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Abstract

Introduction: Dysferlin loss-of-function mutations cause muscular dystrophy, accompa-

nied by impaired membrane repair and muscle weakness. Growth promoting strategies

including insulin-like growth factor 1 (IGF-1) could provide benefit but may cause

strength loss or be ineffective. The objective of this study was to determine whether

locally increased IGF-1 promotes functional muscle hypertrophy in dysferlin-null

(Dysf−/−) mice.

Methods: Muscle-specific transgenic expression and postnatal viral delivery of Igf1

were used in Dysf−/− and control mice. Increased IGF-1 levels were confirmed by

enzyme-linked immunosorbent assay. Testing for skeletal muscle mass and function

was performed in male and female mice.

Results: Muscle hypertrophy occurred in response to increased IGF-1 in mice with

and without dysferlin. Male mice showed a more robust response compared with

females. Increased IGF-1 did not cause loss of force per cross-sectional area in

Dysf−/− muscles.

Discussion: We conclude that increased local IGF-1 promotes functional hypertrophy

when dysferlin is absent and reestablishes IGF-1 as a potential therapeutic for

dysferlinopathies.

K E YWORD S

dysferlin, insulin-like growth factor 1, Miyoshi myopathy, muscle hypertrophy, skeletal muscle

function

1 | INTRODUCTION

Loss-of-function mutations in the dysferlin gene (Dysf ) in humans results

in a spectrum of muscular dystrophies known as dysferlinopathies.1

The dysferlinopathies manifest as distal anterior compartment

myopathy,2 limb-girdle muscular dystrophy type 2B (LGMD2B),3 and

Abbreviations: Akt, protein kinase b; ANOVA, analysis of variance; Dysf, dysferlin gene;

Dysf−/−, dysferlin null; Dysf−/−:mIgf+/+, mice homozygous for the loss of dysferlin and

transgenic expression of Igf1; Dysf−/−:mIgf−/−, mice homozygous for the loss of dysferlin with

no transgenic expression of Igf1; Dysf+/+:mIgf+/+, mice with wildtype levels of dysferlin and

transgenic expression of Igf1; Dysf+/+:mIgf−/−, mice wildtype for both genes; EDL, extensor

digitorum longus; ELISA, enzyme-linked immunosorbent assay; IGF-1, insulin-like growth

factor 1; LGMD2B, limb-girdle muscular dystrophy type 2B; MHC, myosin heavy chain;

mIgf+/+, muscle-specific IGF-1 transgene; scAAV, self-complementing adenoassociated virus;

TA, tibialis anterior.
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F IGURE 1 Legend on next page.
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Miyoshi myopathy.4 The primary pathological consequences include

