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PREFACE

This report is onre of a series documenting the results of the Swedish-
American cooperative research program in which the cooperating scientists
explore the geological, geophysical, hydrological, geochemical, and structural
effects anticipated from the use of a large crystalline rock mass as a
geologic repository for nuclear waste. This program has been sponsored by
the Swedish Nuclear Power Utilities through the Swedish Nuclear Fuel Supply
Company (SKBF), and the U. S. Department of Energy (DOE) through the Lawrence
Berkeley Laboratory (LBL).

The principal investigators are L. B. Nilsson and 0. Degerman for
SKBF, and N. G. W. Cook, P. A, Witherspoon, and J. E. Gale for LBL. Other
participants will appear as authors of the individual reports.

Previously published technical reports are listed below.,

1. Swedish-American Cooperative Program on Radivactive Waste Storage in

Mined Caverns by P. A. Witherspoon and 0. Degerman. (LBL-7049, SAC-01).

2. large Scale Permeability Test of the Granite in the Stripa Mine and
Thermal Conductivity Test by Lars Lundstrom and Haken Stille. (LBL-7052,

SAC-02).

3. The Mechanical Properties c¢f the Stripa Granite by Graham Swan.
(LBL~7074, SAC-03).

4, Sttess‘”Measurements in the Stripa Grapite by Hans Carlsson. ({LBL-7078,
SAC-04).

5. Borehole Drilling and Related Activities at the Stripa Mine by P. J.
Kurfurst, T. Hugo-Persson, and G. Rudolph. (LBL-7083, SAC-05).

6. 4 Piloast) Heater Test in the Stripa Granite by Hans Carlsson. (LBL-7086,
SAC-06).

7. An Analysis of Measured Values for the State of Stress in the Earth's
Crust by Dennis B. Jamison and Neville G. W. Cook., (LBL-7071, SAC-07).

8. Mining Methods used in the Underground Tunnels and Test Rooms at Stripa
by B. Andersson and P. A. Halen. (LBL-7081, SAC-08).
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ABSTRACT

The report concerns thermal conduction calculations for the three in-situ
heater experiments at Stripa which constitute part of the Swedish-American
Cooperative Program on Radioactive Waste Storage in Mined Caverns. A semi-~
analytic solution based on the Grein's function wethod has been developed for
an array of arbitrary time~dependent finite line heaters in a semi-infinite
medium. This method as well as a three dimensional numerical model using IFD
(Integrated Finite Difference) technique has been applied to model the field
situations at Stripa. Comparison has demonstrated that the finite line source
gsolution for the rock temperature is in excellent agreement with the numerical
model solution as well as with a closed form finite cylinder source solution.
It was found that maximum temperature rise in the rock within the two year
experiment period will be 178°C for the 3.6 kW full-scale heater experiment,
345°C for the full-scale experiment with a 5 kW ceatral heater and eight 0.72
kW peripheral heaters, and less than 200°C for the time-scaled experiment. The
ring of eight peripheral heaters in the second full-scale experiment will
provide a nominally uniform temperature rise within its perimeter a few weeks
after turn~on. The high temperature zone is localized throughout the duraticn
of all three experiments. Nevertheless, the effect of different spacings on
the thermal interaction between adjacent radioactive waste canisters will be
demonstrated by the time-scaled experiment. Detailed results are presented
in the form of tables, temperature profiles and contour plots. Predicted
temperatures have been stored in an on-site computer for real-time comparison

with field data,
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1.  BACKGROUND

A potential solution to the problem of isolating radioactive wastes may
lie in burying them in repositories excavated deep below the surface of the
earth in hard rock. Several important questions must be answered before the
effectiveness of such a solution can be assessed, or the design of a repository
commenced. In addition to those questions which normally arise in connection
with any major underground excavations, the disposal of radicactive wastes
introduces a number of new isaues of which there is now virtually no experience.
Important among these are the effects on a repository of the heat released by

the radioactive decay of the wastes.

In the short term, this heat is apt to result in significant increases in
the temperature of the rock around the canisters containing the wastes and of
the waste canisters themselves. In the long term, the temperatures in a limited
voiume of rock around the whole repository will increase. The magnitude of
these temperature changes will affect the entire strategy of the use and
design of such a repository. The maximum temperatures that can be tolerated
in the rock immediately around each canister will iimit the size and heat
output of each canister. These depend upon the nature of the radioactive waste
(spent fuel or reprocessed waste, for example) and the period it may have to
be cooled before burial. For any chosen specific heat output, the spatial
distribution of canisters has a significant effect on the density with which

the repository can be loaded.
2. PRELIMINARY CONSIDERATIONS

The significance of specific heat output and spatial distribution of
canisters can be illustrated using classical solutions to the equations of
heat conduction (Carslaw and Jaeger, 1959). For example, consider the tem-
perature increases, AT, at periods of 2 years and 30 years after burial of
heat sources approximating a point, a line, or a plane. The relevant solutions

for sources of constant heat output are as follows:
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i) FPoint source:

AT

1)

= Bt erfe
4rkr (4Kt)%

where th = heat output of point (W);
r = radius (m);

k = thermal conductivity (W/m°C);

Kk = thermal diffusivity (m2/5); and

t = time (s).

ii) Infinite line source:

Qi 4kt
AT = Yy [ﬂ.n (:E_) - 0.58 (2)

(for large values of t), where Ql = heat output per unit length (W/m), and

the remaining symbols are as defined above.

111) Infinite plane source:

%
- 1
K

ierfe

3
(4xt)’® ®)

where ka = heat output per unit area (W/mz), % = distance from the plane (m),
and the remaining symbols are as defined above.

For heat outputs of 1 kW for the point source, 0.1 kW/m for the line
source, and 0.01 kW/m2 for the plane source, the resulting temperatures at
different distances from these. sources have been calculated for periods of
2 years and 30 years after emplacement; these are plotted in Fig. 1.* For the
purposes of these calculations, typical thermsl properties for hard rock have
been used, namely, & conductivity of 2.5 W/m°C, a demnsity of 2600 kg/m3, and

#Because of the vast amount of results obtained, only selected figures essen~
tial tn the understanding of the report have been included in the text. For
the convenience of those readers who wish to read off numerical values from
the charts, a full set of figures is supplied in Vol. 2 of this report which
may be obtained from National Technical Information Service, 5285 Port Royal
Rd., Springfield, VA 22151.
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Fig., 1. Temperature rise at various distances from point, infinite line and
plane heat sources. Subscript indicates time (years) after emplace-
ment of the heat source. Thermal conductivity = 2.5 W/m°C, thermal
diffusiviey = 1.1 x 1078 u?/s.

a specific heat of 0.9 kJ/kg°C. These correspond to a thermal diffusivity of
1.1 x 1078 n?/s.
The most important characteristic to emerge from these results is the

extent to which the temperatures vary around the three different kinds of

sources. This variation i1s greater than a factor of 2, even though the heat
output for each source has been chosen to correspond to a constant thermal
loading of 0.01 kwlmz, agsuming that the point or line sources have a center-
to-center spacing of 10 m. These variations in temperature are exaggerated
in these simple calculations because the interaction of adjacent point and
line sources has not been taken into account. However, the decrease in tem-
perature with distance away from point and line sources 1s so great that the
effects of interaction would not obscure the character of the source after a

period of 2 years, not even after 30 years.
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It is important to recognize the dominance of geometrical attenuation of
the temperatures around these three different kinds of sources over distances
of the order of 10 m and time periods of up to 30 years. The thermal effects
on a potential repository cannot be defined adequately in terms of an average
thermal loading (kw/mz). An evaluation of these effects must take into
account the gecmetrical disposition of the canisters within the repository
and oi the interaction between the temperature fields generated by these heat

sources.
3. MOTIVATION FOR A COMBINED THEORETICAL AND EXPERIMENTAL STUDY

The above preliminary considerations are concerned mainly with the heat
effects on the scale of the whole repository. But more drastic thermomechani-
csl effects around each heat source are to be expected during the initial
period when temperatures near the sources are estimated to rise quickly by
200-300°C or more, this amount decreasing with distance. The thermomechanical

response of rock under such a temperature distribution has not been adequately

studied.

Thus two types of problems arise in the heat effects of radioactive waste
isolation in rocks:

1) the thermomechanical response of rock around each heat source,

2) the interaction among an array of heat sources.
In both cases, many critical issues have to be addressed. These range from
in-gitu rock property determination, heat conduction, presence of fractures,
and occurrence of water flow in fractures to thermzlly induced displacements

and stresses.

At the University of California Lawrence Berkeley Laboratory we have been
developing various semi-analytical and numerical models to simulate heat con-
duction, thermal convection, fracture flow and thermomechanical problems.
These are to be applied to model rock behavior when the rock is used as a

radicactive waste repository. However, in reality, rock properties at the

expected temperatures are not sufficiently well known; therefore the tempera-
ture fields aroumd heat sources in rock may well differ significantly from

those predicted. Also, the thermomechanical response of the rock to these

temperatures is mot well understood. To improve the adequacy of theoretical
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models and to validate them, 1t is necessary to collect comprehensive data on
temperatures and rock deformation and fracture in field experiments. Further-
more, these experiments will also identify the crucial physical phenomena that
should be included in a numerical model. A tested and validated numerical
model or procedure will be constructed, hopefully to describe expected rock

behaviors for any given site considered for radioactive waste storage.

