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Abstract

Tau rhythms are largely defined by sound responsive alpha band (�8–13 Hz) oscilla-

tions generated largely within auditory areas of the superior temporal gyri. Studies of

tau have mostly employed magnetoencephalography or intracranial recording

because of tau's elusiveness in the electroencephalogram. Here, we demonstrate that

independent component analysis (ICA) decomposition can be an effective way to

identify tau sources and study tau source activities in EEG recordings. Subjects

(N = 18) were passively exposed to complex acoustic stimuli while the EEG was

recorded from 68 electrodes across the scalp. Subjects' data were split into 60 parallel

processing pipelines entailing use of five levels of high-pass filtering (passbands of

0.1, 0.5, 1, 2, and 4 Hz), three levels of low-pass filtering (25, 50, and 100 Hz), and

four different ICA algorithms (fastICA, infomax, adaptive mixture ICA [AMICA], and

multi-model AMICA [mAMICA]). Tau-related independent component (IC) processes

were identified from this data as being localized near the superior temporal gyri with

a spectral peak in the 8–13 Hz alpha band. These “tau ICs” showed alpha suppres-

sion during sound presentations that was not seen for other commonly observed IC

clusters with spectral peaks in the alpha range (e.g., those associated with somatomo-

tor mu, and parietal or occipital alpha). The choice of analysis parameters impacted

the likelihood of obtaining tau ICs from an ICA decomposition. Lower cutoff frequen-

cies for high-pass filtering resulted in significantly fewer subjects showing a tau IC

than more aggressive high-pass filtering. Decomposition using the fastICA algorithm

performed the poorest in this regard, while mAMICA performed best. The best com-

bination of filters and ICA model choice was able to identify at least one tau IC in the

data of �94% of the sample. Altogether, the data reveal close similarities between

tau EEG IC dynamics and tau dynamics observed in MEG and intracranial data. Use

of relatively aggressive high-pass filters and mAMICA decomposition should allow

researchers to identify and characterize tau rhythms in a majority of their subjects.

We believe adopting the ICA decomposition approach to EEG analysis can increase

the rate and range of discoveries related to auditory responsive tau rhythms.
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1 | INTRODUCTION

1.1 | Introduction

Research on alpha oscillations (�8–13 Hz) generated in visual, motor,

and somatosensory areas of cortex has long been informing theory

regarding the role oscillations play in information processing

(e.g., Hanslmayr et al., 2011; Jensen & Mazaheri, 2010; Klimesch

et al., 2007; Ross et al., 2022). Applications of this research include the

development of brain computer interfaces that use alpha range oscilla-

tions as control signals (e.g., Stieger et al., 2021), and the monitoring/

treatment of clinically relevant abnormalities in cortical activity

(e.g., Deiber et al., 2020). However, auditory-related alpha activity (i.-

e., tau rhythms) has been much less studied. We will use the tau termi-

nology for the rest of this manuscript. The reason for the rarity of tau's

study is not because it is less theoretically relevant than alpha localized

to other brain regions. Theories proposing that alpha serves a func-

tional role in perception have surfaced for auditory (Obleser &

Kayser, 2019; Weisz et al., 2011) as well as other modalities

(e.g., Buzsaki, 2006; Jensen & Mazaheri, 2010; Klimesch et al., 2007).

The rarity of tau research is also unlikely to be linked to weak clinical

relevance. Abnormally low alpha power within the superior temporal

plane has been demonstrated in individuals suffering from tinnitus

(Hartmann et al., 2014) and from schizophrenia (Koh et al., 2011).

Rather, the reason for tau being understudied likely has more to do

with the elusive nature of tau rhythms in scalp electroencephalographic

(EEG) recordings. The current study represents initial development of

an approach using independent component analysis (ICA) decomposi-

tion (Bell & Sejnowski, 1995; Makeig et al., 1996, 2002) to identify and

measure tau rhythms in EEG data. Our motivation is the presumption

that more readily available measures of tau EEG activity could greatly

accelerate both basic and applied research on tau rhythms.

Unlike alpha oscillations generated in visual and somatomotor

areas (mu rhythms), tau rhythms are not easily observable in “raw”
scalp recordings in which stronger alpha rhythms originating in occipi-

tal and parietal cortex can easily mask them (Niedermeyer, 1991;

Weisz et al., 2011). Early work using intracranial recordings from a sin-

gle patient identified an auditorily responsive temporal alpha rhythm

that was not apparent in visual inspection of the same patient's scalp

EEG (Niedermeyer, 1991). Comparisons of magnetoencephalographic

(MEG) with EEG data acquired using similar auditory paradigms have

also led researchers to believe that EEG is not an appropriate imaging

modality for studying tau (Bastarrika-Iriarte & Caballero-

Gaudes, 2019). By consequence, tau rhythms have been most fre-

quently studied using MEG or intracranial recordings where their

presence is more easily demonstrated, perhaps reflecting in part the

selectivity of MEG recording for sources originating in cortical tissue

lying orthogonal to the brain/skull surface.

Tiihonen et al. (1991) presented subjects with sound sources of

various duration and complexity and found stimulation-reactive alpha

band activity in the MEG. This alpha was suppressed during sound

presentation and could be mapped to a source within the superior

temporal plane. It could be distinguished from visual alpha and soma-

tomotor mu rhythms in that it was not reactive to eye closure, body

movements, or tactile stimulation (for related MEG work, see

Bastarrika-Iriarte & Caballero-Gaudes, 2019; Frey et al., 2014;

Hartmann et al., 2014; Lehtelä et al., 1997; Lorenz et al., 2009; van

Dijk et al., 2010; Yokosawa et al., 2020). Recently, Billig et al. (2019)

recorded alpha suppression following speech sound presentation from

electrodes placed within Heschl's gyrus of neurosurgical patients (also,

see Kumar et al., 2021). Baseline alpha power and sound-induced sup-

pression was evident in recordings from primary and secondary audi-

tory areas.

Considered together, these MEG and intracranial results have

convincingly demonstrated the existence of tau rhythms that can be

distinguished from other cortical alpha rhythms. Knowledge develop-

ment in this area has been stunted; however, by the fact that most

researchers have at best limited access to MEG and intracranial

recording. When these modalities are available, their use often neces-

sitates a low sample size (e.g., when working with neurosurgical

patients), are expensive to conduct (in the case of MEG), and are

restrictive in terms of the types of experiments that can be conducted

(e.g., in regard to movements, environment, etc.).

1.2 | An ICA approach to tau rhythm analysis

Some researchers using an ICA decomposition approach to EEG

analysis have identified independent components (ICs) of multichan-

nel EEG data that appear to mimic the dynamics of tau as character-

ized with MEG and intracranial recordings. ICA decomposition learns

linear spatial filters (linear combinations of the scalp channels) that

jointly separate the recorded data into IC processes with fixed scalp

data projection patterns (scalp maps) and time courses as temporally

independent of one another as possible (Makeig et al., 1996). ICA as

a blind source separation procedure is most popularly used as a way

of identifying non-brain source activities (artifacts, e.g., arising from

eye blinks; Jung et al., 2001), and then removing them from scalp

EEG recordings. However, there are substantial advantages to ana-

lyzing IC source activities themselves, especially those that by their

activity characteristics and scalp projection patterns are compatible

with sources generated in one, or sometimes two, presumably ana-

tomically connected cortical areas (Delorme et al., 2012). The most

relevant advantage regarding tau rhythms is that sources with tem-

porally independent activities can be separated from one another

despite having overlapping scalp projection patterns, producing their
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mixing in the scalp channel data (cf. Makeig et al., 1997, 2004;

Onton et al., 2005).