defective membrane repair and intracellular vesicle accumulation.5 The

clinical problem associated with dysferlin loss is progressive muscle

weakening, which begins in proximal muscles in LGMD2B and in distal

muscles in Miyoshi myopathy.6

Dysferlin is a 230-kDa type II transmembrane protein7 localized at

the sarcolemma of mature skeletal muscle but also at transverse tubules

in developing myotubes.8 Dysferlin contains seven C2 domains9 and a

transmembrane domain.10 The first C2 domain (C2A) can bind several

phospholipids in a calcium-dependent manner.11 There is a plethora of

evidence that implicates dysferlin as an essential regulator of vesicle

fusion at the sarcolemma and an important player in muscle membrane

repair.12 However, dysferlin is not limited to sarcolemma repair but is

also involved in muscle regeneration,13 focal adhesion formation,14

adenosine triphosphate-dependent intercellular signaling,15 and insulin-

like growth factor 1 (IGF-1) receptor recycling.16

There is no effective treatment for increasing muscle strength or for

preventing further muscle damage in these diseases. A potential treat-

ment for dysferlinopathies is the use of IGF-1. Insulin-like growth factor

1 is a circulating autocrine/paracrine factor that regulates many aspects

of muscle development, repair, and growth.17,18 Increasing IGF-1 in mus-

cle causes hypertrophy, enhances regeneration after injury, and can

improve many diseased muscle phenotypes and functions.19-26 However,

systemic delivery of recombinant IGF-1 was ineffective at promoting the

hypertrophic responses in dysferlin null (Dysf−/−) mice, and the failure

was ascribed to the lack of properly localized IGF-1 receptors.16

A second potential treatment for dysferlinopathies is myostatin inhi-

bition. As a negative regulator of muscle growth, a number of strategies

have been developed to block myostatin activity and boost muscle

mass. Indeed, transgenic expression of follistatin and delivery of a solu-

ble form of the myostatin receptor led to significant hypertrophy of

muscles in the Dysf−/− mouse27; however, this was accompanied by pro-

gressive deficits of muscle function due to acceleration of degeneration.

Because of the lack of efficacy for systemic IGF-1 delivery and the

risks of any progrowth strategy to potentially cause degeneration of

dysferlin-deficient muscles, the objective of this study was twofold.

First, we sought to determine whether local expression of IGF-1 could

overcome the limitations of systemic delivery and promote gains in mus-

cle mass in dysferlin-deficient mice. Second, we sought to determine

whether any increase in muscle mass was associated with loss of force

generating capacity.

2 | MATERIAL AND METHODS

2.1 | Animal studies

Animal studies were performed in accordance with and were

approved by the University of Pennsylvania animal care committee.

For transgenic studies, muscle-specific IGF-1 transgenic (mIgf+/+) male

mice28 that had been backcrossed to the C57BL/6 J strain were bred

with female Bla/J (JAX No. 012767). Male and female mice from the

F2 generation were used, and mice with the desired genotypes were

used for the experiments. These included mice homozygous for the

loss of dysferlin and transgenic expression of Igf1 (Dysf−/−:mIgf+/+),

mice homozygous for the loss of dysferlin with no transgenic expres-

sion of Igf1 (Dysf−/−:mIgf−/−), mice with wildtype levels of dysferlin

and transgenic expression of Igf1 (Dysf+/+:mIgf+/+), and mice wildtype

for both genes (Dysf+/+:mIgf−/−). Male and female mice 16 weeks of

age were used for analysis.

In postnatal viral delivery experiments, controls were male and

female dysferlin-deficient A/J mice (JAX No. 000646) and A/WySnJ

mice (JAX No. 006647), which is a commercially available inbred strain

that is a suitable control for A/J mice. A/J mice are referred to as

Dysf−/−, and A/WySnJ mice are referred to as Dysf+/+. Both Dysf−/−

lines bear an early ETn retrotransposon insertion in intron 4 of the

dysferlin gene, resulting in disruption of the dysferlin gene expression.

2.2 | Viral injections

Recombinant self-complementing adenoassociated virus (scAAV) sero-

type 2/8 vectors expressing the Igf1 cDNA of murine class I IGF-1A

under the control of the chicken β-actin promoter and cytomegalovirus

enhancer were generated by the Children's Hospital of Philadelphia

Vector Core, as previously described.29 Self-complementing ade-

noassociated virus was diluted with phosphate-buffered saline to

1 × 109 viral particles/μL, and 50 μL was injected into each of the ante-

rior and posterior compartments of one lower hind limb of anesthetized

3-week-old Dysf−/− and Dysf+/+ mice, targeting the tibialis anterior (TA),

extensor digitorum longus (EDL), and soleus muscles. The contralateral

F IGURE 1 Transgenic Igf1 expression increases skeletal muscle mass independent of dysferlin with no functional decrement. A,B,
Bodyweights of male (A) and female (B) mice show significant increases in male Dysf−/− and females of both mIgf1+/+ strains. C,D, TA muscle mass

