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Abstract

Routines may help groups to effectively reduce
coordination requirements when solving interdependent
tasks. However, routine problem solving always involves
the risk of a negative transfer, which appears if a routine
is applied to novel problems even though it is
inappropriate. In this experiment, negative transfer was
produced by first teaching individuals a procedure for
solving the Tower of Hanoi problem. Next, participants
were asked to solve several transfer tasks either
individually or in pairs. However, the routine could not
be applied directly to the transfer tasks but led to a long
detour. As expected, the individuals surpassed the dyads,
who insisted more strongly on their routine. This result
fits with studies that corroborate the claim that groups
are prone to a “principle of inertia” when solving
problems or making decisions.

Introduction
A routine may be defined as a well practiced problem
solving procedure, which has been applied repeatedly
and, therefore, does not need much planning but may be
executed rather automatically (for an overview on
various definitions, see Betsch, Haberstroh, & Hoehle,
in press). Typically, in the problem-solving domain,
routines consist of several single action steps that have
to be executed in a particular order. Even though the
single steps may require some planning, the sequence
of the steps itself is usually highly internalized. From
this automation follows that procedures or schemata
that have become a routine may easily be transferred to
novel tasks. However, routines are not only transferred
to structurally equivalent tasks (positive transfer), but
are sometimes also applied to tasks that share only
surface features with the learning task. Accordingly,
there is ample evidence showing that the successful use
of a scheme enhances the likelihood of a negative
transfer effect, i.e., worse performance compared to a
condition in which the scheme has not been repeatedly
applied before (cf. VanLehn, 1996).

In the present study, we sought to extend the
literature on learning transfer to group problem solving.
In particular, the study aimed at testing whether
negative transfer effects are more pronounced in dyads

than in individuals. On the one hand, it may be more
likely that a dyad recognizes a change in task demands.
On the other hand, adapting a routine in a group usually
requires coordination processes, which may cause
process losses (cf. Gersick & Hackman, 1990).
Moreover, there are several studies showing that groups
often tend to accentuate preferences or decisions that
are held by a majority (cf. Hinsz, Tindale, & Vollrath,
1997). In general, if individuals are predisposed to
process information in a biased way, then, groups
usually tend to enhance this bias. However, if groups
use strategies more reliably and consistently than
individuals, then, transfer effects should also be
enhanced in groups, irrespective of whether this transfer
is positive or negative.

In this study, the hypothesis that negative transfer is
more pronounced in groups than in individuals was
tested by asking participants to solve Tower of Hanoi
problems either individually or in pairs. There are
several procedures that guarantee an optimal solution of
the Tower of Hanoi problem (cf. Simon, 1975). In order
to produce transfer effects, participants were first taught
either the goal-recursion (R) or the move-pattern
procedure (M). These two procedures differ in two
aspects, which make them suitable for studying transfer
effects within the Tower of Hanoi problem:

(1) Only the R-procedure but not the M-procedure
may be directly applied to a transfer task in which the
start peg is the middle peg. (2) The two procedures lead
to different patterns of move latencies. Hence,
differences in move latencies may be used as an
indicator of the respective procedure applied and to
what extent a problem solver insisted on his/her routine.

Whereas the first study tested for process losses in
pairs, the second study compared homogeneous with
heterogeneous pairs and additionally considered
individual learning.

The Tower of Hanoi Problem
The Tower of Hanoi problem consists of three pegs

and a fixed number of disks of different sizes (Simon,
1975). The original task is to move all the disks from
the left to the right peg under the following constraints



(cf. Figure 1): (a) only one disk may be moved at a
time, (b) only the disk that is on the top of the pyramid
may be moved, and (c) a larger disk may never be
placed on top of a smaller disk. A problem with n disks
requires a minimum of 2n–1 moves.

Figure 1:  The Tower of Hanoi problem.