4. THREE EXPERIMENTS BEING MODELED

One of the more important practical limitations is that any reaaonable
experiments should not last more than two or three years. Furthermore, many
national decisions concerning nuclear waste isolation will have to be made
within the next two to five years. As can be seen from the results shown in
Fig. 1, significant changes during the first few years in the temperatures
around point or line sources of heat, which approximate individual waste can-
isters, are confined to within a short distance of each source. It follows
that vital measurements of the temperature fields and rock behavior immediately
around individual sources of heat, representing waste canisters, can be made
within such a period of time, but that such measurements cannot be used to

evaluate interaction between adjacent sources of heat.

Fortunately, the dimensionless factor governing heat conduction has the

form r/(th)*, cf Egs. (1), (2) and (3). Geometrically identical temperature
fields can be generated around arrays of heat sources in shorter periods of
time by appropriate reductlons in linear scale. For example, if the linear
scale of the heat sources 1s reduced to one-third, then the time scale must be
accelerated by (1/3)“2 = 9 to maintain the same value of the dimensionless
factor r/(4Kt)*. Furthermore, by scaling the output of the heat sources
appropriately, the actual values of the temperatures in these fields can be
made identical. These properties make possible a time-scaled experiment in
which the effects of interaction between adjacent heat sources over equivalently
much longer periods of time than a few years can be measured in field experi-
ments of moderately reduced limear scale.
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Three separate experiments are underway at the Stripa mine in Sweden
(Witherspoon and Degerman, 1978) (Fig. 2) to provide field data to develop
and validate our understanding of the effects of heat sources on the behavior
of a granitic rock. These comprise two experiments using full-scale electrical
heaters to simulate the neat output of canisters of radioactive wastes of dif-
ferent ages and & time~scaled experiment tc study the thermal interaction be-
tween waste canisters in a repository. These experiments form an integral
part of LBL's contribution to the Swedish-American Cooperation Program on

Radioactive Waste Storage in Mined Caverns.

(b)

Fig. 2. Cut-away views of the LBL full-scale (a) and time-gscaled (b) heater
experiments at Stripa (aiter Witherspoon and Degerman, 1978).
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One of the full~-scale experiments involves the burial of an electrical
heat source about 0.3 m (1 ft) in diameter by 2.5 m (8 ft) in length into a
vertical borehole 0.4 m (16 inches) in diameter drilled 5.5 m (18 feet) into
the floor of a tunnel 338 m below surface. The second full-scale experiment
is identical to the first, save that there are 8 peripheral heaters situated
at a radius of 0.9 m (3 £t) around the main heat source (Fig. 3). The purpose
of these peripheral heaters is to enable the ambient temperature of the rock
around the main heat source to be raised at an appropriate stage of the experi-
ment, in order t reproduce the higher ambient rock temperatures that are
expected in the long term as a result of interaction between adjacent heaters.
Finally, the time~scaled experiment (Fig. 4) has been designed using a linear
scale of 0.32, which corresponds to a time scale of approximately 10.2, to
provide a means of measuring the interaction between adjacent canisters over
periods of time corresponding to decades rather than years. Practical con-

siderations limit the number of time-scaled heat sources which can be emplaced,
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but 8 heaters have been arrayed to provide measurements with a high degree of
geometrical symmetry. Two spacings of heaters, namely 3 m and 7 m apart,

correspond to spacings of about 9.6 m and 22.4 m on the full scale.

The first stage in the evaluation of these experiments has been to evalu-
ate the temperature fields that may be expected in the rock around these heat
sources at different times during the experimert on the basis of simple thermal
conduction. In addition to being the first step toward the ultimate goal of
developing viable theoretical models for radioactive repositories, these con~
duction calculations have (1) provided a rational basis for design of heaters,
instrumentation and layout of the instruments, (2) been used as input for
thermomechanical analysis, and (3) been stored in an on~site computer for
instant graphic comparison with field data. Thus the work of the present
authors involves not only the calculations but also writing the predicted data
on magnetic tapes in a readily readable format and file structure. The file
manipulation and graphics package implemented on the Modcomp computer at
Stripa includes input programs specially tailored to read these predicted
data tapes. Description of the data acquisition system, which includes the
Modcomp computer, can be found in a report by McEvoy (1978).