in male mice increased ~30% in both mIgf1+/+ strains and ~20% in female mice. Only Dysf−/− mice displayed significant hypertrophy in EDL and
soleus. EDL muscle tetanic forces from male (E) and female (F) mice were significantly higher in Dysf−/−:mIgf+/+ mice compared with Dysf−/−:
mIgf−/− mice. EDL muscle-specific forces from male (G) and female (H) mice showed no significant differences among groups. Diaphragm-specific
forces from male mice (I) show significant reduction between Dysf+/+:mIgf−/− and Dysf−/− muscles of both mIgf1+/+ strains. Diaphragm-specific
forces in female mice (J) were not different across all strains. Data are mean ± SEM for males (Dysf+/+:mIgf−/−, n = 6–7; Dysf+/+:mIgf+/+, n = 4–9;
Dysf−/−:mIgf−/−, n = 4–7; Dysf−/−:mIgf+/+, n = 6–9) and females (Dysf+/+:mIgf−/−, n = 5–6; Dysf+/+:mIgf+/+, n = 4–6; Dysf−/−:mIgf−/−, n = 4–6;
Dysf−/−:mIgf+/+, n = 4–7). *P < .05; **P < .01, ***P < .001 for comparisons between mIgf1−/− and mIgf1+/+, two-way ANOVA with Tukey's
multiple-comparison test. ANOVA, analysis of variance; DP, diaphragm; Dysf−/−, dysferlin null; Dysf−/−:mIgf+/+, mice homozygous for the loss of
dysferlin and transgenic expression of Igf1; Dysf−/−:mIgf−/−, mice homozygous for the loss of dysferlin with no transgenic expression of Igf1;
Dysf+/+:mIgf+/+, mice with wildtype levels of dysferlin and transgenic expression of Igf1; Dysf+/+:mIgf−/−, mice wildtype for both genes; EDL,
extensor digitorum longus; IGF-1, insulin-like growth factor 1; mIgf+/+, muscle-specific IGF-1 transgene; TA, tibialis anterior [Color figure can be
viewed at wileyonlinelibrary.com]
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limb was used as control. After injection, mice were housed in the ani-

mal facility until time of analysis. They were humanely killed 1 week,

1 month, or 2 months after injection, and tissues were obtained for

functional, biochemical, and morphological analysis.

2.3 | Functional analysis of isolated muscles

Muscle function testing was performed in EDL, soleus, and diaphragm

muscles according to previously published protocols.28,29 Maximum iso-

metric tetanic forces were measured at fusion frequency and supra-

maximal stimulation. After completion of the mechanical procedures,

muscles were blotted, weighted, and rapidly frozen for subsequent

assays. Muscle-specific forces (N/cm2) were calculated by normalizing

the maximum muscle tension to the muscle cross-sectional area.

2.4 | Immunohistochemistry

Fiber type, size, and number analyses were performed in EDL and

soleus cryosections with anti-laminin (FB-082A; ThermoFisher Scien-

tific) and anti-myosin heavy chain IIA (Sc-71; Developmental Studies

Hybridoma Bank), as previously described.30 Stained sections were

visualized with a Leica DMR microscope. Fiber type and size quantita-

tion were performed in SMASH software.31

2.5 | Muscle IGF-1 content

Muscle IGF-1 levels were determined with the rat/mouse IGF-1

enzyme-linked immunosorbent assay (ELISA) kit (Cat. No. MG100; R&D

Systems) in accordance to the manufacturer's instructions and as

F IGURE 2 Transgenic Igf1 expression increases muscle mass due to increase in fiber size. Transverse sections of EDL muscles were
immunostained for laminin to determine fiber number and size. A,B, There was no difference in total fiber number among the strains examined.
Minimum Feret diameter distribution revealed a rightward shift in EDL muscles from Dysf+/+ (C,D) and to a lesser extent in Dysf−/− (E,F) mice.
Data are mean ± SEM for n = 3–8 for all groups. *P < .05 for comparisons between mIgf1−/− and mIgf1+/+, two-way ANOVA, followed by Tukey's
multiple-comparison test. ANOVA, analysis of variance; Dysf+/+, dysferlin; Dysf−/−, dysferlin null; Dysf−/−:mIgf+/+, mice homozygous for the loss of
dysferlin and transgenic expression of Igf1; Dysf−/−:mIgf−/−, mice homozygous for the loss of dysferlin with no transgenic expression of Igf1;
Dysf+/+:mIgf+/+, mice with wildtype levels of dysferlin and transgenic expression of Igf1; Dysf+/+:mIgf−/−, mice wildtype for both genes; EDL,
extensor digitorum longus; IGF-1, insulin-like growth factor 1; mIgf+/+, muscle-specific IGF-1 transgene; TA, tibialis anterior [Color figure can be
viewed at wileyonlinelibrary.com]
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previously described.32 Data are expressed as nanograms IGF-1 per gram

of tissue.