The goal-recursion procedure The goal-recursion
procedure (R) consists in forming sub-goals. Each
problem with n >1 disks can be decomposed into three
sub-problems: Into (1) a problem consisting of n–1
disks, (2) the move of the largest disk from the start peg
onto the goal peg, and (3) into a second problem
consisting of n–1 disks.

For example, the four-disk problem in Figure 1 can be
decomposed into two three-disk problems and the move
of a single disk: (1) First of all, the three-disk pyramid
(consisting of the disks 2 to 4) has to be moved from
the start peg onto the middle peg; (2) in the next step,
the largest disk (number 1) can be moved onto the goal
peg; and (3) finally, the three-disk pyramid has to be
moved again, this time from the middle peg onto the
goal peg. The three-disk problem is itself a Tower of
Hanoi problem with one disk less than the original
problem. Hence, the three-disk problem can be
decomposed into two two-disk problems and the move
of a single disk. Thus, the recursion procedure is based
on a chunking strategy by dividing a problem into sub-
problems until only one disk remains and there is no
longer any problem.

The move-pattern procedure The move-pattern
procedure (M), on the other hand, is based on a
stimulus-driven instead of a goal-driven heuristic,
without formulating any sub-goals. According to this
procedure, one has to learn a particular pattern of
moves, whereby attention has to be paid to the position
of a disk and to its parity: Odd-numbered disks should
always be moved from the left to the right, from the
middle to the left, and from the right to the middle.
Even-numbered disks are moved the other way round,
from the left to the middle, from the middle to the right,
and from the right to the left. Additionally, the same
disk should never be moved twice in one go. The latter

constraint guarantees that it is always clear which disk
is to be moved next. For example, according to these
rules, disk 4 in Figure 1 should be moved onto the
middle peg because it is an even-numbered disk. Next,
disk number 3 should be moved onto the right peg,
because the same disk should never be moved twice in
one go and 3 is an odd number.

Original vs. transfer tasks It is worth noticing that
both procedures lead to the same pattern of moves and
to an optimal solution, provided all rules are strictly
adhered to. This functional equivalence holds for any
number of disks. However, if the start peg is the middle
peg instead of the left peg, only the recursion-procedure
is optimal. The move-pattern procedure may be applied
to such a transfer task as well, but it requires twice as
many moves as the optimal goal-recursion procedure: If
a transfer task is solved by applying the move-pattern
procedure, the entire tower moves first onto the left peg
and then onto the right peg.1

Differences in move-latencies Even though both
procedures lead to the same pattern of moves with
original tasks, they differ in the amount of planning
and, therefore, result in different patterns of move
latencies (cf. Reimer, 2001a). If the M-procedure is
applied, the cognitive effort is almost the same for all
moves (despite the fact that the decision as to which
disk should be moved next may vary among different
game situations). Thus, a player who applies the M-
procedure is expected to move disks relatively regular-
ly. According to the R-procedure though, at the very
beginning as well as in situations, in which a new sub-
tower has to be solved, extensive planning is required.
Whereas these “first moves” should last long, subse-
quent moves (i.e., all other moves) should be carried
out fast in order to execute the planned recursion
smoothly without extensive interruptions. Hence,
ideally, an application of the R-procedure results in
high latencies in the first moves and short latencies
when subsequent moves are performed.

In general, the extent to which a player spends more
time on first moves than on subsequent moves may be
quantified by the following strategy index (S):

S = FM / SM,
with FM = mean time for first moves and SM = mean
time for subsequent moves. Because the M- and R-
procedure differ in the extent of chunking and planning,
participants who were taught the R-procedure were
expected to score higher on the strategy index than
participants who had been taught the M-procedure (SR

                                                            
1 In order to meet this criterion, the original move-pattern
procedure, which was described by Simon (1975), was
slightly changed by linking the move patterns to the left,
middle, and right peg instead of the start and the goal peg.



> SM). Additionally, the strategy index may also serve
as a measure of the extent to which participants in the
M-condition change their strategy towards a chunking-
strategy when solving transfer tasks.

