation 1:

LðpÞ =
YN
i = 1

PðDij pÞ =
YN
i = 1

XA;C;G;T

b

pðbjpÞpðDij bÞ (Equation 1)
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where pðbjpÞ = pb and the genotype likelihood assuming a haploid model is pðDij bÞ = f1 � εi if Di = b and εi=3;Di sb. εi cor-

responds to the GATK corresponds to the GATK-recalibrated error rate converted from the PHRED-scale base quality.

Optimization

We obtain the maximum likelihood estimate bp = argmaxpLðpÞ using the EM algorithm with starting value computed by the observed

allele frequency using Equation 2:

pb =

PN
i = 1

Di = b

N
(Equation 2)

In the E step, we compute the posterior probability of allele b for individual i at a site j as one of the four A/C/G/T bases using

Equation 3:

PðDiÞ =
pðbjpÞpðDij bÞPA;C;G;T

b0
pðb0jpÞpðDij b0Þ

(Equation 3)

We compute the updated allele frequency p’ in the M step using Equation 4

p0
b =

PN
i = 1

PðbjDiÞ
N

(Equation 4)

When the change in the maximum likelihood is less than 0.001, we terminate the algorithm.

Decision of allelic type and confidence of SNP calling: Likelihood ratio test

Equations 1, 2, 3, and 4 can be used for estimation of allele frequencies of all four nucleotides simultaneously, andmay result in tetra-

allelic and tri-allelic variant calls. We will use this formulation for SNP calling and for identifying potential tri- and tetra-allelic loci.

Denote the likelihood value from the four-allelic model in Equation 1 as f4. We iteratively set the allele frequency of one of the four

nucleotides to zero to obtain models of tri-allelic loci. Let bf3ðpx = 0Þ denote the maximum likelihood value when the frequency of

allele x is constrained to be zero. We then compute a log likelihood ratio statistic as Equation 5:

LRT4vs3 = � 2 log

� bf3ðpx = 0Þbf4
�

(Equation 5)

The tri-allelic model is nested within the tetra-allelic model and, therefore, the distribution of the LRT4vs3 statistic asymptotically

follows a chi-square distribution with 1� of freedom, under the assumption of a tri-allelic locus. If the p values of one of the four

LRT4vs3 test are significant (<10�6), the variant will be classified as a tetra-allelic loci. If not, we move on to the test a model of a

tri-allelic locus versus a bi-allelic locus-Equation 6, where x if the bf3ðpx = 0Þ is the allele with minimum likelihood (which results in

maximum p value out of LRT4vs3 ) was set as the alternative-hypothesis and the reduced hypothesis is bf2ðpx = 0;py = 0Þ where

py is the allele frequency for allele y.

LRT3vs2 = � 2 log

�bf2�px = 0;py = 0
�

bf3ðpx = 0Þ

�
(Equation 6)

Again, the distribution of LRT3vs2 asymptotically follows a chi-squared distribution with 1� of freedom under the hypothesis of a bi-

allelic locus. If the maximum p value out of the three LRT3vs2 is significant, the variant will be classified as a tri-allelic variant. Other-

wise, we continue to test the bi-allelic versusmono-allelic assumption in Equation 7, as defined in the equation below, with y being the

allele with the highest p value

LRT2vs1 = � 2 log

 bf1�px = 0;py = 0;pz = 0
�

bf2�px = 0;py = 0
� !

(Equation 7)

Equation 7 is also used to quantify the confidence of the SNP call. We keep variants with p values less than 10�6.

Root-mean-square deviation (RMSD)
Root Mean Square Deviation (RMSD) was used to quantify the differences between allele frequencies inferred by BaseVar (AFb) and

the true values from the simulation (AFt). The RMSDwas calculated using the following formula, where n refers to the number of sites

in a true allele frequency bin:

RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i = 1
ðAFb � AFtÞ2

r
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This metric provides a measure of the accuracy of allele frequency estimation by BaseVar, with lower RMSD values indicating

higher accuracy.

Imputation accuracy – Squared Pearson’s R

Squared Pearson’s R quantifies the proportion of variance in the true genotypes that can be explained by the imputed genotype

dosage. This metric was estimated for all variants within an allele frequency bin, defined by its most likely true allele frequency.