2.6 | Immunoblotting

Tissues that had been extracted for immunoblot analysis were snap-

frozen in liquid nitrogen and stored at −80�C until further processing.

Tibialis anterior muscles were mechanically ground by mortar and pestle

in dry ice and homogenized in radioimmunoprecipitation assay buffer,

with the addition of phenylmethylsulfonyl fluoride, protease, and phos-

phatase inhibitors. Proteins were quantitated by Bradford assay, and

equal amounts were loaded in 12% precast acrylamide gels for sodium

dodecyl sulfate polyacrylamide gel electrophoresis and transferred to

polyvinylidene fluoride membrane. Primary antibodies for phospho–

protein kinase b (Akt; Ser473; cat. No. 9271; Cell Signaling Technology)

and total Akt (pan; 40D4; cat. No. 2920; Cell Signaling Technology) were

used to measure the changes in Akt phosphorylation, which was evalu-

ated in ImageJ.

2.7 | Statistical analysis

All data are presented as mean ± SEM. All analysis was performed in

Prism 8 (GraphPad Software). Student's t test was performed for com-

parison of two groups, and two-way analysis of variance (ANOVA)

was performed for comparison of three or more groups to determine

significance, followed by Tukey's multiple-comparisons post hoc test-

ing. P < .05 was considered significant.

3 | RESULTS

3.1 | Transgenic IGF-1 expression mediates
hypertrophy in the absence of dysferlin

Mice with transgenic expression of Igf1 were compared with age- and

sex-matched littermate controls in terms of body and muscle mass. In

male mice, there was a significant effect of increased IGF-1 and

absence of dysferlin on body weight according to two-way ANOVA,

with increased body weight evident in Dysf−/− mice according to post

F IGURE 3 Transgenic Igf1 expression increases IGF-1 content in both male and female muscles independent of strain. IGF-I content of TA muscles
was measured by ELISA in male (A) and female (B) mice. Muscles from mIgf1+/+ mice had IGF-1 levels greater than 10-fold higher compared with strain
and sex-matchedmIgf1−/− mice. Mean ± SEM for n = 4–9 for all groups. C,D, Correlations between IGF-1 content and mass for TA muscles are shown
for male and female mice. R2 calculated for low and high IGF-1 content separately. Analysis by two-way ANOVA, followed by Tukey's multiple
comparison test. *P < .05, **P < .01, ****P < .0001 for comparisons between mIgf1−/− and mIgf1+/+; ††P < .01 for comparison between Dysf−/− and
Dysf+/+. ANOVA, analysis of variance; Dysf+/+, dysferlin; Dysf−/−, dysferlin null; Dysf−/−:mIgf+/+, mice homozygous for the loss of dysferlin and transgenic
expression of Igf1; Dysf−/−:mIgf−/−, mice homozygous for the loss of dysferlin with no transgenic expression of Igf1; Dysf+/+:mIgf+/+, mice with wildtype
levels of dysferlin and transgenic expression of Igf1; Dysf+/+:mIgf−/−, mice wildtype for both genes; ELISA, enzyme-linked immunosorbent assay; IGF-1,
insulin-like growth factor 1; mIgf+/+, muscle-specific IGF-1 transgene; TA, tibialis anterior [Color figure can be viewed at wileyonlinelibrary.com]
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hoc analysis (Figure 1A). In contrast, female mice displayed significant

responses of body weight to increased IGF-1 in both strains

(Figure 1B). Male mice exhibited hypertrophy in TA muscles with

transgenic expression of Igf1 regardless of strain, and EDL and soleus

muscles were also larger in Dysf−/−:mIgf1+/+ mice (Figure 1C). Female

mice displayed a less robust hypertrophic response to IGF-1, with sig-

nificantly increased mass in only fast twitch muscles (EDL, TA) of

Dysf−/− mice (Figure 1D), which was similar to what has been reported

in previous studies.28 Thus, the effects of IGF-1 on muscle do not

require dysferlin, and, in fact, there is an enhanced hypertrophic effect

in the absence of dysferlin.