Study 1
The first study aimed at (1) testing for differences in
performance between pairs and individuals, and, in
particular, to test whether the M-pairs suffer from any
process losses when solving transfer tasks (process-loss
hypothesis); (2) testing the claim that the M-pairs insist
more strongly on their procedure than the M-
individuals, which should result in a lower strategy
index for the M-pairs than the M-individuals
(persistency hypothesis); and (3) testing to what extent
the potential process losses are mediated by the strategy
index (mediation hypothesis).

Method
Sample and design The design consisted of three
factors: Firstly, participants were individually taught
either the R- or the M-procedure (factor procedure).
Secondly, participants solved problems either
individually (I) or in pairs (P) (factor group). Finally,
type of task was varied as a within-subjects factor. Each
individual and each pair had to solve two original and
two transfer tasks, one four- and one five-disk problem
each.2 The 90 students who participated in the study
were randomly distributed among experimental
conditions (15 pairs in the conditions R-P and M-P and
15 individuals in the conditions R-I and M-I).

Procedure Each participant was first individually
explained the R- or the M-procedure. Additionally,
each person completed a computerized training run
with 30 tasks that always required only a single move.
In the R-condition, their task was to solve sub-
problems. For this purpose, one or more disks were
already marked on the computer screen. The
respondent’s task consisted in moving the respective
sub-problem in the correct direction. In the M-
condition, respondents were also confronted with
different game situations. Here, the task consisted in
executing the next move according to the M-procedure.
In both conditions, immediate feedback was provided
by the computer on whether the single move was
correct or wrong.

In the testing phase, participants were asked to solve
two original and two transfer tasks in as few moves as
possible. In the pair condition, they moved in turns
                                                            
2 For the following analyses, measures were aggregated
across the four- and five-disk problems throughout. Problems
with four disks are solvable in 15 moves and problems with
five disks require 31 moves. Thus, the minimum number of
moves is 23, irrespective of the task conditions, i.e.,
regardless of whether original or transfer tasks are solved.

without communicating with each other. The opportuni-
ty to correct or to undo moves by moving a disk twice
in one go was explicitly mentioned in the instructions.
If a person tried to place a larger disk on top of a
smaller one, an error message appeared on the screen.

Results
Number of moves Table 1 shows the mean number of
moves that were required by the individuals and pairs.
An ANOVA with the factors, procedure (R vs. M),
group (I vs. P), and task (original vs. transfer tasks),
revealed an interaction of task x procedure, which was
due to negative transfer in the M-condition (F(1,56)task x

procedure= 115.51; p<.01; F(1,56)procedure= 94.32; p<.01;
F(1,56)group= 0.13; ns; F(1,56)task= 121.43; p<.01). In
the R-condition, the original as well as the transfer tasks
were solved almost perfectly (M original task= 24.15;
Mtransfer task = 24.38; t(29)= –.50; ns).

Table 1: Mean Number of Moves.

   R    M
   I      P    I     P

  Original tasks 24 .83 23.47 25 .87 23.50
  Transfer tasks 25 .20 23.57 39 .97 46.77

However, participants who had been taught the move-
pattern procedure required many more moves to solve
the transfer tasks than the original tasks (Moriginal task=
24.68; M transfer task= 43.37; t(29)= –10.2; p<.01).
Moreover, as can be seen in Table 1, this negative
transfer was enhanced in the group of the M-pairs.
Accordingly, the two-way interaction was further
qualified by a significant three-way interaction of task x
procedure x pair, F (1,56)= 7.55; p<.05. Obviously, the
M-pairs suffered much more from their routine than the
M-individuals when solving transfer tasks (t(28)= 2.17;
p<.05).

Move latencies Are these process losses caused by a
higher persistency of the M-pairs? First, as expected,
participants in the R-condition had much higher
strategy indices than participants in the M-condition
throughout (cf. Table 2).3 This holds true for original
tasks (t(58)= 8.3; p<.01) as well as for transfer tasks
(t(58)= 4.28; p<.01).