Listeners in an auditory distance judgment task showed alpha

suppression during presentation of sounds, the strength of which

was associated with sound familiarity and distance judgment accu-

racy (Wisniewski et al., 2012, 2014). Much of this suppression was

attributable to IC sources that could be localized to left and right

superior temporal gyri. Furthermore, response-time sorted analyses

revealed that alpha suppression was aligned in time with stimulus

onsets rather than manual button presses, supporting their distinc-

tion from sensorimotor processes (cf. the intracranial and MEG work

cited above). Similarly, Jenson et al. (2015) identified left and right

temporal ICs that showed alpha suppression during presentation of

single phonemes (/ba/ and /da/). These ICs also showed enhance-

ment during vocal production, while mu rhythm ICs showed suppres-

sion. This suggests that alpha activity in these sources was distinct

from sensorimotor mu (also, see Bowers et al., 2019; Wisniewski &

Zakrzewski, 2023). These studies introduce the exciting prospect

that ICA decomposition may provide: (1) reliable characterization of

tau activity in EEG data, increasing the pace of discovery through its

wide availability, and (2) the capability to examine tau activity in

more varied data collection scenarios, thereby increasing the range

of discovery.1

There are at least two issues with the ICA decomposition

approach to analysis of tau rhythms that need to be resolved to take

full advantage of it. The first is that studies reporting tau ICs have only

identified these ICs in a relatively small percentage of subjects. This

“sparsity problem” hinders the ability to study tau ICs efficiently. For

instance, Jenson et al. (2015) reported identifying left and right tau

ICs for only 15 of 29 participants. Plöchl et al. (2016), after combining

left and right lateralized ICs with dual-dipole ICs (with bilaterally sym-

metric projection patterns), reported finding tau ICs in 8 of 14 partici-

pants. In earlier studies, we also found that roughly 50% of subjects in

our samples exhibit this IC type (e.g., Wisniewski et al., 2012;

Wisniewski et al., 2014; Wisniewski et al., 2021). Likely due to their

comparative rarity in the data (and/or the dominance of visual percep-

tion studies in the literature), only a fraction of studies using ICA

decomposition have reported finding tau ICs. ICs accounting for other

EEG rhythmicities are much more commonly found and reported

(e.g., frontal midline theta, mu rhythm, occipital and parietal alpha

rhythms). One possibility is that the sparsity problem is exacerbated

by use of suboptimal analysis parameters. The type of ICA decomposi-

tion approach and the filter settings used in preprocessing can

strongly impact resulting ICA decompositions (Delorme et al., 2012;

Hsu et al., 2018). To date, there have been no studies examining how

these parameters impact the likelihood of obtaining tau ICs from an

ICA decomposition.

A second issue is that the separation of tau rhythm source alpha

dynamics from other brain activities has only been tentatively estab-

lished. We will refer to this as the “distinctiveness problem.” In more

complex paradigms, the dynamics of multiple IC processes can show

parallel frequency modulations. For instance, we recently reported

that left tau, parietal alpha, and occipital alpha all showed power

suppression during the presentation of target speech in a speech-

on-speech masking task (Wisniewski et al., 2021). In MEG and intra-

cranial research, studies have in several cases employed passive audio

presentation paradigms so as to minimize the influence of the many

brain rhythms associated with more complex tasks (e.g., somatomotor

mu or occipitoparietal alpha rhythms). To our knowledge, a study has

not been conducted to assess how best to isolate tau ICs in EEG data

recorded in a passive presentation paradigm.

1.3 | Current study

Here, we address how choices in EEG data processing impact the like-

lihood of identifying cortical source-compatible ICs that account for

tau activity in the scalp EEG (addressing the sparsity problem), and

how such source-resolved tau IC dynamics relate to the alpha band

dynamics of other brain-source ICs (addressing the distinctiveness

problem). We exposed listeners to complex non-speech sounds while

the EEG was recorded using a 68-channel scalp electrode montage.

The artifact-rejected EEG data were copied into several EEGLAB

datasets that were then processed using one of five high-pass filters

(0.1, 0.5, 1, 2, and 4 Hz), three low-pass filter settings (25, 50, and

100 Hz), and four ICA decomposition algorithms—fastICA, extended

infomax ICA, adaptive mixture ICA (AMICA), and multi-model adaptive

mixture ICA (mAMICA). This resulted in 5 � 3 � 4 = 60 separate ICA

decompositions of the recorded EEG data for each subject.

The data unmixing matrix produced by each ICA decomposition

was applied to that subject's original artifact-rejected data. ICs were

then automatically classified as most likely arising from brain, eye,

muscle, line noise, or “other” effective sources using ICLabel (Pion-

Tonachini et al., 2019), and those suggested by ICLabel to be brain-

based were then localized using single equivalent current dipole

models applied to their scalp maps. After this, we computed brain-

based IC mean log spectra and sound presentation event-related

spectral perturbations (ERSPs). Brain-based ICs were blindly clus-

tered within each set of analysis parameters. We anticipated that

clusters of left and right tau ICs would be revealed and that some

analysis pipeline/method choices would yield more ICs within these

clusters than others. Specifically, we hypothesized that the best

combination of parameters would yield a larger percentage of con-

tributing subjects than previously reported (>50%). If this hypothesis

was confirmed, we and others might use those parameters to opti-

mize results of ICA decomposition of data from auditory tasks. We

further expected that tau IC clusters would show a characteristic

alpha suppression during passive sound presentations that was dis-

tinguishable from presentation-related spectral dynamics of IC

sources accounting for somatomotor mu, parietal, and occipital alpha

activities. This would suggest that the characteristics of tau IC

sources parallel those of tau as examined using MEG or intracranial

recordings.

1Readers should also note that left and right temporal ICs have also been used to examine

auditory steady-state responses (ASSRs; e.g., Farahani et al., 2017; Makeig et al., 1997).
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2 | METHODS

2.1 | Participants

Procedures were approved by the Kansas State University ethics com-

mittee. Twenty-five individuals from undergraduate courses at Kansas

State University or from the local community participated. In

exchange for their participation they received course credit or pay-

ment of $15/h. All individuals reported normal hearing. This study

was conducted during the COVID-19 pandemic in which safety proto-

cols entailed constant wearing of face masks and the absence of

active ventilation in our sound attenuating booth. Seven individuals'

data were contaminated by high-amplitude, low frequency skin poten-

tials, or excessive movement due to their sensitivity to these unique

recording circumstances. Data of these individuals were dropped from

analysis.