Prior to the LBL heater experiments, a pilot heater experiment was carried
out at the Stripa mine by Carlsson (1978) under the direction of Professor 0.
Stephansson, University of Lulel. This has provided valuable information for

the planning of the LBL experiments.
5. SCOPE OF PRESENT WORK

The work reported here consists of thermal conduction modeling using
semi-analytic and numerical methods. Section 6.1 contains the derivation of
the solution for an array of finite~length line heaters in a semi-infinite
medium, while Section 6.2 gives a brief review of the integrated finite-
difference numerical technique. Results are presented in Section 7 for the
various cases studied. These include a test case and two series of models for
the in-situ heater experiments at Stripa. The test case was modeled using
both semi-analytic and integrated finite-difference methods and served to
verify the various computer programs by numerical comparison. The fleld cases
were mostly modeled by the semi-~analytical method. BSeries 1 of the field
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cases, using average granite properties, was undertaken at a pre-design stage,
whereas Series 2, using small specimen laboratory data for the thermal proper-
ties of Stripa granite, is interded for numerical comparison with field data.

Results and implications are presented in Section 7.

6. THEORY

6.1 Semi-Analytic Solution

In order to render the heat tramsfer problem tractable by analytic methods
for the field situations described above, we made the following assumptions:
1) conduction is the only mode of heat transfer,
2} the rock medium is homogeneous and isotropic,
3} the heaters and the rock medium have the same constant thermal
properties,
4) the heaters are in direct thermal contact with the rock,
5) the rock medium can be considered infinite with uniform initial
temperature or semi-infinite with the heater drift idealized as
an isothermal or adiabatic boundary.
Under these assumptions the mathematical problem reduces to the solution of
the heat diffusion equation:

20 13T __Q
MRaiaer: k ®

where T = temperatwre

Q = heat gemeration per unit time per unit volume (in general
a Function of space and time)

t = time
k = thermal conductivity

k/pe = thermal diffusivity \

=
]

p = density
¢ = specific heat capacity per unit mass.

This inhomogeneous partial differential equation is to be solved with appro-
priate initial and boundary conditions.
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6.1.1 Green's Function Method

The Green's fimction method is a general technique to obtain closed form
representations of the solutions to inhomogeneour linear partial differential
equations with homogeneous or inhomogeneous boundary conditions. This method
1s well known among mathematical physicists and engineers and has been applied
to a wide {rariety of physical problems (Morse and Feshbach, 1953; Carslaw and
Jaeger, 1959; Chan and Ballentine, 1971). It can be shown (Morse and Feshbach,
1953) that the solution to the heat diffusion Eq. (4) is given by

t
T(r,t) -%ffq(;',t') G(r,t; r',t')av'at’
o v’

+1 fT(E',O) Gz, t; r',0)dv’
v
aT(x',t") 36(r,t52',t")
f —— &(z,t;r',t") - ——————— T(r’,t")|ds"dt’
(i 3n’

5)

where.G is the Green's functiom, r,t and r',t' are the spatial and time vari-
ables of the field and source points, respectively, V' denotes the volume
occupied by the distributed source, and S encloses the domain V over which the
solution is sought, The first term in Eq. (5) represents the temperature field
due to a digtributed volume source Q(r',t'), the second term represents the
effect(s) of the initial condition, and the third term the boundary conditions
(prescribed temperature or normal temperature gradient). This last term, in-
cidentally, forms the basis of the boundary integral equation method (Cruse
and Rizzo, 1975). Formally, therefore, a solution in the form (5) can be found
to the heat diffusion equation for an arbitrary heat source subject to any set
of compatible initial and boundary conditions. The problem is to find the

Green’s function and to evaluate the integrals.

v

For the field situations studied in this report, under the assumptions
stated above, it is necegsary to evaluate only the first term in (5). The
uniform initial temperature just corresponds to # shift in the temperature
scale and an isothermal or adiabatic boundary condition can be simulated by images.
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The Green's function in an infinite domain, or the temperature rise
6(z,t;r't') et position r at time t due to an impulse source of stremgth k at
r' at time t' is (Morse and Feshbach, 1953)

~fe-r|?
K D) ey 6

clr,t;r',t') =
= 8[me(e-t') 172

vhere H(t, ") =0, t<t'
=1, t>t'
is the Heaviside step function.