Additional ANOVAs, which were conducted
separately for the M- and the R-condition, confirmed
the persistency hypothesis:

                                                            
3 The distribution of latencies was positively skewed. For this
reason, each latency per move was transformed first by taking
the logarithm. All reported analyses are based on these
transformed latencies.



Table 2: Mean Strategy Index.

   R    M
   I      P    I     P

  Original tasks 1 .16 1.08 1.04 1.02
  Transfer tasks 1 .18 1.09 1.10 1.02

In both analyses, the main effect of group (FR(1,28) =
55.61; F M (1,28) = 12.88; ps<.01) was significant,
indicating higher strategy indices for the individuals
than for the pairs. These main effects may be explained
by the time that is required by the pairs when taking
turns. Secondly, there was also a significant main effect
of type of task in both conditions: Overall, participants
in the R- (FR(1,28) = 6.27; p<.05) as well as in the M-
condition (F M (1,28) = 6.94; p<.05) showed higher
strategy indices when solving transfer tasks compared
with original tasks. However, only in the M-condition
the two main effects were qualified by a significant
interaction (FM(1,28) = 5.16; p<.05; FR(1,28) = 0.70;
ns). As can be seen in Table 2, the M-individuals had a
much higher strategy index in the transfer tasks than in
the original tasks (t(14)= 2.70; p<.05), whereas the M-
pairs did not change the way in which they structured
the problem solving process (t(14)= 0.44; ns).

Predicting performance by the strategy index The
observed persistency may also serve as an explanation
for the differences in performance. In order to show that
the observed process losses are due to the extent to
which the M-individuals and M-pairs changed towards
a chunking strategy, an ANCOVA on the number of
moves was run using the strategy index as a covariate.
As can be seen in Figure 2, which refers exclusively to
the M-condition and to the transfer tasks, the observed
process losses disappear if differences in the strategy
index are controlled.

Discussion
Participants who had been taught the goal-recursion
procedure did not have any serious problems solving
the transfer tasks (positive transfer). Within the move-
pattern condition, however, a negative transfer effect
appeared. Further, the M-pairs performed worse on the
transfer tasks than the M-individuals, which confirms
the process-loss hypothesis. However, these process
losses do not seem to be due to mere mutual distraction
in the pairs, that is, it is unlikely that participants
distracted each other in general when joining a dyad. If
this were the case similar process losses should have
been observed in the other pair conditions, too. Rather,
the results confirm the persistency hypothesis: Obvious-
ly, the M-pairs did not only need many more moves to
solve the transfer tasks but also insisted more strongly

on using their strategy than the M-individuals, who
reacted much more flexibly and tried to adopt a
chunking strategy.4

In general, participants in the R-condition spent more
time on the first than on subsequent moves, whereas
participants in the move-pattern condition made their
moves much more regularly. Thus, in the original tasks,
the participants in the R- and M-condition did not differ
in their performance, but could easily be identified on
the basis of their strategy index. Moreover, differences
in performance disappeared when differences in the
strategy index were controlled (mediation hypothesis).

Thus, the first study confirms the assumption that
negative transfer effects will be enhanced by dyads who
were taught the same inappropriate routine and, there-
fore, share a common knowledge. However, it is
reasonable to assume that it is this unanimity in particu-
lar that puts the pairs at a disadvantage. According to
this interpretation, persistency was fostered by the fact
that both members had learned the same inappropriate
procedure. However, if this is true, then, heterogeneous
pairs should perform much better, in particular if one
member has access to an appropriate procedure. On the
other hand, if participants persist in their procedure
irrespective of what the other person does, such a mixed
pair should not perform better than a uniform M-pair.

Study 2
This issue was addressed in the second study, in which
each person belonged to a pair condition. In order to
test for the heterogeneity hypothesis, a mixed pair-
condition was introduced, which consisted of one M-
and one R-participant (condition MR). Additionally,
immediately after the learning phase and at the very end
of the experiment, participants were also asked to solve
several tasks individually in order to test for differences
in individual learning.