2.2 | Equipment

All stimuli were presented over Etymotic ER-2 earphones (Etymotic,

Elk Grove Village, IL) connected to an RME Fireface UC audio inter-

face (RME-audio, Germany). Volume levels were set such that stimuli

were presented at �79 dB SPL. Listeners sat in a WhisperRoom

sound attenuating booth throughout the study (WhisperRoom, Knox-

ville, TN). For EEG recording, a 68-channel Biosemi Active II setup

was used (see below for more detail). Stimulus timing was monitored

by recording the output of the audio interface together with the EEG

using a Biosemi analog input box.

2.3 | Stimuli

Sound stimuli were asynchronous tone trains 3 s in duration, with

each tone in the train being of 50 ms duration including 10-ms cosine

ramped on- and off-sets. The density of tones within these trains was

300 per train (�100 tones per s). Figure 1 gives a spectrogram for an

example train. Asynchronous tone trains were used because single

unit recordings in nonhumans have shown that such stimuli yield

stronger responses in auditory cortex compared to simple pure-tone

stimuli (DeCharms et al., 1998). Further, individuals hearing

asynchronous tone trains are not likely to have pre-associated mean-

ings or biases related to these sounds as they would for speech or

other ecologically meaningful stimuli.

2.4 | Procedures

Participants were asked to bring reading material of their choosing

to the experimental session. They were instructed to read this mate-

rial and to ignore the sounds being presented throughout the experi-

ment. They were also instructed to remain still. No other task was

given.

There were three types of blocks with different types of sound

exposure: no-sound, diotic, or dichotic. All blocks were 60 s in dura-

tion. In no-sound blocks, no sounds were presented. This served to

give subjects a break from constant stimulation conditions. In diotic

presentation blocks, the 3-s tone trains were presented separated by

2-s inter-stimulus intervals (ISIs). In the dichotic blocks, the same tone

trains were presented with the same ISIs, but tone train presentations

alternated between the left or right ears. There were five blocks of

each type. This produced a total of �60 tone train presentations in

the diotic and dichotic conditions. Initial analyses indicated no differ-

ence in the likelihood of obtaining a tau IC across these different spa-

tial conditions. We therefore collapsed across all diotic and dichotic

blocks in the analyses we report here.

2.5 | EEG acquisition

A cap with 64 electrode wells was fitted onto participants' heads (see

https://www.biosemi.com/download.htm for specific electrode coor-

dinates). Additional electrodes were placed lateral to each eye, and on

each mastoid. Individual electrode locations were then recorded using

a Polhemus Patriot 3D digitizing system (Polhemus, Colchester, VT).

Electrodes were then placed within electrode wells of the cap which

were pre-filled with conductive gel.

Recordings were referenced online to the common-mode-sense/

driven-right-leg (CMS/DRL) of the Biosemi system. Electrode offsets

were brought within 25 μV of CMS/DRL or else were rejected from

analysis. The EEG was subsequently recorded at a 2048 Hz per chan-

nel sampling rate with 24-bit A/D resolution.

F IGURE 1 Spectrogram of an
example asynchronous tone train.
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2.6 | Initial data processing and parallel analysis
pipelines

The analysis pipeline described below is depicted in Figure 2. All off-

line analyses were performed using EEGLAB (Delorme &

Makeig, 2004; https://sccn.ucsd.edu/eeglab/index.php), and custom

MATLAB scripts. The data were re-referenced offline to average ref-

erence (removing the influence of the DRL circuit from the data),

resampled at 512 Hz (after applying an antialiasing filter), digitally

high-pass filtered (16,897-point zero-phase FIR, 0.1-Hz passband

edge), then low-pass filtered (69-point zero-phase FIR, 100 Hz pass-

band edge). Channels and portions of the continuous data determined

by visual inspection to be contaminated by excessive noise were then

removed. After this initial preprocessing, each subject had a base

dataset that was preserved for later unmixing using the ICA weights

learned by the 60 analysis pipeline variants.

Separate datasets were then created after additional filtering corre-

sponding to a factorial combination of high-pass filter passband edges of

0.1, 0.5, 1, 2, and 4 Hz, and low-pass filter passband edges of 25, 50, and

100 Hz. For combinations where passband edges were consistent with

the original dataset, the additional high-pass and/or low-pass filtering was

skipped. All filters were zero-phase FIR. Details on half-amplitude cutoff,

transition band, and filter length (i.e., sample points) are given in Table 1.

In general, ICA models find a set of weights (W) that linearly

unmix the channel EEG data (x) into a sum of maximally temporally

independent and spatially fixed components (u) such that u = Wx.

The advantages of ICA are that the resulting component activities

(rows of u) can be analyzed in the same manner as channel data

(e.g., event-related changes in alpha power can be determined), or

removed from channel data if they are determined to reflect data arti-

facts (e.g., eyeblinks). The columns of the inverse matrix, W�1, specify

the spatial projection of each IC to the scalp channels. These

F IGURE 2 Depiction of the analysis pipeline.
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projection maps can then be used to fit a single equivalent current

dipole model for that component. For many ICs, a single equivalent

dipole model can account for a large majority of the variance in the IC

scalp projection pattern (scalp map) (Delorme et al., 2012).

There are several different types of ICA algorithms that vary in

how they derive ICs. Though they converge on similar solutions, some

ICA models work better than others (e.g., by finding more brain-

related ICs or identifying ICs that share less mutual information;

Delorme et al., 2012). Here we used fastICA (Hyvärinen & Oja, 2000),

infomax ICA (Bell & Sejnowski, 1995), AMICA (Palmer et al., 2008),

and mAMICA (Hsu et al., 2018; Palmer et al., 2008). These were cho-

sen because they are among the most frequently used ICA models

applied to EEG data and/or have been shown to produce a large num-

ber of ICs resembling the projection of locally coherent cortical field

potentials compared to others (e.g., as is the case for AMICA; Delorme

et al., 2012). After training each ICA model, the trained ICA weights

were then applied to the individual's baseline dataset.

The IC scalp projection maps were fit with equivalent current

dipoles using the DIPFIT plug-in for EEGLAB. Individualized record-

ings of electrode location (excluding the eye channels) were warped

to a four-layer MNI head model. Then a best-fitting single equivalent

current dipole was determined through a grid-based search of the

entire brain volume, followed by an iterative adjustment of this dipole

to maximize the variance accounted for in the scalp projection of the

IC. ICs were classified automatically as likely originating in brain, eye,

muscle activity, line noise, or “other” using the ICLabel plug-in for

EEGLAB (Pion-Tonachini et al., 2019). Any ICs estimated as having

over 50% likelihood of originating in the brain itself, and having a sin-

gle equivalent current dipole model explaining at least 85% of the var-

iance in its scalp projection map were retained for later analyses.

2.7 | Identification of tau IC clusters

The identified “brain ICs” were then blindly clustered based on their

PCA-reduced spectra (15 dimensions), PCA-reduced scalp maps

(15 dimensions), equivalent dipole location, and dipole moment.