The Pearson’s correlation coefficient (R) is computed using the formula:

R =

Pn
i = 1

�
GDimputed � GDimputedÞ

�
Gtrue � GtrueÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1

�
GDimputed � GDimputedÞ2

r Pn
1

�
Gtrue � GtrueÞ2

where n is the number of variants in the targeted allele frequency bin, GDimputed is the genotype dosage of the imputed genotypes

from the NIPT data, and Gtrue is the true genotypes obtained from the high depth sequencing data. Squared Pearson’s R (R2) is

then calculated by squaring R. This measure provides an assessment of the accuracy of the imputed genotypes by indicating

how well they predict the true genotypes, with values closer to 1 signifying higher predictive accuracy.

Power analysis for genome-wide association studies with NIPT data
Power for genome-wide association test using the NIPT data depends on three parameters: effect sample size, minor allele fre-

quency and the phenotypic variance explained by the variant. The derivation of formulation was previously provided by Visscher

et al.40 and power is defined as a function of a non-centrality parameter (NCP) associated with the test statistic used to examine

whether the genetic effect equals zero. For NIPT data, the effect sample size is a product of the experimental sample size and the

imputation accuracy.

NCP = n 3 r2 3q2
� �

1 � r2 3 q2
�

q2 = 23MAF3 ð1 � MAFÞ3 b2

NCP = n3 r2 3 23MAF3 ð1 � MAFÞ3 b2

NCP = n3R2
imp 3 23MAF3 ð1 � MAFÞ3 b2

n : experimental sample size

r2 : squared LD correlation

q2 : proportion of phenotypic variance explained by a causal variant in the population

R2
imp : saured correlation between the actual and imputed genotypes
Comparison of genetic effect in GWAS – Linear regression
Linear regression was employed to evaluate the consistency of genetic effect estimates in the NIPTGWAS. The regression coefficient

(b) was estimated using the method of least squares, which minimizes the sum of the squared differences between the observed and

predicted values. The coefficient of determination R2 is analogous to the square Pearsons’ R, which assesses the proportion of vari-

ance in the dependent variable that can be explained from the independent variables. This approach provides a quantitativemeasure

of the genetic effect’s consistency across different datasets.

To account for model differences between various GWAS datasets and the NIPT GWAS dataset and ensure a fair comparison of

genetic effects, recalibration of the genetic effect using a shrinkage parameter is necessary. For NIPT data, all samples are females

and consequently no adjustment for sex was needed in the GWAS model. The NIPT GWAS model can be represented as y =

a+b*snp+e. In constrast, GWAS model in datasets such as the Taiwan Biobank, Biobank of Japan and GIANT East Asian studies,

can be represented as y = a+b*snp+c*sex+e.
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Taking the NIPT and Taiwan Biobank Height GWAS datasets as an example:

Under the NIPT model, after standardizing y, we have varðyNIPT Þ = 1 = h2 + s2E , where the estimated standard error of the genetic

effect can be approximated as bsbz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N�2�p�ð1�pÞ

q
.

Under the Taiwan model, varðyTWÞ = 1 = h2 + s2sex + s2E , and bsbz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2�varðsexÞ
N�2�p�ð1�pÞ

q
.

Given similar heritability for height, bTW � N

�
0; h2

h2+s2sex+s
2
E

�
versus bNIPT � N

�
0; h2

h2+s2
E

�
.

Therefore, because of the height difference betweenmales and females, the shrinkage s2sex likely results in a smaller bTW compared

to bNIPT .

The shrinkage parameters can be computed as the mean of the following variable:

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntw � 2 � ptw � ð1 � ptwÞ

s

R =
SETW

s

Where Ntw is the sample size of the Taiwan dataset, ptw is the allele frequency of the effect allele in the Taiwan dataset, SETW is the

standard error from the Taiwan dataset. s is the calibrated standard error, andR is the calibration ratio. The shrinkage parameter is the

mean of R. By multiplying bTW by the shrinkage parameter, the impact of sex differences is reduced. However, this model is a simpli-

fied, and there may be other underlying differences such as ancestral difference that further explain the discrepancies between bNIPT
and genetic effects estimated from other studies.40
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