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Abstract

Electron Microscopy for the Study of Defect Development in Nanomaterials

by

Catherine Kingston Groschner

Doctor of Philosophy in Engineering: Materials Science and Engineering

University of California, Berkeley

Professor Mary Scott, Chair

Precisely controlled synthesis of nanostructures is heavily emphasized in the field of nanoscience,
in large part due to the desire to control the size, shape, and terminating facets of nanopar-
ticles for applications in catalysis, optics, and medicine. Direct control of the size and shape
of solution-grown nanoparticles relies on an understanding of how synthetic parameters alter
nanoparticle structures during synthesis. Synthesis conditions rarely yield uniform parti-
cles, but the heterogeneity in these populations is hard to quantify especially in respect to
atomic structure. Defects are a particularly challenging element to quantify the influence of
synthesis on due to the limited number of methods which can give insight into these fea-
tures. In this thesis we analyze the development of defect structures in multiply twinned
metal nanoparticles. We find that non-classical growth mechanisms occur during standard
colloidal growth. In order to further study the conditions which cause these non-classical
growth modes we analyze methods to automate the analysis of defects in nanoparticles. To
this end we propose a machine learning based pipeline for the segmentation and stacking
fault classification in nanoparticles. We demonstrate a flexible two step pipeline for analysis
of high resolution transmission electron microscopy data, which uses a U-Net for segmenta-
tion followed by a random forest for detection of stacking faults. Our trained U-Net is able to
segment nanoparticle regions from amorphous background with a Dice coefficient of 0.8 and
significantly outperforms traditional image segmentation methods. Using these segmented
regions, we are then able to classify whether nanoparticles contain a visible stacking fault
with 86% accuracy. We further explore the role of architecture in achieving better segmenta-
tion of HRTEM micrographs. These studies in turn illuminate the challenges in generating
a large enough dataset for neural network training in electron microscopy. To solve this we
evaluate methods to minimize labelling requirements by using automated labeling methods.
This strategy recasts the classification problem as a label noise problem, with the fraction
of label noise problem. We analyze the impact of label noise rate and training method on
the classification error of neural networks for SEM data. We compare the noise resistance of
three training methods: standard network training, pretraining with a tiny, label noise-free
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dataset, and co-teaching. We find that the pretraining approach yields the most accurate
results across label error rates. These developments will help in enabling automated analysis
of nanomaterials.
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Chapter 1

Introduction

Most materials are defined by being made up of a regular, periodic arrangement of constituent
atoms. These arrangements of atoms are well known to materials scientists as the crystal
structure of the material. Understanding the relationship between this crystal structure and
the properties of a material is the core of materials science. However, almost as long as it
has been understood that materials have a crystal structure it has been understood that the
atomic structure of a material often will have instances where atoms deviate from the overall
periodic structure. These instances are known as defects. Defects occur on a variety of length
scales from zero-dimensional to three-dimensional. Zero-dimensional defects consist of the
addition or subtraction of an atom in the crystal lattice, known as interstitials or vacancies
respectively. One-dimensional defects occur when an entire plane of atoms deviate from the
crystal structure and are known as dislocations. Two-dimensional defects occur when two
orientations of a crystal structure come together such as grain boundaries.

Control of defects has been the crux of many sub-disciplines in materials science because
of the influence defects have on material properties. In metallurgy, controlling defects has
long been used to increase strength and toughness through cold working and annealing to
introduce and control the number of dislocations and grain boundaries [1]. In semiconductors
the ability to create defect free ingots enabled the rise of computing [1, 2]. With the rise of
nanomaterials the study of defects remains critical. As synthetic control of nanomaterials
has inched towards atom by atom control, the interest in controlling defects down to the
single vacancy has grown proportionally. The interest in defects in nanomaterials has its
root in the critical role defects play in the properties of nanomaterials.

1.1 Role of Defects in Nanomaterials

In order to understand the importance of defects in nanomaterials we must first explore what
defines a nanomaterial. A nanomaterial is defined as any material in which one dimension
is on the nanometer scale, and is usually less than 100nm [3]. The interest in nanomaterials
due to the novel properties which can be achieved by scaling materials down to the nanome-
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ter scale. In terms of electronic and optical properties, by limiting the dimensions of the
material we create quantum confinement effects which will change the electronic states of
the material [4]. Nanomaterials also change the chemical properties of the material by sig-
nificantly increasing the surface to volume ratio. Surfaces present regions of dangling bonds
and these bonds make the material more chemically active [4]. We observe these effects just
by reducing the size of the material but inclusion of defects in the crystal lattice will further
change these properties.

Just like in bulk materials, defects can influence nanoparticle properties through modifi-
cations of the electronic structure. Planar defects and dislocations create broken bonds which
create new electronic states which would otherwise be inaccessible. These local electronic
states can change the electronic and optical properties of the nanomaterial. An example of
this behavior is in the photoemission of CdSe quantum dots [5]. Stacking faults in CdSe
quantum dots have been correlated to non-radiative recombination of charge carriers there-
fore leading to reduced photoluminescence quantum yield due to their creation of trap states
[5].

Defects also cause strain in the lattice which subsequently will also influence the band
structure and hence both electronic and chemical properties. In terms of electronic property
shifts, strain in graphene has been correlated with shifting of dirac point and even destruction
of the dirac point [6]. Metal nanoparticles, which are of interest for catalysis, are a prime
example of chemical property dependence based on defect based strain. Catalytically active
metals tend to be rare and therefore their efficient use has led to interest in providing the
most surface area per volume of material which naturally leads to creating nanoparticles
of these metals. However the catalytic activity of these nanoparticles is strongly driven
by the shape and strain states of the nanoparticle. Studies has shown, for example, that
when palladium nanoparticles take on an icosahedral shape, which is highly strained, as
opposed to octahedra, which is relatively unstrained, that their ability to catalyze the CO2

reaction dramatically improves [7]. This increase in catalytic activity is attributed to the
defects required to create these shapes because creating an icosahedron requires a central
disclination and twenty twin boundaries, all of which leads to a very strained particle. The
strained atoms of the particle change the strength the adsorption of key intermediaries [7].
Similarly, the strain in semiconductor nanoparticles can lead to shifts in the photoemissive
properties of the nanomaterial. For example, stacking faults have been known to redshift
the photoemission of III-V and II-VI semiconductor nanowires [8, 9, 10, 11].

Defects not only directly influence the properties of nanomaterials but also influence
properties by directing the growth, and therefore the final shape of solution-synthesized
nanomaterials. A famous example of this is the helical or branching nature that nanowires
can take on when a screw dislocation lies in the center of the nanowire leads to the creation
of an Eshelby twist which is often evidenced by the helical growth of nanowire branches off
the screw dislocation containing center nanowire [12]. The Eshelby twist means that as the
nanowire continues to grow the material follows the steps in the crystal surface provided
by screw dislocations. These steps, like the steps of a spiral staircase, lead to growth of
the crystal following the helical pattern of the steps. More recently screw dislocations have
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also been suggested to be the cause of morphologically chiral nanoparticles [13]. Since the
shape of the particle is critical to how it will interact with its environment whether that is
in a device or in a biological application the control over defects during the growth process
is critical. However, the presence of defects is not always consistent. Defects can lead to
heterogeneity in a nanoparticle sample [14]. This further complicates their study and increase
the importance of knowing how to control their presence.

1.2 Synthetic Control of Defects in Nanomaterials

The typical understanding of the development of crystal structure, and consequently defects,
in nanomaterials synthesized via wet chemical synthesis is based on classical nucleation and
growth theory. From the classical perspective, there are two main variables which control
the nucleation and growth process: thermodynamics and kinetics. Depending on the type of
defect, it may or may not be thermodynamically favorable. Vacancies and interstitials, for
instance, contribute to the entropy of a material system and therefore occur in an equilibrium
amount based on the energetics of the system [15, 14]. Dislocations and other 1D and 2D
defects increase the energy of the material and are therefore kinetically driven [15].

However, the reality is that many non-classical nucleation and growth processes occur
during formation of nanomaterials and their defects, and the growth of a nanoparticle may
involve multiple processes. Recent work has begun expounding the non-classical processes
occurring between the first stages of nucleation, seed stabilization, and nanoparticle growth.
The early heterogeneous nucleation process has now been directly observed by Jeon and
coworkers [16]. Their work has supported the idea that nucleation is an extremely dynamic
process in which nuclei fluctuate between a disordered and crystalline state until a large
enough particle size is achieved which stabilizes the the crystalline structure [16]. After initial
nucleation of a stable seed, classical thermodynamics suggests that it will grow by monomer
addition into the lowest energy structure [17]. Studies in the past twenty years have shown
that is not necessarily the case. Crystal seeds are likely to participate in some form of particle
attachment. In fact particle attachment with amorphous particles may also contribute to
crystal seed formation creating yet another pathway to nucleation of a nanocrystal [18].
Oriented attachment is one particular case of particle attachment and is important in the
development of line defects. During oriented attachment, crystalline seeds may coalesce with
the lattice planes of the particles being aligned or misaligned. The misalignment of lattice
planes during oriented attachment leads to the formation of dislocations, stacking faults, or
twin boundaries [18]. This is one way in which defects may be generated in nanomaterials.
Particles growing from seeds containing defects may then develop more defects to relieve the
strain caused by templating from the defected structure [19]. In addition, adatom deposition
rate, temperature, and other synthetic parameters have also been shown to contribute though
the actual mechanisms in these cases are less understood [20, 21, 17]. While great strides
have been made, there is still much to be understood about what contributes to defect
formation in nanoparticles, particularly in early seed formation.
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1.3 Electron Microscopy

All electron microscopes rely on forming an electron beam which is focused with a series of
magnetic lens and illuminating the sample in question to create an image. The resolution and
available information depends on the specific electron microscopy technique. Each technique
changes how the beam is focused and the signal collected from the interaction of the beam
with the sample. The three principal forms of electron microscopy for imaging are TEM,
STEM, and SEM. Schematics of each technique are shown in Figure 1.1 Scanning electron
microscopy (SEM) is the lowest resolution. Its general operating principle is that beam is
focused into a probe which is rastered across the sample and then electrons scattered from the
surface are collected at each probe position to create an image. The scattered electrons are
divided into one of two classes: secondary electrons or backscattered electrons. The difference
between the two is how the beam and sample interaction leads to each. Secondary electrons
are ejected from their electronic band in the sample due to inelastic scattering interaction
with the beam electrons [22]. The contrast from secondary electrons are then due to the
orientation of the sample surface to the detector. Backscattered electrons are beam electrons
which are essentially reflected out of the sample by being elastically scattered by the sample
atoms [22]. Higher atomic number atoms will cause the beam electrons to backscatter more
strongly and therefore the contrast in the image is due to variations in the atomic number
of the sample elements [22].

Whereas SEM is based on the collection of electrons scattered from the sample sur-
face, both transmission electron microscopy (TEM) and scanning transmission electron mi-
croscopy (STEM) are based on having the electron beam transmit through the sample to
create a projectional image. SEMs also have much lower spatial resolution, on the order of
0.5nm, while (S)TEM can have a spatial resolution of less than 50pm [23], making TEM
or STEM preferable for studies of nanomaterials. The key difference between TEM and
STEM imaging is that in TEM the sample is illuminated all at once with a parallel beam of
electrons. STEM converges the beam of electrons into a probe which is rastered across the
sample. Both methods enable different operational modes which can be used for the study
of defects. Bright field (BF) and dark field (DF) TEM imaging are the older TEM based
means of imaging defects, and have mostly been used for metal foil samples. BF imaging
uses the direct beam to form an image while DF uses a diffracted beam, thereby giving
intensity to those regions which gave rise to the diffracted beam. BF or DF TEM of defects
relies on the change in the coherent scattering caused by the line or planar defect in order
to cause a variation in the diffraction contrast of the image. If there are overlapping defects,
interpretation of these images is difficult or even impossible if the combination eliminates the
contrast generated. It should also be noted that these techniques do not directly image the
defect. The image contrast related to the defect is dependent on the thickness of the sample,
the orientation of the sample under the beam, and the position of the defect within the sam-
ple. These factors contribute to the imaged “position” of the dislocation being frequently
displaced from the true location of the defect in these cases, which may be problematic in the
study of nanomaterials such as nanoparticles. Due to these factors high resolution imaging
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Figure 1.1: Schematics of the imaging systems of a TEM, STEM, and SEM. The purple
region represents the electron gun, the oragne region the sample, and the teal region the
detector. The subset in the bottom right shows the pixel by pixel rastering of the electron
probe which is used both in STEM and SEM.

is usually used for defect analysis in nanomaterials.
There are two common high resolution techniques in electron microscopy, HRTEM and

HRSTEM, both of which create an image of the atomic lattice and therefore allow us to
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more directly image defects. HRSTEM is an incoherent imaging technique which relies on
the elastic scattering of electrons to high angles as the beam is rastered across the sample
to create an image. By collecting the electrons scattered to high angles using a high angle
annular electron detector (HAADF) we eliminate signals coming from coherently scattered
electrons and ensure that all the electrons are incoherently scattered [24]. The incoherent
scattering means that the image contrast can be treated as the sum of individual scattering
events from each atom in the sample [24]. The scattering is also then dependent on the
atomic number of the atoms illuminated and therefore the contrast in the image reflects
any compositional variation. As long as the electron probe used to illuminate the sample is
smaller than the atomic column spacing then the atomic columns are individually illuminated
as the beam is rastered across the sample and an atomic resolution image is created [24].
Since the technique collects those electrons which are scattered to very high angles, the
method does require a high intensity electron probe so beam damage to the sample can be a
problem. The atomic number dependence also means that the technique does not work well
for light elements.