K-Means was used to group ICs into 16 clusters, with ICs further than

3 SDs from any cluster centroid placed in a separate “outlier” cluster.
All clustering was done independently for each combination of ICA

algorithm and filter settings so as to best mimic a standard study

where only one set of analysis/processing parameters is utilized. For

some ICA/filtering combinations, IClabel applied in the previous step

identified so few “brain” ICs, that it was not feasible to perform this

clustering. When this was the case, that combination was considered

to have no tau IC cluster. Different clustering iterations can produce

different results, even when using identical clustering parameters. To

address this issue, we repeated clustering five times for each combi-

nation of ICA/filtering parameters and saved the results of each for

later analyses.

The process of identifying tau rhythm IC clusters was accom-

plished through selection of IC cluster scalp maps representing left

and right tau based on their similarity to tau reported in the previous

work of Wisniewski et al. (2012, 2021), Jenson et al. (2015), and

Plöchl et al. (2016). A processing script was put together that cycled

through presentations of images showing each set of IC cluster scalp

maps, for each ICA/filtering combination, for each iteration of cluster-

ing. Scalp maps were numbered in the images, and the numbers were

selected that were most similar to previous tau IC scalp maps. It was

also possible to abstain from selection of a cluster if no map appeared

to match previous tau IC reports.

In the initial presentation of these identified tau IC clusters, we

present mean IC scalp maps, cluster equivalent current dipole cen-

troids, and cluster spectra. The ICs contributing to tau clusters were

then analyzed to determine the percent of the sample that contrib-

uted to the cluster. In plots, we report the mean values for percent of

sample across the five clustering iterations. It was expected that these

plots would reveal what combination of ICA/filtering parameters

would optimize the identification of tau ICs. We statistically compared

filter settings and ICA models using a permutation-based procedure.

High-pass filter setting, low-pass filter setting, and ICA model were

assessed separately. Here, we will give an example for high-pass filter

TABLE 1 EEG filter details.

Half-amplitude cutoff Transition band width Points

HP passband edge

0.1 Hz 0.05 Hz 0.1 Hz 16,897

0.5 Hz 0.25 Hz 0.5 Hz 3381

1 Hz 0.5 Hz 1 Hz 1691

2 Hz 1 Hz 2 Hz 847

4 Hz 3 Hz 2 Hz 847

LP passband edge

25 Hz 28.125 Hz 6.25 Hz 273

50 Hz 56.25 Hz 12.5 Hz 137

100 Hz 112.5 Hz 25 Hz 69

Note: Sample rate is 512 Hz.

Abbreviations: HP, high-pass; LP, low-pass.
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paired comparisons, but the same procedure was used for low-pass

filter and ICA model paired comparisons. For each paired comparison,

1000 iterations permuting the high-pass filter “label” for each subject

was randomly determined. For example, for the 0.5-Hz versus 1-Hz

comparison a subject's mean contribution to a tau cluster (averaged

across all low-pass filter settings and ICA models) for their 0.5- and

1-Hz filtered data could be labeled either as 0.5 and 1 Hz or 1 and

0.5 Hz, respectively. The percent of sample contributions were

recomputed for each iteration, creating a null hypothesis distribution

of the difference between conditions expected by chance. A signifi-

cant difference in the actual data was considered to be a difference in

which no more than 0.8% of the null hypothesis distribution exceeded

the observed value (i.e., p < .05 after Bonferroni Correction for each

set of paired comparisons).

2.8 | Tau IC dynamics

A single combination of analysis parameters was selected for further

characterization of tau IC dynamics. This selection was based on the

percent of sample data for left and right tau ICs. Data corresponding

to the parameters yielding the largest percent of sample was chosen.

In our data, this corresponded to a high-pass filter passband of 4 Hz,

low-lass filter passband of 25 Hz, and the mAMICA algorithm. Epochs

were made containing the �1.5 s to 4.5 surrounding the onset of the

asynchronous tone trains. Event-related spectra were computed for

ICs using complex Morlet wavelets having 3 cycles at the lowest fre-

quency (3 Hz), to 10 cycles at the highest frequency (50 Hz). This

used the newtimef() function in EEGLAB. Resulting time-frequency

representations had time steps of �14 ms and frequency steps of

0.5 Hz. A log mean baseline power spectrum between 500 and

100 ms preceding stimulus onsets was then removed to create ERSP

images (Grandchamp & Delorme, 2011; Makeig, 1993). ERSP images

show baseline relative power in decibels. ERSPs were examined for

tau, occipital alpha, mu, and parietal alpha IC clusters that were identi-

fied from this single set of parameters.

To avoid interpretation bias arising from differences in subject

contributions to IC clusters, we included only the single IC within a

cluster for a subject that had the lowest variance rank (i.e., the IC

that contributed the largest signal to the scalp data in relation to

other ICs). This procedure mitigates the potential problem of one

subject distorting interpretation by having multiple ICs contributing

to a cluster-mean ERSP image. Single-subject significant changes in

power from baseline were evaluated by shuffling time points to cre-

ate a null hypothesis distribution for each time-frequency point of

the dB power values expected by chance. Any point at which less

than 1% of the values in the null hypothesis distribution exceeded

that of the real data was considered significant at this level. These

single-subject ERSPs were significance masked and then averaged

across subjects. These average images where then further masked

using a binomial test with an alpha level of 0.01 (cf. Onton

et al., 2005).

F IGURE 3 (a) Mean scalp maps for left (top row) and right (bottom row) clusters identified to contain tau independent components (ICs).

Maps represent the average of all analysis settings and iterations of K-means clustering. Note that the average maps were made by averaging the
mean map of each cluster. Those original cluster maps had varying numbers of ICs and subjects. For these, and other IC scalp maps, coloring
represents the inverse of weights for the IC returned by ICA. Because direction of weights is arbitrary, any ICs with strong negative polarities
were flipped before averaging. (b) Locations of the centroid of IC modeled dipoles for each cluster of tau ICs. Each green sphere is a separate
centroid plotted within the standard Montreal Neurological Institute (MNI) brain image with neurological convention (individual's right on right
side of image). The grand average coordinates of these centroids are given. (c) Mean spectra for clusters of left and right tau ICs. The individual
thin gray lines show spectra from a single set of analysis settings and iteration of clustering. The thick green line shows the average across all
clusters. A line for 10 Hz is plotted for reference.
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3 | RESULTS

3.1 | Tau IC clusters

Figure 3 shows mean scalp maps, modeled dipoles, and spectral char-

acteristics for IC clusters identified as tau-related. In general, scalp

maps are consistent with ICs previously claimed to be tau-related

(e.g., Jenson et al., 2014; Plöchl et al., 2016; Wisniewski et al., 2021),

modeled equivalent current dipoles are near the superior temporal

gyri (Billig et al., 2019), and spectra show peaks in the alpha band.

In Figure 3b, individual equivalent current dipoles are represented

by small green spheres. Across clusters, centroids fell mostly within

the inferior portion of the supramarginal gyrus, with some centroids in

the superior temporal gyrus. Average MNI coordinates for left and

right tau IC clusters were X = �50, Y = �24, and Z = 19 and X = 51,

Y = �24, and Z = 17, respectively. It is notable that these coordinates

lie within the supramarginal gyri for both clusters. Though this is the

case, it has been demonstrated that equivalent current dipole model-

ing for temporal sources tends to yield results skewed toward supe-

rior locations (i.e., higher Z coordinates; Akalin Acar & Makeig, 2013).