Method
Sample, design, and procedure The sample consisted
of 112 senior high school students who were randomly
assigned to one of the three pair-conditions, MM, MR,
or, RR, under the restriction of approximately equal
numbers within the mixed (26) and uniform pairs (15
pairs each). First, as in experiment 1, each participant
was individually taught either the M- or the R-
procedure. During the testing phase, each pair had again
to solve four tasks, two original and two transfer tasks,
of which one problem consisted of four and one of five
disks.

                                                            
4 As further evidence for the persistency hypothesis, a
classification of single moves revealed that the M-pairs
carried out relatively more moves that are in accordance with
the move-pattern procedure than the M-individuals when
solving transfer tasks (cf. Reimer, 2001a).
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Figure 2:  Path diagram: Study 1.

Additionally, participants had to individually solve
two original problems with four and five disks prior to
the group condition and two respective transfer
problems immediately after the group condition.

Results
Single person condition I Table 3 shows the mean
number of moves that were required by the individuals
solving original problems immediately after the
learning phase. This table is not based on the dyads but
rather on the single persons as unit of analysis. For
example, the condition R / Uniform refers to those
participants who had been taught the goal-recursion
procedure and who joined a person in the group
condition who had access to the same procedure.

Table 3: Mean Number of Moves in the Individuals.

   R    M
Uniform    Mixed Uniform    Mixed

  Original tasks 29 .33 26 .68 28 .08 26 .72
  Transfer tasks 28 .35 28 .22 52 .32 49 .54

An ANOVA with the factors procedure (R vs. M) and
group (uniform vs. mixed) confirmed that there were no
significant differences between the three experimental
pair conditions on the individual level prior to the group
condition (all Fs < 2; ns). Even though it is again
impossible to identify the procedures on the basis of the
number of moves, the two conditions M and R may be
identified on the basis of their strategy index.

As is shown in Table 4, participants who were taught
the R-procedure had higher scores on the strategy index
than participants in the M-condition. Accordingly, a
2x2 ANOVA revealed a strong main effect of
procedure (F (1,108) = 121.9; p<.01; Fs for the main
effect of group and the interaction were less than 1).

Group condition A 2x3 ANOVA on the number of
moves showed two main effects (cf. Table 5):

(1) Overall, more moves were made to solve the
transfer tasks than to solve the original tasks (main
effect of type of task: F (1,53) = 100.26; p<.01).

Table 4: Mean Strategy Index in the Individuals.

   R    M
Uniform    Mixed Uniform    Mixed

  Original tasks 1 .17 1 .17 1 .05 1.04
  Transfer tasks 1 .16 1 .17 1 .08 1.05

(2) The highest number of moves was required in the
uniform move-pattern condition (MM). The mixed
pairs (MR) took the middle position and the RR-pairs
performed best (main effect of group: F (2,53) = 38.08;
p <.01).

(3) However, as expected, there was again a
significant interaction of type of task x group, F (2,53)
= 37.08; p <.01. As can be seen in Table 5, the
differences between the pairs were almost exclusively
due to the transfer tasks.

Table 5: Mean Number of Moves in the Pairs.

RR MR MM
  Original tasks 23.47 23.77 23.50
  Transfer tasks 23.57 31.71 46.77

Overall, the observed pattern in performance may be
described as follows: Whereas the original problems
were solved almost optimally in each condition, there
were huge differences in performance between the pairs
on the transfer tasks. These difficulties were most
pronounced in the MM-condition and to a much lesser
extent in the MR-condition. In the RR-condition,
participants had no problems with the transfer tasks at
all. Interestingly, the mixed pairs, who differed
significantly from the MM- as well as from the RR-
pairs, performed better than the pooled uniform pairs
(MMR = 31.71; MMM / RR = 35.17; p<.05).