HRTEM is a coherent imaging technique in which the sample is illuminated with a
parallel beam of electrons. It allows for imaging of crystal lattice through formation of
lattice fringes in the image. These lattice fringes are formed because the scattering of the
atomic columns causes a phase shift and subsequent interference in the electron wave. This
phase distortion creates a periodicity in the electron wave intensity which are the lattice
fringes that are observed [24]. These lattice fringes correspond to the spacing of the atomic
planes. If the sample is oriented such that multiple reciprocal vectors lie on the Ewald
sphere then multiple lattice fringes in multiple orientations will be observed and this will
allow for a representation of the atomic columns [25]. It should be noted that this is not
a direct image of the atomic columns but a representation of the atomic columns based on
the interference of the electron wave due to the phase shifts induced by the sample and
are therefore very sensitive to parameters such as defocus and spherical aberration. If the
microscope parameters are controlled correctly and the sample is thin enough then the lattice
fringes formed in the image can be used to interpret the atomic structure of the material.
Planar defects and grain boundaries will of course change the phase modulation and thus
can be imaged with atomic resolution using HRTEM. HRTEM presents the benefit that by
illuminating the sample with a parallel beam of electrons the entire sample is imaged at once.
This provides a significant speed increase over scanning probe methods and is an important
consideration for high throughput imaging.

Development of high throughput imaging is key in order to characterize the products of
automated synthesis. With the creation of automated synthesis, larger synthetic parameter
spaces can be probed than ever before [26]. But without a way to characterize the output
these methods are meaningless. As discussed before, x-ray diffraction methods can provide
a way to understand the average structure of these materials, but in order to understand
whether defects are being generated during synthesis or to understand the impact of defects
in these materials a new high throughput form of electron microscopy is needed to gain
statistical information on the prevalence of defects and their relation to synthesis parameters.



CHAPTER 1. INTRODUCTION 7

On the microscope side, significant efforts have been made to automate the acquisition
process. This is a challenging task because software which enables automated collection
must be able to track location (in order to ensure the same area is not being repeatedly
sampled) and be able to automatically focus to adjust for varying conditions across the SEM
or TEM sample. Automated acquisition is now available with commercially available SEMs,
enabling huge fields of view by tracking imaging position and stitching individual images
together [27]. Development of automated TEM acquisition by the cryo-EM community for
biological applications and has lead to open source tools such as SerialEM [28, 29, 30, 31].
As the need for automated TEM has grown though commercial ventures are offering more
tools to enable automated acquisition on a range of samples. Most of these methods are
not focused on HRTEM and perform better at lower magnifications. Consequently, work is
ongoing to create automated collection methods for nanomaterials. Recent demonstrations of
automated collection of micrographs of CaCo3 nanoparticles have been particularly promising
[32].

Automating the acquisition process is only one of the challenges to automating nanoma-
terial characterization with electron microscopy. Once data is collected it of course must be
analyzed, and this can be one of the most time consuming steps a microscopist faces. Before
the rise of machine learning this analysis would be done with conventional image processing
steps. Conventional image processing required the creation of a bespoke processing pipeline
for each dataset, which is clearly not useful for creating an automated procedure. But with
the increased availability of machine learning and deep learning methods, the possibility of
creating automated analysis methods which would automate the characterization process
grew. Due to the advances made in using deep learning for computer vision tasks it has
become the focus of most analysis automation work. Much of this work has been focused
on atomic column segmentation from HRSTEM images [33, 34]. However, as previously
discussed, HRSTEM is not an ideal means to analyze large volumes of nanomaterials due to
the slow acquisition. Therefore means of automating the analysis of HRTEM micrographs
needed to be developed. The last few years have seen a growth in this area. The first step to
analyzing HRTEM images is to segment out the nanomaterials of interest. We have demon-
strated neural networks with good performance on this task using semantic segmentation
[35, 36]. Once nanomaterials are identified in the micrograph, then analysis can be done to
correlate shape, size, and crystallography as well as defects. This is still an active area of
research with many different machine learning methods being explored [36, 37, 38, 39].

1.4 Dissertation Overview

This dissertation will analyze the interplay between synthesis and defects in metal and semi-
conductor nanoparticles and propose new techniques for the study of said relationship. In
Chapter 2, the influence of kinetics is analyzed in relationship to the development of a de-
fected structure in a multiply twinned palladium particle. The defect structure in this case
is studied with electron tomography. These results prompt the need for more high through-
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put nanoparticle and defect analysis in electron microscopy. Consequently, in Chapter 3 a
demonstration of a machine learning pipeline for automating nanoparticle identification and
stacking fault quantification is demonstrated. Further improvements in nanoparticle seg-
mentation will be explored in Chapter 4. We demonstrate that improved segmentation can
be gained by moving away from the traditional U-Net architecture employed for most seg-
mentation. In Chapter 5 we discuss the limitations of machine learning with respect to the
data labeling requirements and propose an automated labeling procedure for geometrically
related datasets.
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Chapter 2

Development of Defects in Multiply
Twinned Palladium

1

2.1 Introduction

A nanomaterial system in which defects play a critical role are multiply twinned particles
(MTPs). MTPs are ubiquitous in solution-grown nanoparticle populations of face-centered
cubic (fcc) metals. The ability to improve catalytic activity by controlling the exposed sur-
face facet and strain states of the MTPs is a major driving force to understand their evolution
during synthesis [40, 41, 41, 21, 42, 43, 44, 45]. A large number of tunable synthetic pa-
rameters are known to influence nanoparticle shape, such as reaction temperature, reducing
agent concentration, and capping agents. These can be employed to direct the structure of
nanomaterials [20, 46]. The primary multiply-twinned structures that appear in fcc metal
nanoparticle populations are decahedra and icosahedra, which have an idealized structure
described by assemblies of 5 or 20 tetrahedral subunits respectively, with subunits joined by
twin boundaries of close-packed 〈111〉-terminated surface facets. However, other multiply
twinned structures are commonly observed, either as transient structures during synthesis
[47, 48] or final reaction products [49, 50].

Studies of MTP synthesis have identified many possible growth pathways to generate
MTPs [21, 48, 47, 51]. Many efforts to create size and shape controlled MTPs center around
controlling the population of nanometer-sized crystal seeds, which can uniformly grow into
larger particles with the same shape [20]. However, other structural evolution pathways are
known to occur during colloidal growth of MTPs, such as successive twinning and oriented
attachment [48, 52]. The successive twinning growth process is unique to MTPs and refers
to the additive growth of new tetrahedra to multiply twinned structures. This process can
evolve single tetrahedra into a more complex MTP by island-to-tetrahedron growth on one
of the facets of the single tetrahedra.

1This chapter is a version of P. Pelz and C. Groschner, A. Bruefah, A. Satariano, C. Ophus, and M.C.
Scott. “Simultaneous Successive Twinning Captured by Atomic Electron Tomography”. Submitted.
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The details of the successive twinning process are not clear. Several examples of suc-
cessive twinning have been observed using electron microscopy in both static and liquid cell
experiments [47, 51, 48]. The decahedron to icosahedron successive twinning growth pathway
is particularly difficult to quantitatively characterize using two dimensional imaging methods
given the complex overlapping crystal grain structure of these MTPs. Some studies have
indicated that icosahedra can evolve from fully formed decahedra [47, 51], while others claim
icosahedra generated through successive twinning require a partially formed decahedra [53].
Furthermore, the role of local defects and surface structures play during successive twinning
have not been identified.

Figure 2.1: Representative images of the structures observed and histogram from the aliquot
study. a) Sample decahedron. b) Sample icosahedron. c) Sample particle transitioning
between decahedron and icosahedron. d) Histogram of the populations observed for the
different structures as a function of size. Scale bar represents 5 nm

.

Electron microscopy characterization has been critical in our understanding of MTP par-
ticle stability and growth. However, most previous experimental electron microscopy studies
are limited to two dimensional imaging, such that many of the multi-tetrahedron stuctures
present during successive twinning appear ambiguous. Atomic electron tomography (AET)
is a method that utilizes high-resolution scanning transmission electron microscopy (HR-
STEM) datasets to reconstruct the atomic-scale 3D structure of materials. Previous AET
studies have resolved the structure, local defects and strain in icosahedral and decahedral
metal nanoparticles [54, 55], making it an ideal tool to resolve the complicated crystal struc-
ture of nanoparticles undergoing successive twinning.

In this work, we applied conventional HR-STEM to a population of Pd nanoparticles
to determine the frequency of appearance of decahedra, icosahedra, and multiply twinned
particles undergoing successive twinning, which we will refer to as multi-tetrahedron parti-
cles. AET was then used to measure the atomic-scale structure of a representative particle
undergoing successive twinning. AET revealed significant structural disorder within the
particle. The more than 20,000 atomic coordinates in 3D provided by AET analysis were
further classified according to their local fcc or hexagonally close-packed (hcp) environment.
This classification enabled atomic-scale 3D visualization of a simultaneous successive twin-
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ning process, where the particle was midway through a transformation from decahedron to
icosahedron. We also observe stacking faults and other defects within the crystal grains of
the particle, and a region of crystalline disorder on the surface of the particle.

2.2 Methods

Sample preparation

All reagents used in this synthesis were purchased from Sigma Aldrich. The Pd nanoparticle
reaction was prepared based on the method reported by Lim et al. with slight modifications
[20]. We used the conditions reported to synthesize a population of primarily decahedral
particles. Briefly, a 15 mL three-necked flask was rinsed 3 times with MilliQ water and
acetone, then dried. The flask was equipped with a reflux condenser and teflon-coated
magnetic stir bar. A 4 mL aqueous solution containing poly(vinyl pyrrolidone) (PVP, 55,000
MW) and citric acid was transferred to the flask and heated to 90◦C while stirring using
a heating mantle. Upon reaching 90◦C, A 1.5 mL solution of Sodium tetrachloropalladate
was rapidly added to the flask. For the aliqout study, samples were taken at 1, 3, 6, 8,
10, and 24 hours. The final product was isolated by adding a 300µL aliqout of acetone to
100µL nanoparticle solution in a clean microcentrifuge tube and centrifuged for 30 minutes
at 13,000 rpm. The supernatant was decanted and the pellet was re-suspended in 300µL
ethanol. The wash and rinse was repeated 2 times, and the purified particles were stored in
MilliQ water. Aqueous solution of Pd particles was deposited via nebulizer on a SiN window.
The tomography study utilized a sample taken after incubating for 8 hours.

Data Acquisition

Several tomographic tilt series were acquired from Pd nanoparticles using the TEAM 0.5
microscope and TEAM stage [56] at the National Center for Electron Microscopy in the
Molecular Foundry. Images were acquired at 200 kV in ADF-STEM mode with a 25 mrad
convergence semi-angle (resulting in a probe size of 0.8�A), 41 mrad and 210 mrad detector
inner and outer semi-angles, and a beam current of 4 pA. The tilt series was collected at
49 angles with a tilt range of 64 to −61 degrees. Two images per tilt angle were measured
with 3 µs dwell time with a scan rotation of 0 and 90 degrees to minimize image blurring.
Owing to imperfections in the calibration of the x- and y- scanning coils in the microscope’s
STEM scanning system, an additional correction was applied to the images to ensure square
pixels. This scan distortion was measured using a standard sample under the same imaging
conditions, and corrected using the method described by Ophus et al. [57].
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Image denoising

The drift-corrected images were denoised with the BM3D algorithm [58], with Anscombe
variance-stabilizing transform and its inverse applied before and after denoising [59].

Tomographic reconstruction

After denoising, the 49 images were projected onto the tilt axis, and aligned with sub-pixel
cross-correlation among the 1D-curves. A constant intensity scaling factor was fitted to the
1D curves to account for nonlinearities in the intensity at high tilt angles. Then the images
were aligned to neighboring tilts with 2D subpixel cross-correlation. From the initially-
aligned tilt series a 3D reconstruction was performed using the fast adaptive shrinkage-
thresholding algorithm (FASTA), an accelerated gradient algorithm with adaptive stepsize
for faster convergence [60]. To compute the forward and backward projections, we used
the generalized ray transform interface of the Operator Discretization Library [61] in a 3D
parallel-beam Euler geometry with an GPU-accelerated backend of the ASTRA tomography
toolbox [62]. To increase the accuracy of the projections, we used the trilinear interpolation
feature of the ASTRA library to compute the forward and inverse Ray-transforms. The code
is freely available at this url. To minimize the translational and angular misalignments, we
use a projection matching approach [63] with simulated annealing, where all three Euler
angles are varied by a randomly picked value in the range of −0.5 to 0.5 degrees and the
calculated projection error compared with the current projection error after a full reconstruc-
tion. The lowest-error angles are then used as new initial angles for the next tomographic
reconstruction. This process is repeated for 10 outer iterations and the random Euler an-
gle perturbation reduced linearly every iteration. Using this approach, the reconstruction
converged to an R-factor of 8.1 %.