In that work, error was found to be 9.4 mm on average in the same

four-layer MNI model we used here. The standard template position

of auditory cortex is within this margin of error for both left and right

tau centroids.

The spectra for both left and right tau clusters show clear peaks

in the (8–13 Hz) alpha range, consistent with intracranial and MEG

recordings of the tau rhythm. Some of the clusters show beta band

spectral peaks that accompany the lower alpha band peaks. Alpha-

harmonic peaks are well known to be associated with markedly non-

sinusoidal somatomotor mu-rhythm waveforms. After identifying the

filter and ICA model combination that discovers tau ICs in the data of

the largest portion of the sample, we consider the separation of mu

and tau components (see Section 3.2).

F IGURE 4 Percentages of subjects
contributing to tau IC clusters in each combination
of ICA algorithm and high- and low-pass filter
settings. The data reflects mean proportion of
subjects across five iterations of IC clustering.
White boxes outline a typical set of parameters
(HP = 1 Hz, LP = 50 Hz, ICA model = infomax;
cf. Wisniewski et al., 2021). The black boxes
outline a better performing combination of

parameters (HP = 2 Hz, LP = 50 Hz, ICA
model = mAMICA). The percentages shown are
rounded to the nearest integer.

TABLE 2 Impact of filter parameters and ICA model on percent of
the sample contributing at least one IC to the left and right tau
clusters.

Left tau Right tau

Difference Sig. Difference Sig.

High-pass paired comparisons

0.5–1 Hz �14.8 * �12.8 *

0.5–2 Hz �14.9 �17.2 ***

0.5–4 Hz �20.9 * �17.5

1–2 Hz �0.1 �4.4

1–4 Hz �6.1 �4.7

2–4 Hz �6.2 �0.3

Low-pass paired comparisons

25–50 Hz 1.21 1.21

25–100 Hz 2.68 1.11

50–100 Hz 1.48 �0.09

ICA model paired comparisons

fastICA—infomax �19.3 * �19.9 *

fastICA—AMICA �21.9 * �26.9 **

fastICA—mmAMICA �41.4 *** �41.5 ***

Infomax—AMICA �2.6 �6.9

Infomax—mmAMICA �22.1 * �21.57 ***

AMICA—mmAMICA �19.5 *** �14.6 **

Note: High-pass cutoffs of 0.1 yielded to few “brain” ICs for cluster.
Thus, they are left out of this analysis. All values reflect differences in %

of sample yielding a left or right Tau IC. In computing percent of sample,

the mean as taken across all iterations of cluster and across all

combinations of the untested analysis parameters (e.g., when testing for

high-pass cutoff differences, the mean percent of sample was taken

across all low-pass cutoffs and ICA models). Asterisks mark significance

as determined by Bonferroni corrected p-values obtained through

permutation testing.

*p < .05.**p < .01.***p < .001.
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3.2 | Filter settings and ICA model impact the
likelihood of obtaining tau ICs

Figure 4 depicts the percentage of subjects populating each of the tau

IC clusters for each combination of high-pass filter, low-pass filter,

and ICA model. High-pass filter settings at 0.1 Hz yielded very few

“brain” ICs under any low-pass or ICA model combination. Thus, an

HP of 0.1 Hz is omitted from the figure. The figure reflects the mean

percentage obtained across the five iterations of clustering. In

Figure 4, we also highlight an example of filter and ICA model combi-

nations that is typical based on common use in other studies (white

box) and a better performing atypical combination of settings (black

boxes). Note that the percentage of the sample contributing to tau IC

clusters under the typical combination are here similar to that

reported previously; �49% for left tau, �46% for right tau. Other

combinations of filter and ICA model choice obtain higher percent-

ages obtained (>80%).

It is clear that relatively low HP filter passbands hinder the ability

of ICA models to identify tau ICs. That is, the 0.1-Hz high-pass cutoff

and the 0.5-Hz high-pass cutoff row gave low percentages of decom-

positions including a tau IC. This was expected as previous research

has shown that ICA is most effective at identifying plausible brain-

related ICs when low frequency, high-amplitude fluctuations in the

EEG signal are filtered out (e.g., Klug & Gramann, 2021). Low-pass fil-

tering may not matter as much as high-pass filtering, though there is

some hint in these results that using a relatively high cutoff frequency

(100 Hz) might give a smaller percentage of the sample having tau ICs

than using lower cutoffs (25 or 50 Hz). The ICA algorithm used in the

decomposition also appears to matter. FastICA identified fewer tau

ICs than any of the other models, whereas the best performing ICA

model was here mAMICA.

To assess impacts of filter and ICA parameters more formally, a

permutation-based procedure was used to test paired comparisons

between each high-pass filter, low-pass filter, and ICA model setting

(see Section 2.7 for detail). The results are summarized in Table 2,

which reports the differences in percent of decompositions contrib-

uting to left and right tau clusters for each comparison. This analysis

backs up the visual interpretation of Figure 4. First, decomposed

data with relatively low high-pass filter cutoffs tend to include fewer

tau ICs than data with higher cutoffs, while comparison of low-pass

filter cutoffs failed to find any significant difference between low-

pass filter settings. mAMICA decomposition produced significantly

more tau ICs than the other decompositions, while fastICA decom-

position returned significantly fewer. No significant difference in

percentage of tau ICs was observed between infomax ICA and

single-model AMICA decomposition. The latter two results are com-

patible with findings in (Delorme et al., 2012), while the first appears

consistent with the general sensitivity of mAMICA to non-

stationarity in IC maps and activities (Hsu et al., 2018; Palmer

et al., 2008).

To address the possibility that the identified tau rhythm clusters

may have contained nonhomogeneous components, some of which

F IGURE 5 Individual independent component (IC) scalp maps for (a) left and (b) right tau IC clusters as discovered in one K-means clustering
iteration with a high-pass filter setting of 4 Hz, a low-pass filter setting of 25 Hz, and using the multi-model adaptive mixture independent
component analysis (mAMICA) model. Ordering is arbitrary, only reflecting the order of subject participation across the study. The large scalp
maps show the average map across all ICs in each cluster. The green colored boxes highlight ICs forwarded to further analysis. The pink boxes
highlight ICs thought unlikely to be tau-related. Note that though average scalp maps appear to be mostly consistent with a radial source, that the
individual scalp maps for tau components can vary.
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might be better considered to represent non-tau, for example, senso-

rimotor mu rhythms, we examined individual IC scalp maps for clus-

ters corresponding to mAMICA trained on the 4-Hz high-pass, 25-Hz

low-pass filtered data. Figure 5 shows individual scalp maps for each

cluster IC. ICs appearing to depart from expected scalp maps are

highlighted with pink boxes. Notably, several scalp maps consistent

with mu rhythm ICs were clustered among the tau ICs. Inspection of

the spectra of these ICs also revealed a typical mu rhythm profile with

a beta harmonic peak accompanying an alpha peak (e.g., Delorme

et al., 2012; Ross et al., 2022). There were also ICs seemingly better

representative of electrode artifacts (with strong projection at a single

electrode) or occipital alpha ICs. Nevertheless, even after eliminating

these ICs from each cluster, a large percentage of the sample was

retained for each: �78% for the left tau cluster, �72% for the right,

F IGURE 6 (a) Average scalp maps of independent component (IC) clusters corresponding to left tau, right tau, left mu, right mu, left occipital
alpha, right occipital alpha, and parietal alpha. (b) Equivalent current dipoles for each cluster. Lines index the point of the cluster centroid on the X,
Y, and Z axes in a template Montreal Neurological Institute (MNI) brain image with neurological convention (right side of image is right side of the
brain). (c) Significance-masked event-related spectral perturbations (ERSPs) for different IC clusters. The leftmost portion of (c) shows the baseline
spectrum for each cluster. Dashed vertical lines represent latencies of sound onset and offset.
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with �94% of the subjects contributing to either the left or right tau

IC cluster.