Isolated muscle function testing was performed on the EDL and

diaphragm to determine whether changes in muscle mass in mIgf1+/+

mice were accompanied by changes in the force-generating capacity

of the muscles. Isometric tetanic force significantly increased in EDL

muscles of male and female Dysf−/− mice (Figure 1E,F). No changes in

the specific force in response to high IGF-1 were observed in EDL

muscles (Figure 1G,H), indicating that total tetanic force increased in

proportion to mass. For diaphragm muscles (Figure 1I,J), there was sig-

nificance for both IGF-I and strain by two-way ANOVA. In post hoc

comparisons, the diaphragm from the male Dysf−/− mice displayed an

~30% deficit in force compared with muscles from Dysf+/+ mice, which

was less pronounced than previous findings in the A/J strain of mice

in terms of diaphragm function.29 Increased IGF-1 combined with

dysferlin loss did not rescue the specific force deficit compared with

Dysf−/−:mIgf1−/− mice. No deficits in diaphragm function were appar-

ent in the female mice regardless of strain.

To investigate whether the observed gain of muscle mass was due

to increased muscle fiber numbers or fiber size, EDL muscle morphol-

ogy was analyzed by immunostaining with anti-laminin. Muscle fiber

analysis revealed that there were no differences in fiber number

across the genetic conditions (Figure 2A,B). Instead, minimum Feret

diameter increased in Dysf+/+ mice harboring the mIgf1 transgene,

with a rightward shift in the fiber size distribution (Figure 2C,D). In

Dysf−/− mice, the shift was minimal and was apparent only in the pres-

ence of large muscle fibers in males (Figure 2E,F). A small cohort of

soleus muscles were similarly evaluated. Transgenic expression of

IGF-1 did not alter fiber type, which ranged from 52% to 56.6% myo-

sin heavy chain (MHC) IIA fibers independent of strain or sex. Because

Igf1 expression in this transgenic mouse is regulated by the myosin

light chain 1/3 promoter/enhancer, the levels of IGF-1 production in

the soleus is lower than MHC IIB/X containing fibers, resulting in min-

imal hypertrophy, as has been previously shown.28

To determine whether differences in the extent of response to

IGF-1 were dependent on the IGF-1 content within the muscles, we

measured IGF-1 levels in TA muscles by ELISA for male and female

mice in all strains. Insulin-like growth factor 1 levels were more than

10-fold higher in all mice harboring the mIgf1 transgene (Figure 3A,B).

In mIgf1+/+ males, the level of IGF-1 was higher in muscles of Dysf−/−

mice than in muscles of Dysf+/+ mice. To gain a better understanding

of the relationship between IGF-1 levels and muscle mass, correla-

tions between IGF-1 content and mass for TA muscles were examined

in each sex. We found that, instead of a uniform linear relationship,

there were two distinct populations of samples. With IGF-1 levels

below 50 ng/g muscle, R2 = 0.138 (males) and R2 = 0.411 (females)

were observed. When IGF-1 was above 50 ng/g muscle, there was no

relationship, with R2 values approaching zero (Figure 3C,D). These

results indicate that there is saturation of the effect of IGF-1 on mus-

cle mass when it exceeds three times the endogenous levels of this

growth factor.

3.2 | Postnatal increase in IGF-1 mediates
hypertrophy in the absence of dysferlin

Transgenic expression of IGF-1 provides a growth stimulus initiated

before birth. To determine whether postnatal modulation of IGF-1

could also drive hypertrophy in the absence of dysferlin, we used viral

mediated gene transfer into muscles of young Dysf+/+ and Dysf−/−

mice with scAAV vectors encoding IGF-1A. At 1 week postinjection,

IGF-1 content was ~10-fold higher in the injected muscles compared

with contralateral control muscles in both genotypes (Figure 4A).