Atom tracing

The 3D atomic positions of the Pd atoms were determined using the following procedure
based on the code provided by Ren et al. [64]. (I) all local intensity maxima were identified
from the 3D reconstruction and added to a candidate list. From the initial candidate list,
peaks which were within a minimum distance of 2.2�A of a higher-intensity peak were deleted.
(II) The initial list of peak positions was refined by fitting a 3D Gaussian function to each
peak after subtracting neighboring peaks within a maximum radius of 4�A. Using this initial
atom candidate list, we added, refined, and merged new unidentified peaks for 4 iterations
in the following order: (III) Subtract the fitted Gaussians of all current peak candidates
from the reconstruction volume. (IV) Add new candidate peaks over an intensity threshold
of 50 to the candidate list. (V) Refine the positions of all atom candidates as in (II) for 4
iterations. (VI) Merge peaks that are closer than a minimum distance of 2.2�A after position
refinement. (VII) Refine the positions of all atom candidates as in (II) for 4 iterations. (VIII)
go to (III) if iterations not done. (IX) A final set of 4 positions refinement iterations as in

https://github.com/PhilippPelz/fasta-tomography
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step (II) yielded the final set of coordinates of 22412 candidate atoms. Previous work then
used an atom flipping procedure to eliminate low-intensity atom candidates whose addition
does not decrease the experimental error.

We found that some low-intensity atoms were in the center of the particle, therefore we
included additional features to eliminate non-atoms from the atom candidate list. For each
atom candidate we computed the radial distribution function (RDF) and split it up into 7
radial regions corresponding to sections between the peaks of the total RDF. The sectioned
RDF together with the fitted peak intensity, sigma, and voxel intensities of the peak in a
2�A radius then formed a X-dimensional feature vector for each atom candidate. We then
used the Uniform Manifold Approximation and Projection (UMAP) [65] method to project
the feature vector onto a 2-dimensional manifold, shown in Appendix 1 (Fig. A.4). On one
end of this manifold we identified disordered surface atoms with low intensity. We then used
a Bayesian Gaussian Mixture Model [66] to classify the candidate list in the 2-dimensional
manifold into two classes of potential atoms and non-atoms. Then we ranked the candidates
according to their probability to belong to the non-atom class. To select a threshold for
including atoms in the non-atom class and we performed ADF-STEM simulations (see the
following section) of our tilt series with different probability thresholds for including atoms
in the non-atom class. The ADF-STEM simulations were then compared with the Fourier
Ring Information (FRI) criterion [67] to find the threshold that extracts the largest amount
of information from the experimental data. The results are shown in Appendix 1 Figure
3. We found that a threshold of 99.994 % extracted the maximum amount of FRI from the
data.

We then finalized the set of atoms by performing the following atom-flipping procedure
to determine if an atom within the bracket from 99.99 % to 99.997 % should be added. For
each atom that falls in this probability range we compute a tilt series with and without that
atom and compare the resulting FRI, using a simple linear image formation model, with
the image being a linear sum of 3D Gaussian distributions for each atom, and the standard
deviation determined from the atom fitting procedure. If addition of an atom increases the
FRI we include it in the list of atoms, otherwise we exclude it. This procedure yields a final
set of 20632 Pd atoms in the particle.

STEM simulations and tracing precision

For atom classification and to evaluate the precision of the atom tracing procedure, we
re-created the tilt series of 49 projections with the refined experimental Euler angles from
the traced coordinates with quantum mechanical STEM simulations using the PRISM algo-
rithm[68] implemented in the Prismatic simulation software [69]. A total of 49 cubic super
cells of size 11 nm was created. The final atomic model was placed within the super cells.
Individual super cells were divided into 2�A slices along the beam direction and sampled with
a pixel size of 6.2 pm in the transverse direction. The experimental parameters of 200 kV
high tension, 25 mrad convergence semi-angle, 41 mrad and 210 mrad detector inner and
outer semi-angles, 0 mm C3 aberration were used for the simulation. We employed a Fourier
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interpolation factor of 10 in the PRISM algorithm and simulated 8 frozen phonon configura-
tions. We matched the probe step to the reconstruction voxel size of 25 pm. Each simulated
ADF-STEM image was convolved with a Gaussian function to simulate incoherent source
spread and other incoherent effects and minimize the difference to experimental images. A
3D volume was then reconstructed from the simulated tilt series with the FASTA algorithm
described above and a new model was obtained by using the same atom tracing procedure.
The new atomic coordinates were rotated and translated to minimize the global position
deviations between the models and then atoms were matched between the models and a root
mean square displacement calculated between the models, with a radial search cutoff of 1.5�A
around each atom. A histogram of the atomic deviation between the common pairs is shown
in Appendix 1 Figure 4, indicating a mean deviation of 32.2 pm. This is slightly higher than
the deviation of previous AET studies [59], which we attribute to the relatively low number
of projection measurements available relative to the size of the reconstructed particle.

Atom Classification

To classify traced atoms according to their crystallographic coordination, we first generated
polyhedra with 12 vertices pj arranged in both fcc and hcp stacking geometries with nearest
neighbor spacing equal to the mean measured value of 2.93�A. These polyhedra are rotated
to 1026 orientations roughly evenly spaced on 1/12th of the unit sphere. For each atomic
site, these polyhedra were rotated using a matrix m to minimize the total distance between
their (ideal) coordinates and the nearest relative atomic site using the iterative closest point
(ICP) algorithm [70]. Finally we compute an order parameter for each polyhedra at each
site sk equal to

sk =
12∑
j=1

max

(
1− |rj − rk −m pj|

dmax

, 0

)
, (2.1)

where rj is the position of the j’th neighboring coordinate to site k at position rk, and dmax

is maximum allowed distance of a site from an ideal position, which we set equal to half the
average nearest neighbor distance of 1.47�A. This cost function can generate values of 0 to
12, where a value of 12 indicates perfect alignment between the polyhedral template. We
keep only the maximum order parameter (best agreement) for both fcc and hcp polyhedra,
and use these values to determine the local ordering.

2.3 Results and Discussion

Population Statistics of Pd Nanoparticles

To understand the relationship between MTP size and structure, we first analyzed Pd
nanoparticle populations using HR-STEM. Following previous work [20], we used an aqueous
synthesis known to produce decahedral particles that employs polyvinylpyrrolidone (PVP)
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as a stabilizing agent and citrate as a reducing agent and capping agent. To broadly capture
size and shape statistics, incubation time was varied from 1 hour to 24 hours (See methods
section). Population statistics of the synthesized nanoparticles were manually determined
from 691 particles identified in the HR-STEM data. Figure 2.1 summarizes the results of
the HR-STEM study. The results confirm the presence of decahedra, iscoahedra, and other
particles that appear to be undergoing a successive twinning process. Figures 2.1a-c show
sample micrographs of these structures. The size and shape distributions presented in Figure
2.1d show a clear size trend between the three structures. The icosahedra and successive
twinning structures have size distributions skewed towards smaller sizes, with average sizes
of 9.87 nm ± 0.57 nm and 8.28 nm ± 0.41 nm, respectively. The decahedra show a more
uniform distribution with an average size of 20.8 nm ± 1.39 nm . The synthesis conditions
used for this study were a relatively high concentration of reducing agent as well as a stabi-
lizing agent (PVP), and should result primarily in decahedra [46]. PVP, however, primarily
interacts with nanoparticles larger than 10 nm [71]. If the PVP interaction is critical to stabi-
lizing growing decahedra this may explain why multi-tetrahedron and icosahedron particles
are primarily observed at sizes below approximately 10 nm.

Figure 2.2: a) Sample STEM micrograph from the tilt series. b) Volumetric rendering of the
tomographic reconstruction. c) An example slice through the atomic volume normal to the
five-fold axis with various defects highlighted.
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Atomic Electron Tomography of a Pd MTP

To obtain a detailed understanding of the three-dimensional atomic structure of an MTP
undergoing successive twinning, we performed AET on a representative Pd particle. We used
aberration-corrected STEM to collect a tilt series of 49 images of an approximately 10 nm
diameter particle, with tilt angles ranging from -61 to 64◦ (Appendix 1 Fig. A.1). Images
taken before and after the tilt series acquisition indicate that the structure of the particle did
not change during imaging (Appendix 1 Fig. A.2). While the shape and crystal structure of
the particle were largely consistent with a decahedron (Fig. 2.2a), several images in the tilt
series indicate the presence of additional crystalline grains in the nanoparticle, suggesting
that the particle is undergoing successive twinning (Appendix 1 Fig. A.1). After denoising
and aligning the tilt series (Methods), we reconstructed the volume, shown in Figure 2.2b,
using a FASTA based reconstruction algorithm (Methods). To assess the consistency between
the final reconstructed volume and the input projections, we define the R-factor as the pixel-
wise difference of the absolute values of the measured and calculated projections from the
reconstructed volume, normalized by the intensities of the measured projections. The R-
factor of the final reconstruction was 8.1%, which is consistent with other reported AET
reconstructions [72].

After the final reconstruction volume was obtained, atomic positions were determined us-
ing an iterative 3D Gaussian fitting procedure. Atomic locations were included or excluded
based on unsupervised clustering of the atoms based on atom intensities and radial distri-
bution function of the atoms. Subsequently we determined the atom set that maximizes the
Fourier Ring Information [67] between a linear image generated from the atom positions and
the measured projections (see Methods for a detailed description). Using this method, we
determined the atom positions of 20632 atoms, shown in Figure 2.3a.

A qualitative analysis of the structures present in the reconstructed volume, shown in
Figure 2.2b, reveals a large number of defects in the structure. To illustrate the large
number of both stacking faults and dislocations in the particle a 0.25 Å-thick slice through
the volume with defects highlighted is presented in Figure 2.2. Many of the stacking faults
and associated dislocations are observed adjacent to the twin boundaries, which was also
observed in with molecular dynamics simulations of five-fold twinned metal nanowires [73].
However, defects and disorder are not restricted to regions around the twin boundaries and
can be found within the tetrahedral subunit bulk, as shown in defect 3 in Figure 2.2 c).
The number of stacking faults and edge dislocations observed in the reconstructed particle
is much higher than in previous studies [19, 55], and we also see many more defects than
predicted for nanomaterials of this size [73]. The stacking fault and twinning energy of fcc
metals is in general low [74], implying facile formation of stacking faults and twins during
nanoparticle growth. Therefore, a possible explanation for the high number of defects in the
particle is that the stacking fault mobility is slow compared to the rate of adatom addition
to the particle.

Ideal fcc tetrahedra cannot be tiled into a decahedron or icosahedron in a way that is
space filling [75]. MTP decahedra and icosahedra, consequently, must contain a high degree
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of internal strain because the crystal lattice must accommodate the missing volume [76, 77].
Defects, such as stacking faults, are one mechanism for stress relief in MTPs [77]. Therefore,
it is likely that the presence of the observed defects is in part due to stress relief, and is
consistent with inhomogeneous strain within the particle.

Figure 2.3: Crystallographic ordering of the atoms in the Pd MTP. (a) Traced atom posi-
tions with coordination numbers of 12, colored by fcc to hcp ordering. (b) Atomic stacking
arrangement of fcc, hcp, and a twinned structure view from the side. (c) 3D atomic neigh-
borhood of sides with fcc, hcp, and rhcp ordering. (d) Slices throughout the MTP showing
the crystallographic ordering for each atom with at least 10 neighboring sites.

Crystal Structure of Successively Twinning Particle

To better understand the crystal structure in the reconstructed particle we classified the
traced coordinates according to their crystallographic coordination. First, all sites were
sorted according to their coordination number using a cutoff radius of 3.75�A. Atoms with
coordination numbers below 10 were classified as surface sites, or highly disordered regions
if they were fully contained in the nanoparticle. Most remaining sites in the particle bulk
were primarily arranged into 4-atom tetrahedra. The most common structural packing of
these tetrahedra were either fcc or hcp ordering. However, a large degree of disorder was
present in many regions of the MTP on length scales larger than 4-atom clusters.

In order to determine the large scale structure of the MTP, we used a polyhedral matching
algorithm inspired by Larsen et al. [78] to determine the degree of fcc and hcp ordering of
each atomic shell. In this dataset, we found that polyhedral matching produced much more
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robust identification of the differently ordered MTP regions than other methods such as
local bond order parameters [79] or common neighbor analysis [80] (Appendix 1). A detailed
description of the classification protocol is found in the Methods section. Briefly, for each
valid atomic site we define polyhedra with vertices that correspond to fcc or hcp stacking
geometries and fit them to the measured positions of the surrounding 12 atoms, depicted in
Figure 2.3c. After rotating the polyhedra to minimize the distance between the ideal and
measured atomic positions of the 12 nearest neighbors, we compute an order parameter for
both fcc and hcp ordering (Methods). We then keep only the maximum order parameter for
both fcc and hcp polyhedra. These values are used to determine the local ordering.