We moved next to examine the spectral dynamics of these ICs to

determine whether they mimic the alpha suppression of tau rhythms

as observed with intracranial and MEG modalities. All these subse-

quent analyses were performed on data high-pass filtered at 4 Hz,

low-pass filtered at 25 Hz, and trained with mAMICA. We only

included those ICs that were the lowest ranked in terms of

contribution to the channel data for each subject. That is, a subject

contributed at most one IC to the analyzed left and right tau clusters.

Scalp maps for these ICs are highlighted by green boxes in Figure 5.

3.3 | Tau ICs show alpha suppression during sound
presentation while other ICs do not

The same procedure described above for selecting single IC candi-

dates as a tau IC for each contributing subject was applied to the left

and right mu rhythm IC clusters, the left and right occipital and central

parietal alpha-producing clusters. These clusters were also examined

because they have been seen to produce strong alpha activity, and

traditionally have scalp maps that overlap with, for example, the tau

IC scalp maps shown in Figures 3 and 5. Average scalp maps for all

these clusters and their modeled equivalent current dipoles are pre-

sented in Figure 6a,b, respectively. Significance masked ERSPs for

each IC (p < .01) are shown in Figure 6c along with their mean base-

line power spectra.

Both the left and right tau IC clusters show a significant alpha (�8–

13 Hz) suppression relative to baseline during sound presentation. This

relative alpha suppression sustains throughout the stimulation period.

There are also transient spectral enhancements at a broad range of

frequencies from the lowest computed frequency (3 Hz) extending up

into the low beta range just after sound onset. While the other IC clus-

ters also show similar transient power enhancements, none of the other

clusters show sustained, significant alpha suppression, unlike the tau IC

clusters. That is, tau rhythm suppression is not coincident with alpha

suppression in other alpha-producing IC clusters.

3.4 | mAMICA model likelihood is related to tau IC
alpha power

Some important questions arise from the finding in Section 3.2 that

mAMICA performed the best in regard to producing the greatest per-

centages of the sample with tau ICs. We first asked what aspects of

the data led to nonstationarities. For instance, Hsu et al. (2018) found

that during their continuous performance driving task the most proba-

ble mAMICA model, given the data, varied as a function of time-

on-task (as did mean performance), with model switches typically

occurring at transitions between “non-drowsy” and “drowsy” perfor-

mance states. In their data, this was revealed by plotting model proba-

bility as a function of task events and the time within the

experimental session. Here, we take the same approach. Figure 7a

plots the most likely model of the three mAMICA models over the

entire session for each subject. The x-axis indicates latency (in s) rela-

tive to onsets and offsets of the asynchronous tone trains. Individual

trials are arrayed along the y-axis. Color in the figure represents the

most likely model (green = returned model 1, orange = model

2, yellow = model 3, model 1 generally accounting for more of the

data than the other two models).

The aspect of this data that stands out most strongly is that in

many subjects large swaths of the epochs appear to be associated

F IGURE 7 (a) Multi-model adaptive mixture independent component analysis (mAMICA) most probable models for each subject over time.
The y-axes represent time within the dataset, first epoch (bottom) to last epoch (top). The x-axes represent time point within epochs. Color
represents the most probable model at each time. Individual subjects are labeled (S1–S18). (b) Same data as in (a), but separating models with at
least one tau independent component (IC) from models with no identifiable tau IC.
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with one or another model. For instance, S12 shows Model 1 being

the most probable model for �2/3 of the session. Near the last third

of the experiment, Model 2 becomes more probable. Several other

subjects show similar transitions (e.g., subjects 2, 3, 10, 14, 15, 16,

and 18), while other subjects show transitions back and forth between

models over the course of their session (e.g., subjects 4, 6, 7, 8, and

17). This replicates the findings from Hsu et al. (2018) who observed

transitions between models occurring throughout a session in some of

the paradigms they studied.

Figure 7b plots the same as Figure 7a, except we highlight

whether an mAMICA model identifies a tau IC or not (at least 1 tau IC

either left or right). Figure 7b can be cross-referenced with Figure 7a

to identify mAMICA models with a tau IC. This data shows the vari-

ability of tau IC presence across models in subjects. S1, S2, S3, and

S10 show a tau IC for all 3 mAMICA models, while other subjects only

show a tau IC for a portion of models, or no model at all (as is the case

with S18). As with Figure 7a, this data does not reveal any consistent

relationships with session time in regard to tau IC model probability.

To determine whether tau model likelihood was related to alpha

power in tau ICs, we asked whether the dynamics of alpha power for

tau ICs reported in Figure 6 are related to the likelihood of a tau

model as reported in Figure 7b.

This analysis was restricted to the 13 subjects who showed tau in

only a subset of models. First, we recreated vectors of alpha power

for each subject's lowest ranked tau component with a three-cycle

complex wavelet at 10 Hz. We then created a matched vector of the

mean number of sample points within the 150 ms surrounding

the center of each wavelet window in which a tau model from

mAMICA was the most likely (cf. Figure 7b). This vector was baseline

corrected by taking the percent relative number of sample points from

the same baseline window as ERSPs (see Section 2.8).

Figure 8 shows the individual and mean change in tau points rela-

tive to baseline (a), and individual and mean 10 Hz traces (b). From the

plot panels it appears as though the likelihood of a tau model is

related to the strength of alpha oscillations for tau ICs. The number of

sample points containing a tau model goes up at those times where

alpha oscillations are most powerful for tau ICs (e.g., immediately after

sound onset). Likelihood is lowest at those points where alpha is low

(e.g., during continuous sound presentation). We calculated Spear-

man's rho values for each subject to assess this relationship. A one-

sample t-test assessing whether subjects' Spearman's rho values were

significantly different from zero revealed significance, Mean

rho = 0.20 (SD = .25), t(12) = 2.87, p = .014.