6.1.2 TFinite Line Source with Arbitrary Time-Dependent Power

For a line source of length 2b and arbitrary time-dependent heat genera-
tiog rate Ql(t') per wm.it length per unit time, choosing a coordinate system
such that x' = y' = 0, -b < 2' € b the temperature rise AT(x,t,z,t) is obtained
by substituting Eq. (6) into the first term cf (5) as

f qun (b- i
AT(x,y,z,t) - K 3/2] 73 f e 4 (t-t"') e ARE-E7) dz'de’
8k (k) 0 (t-t') LR
(7)

t 2 2,%

Introducing variables Y = t-t' and r = (x~ + y°)* into Eq. (7),
£ qem (0 oLzt 2
AT(x,z,t) = K 3/2J’. L3 373 J- e 4 e 4K dz'du (8)
8k(mx) 0 u 7

From the definition of the error fumction and a simple change of variables, it

1s easily shown that

b _ gz-z')2

e Gicu dz!? = (-m(-u)!![erfi 24b
2

ek

(_z=b ‘
- erf 9
= {200 ] @

-b
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Substituting back into (8) ylelds

2

-~

- 4Ky

AT(x,y,2,t) = FTFEJ‘ Qz(t 1) [erf, zth_| | opg)zb :, du
0

=3
(10)
2(|<u)!5 2(l<u);i

In the special case of a constant power line source, the temperature rise
can be expressed In an alternative form as follows,

J‘ J‘ lnc(t-t: )
AT(x,y,2,t) = dt'dz’
ak(1n<)3]2 372

From (8) we have

(t-t')
2.2
b « 87T
=~—K—Q!-‘3—/2-f e fx dtdz’
GR(m) ™ A o
i

(11)
where 52 = x2 + y2 + (z—z')2 = r2 + (z-—z')2 and T = (t—t')—;’, Now, from the
definition of the complimentary error function, erfe, it follows that

o 5212

- %

f e 4K d‘r:-ﬂerfc(S )
- 8

t

(12)
Yaxt
Inserting (12) imto (11) we obtain
2 o 2\
N Q, fh erfc[(—-————r +m§‘z:—z ) )J
AT(r,z,t)= — dz’ (13)
[ . [rZ + (z_z.)Z]%

For points in the mid~plane (2=0) of the heater,

2 2%
QZ erfc (______r 4::2' )
AT(t 0,t) = =

dz! (14)
0 (2 + 2%

The special case, Eq. (14), was the expression used by Backblom (1978) to
predict mid-plane temperatures for the pilot heater experiment at Stripa.
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6.1.3 Finite Cylinder Source with Arbitrary Time-Dependent Power

Closed form integral isolutions involving double integrals of Bessel func-
tion can be derived in a manner similar to that in the previous subsection for
a const 'nt, exponentially deczying (Mufti, 1971; Hodgkinson, 1977) or arbi-
trary time-dependent cylindrical heat source of finite height and £/1ite
radius (Chan and Remer, 1978).

6.1.4 Dimensionlegs Forms

In the present application where actual temperature measurements will be
availlable for comparison, it is convenient to evaluate the dimensional expres-
sions for temperature rises given above. For gencral usage it is often more
convenient to reduce the expressions to dimensionless forms. Inserting

dimensionless parameters

ok = 2
o= =
tk === x = KU
b2 T T2 s
. Q ()
Qz(t*) "2 , where Qﬂn = QJL(O)
Lo
Q
AT L
fr% = =, where T, = 522 /
R
into (10) for the finite line source gives
2
t* L.
: z¥41 z¥-1\le A
AT*(z*,z%, t*) = Q*z(t*-u*) erf __) - erf (———) +— du* (16)
24 2Axf ¥

0

vhich is entirely independent of material properties or heater length. Simi-

¥ 4 (gh—ty? ;5]
dz#!' anz

4t*

larly, Eq. (13) reduces to
1 erfc[

ATH*(xk, 2% %) = zf

21 Le# + (2% - 207
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Equations (15) to (17) allow one to convert the temperatures for one
particular set of heater power and thermal properties to those for another
set. Thus, for example, the temperature rise is directly proportional to heater
power per unit length and the quasi-steady state temperature rise 1s inversely
proportional to the thermal conductivity.

6.1.5 An Array of Heaterg in a Semi-Infinite Medium

Consider first an array of H parallel (finite line or finite cylinder)
heaters in an infinite medium. ZLet Qh(t) be the heat generation rate per unit
dimension (per unit lemgth for line, per unit volume for cylinder); th be the
length, and a, be the radius (only for the finite cylinder case) for the hth
heater; t be the time at which it is switched on; and (xh,yh,zh) be the
Cartesian coordinates of the mid-point of its axis in a chosen coordinate
system with the z-axis oriented parallei to the heaters. The temperature rise
AT(x,y,z,t) at a point (x,y,z) in an infinite medium at time t 1s then given
by

H
BTy o par ®oY22:8) = ggi ATh(rh’z_zh’t'thlQh’bh=ah) (18)

2 2
where 1, = [(x-xh) + (y—yh) g: and ATh(r,z,:-:thh,bh,ah) designates the tem-
perature rise caused by the h~ heater obtained by substituting the appropriate
variables and parameters into AT of Eq. (10) or the corresponding cylindrical

source solution, given in Chan and Remer (1978).