The results of this classification algorithm are shown in Figure 2.3. The 3D atomic
coordinates with 12 nearest neighbors are shown in Figure 2.3a, where each site is colored
according to the difference between the hcp and fcc order parameters defined above, from
-1 to 1. The colors are strongly bimodal, indicating that the majority of sites possess either
highly ordered hcp or fcc arrangements. The overall 5-fold symmetry of the nanoparticle is
immediately obvious, though a significant amount of disorder is present both on the particle
surface and in the bulk structure.

To visualize the structural ordering of the entire structure, we have plotted every other
atomic slice of the particle in Figure 2.3d, where the atoms are again colored by the difference
between the hcp and fcc order parameters. Surface atoms are shown in black, as many of
these sites do not have enough nearest neighbors to distinguish between fcc and hcp ordering.
Figure 2.3b shows the two endpoint order parameters, the ideal fcc and hcp structures,
viewed from the side. Figure 2.3b also shows a third structure motif which appears in many
locations in Figure 2.3d, a twinned fcc structure, where a single line of atoms possessing high
hcp ordering separates two fcc grains with mirrored structures. Figure 2.3c shows the 3D
atomic arrangement of the two ideal polyhedra with fcc and hcp ordering, as well as a third
structure which has the same order parameter for both structures (10 out of 12 possible sites
agree with each class of polyhedron). This structure is labeled as random hexagonal closed
packed (rhcp), following other studies which have used this label for packing falling between
fcc and hcp [81].

The twinning structure obtained reveals that the reconstructed particle contains a core
decahedron, with additional, partially formed tetrahedra on top. The resultant structure is
consistent with a partially formed icosahedron (Figure 2.4a.) Considering the arrangement of
partially formed tetrahedral subunits atop the decahedral core of the reconstructed nanopar-
ticle, shown in Figure 2.4a, the particle seems to be captured in the midst of successively
twinning, and has partially transformed into an icosahedron. There are ten additional par-
tially formed tetradedra, forming two rows above the core decahedron. The tetrahedra closer
to the decahedron are more fully formed. These nucleating tetrahedral units are highlighted
in Figure 2.4a.

Prior observations of successive twinning have been in particles on the 100 nm scale and
have shown tetrahedron by tetrahedron growth [49, 47, 51] illustrated schematically in Fig-
ure 2.4b, pathway A. However, the successive twinning we observe, illustrated in Figure 2.4b
pathway B, is better described as a simultaneous process, where the tetrahedra comprising
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the center portion of the icosahedra grow at the same time. This process more closely re-
sembles the successive twinning process predicted for metal nanoclusters, where coordinated
formation of hcp layer across a decahedral surface leads to simultaneous twinning [82, 83].
It is known that decahedra have more hcp adatom sites than fcc [82], making hcp island
growth, and therefore the growth of stacking faults and twin boundaries, more probable, es-
pecially if there is limited surface diffusion. Our observations also directly confirm addition
of multiple tetrahedra to a decahedral particle as a route towards an icosahedral structure.

Figure 2.4: a) Sample slices from the labeled atomic coordinates shown in Figure 2.3 labeled
with how they would correspond to slices through an icosahedron. b) Schematic of the two
pathways observed for the successive twinning process.

Disorder close to the surface

In addition to illustrating the twinning and defect structures present, our traced atomic
coordinate classification protocol also reveals a large degree of disorder close to the bottom
and top surface of the Pd nanoparticle. An ideal decahedral particle would exhibit 〈111〉
terminated surface facets. The top and bottom surface slices shown in the first and last
column of Figure 2.3c show that the particle does not have 〈111〉 terminating facets. Instead,
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this surface of the particle contains a mixture of coordination types, including a significant
fraction of random hexagonally close-packed (rhcp) coordinated atomic sites whose relation
to fcc and hcp stacking is shown in Figure 2.3a. rhcp stacking has previously been observed
during palladium nucleation and is further evidence of the non-equilibrium structure of these
growing MTP particles [21]. The surface disorder is also an indication that surface diffusion
on the particle is relatively slow [84].

2.4 Conclusion

In this study we have determined the 3D atomic positions of over 20,000 atoms in a multiply
twinned palladium nanoparticle. We have found that the structure derived from the aqueous
synthesis contains substantially more defects than would be expected from previous compu-
tational and experimental studies. We directly observe a simultaneous successive twinning
process wherein a decahedral particle is transitioning directly to an icosahedron. Based
on our HR-STEM studies, we suspect this process would only occur in small decahedral
nanoparticles under our reaction conditions, as after a certain size the structural directing
PVP will have a stronger influence on growth.

The complex structure observed has implications for nanoparticle functionality. The
lack of 〈111〉 terminating facets will significantly alter catalytic reactivity in a Pd particle.
Similarly, the high number of defects in the interior structure of the particle will change
the surface strain states of the particle, which have will also affect catalytic activity [40, 7].
Therefore, the combination of HR-STEM and AET used in this study provide unique insight
into the structure and functionality of MTPs. Future work will need to determine how the
synthetic parameters influence the development of this defected transient structure.
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Chapter 3

Automated Nanoparticle and Defect
Analysis

1

3.1 Introduction

In the last chapter we saw the influence of synthetic pathway on the development of defects
in nanoparticle systems. It is clear from that study that there is a need for rapid, but ac-
curate, image analysis in electron microscopy studies of nanomaterials. With the advent of
fast, high efficiency electron detectors and automated imaging protocols [30, 31], incorpo-
rating electron microscopy into high throughput materials design efforts [85] is increasingly
feasible. These new and upcoming capabilities strongly motivate automated methods to
extract relevant structural features, such as nanoparticle size, shape, and defect content,
from high resolution transmission electron microscopy HRTEM) data to link these features
to bulk properties and study the influence of heterogeneity on bulk behavior [86, 5, 87].
In general, protocols which outperform classical image analysis and do not require time-
consuming manual analysis are needed. Given recent advances in image interpretation using
deep learning [88, 89], segmentation via convolutional neural networks (CNN), along with
other machine learning techniques, are promising routes toward automatic interpretation
of HRTEM micrographs. Here, we demonstrate a two-step pipeline to detect and classify
regions of interest in HRTEM micrographs. This tool uses a convolutional neural net to
identify crystalline regions (nanoparticles) from an amorphous background in the images,
and then feeds individual regions of interest into a random forest classifier to detect whether
or not they contain a stacking fault [90].

Previous work has applied deep learning to atomic resolution images of nanomaterials
from high resolution scanning transmission electron microscopy and HRTEM, but this has
focused on atomic column segmentation or atomic column tracking and specific structure

1This chapter is a version of C. Groschner, C. Choi, and M.C. Scott. “Machine Learning Pipeline
for Segmentation and Defect Identification from High-Resolution Transmission Electron Microscopy Data.”
Microscopy and Microanalysis, 27, 3, p.549–556 (2021).
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analysis [33, 37, 34, 91, 92, 93, 94, 95, 96, 97, 98]. Other work has focused on lower resolution
TEM micrographs, where amplitude contrast is the dominant contrast mechanism [99, 100,
101, 102, 103, 104, 105]. Less is known about how to identify isolated regions of interest in
HRTEM data and classify the structures therein. Here, we aimed to first identify nanoparticle
regions, isolate them, and then classify the nanoparticles according to their structure.

We have focused on conventional HRTEM as it is a dose-efficient and high frame rate
imaging mode and therefore useful for fast data acquisition on a wide range of materials.
However, segmentation in HRTEM is particularly challenging as the contrast between the
substrate that the nanomaterial sits on and the nanomaterial itself can be very low. Because
traditional image processing techniques are highly error prone for these types of images,
we have implemented CNN for semantic segmentation, which is segmentation of the image
on a pixel by pixel basis. Our CNN has a modified U-Net architecture [89] and can ac-
curately segment a diverse population of nanoparticles despite a small number of training
images. Segmentation is demonstrated on both gold and cadmium selenide nanoparticles.
After segmentation, individual nanoparticle regions can be isolated and fed directly into
existing python tools to extract size and shape statistics. To detect the presence of defects
in nanoparticle regions, we implement a random forest classifier. We demonstrated the abil-
ity of the random forest classifier to detect stacking faults in the CdSe subset of identified
nanoparticles. Both the CNN and classifier demonstrate state of the art performance at their
respective tasks. While this work focuses on HRTEM images of nanoparticles supported on
a carbon substrate, in principle the tool can be used to detect any regions of crystallinity
in HRTEM data, and the simple random forest classifier is designed to be easily retrained
to detect a variety of types of defects, making this a flexible pipeline suited for a variety of
image analysis tasks.

3.2 Methods

Strategy

The overall goal of this work was to create a tool for automated structural analysis of
nanoparticles from HRTEM data. In order to achieve this, we created a two-step pipeline
for accurate segmentation and defect classification. The first stage of the analysis pipeline
was to train a U-Net convolutional neural network to segment particle regions. The details
of the architecture are shown in Figure 3.1. After segmentation, we isolated individual
nanoparticle regions using a series of morphological closings and openings. These isolated
regions were used for feature generation and training of a random forest classifier to detect
stacking faults.
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Figure 3.1: The U-Net style architecture of CNN implemented for segmentation of nanopar-
ticle regions. Blocks colored gray represent the output features and are labeled with the
number of features created. Residual blocks A-D contain a 2D convolutional layer, batch
normalization layer, rectified linear unit (ReLu) activation layer, and a 2D max pooling layer.
Residual block E contains a 2D convolutional layer, batch normalization layer, and ReLu
activation layer, which is repeated once. Residual blocks F-I contain a 2D upsampling layer,
concatenation layer, a 2D convolution, batch normalization, and ReLu activation followed by
a dropout layer and another set of 2D convolution, batch normalization, and ReLu activation
layers. The final layer is a softmax activation layer which outputs two segmentation maps
one for each class, background and particle.

Data Collection and Preprocessing

We collected 46 1024×1024 micrographs of CdSe nanoparticles and 13 4096×4096 micro-
graphs of Au nanoparticles using an aberration corrected TEM at 300kV. To reduce the
computational demands, we sliced each micrograph into four or sixteen 512×512 images. To
establish a ground truth for segmentation the data was manually labeled by an experienced
researcher into either a particle class or background class. The ground truth segmentation
maps were created using the MATLAB labeler application [106]. All the micrographs were
then normalized by first applying a median filter with a 3×3 kernel which served to remove
spurious X-rays. After filtering, the images were normalized.
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Significant portions of the raw input images were carbon background, which meant that
when sliced into 512×512 images only 28% of images contained nanoparticles. Therefore,
any image that did not contain particle class pixels was discarded from the training and test
set. The remaining data was split so that 129 images were used in the training set and 43
images were in the test set. Images were rotated and flipped to augment the dataset to more
than 1000 images which were then split 4:1 into the training and validation sets.

Network Architecture

The architecture implemented was based on the U-Net architecture developed by Ron-
neberger et al. following the same convolution-deconvolution structure [89]. We chose the
U-Net architecture because it had previously been successful on segmentation of gray scale
micrographs [89]. The architecture also is designed to combine high and low spatial fre-
quency features using concatenation of features between layers [89]. Sampling across feature
space is critical in HR-TEM images where key features are high frequency lattice fringes
and low frequency particle edges. We modified the standard U-Net structure for accurate
segmentation and to prevent overfitting.

Network Training

Training was performed using the Savio GPU cluster at U.C. Berkeley using a compute node
with two Intel Xeon E5-2623 v3 CPU cores and an NVIDIA K80 GPU. The node had 64
GB of available RAM. The model was built using Keras with a Tensorflow backend [107].
Training used 129 sample images, which then fed into a Keras image augmentation generator
[107], which randomly rotated and flipped the images. Each epoch, or complete pass through
the training set, contained 1,000 samples created from rotating the original processed 129
micrographs and split between the training and validation sets in a 4:1 ratio. Training was
stopped once the loss on the validation set did not decrease by 0.001 after two epochs. The
model was limited to train for a maximum of ten epochs. The model used categorical cross-
entropy for the loss function and Adam as the optimizer with a learning rate of 1×10−4 [108,
109]. Batch size was set to 20, where batch size defines how many samples from the training
set are propagated through the network before updating the model weights.

Testing

A holdout test dataset of 43 images was reserved for final testing after model training had
completed. The predicted particle segmentation map was thresholded to 0.5 prior to metric
computation because this represented the best tradeoff between precision and recall. Pre-
cision and recall versus threshold curves for the network both on Au and CdSe data are
provided in Appendix 2. Reported metrics are the results from these test sets.
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Alternate Methods for Segmentation

Two standard segmentation methods were applied to the dataset to compare to the U-Net
segmentation. Standard thresholding was applied using Otsu’s method [110] to threshold
out the nanoparticles based on intensity. Fourier filtering was also used to segment out
crystalline regions. For this filtering, the Fourier transform of the image was multiplied by
an annulus to eliminate frequencies related to the lattice structure of the material. The
inverse Fourier transform of the filtered image was then smoothed and thresholded to create
a segmentation map.