There was no significant difference in basal IGF-1 or postinjected IGF-1

F IGURE 4 Viral delivery of IGF-1 leads to increased signaling of
IGF-1 pathways. A, IGF-1 content was significantly higher after viral
delivery in TA muscles from Dysf+/+ and Dysf−/− mice (n = 3 pairs for

each genotype). There was no significant difference in basal IGF-1 or
in postinjected IGF-1 between mouse strains. B, Immunoblot of P-Akt
and T-Akt in TA muscle lysates with and without AAV–IGF-1
injection. C, P-Akt levels were increased in the scAAV–IGF-1A
injected muscles (+AAV) compared with contralateral control muscles
(−AAV) from both Dysf+/+ and Dysf−/− mice (n = 3 pairs for each
genotype). *P < .05 between injected and uninjected muscles, two-
tailed paired Student's t test. Dysf+/+, dysferlin; Dysf−/−, dysferlin null;
IGF-1, insulin-like growth factor 1; P-Akt, phospho–protein kinase b;
scAAV, self-complementing adenoassociated virus; TA, tibialis
anterior; T-Akt total-protein kinase b [Color figure can be viewed at
wileyonlinelibrary.com]
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between mouse strains. We examined phosphorylation of Akt as a

downstream index of IGF-1 receptor activation. Phospho-Akt increased

in the scAAV–IGF-1A-injected muscles compared with noninjected con-

trol muscles from both Dysf+/+ and Dysf−/− mice (Figure 4B,C).

To determine the effect of increased IGF-1 production on muscle

mass, limb muscles were dissected from male and female animals

1 month after adenoassociated virus (AAV) injection. In all mice, the

EDL muscles exhibited an ~15% increase in muscle mass in both

Dysf+/+ and Dysf−/− mice after viral injection (Figure 5A). This hyper-

trophic response was accompanied by a commensurate increase in

isometric tetanic force, resulting in similar specific forces in both

strains (Figure 5B,C). We extended measurements out to 2 months

postinjection, and similar effects on EDL mass and force production

were observed (Figure 5D-F). Thus, in fast skeletal muscles, postnatal

increases in IGF-1 mediate functional hypertrophy regardless of the

presence or absence of dysferlin.

In contrast to EDL muscles, soleus muscles were less responsive

to increased IGF-1. Specifically, there was a modest but significant

mass increase in soleus muscles from Dysf+/+ but not Dysf−/− mice

(Figure 6A). Isometric tetanic force displayed similar changes in that

only soleus muscles from Dysf+/+ mice had a 3% to 35% increase in

response to increased IGF-1 (Figure 6B). Evaluation of soleus muscle

at 2 months post–viral injection exhibited significant hypertrophy in

both strains (Figure 6D,E), with progressive increases in mass and

tetanic force compared with that observed at 1 month postinjection.

At both 1 and 2 months post–viral delivery, specific force production

by soleus muscles did not differ between treated and untreated limbs

(Figure 6C,F), reflecting an increase in force proportional to the

increases in mass. Thus, there is a hypertrophic response to increased

IGF-1 in the presence and absence of dysferlin, without negatively

affecting muscle functional properties.

4 | DISCUSSION

We found that boosting muscle IGF-1 in dysferlin-deficient mice through

transgenic overexpression and postnatal viral delivery led to increased

muscle mass without a decrement in force production. Thus IGF-1

should be considered as a potential therapeutic for LGMD2B/Miyoshi

myopathy.