The effect of a plane adisbatic or isothermal boundary at z = z can be
simulated with positive or negative images, respectively. Thus the tempera-

ture rise caused by the array of heaters in a semi-infinite medium is

H
bTiotar = hz_:l ATy (ry sy t=ty [0 By 2y)
H
+ 11;1 ATh(rh,z—Zzo + 2z, t—thli'Qh,bh,ah) (19)

Here the positive or negative sign applies to an adiabatic or isothermal

boundary, respectively.
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On the basis of the theory presented above, two computer programs, FILINE
and CYNDER, have been developed. FILINE calculates the temperature distribu-
tion in a semi-infinite medium arising from 5 three~dimensional array of finite-
length line heaters with arbitrary time-dependent heat generation rate by
evaluating Eqs. (10) and (19). CYNDER does a similar calculation for
cylindrical heat sources of finite length and finite radius by evaluating the
double integral solution given in Chan and Remer (1978) instead of Eq. (10).
Initial results have been presented by one of the authors {T.C.) at the
Stripa Project Review Meetings in Berkeley, August 1977 and January 1978.

Comparison of numerical results using FILINE and CYNDER (see Section 7)
has demonstrated that the finite line model is sufficiently accurate for all
practical purposes. Consequently, the majority of field situations have been
modeled using FILINE which is computationally very efficient. 4s an illustra-
tion, the temperature field at 8000 points in three-dimensional space at 150
values of time, due to the eight-heater array in the time-scaled experiment,
requires 3000 C.U. (LBL CDC-7600 computing unit) to compute, corresponding to
1/400 C.U, per space~time point.

Computational efficilency is an important issue since the predicted tem-
peratures are to be stored in an on-site computer for contour plotting., Since
the temperature field for two of the experiments is three-dimensional, each data
file for contour and time-history plotting has to contain around 106 space-
time points. Another distinct advantage of this semi-analytical method is that
if the temperatures at a few specific points are required it is necessary only
to do the calculations for these points. By contrast, in numerical methods, such
as finite difference or finite element, the temperatures have to be calculated
over the whole domain. Furthermore, it may be difficult to comstruct a numerical
model to ensure an output value for every location of interest and, therefore,
one must sometimes resort to interpolation which adversely affects the accuracy.
Thus the amount of human as well as computational effort involved may differ
by orders of magnitude. Thls point is especially important during the design
stages when decisions on the geometrical configuration of the experiments and
instrume.:tation have to be made on the basis of prompt response from the

modeler.
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6.2 Numerical Model "ccC"

The numerical model "CCC” (for Conduction-Convection~Consolidation)
developed at the Lawrence Berkeley Laboratory (Lippmann et al., 1977) for geo~
thermal modeling tas been used for heat conductlon calculations for some of
field situations. This program solves coupled equations of heat and fluid
transport by means of an integrated finite difference method with an efficient
explicit-implicit iterative scheme for time integration (Edwards, 1972;
Narasimhan and Witherspoon, 1976). Vertical consolidation or rebound is incor-
porated assuming the one dimensional consolidation theory of Terzaghi. The
model is capable of handling one-, two-, or three-dimensional steady-state or
transient, nonlinear (conductive and convective) heat and fluid flow in a
heterogeneous igotropic, nonisothermal, saturated porous rock or soil medium.
Thermal and hydraulic properties may be temperature and/or pressure dependent;
deformation parameters may be nonlinear and nonelastic. The theoretical basis

and numerical techniques are described in references quoted above.

In the present application only heat conduction problems are considered.
When ground water is present, as appears to be the case for the Stripa site,
it may be necessary to invoke the full capability of the "CCC" program. At
present the CCC program cannot handle time~dependent heat sources or radiative

heat transfer bui only minor modifications are necessary to Incorporate these.
7. RESULTS AND DISCUSSION

7.1 Test Case

To verify the program FILINE, based on the finite line source solution,
a test case was analyzed. This test case congists of a 1 kW constant power
cylindrical heat source approximately 2.5 m in length and 0.2 m in radius
(corresponding to the dimensions of the full-size heater and heater hole
respectively) implanted in granitic rock. Thermal properties, of Set 1 in
Table 1, were assumed for both the heater material and the rock medium, unless
otherwise stated. Temperature rise above ambient was calculated using the
following three models:
Model Tl: Constant power finite cylinder in infinite medium using
program CYNDER based or. Green's function solution
Model T2: Constant power finite line in infinite medium using
program FILINE based on Green's function solution
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Table 1. Material Properties of granite used in thermal calculations.