Random Forest Classifier

After applying the neural network, the resulting segmentation masks were used to isolate
particle regions. To limit the number of agglomerated regions input into the random forest,
we implemented morphological filtering on predicted segmentation maps using the scikit-
image python package [111]. Regions which were too large to be independent particles
were discarded before stacking fault detection. The random forest was developed using the
scikit-learn python package [66]. A total of 329 particle regions were in the training set
and 163 regions were in the test and validation set. The training set had 71 examples of
stacking faults, 156 examples of no stacking fault, 80 examples particle not on the zone
axis, 60 examples of agglomerations, and 43 empty regions. The training and validation
set were manually labeled. The random forest had 500 decision trees, the criterion for tree
splitting was gini impurity, which calculates the probability of classifying the data incorrectly.
A limited hyperparameter serach was performed during random forest development. This
hyperparameter search lead to the selection of gini impurity and 500 decision trees because
these parameters were found to have the best performance. The feature set consisted of the
mean, standard deviation, and center of mass of the radially integrated Fourier transform of
the particle region and the mean and standard deviation of the nanoparticle image in real
space. This feature set was selected such that validation accuracy and true positive rate for
each class were highest. These results lead to a small and informationally dense feature set
based on summary statistics.

3.3 Results and Discussion

Evaluation Metrics for Segmentation

To evaluate the neural network’s ability to segment nanoparticles from the micrograph we
used three evaluation metrics: (1) Dice coefficient (DICE), also known as F1-score, (2)
precision, and (3) recall. We look at three metrics because each offers a difference weighting
of error types. Dice coefficient is a standard metric for segmentation tasks and measures the
union of positive pixels between the true and predicted segmentation masks normalized by
the total number of positive pixels in the two groups. The Dice coefficient can be a very
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strict metric for small particle regions because of the weighting of true positive pixels, shown
in Equation 3.1, where TP stands for true positives, FP for false positives and FN for false
negatives [112]. Fewer positive pixels overall means small errors can have a strong effect on
the metric. Therefore it is also important to consider other metrics, such as precision and
recall. Precision essentially measures how successful the neural network is at only selecting
true particles. Recall provides information on how well the network can find particles.

DICE =
2TP

2TP + FP + FN
(3.1)

Performance of U-Net Segmentation and Comparison with
Standard Image Processing Methods

Figure 3.2: The confusion matrices for the trained U-Net on (a) CdSe test set and (b) for
the Au test set.

We find segmentation via U-Net style CNN to be the most effective way to segment
micrographs as compared to standard methods. Overall, the Dice coefficient across the test
set was 0.8. Separating the test set according to sample material, the network achieved
a Dice coefficient for Au nanoparticle micrographs of 0.89 while the CdSe nanoparticles
were segmented with a Dice coefficient of 0.59, which is on par with other state of the art
segmentation procedures [113]. Further metrics are provided in Table 3.1 and the confusion
matrices presented in Figure 3.2. Sample segmentations for both are shown in Figure 3.3.
CdSe particles clearly are the much more difficult segmentation case, both for human and
computer labelers. CNN based segmentation is likely limited due to the limited signal relative
to background and the size of the particle regions (limiting the context for the neural network
to learn). We explored whether training solely on CdSe would improve the segmentation but
we found that training on a diverse set of materials actually improved results. These results
are presented in the Appendix 2. Despite a lower Dice coefficient on the CdSe data, the
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Figure 3.3: The top row, a–c, of the figure shows a sample micrograph, segmentation from
the network and ground truth segmentation from the CdSe dataset. The second row, d–f,
of the figure shows a sample micrograph, segmentation from the network and ground truth
segmentation from the Au dataset. For all segmentation maps, yellow represents regions
predicted to be in the particle class, blue regions predicted as background.

network created by the demonstrated training procedure results in a network which tends
to under predict particle regions, as can be seen in Figure 3.2(a), from the low false positive
rate for the particle class. This bias is preferred to over prediction of particles which would
make later classification challenging.

DICE Precision Recall
Combined Dataset 0.8 0.82 0.78
CdSe Data 0.59 0.56 0.62
Au Data 0.89 0.95 0.84

Table 3.1: Performance metrics for test sets

In order to determine if the network was more successful than standard image processing
techniques, we segmented the micrographs using Otsu’s method [110] and using Fourier
filtering [114, 115]. More information for each segmentation method is supplied in the
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Figure 3.4: Sample micrographs of CdSe and Au particles and the resulting segmentation
maps when segmented by Otsu’s method, Fourier filtering, and U-Net. For all segmentation
maps, yellow represents regions predicted to be in the particle class, blue regions predicted
as background.

Methods section. We found that basic thresholding on the complete CdSe test set achieved
a Dice coefficient of 0.21 and Fourier filtering achieved a Dice coefficient of 0.33. We note
that this is significantly worse than using Otsu’s method to threshold the Au test set, which
leads to a Dice coefficient of 0.45 or using Fourier filtering which leads to a Dice coefficient
0.78. The Dice coefficients for the combined test set was 0.33 and 0.52 for thresholding
via Otsu’s method and Fourier filtering respectively. This takes into account optimizing
the radius of the annulus mask in Fourier filtering which impacts the segmentation quality.
Sample segmentations for each method are shown in Figure 3.4. Clearly, on all accounts,
the neural network performs significantly better than standard segmentation methods, but
it is a particular improvement for the CdSe dataset, where there is little amplitude contrast.
In addition, beyond the improved segmentation, using a neural network also has the benefit
of not hand tuning parameters for each image, which are critical in standard processing
methods. Therefore, for this type of TEM data, U-Net provides a better, and more high
throughput, means of particle segmentation.

CdSe Particle Statistics from Random Forest Classification

The primary reason to develop a highly accurate segmentation technique for HRTEM is to
enable high throughput analysis of crystal structures. Segmented regions of interest can be
used in further classification models and automated statistics. Statistics on size and shape
can be provided directly from segmentation results. Segmented regions can also be passed
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Figure 3.5: Sample micrographs, original on the left and annotated on the right, of the five
classes predicted: a) agglomeration (the two particle regions are highlighted in orange and
yellow respectively), b) no particle, c) no stacking fault (atomic columns, marked in yellow,
are aligned), d) misoriented (atomic planes, marked by yellow lines, are visible but atomic
columns are not), and e) stacking fault visible (atomic columns, marked in yellow, can be
seen to be offset across the stacking fault, marked in orange). f) Confusion matrix for the
random forest classifier.

to classifiers for structure or defect detection as we will demonstrate.
Stacking faults in CdSe are of interest due to the influence they can have on particle

growth and therefore shape of CdSe nanoparticles [116]. Here we show that a simple random
forest can be used to detect stacking faults. A random forest was chosen for several reasons,
including the excellent performance of ensemble methods as well as the speed and simplicity
to train [117]. Combined with high model interpretability, makes this classifier a good choice
for fast iteration and rapid development.

The random forest demonstrated is used to categorize the CdSe nanoparticles into five
different classes: (1) particle has a stacking fault visible, (2) particle does not have stacking
fault visible, (3) particle does not have atomic column contrast (misoriented), (4) region is
an agglomeration of particles, and (5) region is background. Sample micrographs for each
class are shown in Figure 3.5(a–e). We included the last category to handle the few cases in
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which the neural network segments a region incorrectly, since perfect segmentation cannot
be guaranteed from our network. The feature set we developed for the random forest is
extremely simple and consists only of the mean, standard deviation, and center of mass of
the radially integrated Fourier transform of the particle region and the mean and standard
deviation of the nanoparticle image in real space. Figure 3.5(f) shows the confusion matrix
for the random forest classifier on the test data set. The confusion matrix provides the
fraction of correct and incorrect labels for each class. The random forest achieves 86% class
balanced accuracy compared to the expert labels given. The random forest predicted that
52% of particles were in the correct orientation to observe a stacking fault, and of those 38%
of particles contain a stacking fault. This can be compared to the ground truth of 49% of
particles which were in the correct orientation to observe a stacking fault and the 35% of
those particles that contained a stacking fault. As a consequence, we can see that using an
extremely limited feature space still yields good classification of particles.

In summary, this two step pipeline offers a flexible method to identify crystalline regions
of interest and classify individual regions according to known features. The segmentation
portion of the pipeline outperforms standard segmentation methods, even when those meth-
ods are optimized for individual datasets. The easily retrainable random forest classifier
enables detection of known features within the identified regions. We note that the out-
putted individual regions could also be input into unsurpervised classifiers for detection of
previously unidentified features. Further work could also aim to implement more complex
structure and defect classification methods[118, 91]. One particularly useful future area of
work would be to develop zone axis classification alongside defect identification, which would
aid in the interpretation of observed defects.

Coupled with existing size and shape analysis tools, the output of the segmentation
network and classifier demonstrated here offer a way to determine statistical distributions
of features of interest, such as size, shape and defect presence, and importantly, allow one
to detect correlations between these features. This capability will be critical to offer insight
into nanomaterial population evolution during during high throughtput synthesis studies, or
to identify key structural features that influence bulk properties in combinatorial synthesis
efforts.

3.4 Conclusion

Here we have demonstrated a method of flexible automated analysis for nanoparticles in
HRTEM by combining a neural network for segmentation and a random forest for classifica-
tion tasks. We have shown that a U-Net architecture can far outperform traditional image
processing techniques for segmentation of HRTEM images, while a simple classification tool
can accurately classify structural features using a very limited number of parameters. Break-
ing apart the segmentation and classification tasks leads to an accurate tool with limited
data labelling and feature engineering requirements. Moreover, this pipeline provides a flex-
ible open source tool as the base for further analysis and classification tools for local atomic
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structure. Such quantitative, automated analysis will have significant implications for a
broad range of nanoparticle synthesis, structure-property relationship, and combinatorial
synthesis studies.
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Chapter 4

Architecture Optimization for
HRTEM Segmentation

4.1 Introduction

We have already demonstrated one potential pipeline that includes segmentation of HRTEM
micrographs. However, improvements in segmentation can certainly be made and as deep
learning is becoming a key element of Transmission Electron Microscopy (TEM) analysis, it
is important to identify best methods. Most TEM segmentation procedures rely on using
the U-Net architecture proposed by Ronneberger and coworkers [89]. However, a plethora of
architectures have been proposed for segmentation of real images. There has been an effort in
the biomedical community to understand the impact of network architecture on segmentation
[119]. However, this area is still just beginning to be developed for segmentation of TEM
micrographs for materials science [120].

The segmentation problem is fundamental to enabling automated microscopy studies,
therefore, we chose to analyze network architectures for the segmentation task. We analyze
five different architectures. The first three are variations on the U-Net architecture which
was used for segmentation in the previous chapter. U-Net consists of a contracting and
expanding path and any number of convolutional neural network architectures can be put
in as the contracting pathway, also referred to as the backbone of the network. We test
three U-Net variations. The first is the standard implementation of U-Net with a VGG16
as the backbone [121]. The second is U-Net with a ResNet-18 backbone [122] and the third
uses MobileNet as the backbone [123]. The layers which make up these three backbones are
shown in Figure 4.1. We then endeavored beyond U-Net. Several segmentation architectures
have been proposed since U-Net and we explore the use of two - what we refer to as an atrous
network which relies on atrous convolutional layers as described by Chen et al. [124], and the
feature pyramid network (FPN) developed by Lin et al. [125]. Atrous convolution promises
improvements based on more efficiently sampling the image space by increasing the strides
between convolutions as shown in Figure 4.2. FPN may improve segmentation based on the
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combination of features from different levels of down sampling as shown in Figure 4.3.
We find that the ResNet-18 based U-Net and the FPN perform the best. All networks

tested far outperform the standard, VGG16-based U-Net. We find that the FPN actually
appears to outperform the labels provided and suggests that the current results are limited
not by architecture but by the labeling of the data.

Figure 4.1: The convolutional neural network architectures used as different backbones for
testing variations on the U-Net architecture.

Figure 4.2: Schematic of the atrous convolutions.
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Figure 4.3: Schematic of the feature pyramid network.

4.2 Methods

Data Collection and Preprocessing

We collected CdSe micrographs using the TEAM 0.5 aberration corrected microscope at an
operating voltage of 300 kV. CdSe particles were synthesized via the WANDA synthesis robot
at the Molecular Foundry [26]. This solution was then diluted with hexane and dropcast on
200 mesh ultra-thin carbon grids. Forty six 1024×1024 images were taken by hand. Labels
for this dataset were manually created using the MATLAB labeler app [106]. The CdSe
particles being smaller and a lower atomic number material provided a lower contrast and,
therefore, lower signal to background dataset.

Au nanoparticle data was collected using an FEI Themis with image aberration correction
operated at 300 kV. Au nanoparticles in phosphate buffered saline were purchased from
Sigma Aldrich. The Au nanoparticle solution was diluted with water and dropcast on to
200 mesh carbon grids. Prior to drop casting, carbon grids were cleaned using a plasma
cleaner. Thirteen 4026×4026 TEM micrographs were collected using SerialEM. SerialEM
is a software which enables automated electron microscopy imaging [30], and was used for
automated focusing in order to speed up image collection. The autofocusing function also
helped ensure that the range of defocus was within approximately 100 nm of Gaussian focus.

Labels for network training were created by hand using the MATLAB labeler application
[106]. All the micrographs were then normalized by first applying a median filter with a 3×3
kernel which served to remove spurious X-rays. After filtering, the images were normalized
by the group maximum.