Our previous evaluation of muscle function used dysferlin-

deficient A/J mice and the strain matched control A/WySnJ, in which

the mouse diaphragm displayed significant functional deficits in young

adult mice.29 However, few, if any, other mouse models of neuromus-

cular disease were on this background strain, making it difficult to

compare loss of dysferlin to other diseases without considering the

F IGURE 5 Functional hypertrophy by viral delivery of IGF-1 in EDL muscles occurs in Dysf+/+ and Dysf−/− mice. At 1 month postinjection,
EDL muscles exhibited a 10%–15% increase in mass (A) and a similar increase in tetanic force (B) in treated limbs in both Dysf+/+ and Dysf−/−

mice. Specific force (C) did not differ between treated and untreated limbs. At 2 months postinjection, there was a 17%–22% increase in EDL
muscle mass (D) in injected limbs, with tetanic force increasing 8%–40% (E). Similarly to the 1-month timepoint, specific force (F) was not
different between treated and untreated limbs. Muscles obtained from n = 6–8 mice per strain and timepoint. Male and female mice were
combined for analysis. Values are depicted as individual data points, with lines connecting the untreated and treated muscles from the same
mouse. **P < .01, ***P < .001 between injected and uninjected muscles, two-tailed paired Student's t test. AAV, adenoassociated virus;
Dysf+/+, dysferlin; Dysf−/−, dysferlin null; EDL, extensor digitorum longus; IGF-1, insulin-like growth factor 1, ns, not significant
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potential for strain-dependent genetic modifiers.33 With the develop-

ment of a dysferlin-deficient mouse on the C57Bl/6 background,34

more closely matched comparisons were possible, although it was

unclear whether the same pathological phenotypes would be retained.

Thus, for our transgenic crosses, it provided an opportunity to exam-

ine functional outcome measures of dysferlin loss on the C57Bl/6

background. The male Dysf−/− mice exhibited a 30% decrease in spe-

cific force only in the diaphragms, with no evidence of decreased spe-

cific forces in other muscle groups due to the absence of dysferlin.

Our previous findings in A/J mice, in which there were deficits of

~50% in specific force in the A/J diaphragm,29 suggest that the

physiological phenotype is altered in the C57Bl/6 strain. Previous

researchers have also compared disease severity with respect to

dysferlin mutation and background strain and found that the A/J

mouse C57Bl/6 background displayed highly variable recovery from

strain injury in contrast to three other mouse lines lacking dysferlin.35

These findings suggest that background strain may affect the patho-

genesis associated with the absence of dysferlin, as with other disease

models. Whether a single mouse strain can capture the essence of dis-

ease progression in humans is an open question, but our observations,

among others suggest that genetic modifiers are likely contributing to

variability in pathology of dysferlinopathies. The effects of IGF-1

appear to be independent of background strain, which suggests that a

therapeutic strategy including a boost of IGF-1 may be generally

effective in this disease.

We were struck by the differential response to transgenic expres-

sion of IGF-1 in male and female mice. Male mice displayed clear mus-

cle hypertrophy regardless of the presence of dysferlin in the TA

muscles, similarly to what has been reported in previous studies in

which this approach was used to boost muscle IGF-1 content in models

of disease,24,36,37 yet only in Dysf−/− mice was this accompanied by

increased body weight. In contrast, female mIgf+/+ mice exhibited

increased body weight in the presence and absence of dysferlin, but

muscle hypertrophy was not as extensive and was evident only in the

absence of dysferlin. Multiple issues arise with this observation. First, it

is clear that both males and females respond to high levels of IGF-I in

skeletal muscle, but female mice have a blunted hypertrophic response.

Second, a more speculative point is that, because increased muscle

mass combined with a lack of changed body weight in the male Dysf+/+:

mIgf+/+ mice occurs, it reflects findings in previous studies in which

modulating muscle IGF-1 led to sex-specific alterations locally in muscle

and globally in fat content.30,38-41 Thus, it is essential to evaluate male

and female mice separately for global IGF-1 dependent changes in

muscle mass.