Propertya Unit Set lb set 2°
Density, p ke/m 2600 2600
Specific heat, c J/(kg°C) 897 837
Thermal conductivity, k W/ (m°C) 2.5 3.2
Thermal diffusivity, K n?/sec 1.078 x 0% 1.47 x 1078

aOnly thermal conductivity and thermal diffusivity are required for the
calculations. The other two are also given since thermal diffusivity
is upually deduced from measured values of conductivity, density, and

specific heat.
bAverage granite properties used in Model Series 1.

®Based on laboratory data for Stripa granite (Pratt et al., 1977) used in
Model Series 2. Thermal conductivity decreases with temperature. The
value of thermal conductivity used here corresponds to the laboratory
data at approximately 100°C.

Model T3: Constant flux* finite cylinder model using the CCC program
with boundary conditions as illustrated in Fig. 5.

!
1

(]
hl

y ™
4 Dis
3 meters §
B =4
Smeters 4
4 o
kW heoter -
Z.Smmvs r::nnsianl flux} g
Fig. 5. System geometry and boundary ‘E.. 7:’ 20

conditions for CCC model of the E Emt'"s
test case. ABC - Newton's Law of - S
Cocling with heat transfer s s =
coefficient 3.4 W/m?°C; CEDF ~ wbers,, =
isothermal or adiabatic boundary. ':'x; E

:

Constont temparature
{10*C} boundory

l'_— 1om —| XBLTAE-E32

*A congtant flux CCC model was used mainly to demomstrate that the details of
the heater assembly (whether behaving as constant power or constant flux source)
had little effect on the rock temperature. The two kinds of sources differ only
by a transient of very short duration compared with the time of iInterest.
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Comparison of temperature rises at the wall of the heater hole (where the
difference is expected to be largest) as predicted by T1 and T2 (see Table 2)
ghows that except at very short times, there is excellent agreement, as one
may expect from the short thermal diffusion time (td ~ azllm ~ 0.22/4 x 10" %sec.
- 104 sec. v 0.1 day) across the radius of the heater and the small heat

capacity of the heater assembly,

Table 2, Comparison of temperature rises at the wall of heater-hole
(r=0.,203m z = 0) due to a é kW finite cylinder source®
and a 1 kW finite line source.”s?¢

Time ~— Temperature Rise (°C) — —— Difference —~
(day) Cylinder Line °c 4
1 22,586 23.210 0.624 2,7
2 . 30.768 31.099 0.331 1.1
3 35.458 35.689 0.231 0.6
5 40.947 41.102 0.155 0.4
10 47,281 47.386 0.105 0.2
50 56.812 56.889 0.077 0.1
100 59.199 59.276 0.077 0.1
730 62.879 63.031 0.152 0.2

%Length = 2.44 m, radius = 0.203 m.

bBEckblom (1978, has made a similar comparison.

®Material properties of Set 1 in Table 1 were used.

Various profiles of temperature rise from Model T2 have been plotted in
Figs. 6-8. 1In these as well as in other figures, r,z and R,Z have been used
interchangeably. - Temperature rise, AT, rather than actual temperature, T, has
been plotted because the former quantity is directly proportional to heater
power. It 1g observed that there is a very steep radial temperature gradient
within & zedius of 0.5 m from the heater centerline throughout the 730 day
period (Fig. 6). In general, temperature increases with time, while thermal
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Fig., 6. Tewperature rise in an infinite medium
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Thermal conductivity = 2.5 W/m°C, rhermal
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gradients at the outer boundary of the heated zone decrease with time. There
is little change in the temperature field between 90 and 730 days (Fig. 6).
In'fact, the temperature does not change by mwore than 2°C anywhere over the
time interval 200-730 days (Fig. 7). Table 3 lists the time required for the
temperature rise at various radial distances to reach 50%, 75%, and 90% of
its value at the end of 730 days. Evidently, the temperature field within a
radius of 2 m of the heater may be said to have attained a quasi-steady state
in less than one year. Figure 8 i1llustrates the rapid drop of temperatures
beyond the top of the heater for small radial distances.

Table 3. Time required for témperature rise (AT) at various radial distances
(r) to reach 502, 75Z and 90% of the value at the end of 730 days~-
Test Case (1 kW full-scale heater).