The training set consisted of 129 images. Images in the training set were rotated and
flipped to augment the dataset which were then split 4:1 into the training and validation
sets.
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Network Architectures Implementation and Training

We implemented the variations of the U-Net architecture using the segmentation models
package [126]. The three variations changed the layers in the contracting path, also known
as the backbone of the the U-Net. The three backbones implemented were the VGG16
[121], ResNet-18 [122], and MobileNet [123] architectures. Each architecture was separately
trained three times in order to understand the average performance. Each training consisted
of 20 epochs with 100 steps per epoch. The model used a combined categorical cross-entropy
and dice coefficient loss function and Adam as the optimizer with a learning rate of 1×10−3

([108, 109]).
We also implemented the feature pyramid network [125] using the segmentation models

package [126]. It was implemented using a ResNet18 backbone. The feature pyramid network
was trained with the same data and loss function as the modified U-Nets but with Adadelta
as the optimizer with a learning rate of 1×10−3. The atrous network was implemented using
Keras [107] and was based on the architecture presented by Chen et al. [124]. The atrous
network was trained with the same data but using categorical crossentropy loss and Adam
as the optimizer with a learning rate of 5×10−5. All hyperparameter changes were made
to optimize performance of the different architectures. All training was done using a GPU
through Google Colaboratory.

4.3 Results

Dice Coefficient Intersection over
Union

U-Net VGG16 0.74 0.61

U-Net ResNet-18 0.82 0.71

U-Net MobileNet 0.80 0.69

Atrous Net 0.80 0.67

FPN 0.82 0.72

Table 4.1: Dice coefficient and intersection over union for each of the architectures on the
hold out test set.

The results for the various architectures is shown in Table 4.1. Many of the architectures
perform fairly well, but the VGG16-based U-Net clearly performs the worst. Of the U-Net
based architectures the ResNet-18 performs the best. MobileNet achieves performance close
to that of the ResNet-18. Sample segmentation maps from the three U-Net based architec-
tures are shown compared to the ground truth map overlaid on the original image in Figure
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4.4. While the ResNet-18 achieves the highest metrics, it is clear from a visual inspection
that the MobileNet does better at recovering the small particle regions. In the example
shown the MobileNet based U-Net actually does better at identifying all potential particle
regions than ResNet-18 based U-Net.

Figure 4.4: Example segmentation maps predicted by each of the U-Net based networks.

Figure 4.5: Example segmentation maps predicted by the FPN and atrous networks.

Of the non-U-Net based architectures the FPN performs the best. It also achieves the
best performance of all the architectures, slightly outperforming the ResNet-18 based U-
Net. The atrous net also does reasonably well and performs similarly to the MobileNet
based U-Net. Analyzing the sample segmentation maps from the atrous and FPN also lead
to interesting observations. Atrous net seems to miss several regions. FPN, by contrast, can
be seen to find regions which were missed by the human labeler.
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Figure 4.6: Example segmentation map predicted where FPN outperforms human made
ground truth segmentation map. a) Human generated segmentation map overlaid micro-
graph. b) FPN generated segmentation map. c) Yellow box indicates the particle region
which FPN successfully identified that the human labeler missed.

4.4 Discussion

What becomes clear from these results is that improvements can be made in HRTEM segmen-
tation by moving away from the original, VGG16, based architecture. ResNet-18 provides
the best performance of all the U-Net architectures. It’s performance is closely followed by
that of the MobileNet based U-Net and may outperform MobileNet simply because it has
almost twice the number of trainable parameters. However, the ResNet-18 based U-Net also
contains residual units (essentially skips in the contracting network) that provides high reso-
lution information deeper into the network that the MobileNet does not. This would suggest
that ResNet would perform better than MobileNet on the small particle regions which from
the sample segmentation maps in Figure 4.4, is not necessarily the case. This may suggest
that the increase in parameters, and not the architecture changes, are the reason for the
improved performance over MobileNet. MobileNet does achieve very good results relative
to the number of parameters. It is impossible to say, based on these results, why MobileNet
does so well but it should be noted that both ResNet-18 and MobileNet eliminate all but the
first max-pooling step and perform well, whereas the VGG16 contains a max-pooling layer
after every two convolutional layers. This may suggest that higher performance on HRTEM
data can be achieved with less max-pooling. The ability of MobileNet based U-Net to find
smaller particle regions also raises the question as to whether using 1×1 convolutions like
the MobileNet backbone uses as opposed to the 3×3 size convolutions makes the network
more sensitive. It is likely that this is dependent on the pixelsize and future work should
look into this dependency on the physics of the system.

In terms of non-U-Net based architectures the atrous net does not appear to provide any
significant advantages. It is a bit surprising that the atrous net should perform similarly
to U-Nets since the sampling of the image is so different from these architectures. FPN
performs the best of all architectures analyzed. The FPN combines representations from
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different spatial resolutions, since the HRTEM data has information at many length scales
maybe the improved performance is related to this sampling. Especially in an image where
spatial frequencies are so important it would make sense that an architecture would need to
predict based on sampling many different parts of Fourier space.

It should also be noted that the FPN has been found to outperform the labels, such as
in the sample image shown in Figure 4.6, where it can be seen that it finds a particle region
that the human labeler missed. With this example in mind and since all the networks seem
to be approaching similar metrics the question becomes whether the networks are held back
by error in labeling. In this case it is unclear since the best we can do is the human labeled
data. However, we will analyze the ability of networks to handle label error in the next
chapter and future work using computationally generated HRTEM images may be able to
help elucidate on this point for these specific architectures.

4.5 Conclusions

We have demonstrated that significant improvements can be made over the traditional U-Net
architecture for the segmentation of HRTEM images. We have found that feature pyramid
networks provide the most promising results for HRTEM segmentation. We have found
evidence that this architecture actually outperformed the human segmentation maps. Future
work will need to illuminate the exact mechanism which explains this improved performance.
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Chapter 5

Removing Labeling Requirements for
Machine Learning Based Nanoparticle
Analysis

1

5.1 Introduction

In Chapter 3 we have shown that diversifying datasets can lead to improved performance
across micrographs. This suggests, as is well known, that larger electron microscopy datasets
would provide better neural network analysis. Often the limiting step in creating larger
datasets is in the manual labeling. Automated labeling provides an obvious solution but is
fraught with its own challenges. We have also found in Chapter 4 that analysis of network
performance can be limited by label error in the dataset. Chiral nanomaterials provide an
interesting test bed for analyzing automated labeling systems and how to handle label error.

There is growing interest in inorganic chiral nanomaterials for application in optoelec-
tronics and biomimetics [127, 128, 129]. Specific parameters during wet chemical synthesis
of chiral nanomaterials [130, 13, 131, 132, 133] can induce a large degree of structural vari-
ety. Of particular importance, synthesis parameters can favor one handedness over another.
For example, despite their underlying chiral crystal structure, Tellurium (Te) nanoparticles
can have different ratios of certain chiralities depending on synthesis conditions [130, 13].
These variations are induced by many factors including thermodynamic versus kinetic growth
pathways, and differences in interactions of chiral organic molecules with small clusters of
atoms during synthesis. Therefore, precise tuning of chirality alongside size via wet chemical
synthesis is yet to be obtained in many systems. To do this, one must first determine the
influence of the many synthetic parameters, such as temperature, precursor concentration,
or concentration and type of structure-directing chiral ligands, on the outcome population.

1This chapter is a version of C. Groschner, A.J. Pattison, A. Ben-Moshe, A.P. Alivisatos, W. Theis,
and M.C. Scott. “Classifying Handedness in Chiral Nanomaterials Using Label Label Error-Robust Deep
Learning”. Submitted.
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This motivates the development of methods to classify handedness in chiral nanoparticle
populations with the goal of determining the influence of these synthetic parameters.

While circular dichroism (CD) measurements are sensitive to chirality in Te nanoparticles,
it is very challenging to extract quantitative information about the abundance of each hand-
edness, as the molar CD of these materials is unknown and can only be estimated [130, 13].
Scanning electron microscopy (SEM), in contrast, can be used to unambiguously determine
the handedness of morphologically chiral nanomaterials [134, 135, 136]. SEM is sensitive to
surface topology and can directly determine morphological chirality and handedness, unlike
(scanning) transmission electron microscopy ((S)TEM) methods which sums information
along the beam direction such that faceting information can be lost and therefore requires
that multiple images be used to determine handedness [137]. High-throughput SEM imaging
is therefore a particularly promising way to measure the size and handedness of large popula-
tions of chiral nanoparticles to better understand the role of synthetic variables on outcome
populations. However, determining particle statistics by hand from high-throughput data is
extremely laborious and time consuming. Due to the increasing ease of implementing neural
networks for image analysis [138, 107, 139], deep learning is a promising replacement for
manual analysis. Yet, deep learning is known for requiring large training datasets, which
still need manual labeling, meaning that the application of deep learning to chirality studies
could also be prohibitively time consuming due to expert labeling requirements.

Given that synthesis routes yielding chiral materials often favor one handedness over
the other, we have found that it is possible to label the handedness of all the particles
in the dataset by first labeling them with the dominant handedness, and then mirroring
these images to create a dataset labeled with the opposite handedness. This process is
demonstrated in Figure 5.1). Labeling all images with the majority handedness of course
leads to a dataset with a specific fraction of erroneous labels that is equal to the fraction
of particles which did not have the dominant handedness. For synthesis conditions which
yield almost exclusively one handedness, this automated mirror labeling strategy is very
successful, but for other conditions this can yield a significant number of mislabeled images.
The question then becomes how to extend this automated labeling method across synthesis
conditions, such that the accuracy of networks is not hampered by mislabeled data.

Generating accurate models from erroneously labeled datasets, also known as noisy
datasets in the machine learning community , has been an expanding area of research. Deep
learning is known to be able to memorize random inputs during training [140], and thus has
the potential to memorize noise. What makes true learning, and thus generalizability, possi-
ble is that before memorizing real data, repeated motifs within the data are learned by the
network [141]. This means that networks can recognize predictive features without directly
memorizing inputs. Deep neural networks are thus able to learn the true signal from very
noisy datasets [142]. To further extend the label error tolerance of deep neural networks
several strategies have been implemented. These methods can be broadly separated into
four types of approaches: 1) noise robust techniques [143, 142, 144, 143], 2) label cleaning
methods [145, 146], 3) noise estimation [147, 148], and 4) preprocessing pipelines [149]. This
paper will focus on noise robust and label cleaning strategies. Previous research into these
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methods focus on how these methods perform on very large datasets of real images with a
large number of classes. Microscopy data, in contrast, contains fewer classes but also much
smaller datasets than standard computer vision datasets.

In this work, we focus on noise-robust and label cleaning methods that do not require
the creation of a large labeled dataset or other supervision. First, we will examine the per-
formance of a standard convolutional neural network when trained for a binary classification
task on a small, idealized SEM dataset. The architecture for the network is shown in Figure
5.2a. It consists of two convolutional and max pooling blocks with a final dropout and dense
unit . Previous work has shown that the noise type often influences network resilience to
noise, but these studies have focused on multi-class data with isolated random or label flip
noise [142, 146, 149, 150]. This SEM dataset has both label flip and feature-dependent noise,
the label noise being correlated with image features. For example the minority enantiomer
may be generally smaller particles, providing an image feature which is correlated with la-
bel noise, but cannot be directly controlled, which adds complexity to our task. For our
experiments, we create an idealized dataset to limit these features that are noise correlated.
To create the idealized dataset we take a manually, accurately labeled dataset and mirror a
certain fraction of segmented particles to create the specified error fraction as is described
in Figure 5.1 so that we can model different possible synthesis outcomes. We first seek to
understand how a standard convolutional neural network handles this label noise, then com-
pare its performance to more complex noise handling strategies. As part of this comparison
we explore using the co-teaching training procedure developed by Han et al. [146]. The
co-teaching method uses the difference in loss between two networks trained in tandem on
the noisy dataset to clean data and then further train its neighbor model. For consistency,
the two tandem networks used in our study of co-teaching consist of the same architecture
as the standard CNN we tested, as shown in Figure 5.2a. A schematic of the co-teaching
training procedure is provided in Figure 5.2c. Finally, we propose a new method inspired
by noise estimation and curriculum learning [151, 152, 150, 153]. In this method, we use a
very small clean dataset to start network learning before training on the noisy dataset. The
neural network architecture is the same as the standard CNN shown in Figure 5.2a and the
training procedure is illustrated in Figure 5.2b. . This new method leverages the memoriza-
tion effect, in order to push networks toward learning relevant features even at high error
rates [154] while avoiding data loss by cleaning. From these experiments, we show that, for
small datasets, the label cleaning and curriculum based strategies achieve similar accuracy
rates, but that curriculum style training leads to the most consistent results across noise
rates. We then use as-synthesized micrographs of left and right handed particles to explore
the way in which real data containing feature correlated noise then impacts the performance
of the three aforementioned methods. We find that once feature correlated nouse is added
only the co-teaching method maintains high accuracy. We hope the exploration of these
methods will enable wider application of weak labeling and therefore deep learning for the
chiral materials community and the materials community more broadly.
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5.2 Methods

Dataset Generation

Datasets of known label error (known percentages of mislabeled images) were generated by
starting with a clean dataset of right handed images. Particles were segmented by hand
using MATLAB data labeler software prior to dataset generation. A set percentage (varying
from 0 to 50%) of the images were randomly selected and mirrored, as shown in Figure
5.1. All images in the dataset were then labeled as having right handedness. Then, all the
images were mirrored, creating a dataset in which all images are labeled as left handed. This
procedure ensures that the specific fraction would always be facing the opposite direction
from its label. All image augmentation for training was performed after this operation. We
applied this method to two datasets. The first was the number 7 samples from the Keras
implementation of the MNIST data set. We chose to use the number 7 since it is a chiral
shape. The second dataset consisted of right handed Te chiral nanoparticles which were
manually segmented and labeled by an expert. The complete dataset consists of 1,914 right
handed particles which are mirrored to create a set of 3,828 total left and right handed
nanoparticle images. 80% of the data is used in the training set, 10% in the validation set,
and 10% in the test set. During training the images are augmented using a combination
of 180◦ rotations, 5◦ rotations, up to 30% zoom of the image, and 10% shearing. The
augmentations are used to create a dataset of 91,840 images per epoch ( training round ) for
training Keras networks, and 97,984 images for PyTorch networks. The difference in number
of images is due to differences in augmentation implementation between Keras and PyTorch.