As expected, the pairs also differed consistently in the
extent to which they applied a recursion strategy (cf.
Table 6). A 2x3 ANOVA on the strategy index revealed
a main effect of group, F (2,53) = 29.35; p <.01 (the Fs
for the main effect of type of task and the interaction
were <1.3; ns). Within the original as well as the trans-
fer tasks, the three pair conditions may be rank ordered
on the basis of their strategy index (SRR > SMR > SMM).



Table 6: Mean Strategy Index in the Pairs.

RR MR MM
  Original tasks 1.09 1.05 1.02
  Transfer tasks 1.10 1.05 1.03

Moreover, in analogy to experiment 1, the differences
in performance were, at least partially, mediated by the
strategy index. If the strategy index was included as a
covariate, differences in performance were reduced (F
(2,53) = 38.08 vs. F (2,52) = 20.0; effect of the strategy
index as a covariate: F (1,52) = 57.5; all ps<.01).

Single person condition II Table 3 and 4 (see above)
also show the mean number of moves and the strategy
indices in the final test of the individuals. In this test (1)
the R-individuals achieved better results than the M-
individuals (main effect of procedure: F  (1,108) =
54.03; p<.01). (2) There were no significant differences
in performance between the M-individuals who had
joined an M- or an R-partner in the group condition (the
Fs for the effects of group and of procedure x group
were < 1; ns). (3) Analogous results were also observed
for the strategy index (main effect of procedure: F
(1,108) = 92.33; p<.01; neither the main effect of group
nor the interaction were significant).

Discussion
As in the first study, the original tasks were solved
almost perfectly by all pairs, even by the mixed MR-
pairs. Here, the two distinct procedures converged to a
common problem solution (cf. Reimer, 2001b). The
result, i.e., that these pairs performed much better on
the transfer tasks than the uniform M-pairs, suggests
that group heterogeneity improved performance.
Further analyses of the contributions of the M- and R-
individuals within the mixed groups revealed that the
M-participants performed significantly better when
solving problems in mixed pairs than in uniform pairs.
The M-participants who belonged to a mixed pair made
a much higher relative number of correct moves than
the M-participants who belonged to a uniform pair.
This pattern was reversed for the R-participants who
performed worse in the mixed pairs than in the uniform
pairs. Even though this seems to support the
heterogeneity hypothesis, an interesting question for
further research would be whether the advantage of the
M-participants who joined a mixed group had also
appeared if both players had been taught distinct
inappropriate procedures. Astonishingly, the advantage
of the M-participants who belonged to the MR-pairs
disappeared in the final test. However, when
interpreting the results on individual learning, one
should keep in mind that the pairs were not allowed to
talk to each other and, therefore, had no opportunity to
explain and even exchange their ideas.

Whether communication enhances or reduces the
observed process losses may be another interesting
issue for future research likewise the question whether
the findings can be generalized to groups that consist of
more than two members. In general, we can expect that
the larger the groups the stronger the transfer effects
supposing a group consists of homogeneous group
members that share the same routine. As far as the com-
munication issue is concerned, there is at least some
evidence that communication enhances performance in
pairs who have not been taught a routine but who have
to develop a common strategy (cf. Reimer, 2001a).

Overall, these studies confirm the claim that groups
who have routinized a problem solving procedure
persist more strongly in their routine than individuals.
Groups tend to behave like “ocean steamers”: They
often need much time and effort to work out an efficient
problem solving procedure. However, once having
reached a solution they are likely to persist in their
routine and stick to their course irrespective of changes
in the environment. The most obvious advantage for a
group in following “the principle of inertia” consists in
saving time and energy, because routines need not be
actively managed and, subsequently, reduce coordina-
tion requirements (cf. Gersick & Hackman, 1990).
Moreover, in situations in which the “ocean steamer” is
on the right course and a routine is appropriate, groups
may be expected to surpass individuals (cf. Hinsz et al.,
1997) by better compensating for individual errors and
by fostering positive transfer.
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