4 | DISCUSSION

Though literature has established convincing evidence for auditory-

related tau rhythms using intracranial and MEG recordings, tau

rhythms have been more elusive in EEG data. Several have suggested

that ICA decomposition can be used as a means to examine tau apart

from other stronger alpha rhythms present in the EEG. However, two

main concerns have hindered the adoption of this approach. The first,

is a sparsity problem wherein decompositions have returned a rela-

tively low percentage of sample subjects contributing to IC clusters

showing dynamics consistent with tau rhythms (�50% for Jenson

et al., 2015 and Wisniewski et al., 2021). Our data here show that the

right filter parameters and ICA model can increase the likelihood of

identifying tau ICs in subject data. In our data, both left and right tau

ICs were identified in >70% of the sample, with �94% having at least

one tau IC (i.e., left or right). This makes it more feasible to build

hypotheses regarding tau rhythm ICs and to invest in studies that test

these hypotheses. A second concern with an ICA-based approach has

been the possibility that tau ICs do not reflect tau as characterized in

MEG and intracranial recordings, but rather reflect some other brain

process (i.e., the distinctiveness problem). Here, we were able to dem-

onstrate tau IC dynamics that show striking similarities to tau rhythm

dynamics as seen in MEG and intracranial recordings. ICs of the tau

type are localized along or near the superior temporal plane. They

F IGURE 8 (a) Percent of sample points within each time-
frequency computation window in which a tau model from multi-
model adaptive mixture independent component analysis (mAMICA)
was most likely. (b) Relative 10 Hz power for tau independent
components (ICs). In both (a and b), thin colored lines represent
individuals. Thick black lines represent the mean.
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show alpha suppression during sound presentation while other ICs

producing alpha rhythms do not.

4.1 | Recommendations for analysis

Low-pass filter settings did not have a significant impact on the likeli-

hood of obtaining a tau IC from a subject, but high-pass filter settings

had a clear effect. Relatively low-frequency passband edges

(e.g., 0.1 Hz) were suboptimal. This has also been observed for other

types of ICs (Klug & Gramann, 2021; Winkler et al., 2015). Relatively

aggressive high-pass filters using a passband edge frequency of up to

4 Hz performed better. One potential problem with using such

aggressive high-pass filters is that they can distort low-frequency

event-related responses in the EEG and computed event-related

potentials (e.g., Duncan-Johnson & Donchin, 1979; Tanner

et al., 2015). Several have thus advocated using high-pass filter set-

tings well below those optimal for ICA decomposition (e.g., a 0.1-Hz

or lower half amplitude cutoff; Duncan et al., 2009; Luck, 2005). How-

ever, strict adherence to these recommendations will likely yield too

few tau ICs for analysis. A reasonable compromise is to save a conser-

vatively high-pass filtered dataset before filtering the data with a

more aggressive high-pass filter. ICA can be run on the latter, then the

trained ICA weights can be applied to the former. This procedure

allows for the identification of usable IC processes while at the same

time avoiding high-pass distortions in data analysis. It may, however,

carry some risk of IC mis-assignment of low-frequency activity in the

data, should this be a focus of the research in question. Winkler et al.

(2015) found that though high-pass filtering up to �1 Hz increased

the number of near dipolar ICs returned by an ICA decomposition,

increasing cutoffs too high (generally above 5 Hz) steadily decreased

this number, likely because ICA identification of brain ICs requires

low-frequency information for spatial segregation of many commonly-

identified EEG sources. This is also why we did not test use of even

stricter band-pass filtering methods before running ICA.

The choice of ICA algorithm also impacted the likelihood of

obtaining tau rhythm ICs. The ranking in our data were:

mAMICA > AMICA > extended Infomax > fastICA. These results are

in line with Delorme et al. (2012) who found that

AMICA > infomax > fastICA in regard to producing stronger IC model

“dipolarity” and mutual information reduction. Our data suggest that

the use of fastICA is not likely to give researchers much advantage in

the analysis of tau in EEG data (though with this algorithm the exact

choice of parameters may affect the results). The main benefit of

mAMICA is that it can adapt to non-stationarities in the data. Regard-

ing tau rhythms this could be especially important given previous

MEG findings of tau disappearing during active listening (Keitel &

Gross, 2016), and prominent tau appearance during drowsy states

(Yokosawa et al., 2020). In our data, there was some suggestion that

the strength of tau oscillations was associated with greater tau model

likelihood (see Figure 8). However, we only had 13 subjects who

showed a tau IC in only a subset of models. Determination of whether

mAMICA works best because of its ability to pick up on transient tau

bursts will require more subjects in a future study. It is also the case

that the use of multiple models yields a larger number of brain-related

ICs than single model decompositions. This benefit has a trade-off in

that ICs from different models may not be maximally independent

from each other, as each was trained on a data subset exhibiting some

mAMICA-detected differences with other model data subsets.

We did show that the ERSP dynamics of tau ICs and other IC

types were different even when ICs taken for each subject were from

different models (see Figure 6). Though caution is necessary when

combining analysis of ICs across different mAMICA models, the bene-

fits may outweigh this weakness. Certainly, there are other popular

approaches to the isolation of brain sources that can be more prob-

lematic in this regard (e.g., group ICA—Janssen et al., 2020; PCA—Dien

et al., 2003; classifier decoding—de Vries et al., 2021). This is because

these approaches either ignore brain source temporal independence,

or group subject data prior to model training (i.e., they ignore

between-subject variability in the patterns of tau source projection to

the scalp).

Based on the current study, we expect that the use of high-pass

filters with passband edges between 2 and 4 Hz, followed by

mAMICA decomposition, will yield more tau ICs for researchers than

the adoption of rules of thumb (e.g., high-pass filter cutoff of 0.1 Hz;

Luck, 2005) or automatic use of common methods (e.g., fastICA).

Much like how filter parameters for measuring ERP components have

been optimized over time, continuing work in this domain will help to

optimize these choices. If one wishes to use caution in adopting the

more complex, less common mAMICA approach to ICA decomposi-

tion, single-model AMICA may remain a more useful alternative than

fastICA or even extended infomax (cf. Delorme et al., 2012). However,

it is promising that when some subjects only show tau in a subset of

models, mAMICA appeared to at least partially identify the tau model

based on the appearance of relatively high oscillatory power in the

alpha range (see Figure 8). Thus, mAMICA could be a promising means

to identify and measure tau rhythms in EEG when non-stationarities

in subject brain dynamic state lead to tau only being detectable for

brief periods of time (e.g., near sound onsets and offsets, during more

alert or drowsier data periods, etc.).

4.2 | Why use an ICA decomposition approach to
analysis of tau rhythms?

MEG and intracranial recording methods are more restrictive than

EEG recording in regard to access, cost, and range of employable par-

adigms. While MEG and particularly intracranial data will continue to

provide value in regard to spatial certainty of tau dynamics, ICA

decompositions of EEG data can be used in complementary studies

with more variety in paradigms and subject populations. To support

this supposition we briefly highlight two current areas of study that

could benefit from an ICA approach to tau rhythm analysis in EEG: tin-

nitus research and research on alpha dynamics and attention.