Standard Convolutional Neural Network Classifier

The neural networks were developed with Keras. A simple convolutional neural network was
implemented for both the MNIST and Te nanoparticle datasets; which contained two con-
volutional residual units, a schematic is shown in Figure 5.2a. Each residual unit contained
the convolutional layer, a ReLu layer, and a max-pooling layer. After the residual units, the
features are flattened, and passed to a dense layer, dropout, and final dense layer. The logits
from the dense layer are then passed to a softmax activation function. Training was done
with a categorical crossentropy loss function, and adadelta optimizer. The learning rate was
0.001, the batch size was 32, and ran for 100 epochs. Model check pointing was used so that
model weights were only saved if the validation loss had decreased.

Two Step Training Classifier

The network implemented for two step training was also developed with Keras and employed
the same neural network architecture as the standard CNN. A schematic is shown in Figure
5.2b. The training of the network consists of two distinct steps. First, the network is trained
on an extremely small set of images with error free labels. For this first step we used 10
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left handed particle images and 10 right handed particle images, which are augmented to
represent 288 samples per epoch. The network is trained on the tiny, clean training set for
ten epochs. The network is then trained in the same way as the standard convolutional
neural network for 100 epochs.

Co-teaching Classifier

Networks were developed using PyTorch. The code and procedure was adapted from work
done by Han et al. [146]. The co-teaching method creates two identical CNNs. Two separate
batches of data are given on each network for training. The data whose loss is below a certain
threshold then gets passed to the other network for training and data above is removed [146].
A schematic of the procedure is shown in Figure 5.2c. In this way data is cleaned, under the
assumption that noisy labels will lead to higher loss. The architecture of the two CNNs was
changed to match the CNN architecture used in the Keras-based handedness classifier. The
only difference was the addition of an average pooling layer to compensate for differences
in layer implementations. The models were trained on the same dataset. The learning rate
was 0.001, the batch size was 128, and the maximum number of epochs was 40.

Image Acquisition

Tellurium nanoparticles suspended in an aqueous solution were dropcast onto a silicon wafer.
Micrographs were acquired on FEI Helios G4 UX at 2kV using a through-lens detectors with
a working distance of 2 mm. Images were collected using Maps 2.5 Software, which collected
a grid of approximately 1200 images of collections of nanoparticles (approximately 1400-by-
900 pixels each). This large-scale acquisition was stitched together using the same Maps 2.5
software. Nanoparticles were manually segmented from the larger images to make the small
input images for the neural networks. Sample images are provided in the supplementary
materials.

Synthesis of Te Nanoparticles

The synthesis follows a methodology developed by Ben-Moshe et al. [130], with some modi-
fications. 5.5 ml water, 15 mg TeO2 and 20 µl NaOH (1M in H2O) were stirred vigorously in
a 20 ml glass vial (at room temperature), before 2.5 ml of hydrazine hydrate (80% solution)
were added in one go. 25 seconds after the addition of hydrazine, 1 ml of a 100 mM solution
of D-penicillamine (adjusted to pH 11 using NaOH solution) was added in one go. The reac-
tion was stopped after three hours, by diluting twice with a 100 mM SDS solution, followed
by repeated cycles of cleaning using centrifugation (6000 RPM, 10 minutes) and dispersion
in water.
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Figure 5.1: The mirror labeling scheme used for data labeling with sample images. a)
Schematic demonstrating the mirror labeling procedure by which training datasets are auto-
matically labeled and the error rate in the dataset is controlled on the MNIST seven dataset.
b) Examples of images for both classes from the chiral nanoparticle datasets. Scale bars,
100nm.

5.3 Results

Analysis Methods

For each technique we assessed the networks’ performance on a clean ground truth test set
with 50% left and right handed images after being trained on noisy datasets with different
label error fractions. We also analyzed the distribution of error between the two classes. We
did this by plotting the histogram of incorrectly labeled left handed particles and number
of incorrectly labeled right handed particles in the test dataset. Dramatically misclassifying
one but not the other label could lead to a significant skew in the calculated ratio between
classes, a metric which is very important in studying chirality. We finally evaluate the ability
of the networks to recover the fraction of particles belonging to the minority population, to
simulate the use of these methods for data from real synthesis procedures. For this analysis
we use a test set that has the same mislabel fraction as the training set. Using this second
test set, we plot f(x) = nleft(x)/ntotal, where x is the mislabeled fraction of the training set,
nleft(x) is the total number of particles labeled left handed by the network for that test set,
and ntotal is the total number of particles in the test set. All networks were trained on noisy
datasets. The noise generation process is outlined in the methods section and illustrated in
Figure 5.1a. For each method we trained three separate networks using that method and
plot the average performance metric and the standard error.
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Figure 5.2: Schematics for the three methods studied. All networks use the architecture
shown in part a. a) Schematic of convolutional neural network architecture implemented
with features by height and width labeled. b) Schematic of two-step training procedure.
Randomly instantiated network is trained for one training round, i.e. epoch, using clean
data before network weights are transferred and trained using noisy dataset. c) Schematic of
co-teaching training procedure. Two networks are trained in parallel and after each training
round the data is cleaned by only passing data with low enough loss to the twin network.

MNIST Sevens

Standard Convolutional Neural Network

Before testing our three noise-robust neural network approaches, we first tested a standard
convolutional neural net’s ability to learn to classify chiral images in the presence of varying
amounts of label noise using images of the number seven from the MNIST dataset. The
training set for the model contained 10024 images and the test set 1258 images. The ar-
chitecture used is shown in Figure 5.2a. Figure 5.3a shows that a standard convolutional
neural network can learn the classes accurately up to 42% label error. Figure 5.3b shows
the percent of misclassified particles which were left handed vs right handed demonstrating
that there is minimal bias, in terms of handedness, in the classification error as well. Figure
5.3c shows that, given an enantiomerically skewed population, the neural network for that
amount of label noise is able to correctly predict the fraction of sevens which have that
minority handedness. All these metrics suggest that the mirror labeling procedure works
and even a standard CNN can handle the label noise presented.



CHAPTER 5. REMOVING LABELING REQUIREMENTS FOR MACHINE
LEARNING BASED NANOPARTICLE ANALYSIS 46

Figure 5.3: Figures quantifying the performance of the standard CNN on the MNIST training
sets. a) Accuracy of standard CNN on the MNIST seven clean ground truth test set given
increasing error in the training set. b) The percent of sevens erroneously labeled as left or
right handed in the test set. c) Predicted fraction of left handed sevens for a population
where label noise is specified by the percent of left handed sevens using the network which
corresponds to training with that percent of label noise .

Te Chiral Nanoparticles

Standard Convolutional Neural Network

We then applied the same mirror labeling and training protocol from the MNIST dataset to
the SEM images of chiral Te nanoparticles. Sample images of the chiral particles are shown
in Figure 5.1b. The training set for the chiral nanoparticle models contained 3062 images,
before augmentation, and the test set 382 images. Further information on augmentation
is presented in the Methods section. Augmentation was used to ensure that handedness
was not correlated with arbitrary images features, e.g. if right handed particles tended to
have highest intensity on the right hand side of the image, random 90 degree rotations were
implemented during augmentation to destroy this arbitrary correlation and ensure networks
learn on truly predictive features. For the standard CNN on SEM images, the clean test set
accuracy begins to degrade after 10% label error, as can be seen in Figure 5.4a. Reasonable
accuracy is still recovered up to 30% label error. In order to examine the maximum amount
of noise that can be handled we increased our sampling close to 50% flip error - close to
random labeling. Figure 5.4b gives the percent of misclassified particles which were left
handed vs right handed. This shows that the network on average is rather inconsistent in
whether it misclassifies one handedness more than the other at high label error. Figure 5.4c
shows the ability of the network, for an enantiomerically skewed population, to recover the
correct fraction of the mislabeled portion of the population. The standard CNN is able to
accurately predict the fraction of the minority population (and therefore mislabeled in the
training set) up to 40% label error.
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Co-teaching

Accuracy results for different label error rates using the co-teaching training method are
shown in Figure 5.4a. We see that at very low label error the standard CNN achieves higher
accuracy than co-teaching. However, the co-teaching method is able to achieve much better
accuracy than the standard CNN when the label error increases past 10%. One benefit of
the co-teaching network is that from 0% to approximately 40% label error the recovered
accuracy is very consistent. One promise of the co-teaching network is that datasets with
large amounts of label error can still be used for accurate training. However, in Figure 5.4a
we see that there are still limits on the amount of label error which can be tolerated. We still
observe a dramatic reduction in accuracy beyond 40% label error. As shown in Figure 5.4b,
the co-teaching network does not misclassify one handedness more than the other at low
label error rates, but at label error rates above 42% the network appears to be significantly
over predicting left handed particles. This skew in misclassification is also reflected in the
fraction of left handed particles detected. Figure 5.4c shows that the co-teaching networks
on average, badly underestimate the number of minority handed particles past 42% label
error.

Figure 5.4: Figures quantifying the performance of the three methods on the Te training
sets. a) Average accuracy of networks from each technique on the clean ground truth test
set of Te SEM data given increasing label error in the Te training set. b) The percent of
right and left handed particles which are misclassified by each network c) Predicted fraction
of left handed Te particles for a population with a specified percent of left handed particles
using the network which corresponds to training with that percent of left handed particles.

Two Step Training

Similar to co-teaching two step training creates a network which performs well up to about
40% label error. Co-teaching and the standard CNN sometimes slightly outperform the
two step method in terms of accuracy but the two step training creates perhaps the most
consistent results. This is reflected in the fact that this training procedure leads to the most
consistent detection of minority particles. Unlike the other methods, it does not drastically
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over or under estimate the population of left handed particles at any point, as seen in Figure
5.4c. This is a consequence of the fact that the training procedure does not lead to a high
bias against one class or the other at any training label error, as can be seen in 5.4b.

Application to As-Synthesized Particles

We then went beyond the ideal and applied the methods discussed to a collection of as-
synthesized Te particles. The difference between the as-synthesized and ideal case is that in
the ideal case we start with all right handed particles so particles all “left handed” particles
are mirror images of right handed particles. The as-synthesized dataset is made up of particle
images from a sample that contained 22% left handed and 78% right handed particles. The
preparation of these particles can be found elsewhere [13]. We created a training set of 3542
particle images. The labeling procedure was then used on these particles (without the error
creation step since left handed particles are now part of the sample). The results are shown
in Table 5.1. The performance of these networks does not match the ideal dataset. We see
that the standard CNN and two step training procedure fall short of acceptable accuracy.
Only the co-teaching method maintains high accuracy.

Average Accuracy As-Synthesized

Standard CNN 0.65± 0.049

Two Step Training 0.66± 0.002

Co-teaching 0.91± 0.002

Table 5.1: The average accuracy and standard error on the clean, as-synthesized balanced
test set for each of the three techniques.

5.4 Discussion

Performance comparison between MNIST and nanoparticle
trained neural nets

A comparison of the accuracy on the clean test set indicates that the application of a CNN
to the MNIST data results in higher accuracy across most noise levels than the results from
training with the chiral nanoparticle dataset. The accuracy of the network compared to the
chiral nanoparticle dataset suggests that the network is fitting a simpler feature space than
the chiral nanoparticle case. It should be noted that the MNIST input image is much smaller
than the Te, meaning that by keeping the network size the same we have more convolutional
kernels relative to the number of pixels in the MNIST network. In addition, to the human
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observer, it is easy to see that there are only a few prototypical examples for a number
seven in the MNIST dataset and few deviations from these prototypes. By inspecting data
in Figure 5.1a and 5.1b, it is clear that while most parts of the seven images contribute to
the chiral shape, the chiral particles have many features which are unrelated to the chirality
of the particle. In fact, only the center facets of the chiral particles determine a particle’s
handedness. Therefore, since we have held all hyperparameters constant while training on
each dataset, it is reasonable to interpret at least part of the difference in accuracy is due to
the difference in richness of the feature space. Furthermore, learning a more complex feature
space with fewer features actually contributing to the classification task is likely the reason
for the lower accuracy of CNN trained on the chiral nanoparticle dataset.