F IGURE 6 Functional hypertrophy by viral delivery of IGF-1 on soleus muscles is blunted and delayed in Dysf−/− mice. At 1 month
postinjection, treated soleus muscles exhibited a 10%–15% increase in mass in Dysf+/+ mice but no significant increase in Dysf−/− mice (A).
Tetanic force was significantly increased in the treated soleus muscles only from Dysf+/+ mice (B). Specific force (C) did not differ between treated
and untreated limbs in both strains. At 2 months postinjection, treated soleus muscles from both strains showed significant increases in mass (D),
and only Dysf+/+mice had significant increases in tetanic force (E). Similarly to the 1-month timepoint, specific force (F) was not different between
treated and untreated limbs. Muscles obtained from n = 6–8 mice per strain and timepoint. Male and female mice were combined for analysis.
Values are depicted as individual data points, with lines connecting the untreated and treated muscles from the same mouse. *P < .05, **P < .01,
***P < .001 between injected and uninjected muscles, two-tailed paired Student's t test. AAV, adenoassociated virus; Dysf+/+, dysferlin; Dysf−/−,
dysferlin null; ns, not significant
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Complementary to lifetime exposure to IGF-1, postnatal viral deliv-

ery caused similar hypertrophy in male and female mice. However, the

soleus muscles in the Dysf−/− mice were delayed in responding to IGF-1;

hypertrophy was evident only 2 months after viral delivery. This sug-

gests that there is a fiber type specificity in the role that dysferlin plays

in mediating hypertrophy by IGF-1. In our previous study, we examined

the dysferlin levels in several skeletal muscles, including the soleus.29

The soleus did not have a different dysferlin level compared with the TA

or the EDL, which indicates that dysferlin content is independent of fiber

type, and this cannot explain the delayed response to increased IGF-1.

However, similarly to the negative findings after infusion of recombinant

IGF-1 into dysferlin-deficient animals,16 it provides evidence that there

is a blunted response to increased IGF-1. The remedy for the lack of

hypertrophy appears to be time because 1 month of treatment was not

sufficient for recombinant IGF-1 treatment or viral IGF-1 injection. How-

ever, 2 months after viral delivery and at 4 months of age with lifetime

exposure to IGF-1, there are significant increases in muscle mass. In

addition, the high levels of IGF-1 within the muscle are also a likely

advantage compared with the delivery of IGF-1 through the circulation.

The strategy to inhibit the myostatin pathway resulted in signifi-

cant hypertrophy27 but came at the expense of diminished func-

tional capacity. Analysis of EDL muscle function at 16 weeks of age

revealed a 30% decrease in specific force in dysferlin-deficient male

mice with transgenic expression of follistatin. Hence, we sought to

evaluate function in the EDL muscles at the same age. We observed

that mass and force production increased in tandem, resulting in no

differences in specific force and providing evidence that the IGF-1

and myostatin pathways are not driving a similar degenerative

response.

From the context of a therapeutic strategy, it is important to

determine an effective “dose” of IGF-1 for boosting muscle mass

without off-target effects. In our hands, more is not better because

IGF-1 levels five- to 25-fold above normal caused the same extent of

hypertrophy, indicating that there is a plateau for efficacy. In contrast,

systemic delivery of 2 mg/kg recombinant IGF-1, which is approxi-

mately 25-fold higher than the normal circulating levels, can drive

hypertrophy only in the presence of dysferlin,16 suggesting that sup-

raphysiologic levels are required to surpass the limitations of IGF-1

signaling in this disease when delivered through the circulation. From

a safety standpoint, delivery of such high levels through the blood-

stream is not clinically tenable, but, if an effective dose can be

achieved locally, then the safety concerns may be reduced. There is

no established method for boosting IGF-1 levels specifically in skeletal

muscle other than with AAV. This could be combined with restoring

dysferlin, similarly to the dystrophin replacement strategy demon-

strated in mouse models for Duchenne muscular dystrophy,42 provid-

ing both correction of the genetic defect and an enhancement of

functional hypertrophy.

In summary, we evaluated the therapeutic potential of IGF-1 for boo-

sting functional muscle mass in the absence of dysferlin. We observed

increased muscle mass and commensurate increases in force generation,

providing evidence that the IGF-1 pathway is sufficiently intact to medi-

ate functional hypertrophy. Going forward, we encourage our colleagues

to reconsider growth promoting strategies for LGMD2B and Miyoshi

myopathy patients.
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