Tinnitus is a disorder associated with the conscious sensation of

sound without a corresponding external input (Baguley et al., 2013).
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Tinnitus has high prevalence with estimates of about 10% of adults

experiencing it (Davis & El Rafaie, 2000). While most patients are not

troubled by it, others find it especially disturbing (Baguley

et al., 2013). MEG studies have revealed that tinnitus sufferers have

an abnormally low amplitude resting tau rhythm that is related to the

severeness of symptoms (Güntensperger et al., 2020; Hartmann et al.,

2014; Müller et al., 2013; Weisz et al., 2011). Neurofeedback to

increase cortical alpha activity can decrease tinnitus symptoms

(Güntensperger et al., 2020; Hartmann et al., 2014). For instance,

Hartmann et al. (2014) gave patients neurofeedback aimed to increase

summed EEG alpha power in the scalp channel data. This led to

increased power of the tau rhythm, as measured by post-

neurofeedback MEG, and a significant reduction in tinnitus symptoms.

However, neurofeedback-related decreases in symptoms often

still leave tinnitus at a level that is distressing (Güntensperger

et al., 2020). It is possible that instead of relying on a measure of the

whole data, or at a single electrode channel, for control of neurofeed-

back, one might tau IC power measures computed online. This would

allow a more specific focus on the tau rhythm, and could potentially

yield stronger changes to the tau rhythm and tinnitus symptoms. This

would help tinnitus researchers achieve a level of symptom reduction

that is clinically relevant, while also being relatively low-cost to imple-

ment. For example, in a single-subject trial, Onton and Makeig (2006)

showed that basing neurofeedback on the level of mu rhythm in a left

mu-producing IC not only allowed some measure of neurofeedback

control over its level but remarkably, in the fourth such session pro-

duced that effect without concurrent effect on the power of the pos-

terior alpha rhythms (see also Delorme & Makeig, 2003; Makeig

et al., 2000). Using an ICA-based measure of tau, it would also be eas-

ier to characterize other potential neurofeedback treatments' effects

on the tau rhythm by measures of tau specifically. The wide-spread

availability and low-cost advantages of EEG recording would allow

more subjects to be studied, and more researchers (and, if successful,

clinicians) to perform the work.

Attention has been closely linked to the level of alpha activity in

the EEG. Though most of this work has examined visual or somatomo-

tor alpha rhythms (for review, see Klimesch, 2012; Klimesch

et al., 2007), this has also been shown in auditory studies. For

instance, numerous works in recent years have focused on using alpha

power as an index of “listening effort” (for review, see Francis &

Love, 2020). Several have found that greater effort is associated with

increased total alpha power at electrode locations over posterior scalp

(e.g., Obleser et al., 2012; Wisniewski et al., 2017; Wöstmann

et al., 2017). The presumed link to attention is that alpha increases in

nonauditory regions as a means to inhibit processing, and thereby dis-

traction produced by sensory experiences processed in those areas, in

turn focusing processing to more relevant brain networks

(cf. Jensen & Mazaheri, 2010; Van Diepen et al., 2019).

Though examination of these alpha enhancements in nonauditory

regions has been useful in characterizing how various stimulus and

cognitive manipulations impact attentional demands during listening

(for review, see Francis & Love, 2020), this is a rather indirect way of

examining auditory processing. A more direct route would involve

characterizing how specific suppression of tau rhythm in tau ICs is

related to auditory attention. A hypothesis consistent with the alpha

rhythm literature is that, as alpha activity is an inhibitory brain mecha-

nism (Bastiaansen et al., 2001; Jensen & Mazaheri, 2010;

Klimesch, 2012; Klimesch et al., 2007; Van Diepen et al., 2019;

Weisz & Obleser, 2014), when one needs to focus on the auditory

environment, alpha suppression should be seen in tau rhythm ICs.

Some studies have suggested that tau suppression may exist in the

presence of occipital or somatomotor alpha activity enhancement

(e.g., Dimitrijevic et al., 2017; Wisniewski et al., 2021), but this has not

often been observed in the same study (although, see Mazaheri

et al., 2014; Wisniewski & Zakrzewski, 2023).Examination of tau ICs

in the context of concurrent dynamics in other ICs could help in

extending this hypothesis to include the auditory modality. For exam-

ple, during increased auditory (vs. visual) attention alpha enhancement

should be seen in somatomotor ICs while alpha suppression is

observed in tau ICs.

4.3 | Future work in the development of ICA
approaches to tau rhythm analysis

Dipole modeling of the obtained tau ICs showed cluster centers in or

near left and right supramarginal gyri. This does not exactly overlap

with recent intracranial recordings of the tau rhythm (Billig

et al., 2019), although there is MEG work suggesting that tau rhythms

have additional sources in the supramarginal gyri (van Dijk

et al., 2010). The intracranial work found the strongest resting tau

rhythms in secondary auditory cortical areas. Here, we recorded indi-

vidual electrode locations for each subject, then warped these loca-

tions to a standard head model before fitting. This approach is

generally effective, but can also be associated with errors in equiva-

lent dipole localization (Akalin Acar & Makeig, 2013). Adding to the

problem, simulation data suggest that localization errors are larger in

the temporal lobe compared to other lobes of the cerebral cortex,

with errors tending toward locations superior to the simulated tempo-

ral sources (Akalin Acar & Makeig, 2013). Future research should use

individually fit forward head models rather than generic head models.

This could be done by obtaining MR head image scans for each sub-

ject, then building a forward model from those images (Akalin Acar &

Makeig, 2013). Dipole modeling using such individualized head

models has been shown to improve the accuracy of IC source localiza-

tion (Akalin Acar & Makeig, 2013). Using this approach, we might

establish stronger confidence that the tau ICs we observe reflect the

tau rhythms observed with intracranial and MEG methods.

Future work should also evaluate the relationships between tau

IC dynamics and behavior. While use of the passive presentation task

here maps closely to the research that established the suppression of

tau rhythms during auditory presentations, it does not allow examina-

tion of brain–behavior relationships. There are several predictions

coming from theories of alpha oscillations as an inhibitory mechanism

in the brain (for review, see Weisz & Obleser, 2014) that could be

evaluated with tau ICs. One prediction is that the accuracy of auditory
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judgments should relate to the prestimulus tau IC alpha power such

that less prestimulus alpha power would predict better listening per-

formance. It might also be that the phase of prestimulus tau rhythms

at sound onsets should affect listening performance, with correct and

incorrect trials exhibiting opposing phase angles at sound onsets

(cf. Hansen et al., 2019). Still another possible prediction is that tau

enhancement, rather than suppression, should relate to performance

at moments when an ongoing auditory stimulus stream needs to be

ignored (Hartmann et al., 2014). Studies along these lines will go a

long way in establishing whether and how tau rhythms relate to

behavior, and whether the relationships parallel those associated with

other brain alpha-band rhythms.

5 | CONCLUSIONS

We have demonstrated that an ICA decomposition approach to analy-

sis of EEG data can be a useful means by which to isolate and analyze

tau rhythms. This opens possibilities for studying auditory-related

alpha rhythms (tau) as visual and somatomotor (mu) alpha rhythms

have been studied in the past using EEG recording. We here have

demonstrated that MEG or intracranial recording are not necessary

for examination of cortical tau activity. Further, we have shown that

ICA decomposition performed using optimal algorithm selection and

preprocessing filters can dramatically increase the probability of

detecting tau rhythms in suitable EEG data.
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