The limited feature space of the MNIST dataset vs the chiral nanoparticles was by design,
for the purpose of comparing label noise robustness of the network when applied to datasets
with and without “hard examples”, those samples which are harder for the network to learn.
This was important to consider since previous work has found evidence that CNNs treat
hard examples and noise in a similar fashion [155, 140]. By proving the noise robust nature
of our proposed standard CNN on the MNIST dataset , we could isolate any challenges when
applying the same mirror labeling scheme to actual chiral materials which have many more
possible representations. We hypothesize that this increased feature space is responsible for
the lower performance of the networks on chiral nanoparticle data, particularly the standard
CNN, in the presence of high label error compared to the network trained on MNIST. This
highlights that noise robust properties of standard neural networks are heavily dependent
on the richness of the feature space.

Comparison of noise-robust architectures and training procedures
on ideal SEM data

Our results on the ideal SEM dataset suggests that the best method to employ depends on
label error and the type of error tolerated. In general two step training and co-teaching
show enhanced robustness to label error, as they achieve a high classification accuracy, until
approximately 40% label noise and above.

The standard CNN does not demonstrate the same label error robustness as the other
two methods. This deviates from the results of the standard CNN on the MNIST sevens
and suggests that for the more complex feature space presented by the Te dataset, the noise
robustness of a standard CNN is not as consistent.

Co-teaching provides a way to explore label cleaning methods. For very low label error
the co-teaching achieves the lowest accuracy, which is likely connected to throwing away
hard examples during training [155, 140]. However, as training error increases co-teaching
becomes the most accurate training method. However, once training label error is too high
the accuracy of the co-teaching method rapidly deteriorates and shows strong skew in which
handedness is misclassified, unlike the two-step method which declines in accuracy but does
not show an increase in misclassification skew. It is likely that since the co-teaching method
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includes no prior knowledge about left and right handed representations, past a certain label
error rate it is no longer able to distinguish the label error from variations in handedness,
therefore causing its performance to plummet.

The two step method achieves almost the same level of accuracy as the standard CNN
at low training label error but is also able to sustain high levels of accuracy with more than
40% label error like the co-teaching method. This is interesting because we do not use this
data to infer any extra information or weighting schemes when training on data with label
error unlike some other pretraining methods [153, 151]. To our knowledge, other work in this
field has used small supervised training sets to train label error estimation layers and other
corrective measures but not as a transfer learning procedure to initialize the network. The
results we present, therefore, suggest that benefits can also be reaped by utilizing curated,
tiny, manually labeled datasets to help the network learn the correct relationships between
key features. We hypothesize that this method is exploiting the fact that networks are prone,
in early training rounds, to learn simple features as opposed to memorizing data [154, 141].
While we rely on the early training rounds learning easy representations from the tiny dataset
to direct learning class features correctly, it is likely that by initializing the network with a
very small dataset, we are limiting representations the network is sensitive to. This points
to an inherent tradeoff in this method between labeling requirements and generalization,
which should be explored in future work. This may also explain why we achieve slightly
lower accuracy when training label error is low.

The difference in the misclassification bias between the co-teaching and two step method
is what truly distinguishes these two techniques in this application. Previous work has shown
that pre-training a network with an unsupervised dataset leads to better generalization due
to the pre-training acting as regularizer [156]. Though we use a supervised training set
for pre-training, the difference in misclassifcation bias between the two networks supports
that particularly at high levels of training noise, the first training round is constraining the
network to more balanced learning. This is a key finding for the application proposed since
being able to consistently recover handedness ratios is vital for understanding the influence
of synthesis parameters on the development material handedness.

Comparison of Ideal to As-Synthesized Dataset

The difference in performance of the three methods on the ideal dataset versus the as-
synthesized dataset highlights the importance of the alternate features present between the
as-synthesized left and right handed particles. Analyzing the as-synthesized images (shown
in Appendix 3, Figure 3), it is evident that the growth which led to minority left handed
particles in the sample also caused those left handed particles to have a smaller chiral facet.
The particles are also are smaller overall. Therefore in the as-synthesized case we not only
have a complex feature space to learn (as was seen in the ideal vs MNIST comparison) but
we also have image features that are directly correlated with the label error. This feature
correlated label error clearly has important implications for the methods explored. It seems
that the chiral facet is crucial because resizing all right and left handed particles to be the
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same size did not improve performance. This result is surprising since the training was
implemented with augmentations to enlarge and shrink the particles so that the chiral facet
would take on a number of sizes for each handedness. In essence this should have eliminated
any size dependence. The fact that augmentation did not enable learning in the standard
CNN and two-step training method suggests that the relationship between the rest of the
particle and the chiral facet also has a relation to handedness. It should also be noted
that we did not augment to control for contrast variations when testing with this dataset so
future work should also consider the impact of this factor. Overall, these results suggest that
when the noise has alternative relationships beyond the mirror operation that co-teaching is
the best method. Future work will need to be cognizant of these differences between ideal
datasets and their actual application.

Implications for experimental applications

The as-synthesized analysis shows that for most experimental applications the co-teaching
method is the best approach. The as-synthesized data set had 22% minority handedness
present corresponding to 22% label error. This is a relatively high label error and suggests
that the co-teaching method would be able to handle experimental conditions [13]. The
co-teaching method should, therefore, be used anytime that it cannot be confirmed whether
the synthesis conditions lead to variations in size (or other particle features).

It should be noted that it is conceivable that there could be experimental conditions
which may resemble the ideal dataset. If the samples are true enantiomers and therefore
only varying by a mirror operation, as in the ideal dataset, then there are two clear use
cases that require choosing between these networks for practical applications of the red
mirror black labeling approach in the chiral nanomaterial community. For synthesis routes
where one handedness is much more favored than the other, training a standard CNN is most
likely to yield the most accurate population statistics because under this condition our mirror
labeling technique will yield low label error . For chirality studies where synthesis conditions
lead to a more balanced set of left and right handed particles, and therefore higher label
error, the two step neural network is the best option since this network provides accurate
results and little bias in class prediction across populations.

There are several future use cases for the three methods developed here. The automated
mirror labeling system described can be used not only in the realm of SEM chiral image
analysis, but for any imaging method where the chiral structure leads to geometrically related
images. Outside of chirality classification, the label-error robust methods developed have a
wide range of possible use cases across the microscopy community. While the characteristics
of the label error will vary on a case by case basis, this work provides a starting point for
the use of label error robust methods for a variety of microscopy tasks.

In summary, these results give important insight for leveraging automatic labeling sys-
tems such as ours on other microscopy datasets. We see automated labeling as a potential
avenue for analysis in the chirality community but also among other materials where datasets
are too large to realistically be manually labeled. We have shown the tradeoffs between the
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richness of the feature space and label error robustness of CNNs, which should be taken into
account when using these techniques for other studies.

5.5 Conclusion

We have shown that both label error robust and label cleaning methods perform well for
small datasets. However, we find that both two step training and co-teaching far outperform
the inherent label error robustness of a standard CNN. These are important findings for
deep learning studies synthesis of chiral materials, and also extend to a wide array of binary
classification problems in the materials community. By demonstrating conditions under
which accurate classifiers can be created without manual labeling we hope to expand the
usefulness of deep learning for materials characterization.

Code Availability

Code for this study is available at https://doi.org/10.5281/zenodo.5548317.

Data Availability

All image and label data that support the findings of this study are available on Zenodo:
https://doi.org/10.5281/zenodo.5009042.

https://doi.org/10.5281/zenodo.5548317
https://doi.org/10.5281/zenodo.5009042
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Chapter 6

Conclusions

6.1 Summary

In this dissertation we have shown the large impact synthetic parameters can play on the
development of defects and the type of tools needed to understand this defect development.
To this end, in Chapter 2 we have analyzed the formation of defects during non-classical
growth modes in palladium nanoparticles. We have shown a simultaneous twinning behavior
that can convert a decahedral particle into an incosahedral particle. We are limited in
our study of multiply twinned palladium nanoparticles by the inability to characterize a
large number of particles and therefore understand exactly which conditions contributed
to our observation of simultaneous twinning. To address these issues we have proposed to
develop a high throughput analysis method for HRTEM micrographs of nanoparticles. We
have presented the results of these efforts in Chapter 3. In Chapter 3 we demonstrate the
ability to use a combination of deep learning and random forest classifiers to segment out
nanoparticles from HRTEM micrographs and then use a random forest classifier to classify
whether or not the nanoparticle contains a stacking fault. In developing this pipeline we
discovered the need to have nanoparticles made of different materials in the dataset due to
the different image features different materials create in the TEM. We then also explored
ways to improve segmentation based on neural network architecture, as discussed in Chapter
4. This led to the finding that the feature pyramid network showed the highest performance
on our mixed material dataset. It also highlighted trouble with manual labeling of data. This
highlights a need to find alternative methods to hand data labeling, since this would limit
the use of deep learning for other electron microscopy analysis tasks. To address this issue,
in Chapter 5, we looked into automated labeling techniques which would recast incorrectly
labeled images as a label noise problem. We analyzed three methods for combating label
noise: standard convolutional neural networks, co-teaching neural networks, and a two-
step training approach based on curriculum learning. We find that different relationships
between label noise and image features dictate which method performs the best. If features
help predict label noise then co-teaching performs best, while if image feature and label noise
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is unrelated the two-step procedure performs best.

6.2 Future Work

Using machine learning and deep learning to probe defects in nanomaterials is still a nascent
area of research. Future work will need to further develop benchmarks to understand when
networks generalize well to HRTEM data so that architecture and other changes can be easily
compared. This is critical since, as we have seen, the data the network is being applied to
is critical to evaluation. We demonstrate noise robust methods to allow automated labeling
for one analysis task - chirality classification. It would be interesting to expand this work to
other tasks such as segmentation. Beyond these directly related tasks to the work presented
there are still many components to fully automating the analysis procedure. One notable
task which would be very useful in the future is automated zone-axis classification. This
would assist researchers to know if the defects being searched for would even be visible in
the imaged orientation of the particle. All of these tools would then contribute to studying
the development of defects during aliquot studies of nanomaterials. These developments will
increase synthetic control of nanomaterials by better understanding heterogeneity across
samples, bringing us one step closer to atom by atom material design.
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Appendix 1

A.1 Tilt Series
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Figure A.1: Tomographic tilt series of the multiply-twinned Pd nanoparticle. The 49
projection images with a tilt range from 64 to −61 degrees (show at top left of each panel)
were measured using ADF-STEM.
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A.2 Before and After Tomography

Figure A.2: a) Particle before and (b) after tomography experiment.
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A.3 Atom Tracing
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Figure A.3: a) Two-dimensional manifold of the peak candidates obtained with UMAP. b)
Fourier shell information of PRISM-simulated tilt series performed with different probability
thresholds for the atom candidate list. The probability of and atom candidate not being an
atom was obtained from a two-class Bayesian Gaussian Mixture model fitted to the manifold
in a). The threshold range between the red lines was identified as the range that extracts
the most information from the experimental data.
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A.4 STEM Simulations and Tracing Precision
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Figure A.4: Histogram of the difference in atomic positions between the experimentally
determined atomic model and that obtained from multi-slice simulations.
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A.5 Ordering Parameter Comparison

a polyhedral matching

local bond order parameters (from spherical harmonics)b

Figure A.5: Comparison of methods to determine local ordering. a) Classification of hcp vs.
fcc ordering in volume slices using a polyhedral matching algorithm [78]. b) Classification
of fcc vs hcp ordering in volume slices using spherical harmonics.
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Appendix 2

B.1 Results From Different Training Sets

Segmentation was found to improve when a more varied dataset was used. Results for
training solely on CdSe compared to CdSe and Au are presented in Table B.1 and in Figure
B.1.

DICE Precision Recall
U-Net with
only CdSe
Data

0.43 0.44 0.42

U-Net with
Combined
Data

0.59 0.56 0.62

Table B.1: Performance metrics for U-Net on CdSe data when the U-Net was trained with
different datasets. The same number of images were used for each training instance.

B.2 Threshold Determination

Precision versus threshold and recall versus threshold was plotted for both the Au nanopar-
ticle and CdSe nanoparticle segmentation. Based on the plots the optimal threshold was
chosen. The plots are shown in Figure B.2
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Figure B.1: Two sample micrographs of CdSe particles and the resulting segmentation maps
when trained with only CdSe data and when trained with Au and CdSe data.
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(a)

(b)

Figure B.2: Precision and recall vs threshold for (a) segmentation of Au nanoparticles and
(b) segmentation of CdSe nanoparticles.
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Appendix 3

C.1 Section of the Maps 2.5 Acquired SEM

Micrograph

Figure C.1: Sample SEM micrograph of Te nanoparticles acquired with Maps 2.5 software.
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C.2 Sample SEM Images Ideal Dataset with

Mirroring

Figure C.2: Sample segmented Te nanoparticles from SEM micrographs from the ideal
dataset.
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C.3 Sample SEM Images As-Synthesized Dataset

Figure C.3: Sample segmented Te nanoparticles from SEM micrographs from the as-
synthesized dataset.
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