AT Time, Days
r,m (730 days) 50% 75% 90%
0.2 63.0 2.0 8.4 45.0
0.5 40.2 : 4.8 20.0 80.0
1.0 24.5 12.5 40.0 140.0
2.0 13.0 36.0 105.0 300.0

Regults from Model T3 in which Newton's law of cooling with a heat
transfer coefficient of 3:4 W/m2°c was assumed at the drift boundary ABC,
Fig. 5, and isothermal boundary condition was applied at CDEF, Fig. 5, are
presented in Figs. 9-11. A slightly different set of thermal properties
(k = 2.5W/n°C, K = 1.15 x 10"° n’/sec) has been used. Consequently, the
numerical values given in these figures are not exactly comparable to the
other two models. Certain qualitative features, however, can be noted.

o The temperature field is asymmetric due to the convective

boundary at the periphery of the drift (Figs. 9 and 11).
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Fig. 9. Isotherms of temperature rise on day 88 and day 364 for the
model depicted in Fig., 5 with CDEF as isothermal boundary; vertical
section. Thermal conductivity = 2.5 W/m°C, thermal diffusivity =
1.15 x 1076 n2/s,

o There are only slight temperature increases in the rock around
the drift implying that isothermal boundary condition would

be a reasonable first approximation (Fig. 9).

The heated zone is localized throughout the modeled period

(Fig. 9, see also Fig. 6 and Fig. 13)., This 1is due to the low
thermal diffusivity of granite. Although granite has relatively
high thermal diffusivity among crystalline rocks, it is still

a poor thermal conductor compared with other materials. It can
be seen from Fig. 6 (also Fig. 16 below) that the 50% and 25%
(of the maximum AT in the rock) incremental isotherms migrate by
less than 1 m and 2 m respectively in a radial direction from

the heater in two years.
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Fig. 10, a & b. Temperature rise as a function of radial distance along
heater mid-plane for the same model as in Fig. 9, (a) linear scale,
(b) semilog scale. Thermal conductivity = 2.5 W/m°C, thermal
diffusivity = 1.15 x 1078 n?/g,

o A steady-state 1s reached in 364 days as a result of the
artifact of an isothermal boundary CDEF of Fig. 5, at a finite
radial distance, acting as a spurious heat sink.*

o The temperature rise along mid-plane exhibits a logarithmic
r-dependence in the range 0.2 € r < 2m in qualitative agree-
ment with Eq. (2), Fig. 10b.

For the purpose of numerical comparisom, two additional rums, with iso-
thermal and adiabatic boundary conditions respectively at CDEF, were made,
this time using thermal properties Set 1 of Table 1. The very close agreement
between the predictions of Models T2 (constant power finite line source) and
T3 (constant flux cylindrical source), ag shown in Flg. 12, confirms .the con-
sistency between the programs FILINE and CCC, which are based upon entirely
different algorithms.

The agreement between the two models can be understood by examination of

*This spurious effect could have been avoided by moving the boundary CDEF to
a sufficient distance from the heater. ‘However, this line of approach has not
been pursued further in the present work.
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Fig. 11, Axial profile of tempera-
ture rise near heater for the
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same model as Fig. 9.
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Fig, 12. Comparison of mid-plane radial pro-
files of temperature rise on day 364 as
predicted by different models. Thermal con~
ductivity = 2,5 §¥/m°C, thermal diffusivity
= 1.078 x 10-6 n /s,
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Fig. 7 for the constant power source. Except for the first few days the

thermal gradient over r = 0.2 to 0.5 m remains practically comstant. Physi-
cally what happens is that because of the small heat capacity of the heater
assembly (or the cylinder of rock that replaces the heater in the models), the
thermal gradient right next to the heater rises rapidly with consequent increase

in the heat flux ihto the rock, so that a balance between the heat generated
by the heater and the amount dissipated as flux across the heater surface is

almost immediately achieved. From this one may hypothesize that the details
of the heater assembly have little effect on the rock temperature. Furthermore,
if the annulus of rock between r=0.2 and 0.5 m decrepitates, there would only
be minor perturbations in the form of a short transient on the temperature
field in the rock outside unless the decrepitated rock acts as a nearly perfect
thermal insulator. A similar conclusion cannot be reached regarding the tem—

peratures of the heater, and detailed numerical analyses are necessary.

7.2 Field Cases

The three field cases in the Stripa mine described in Section 4 were
modeled. Two series of thermal calculations were undertaken, the first with
average granite properties (before laboratory data became available) providiag
preliminary predicted temperatures for experimental design, and the second
with Stripa granite properties as measured in the laboratory (Pratt et al,
1977), yielding predicted temperatures that have now been stored in the on-
site computer at Stripa for real-time comparison with field data. The two

series of models are described separately below.

7.2.1 Model Series 1

In this series of models the peripheral heaters in one of the full-scale
experiments were assumed turned on concurrently with the main heater, and
material properties, Set 1 in Table 1, were used. When the thermal properties
of Stripa granite were measured in the laboratory (Pratt .* al, 1977), the
thermal conductivity and diffusivity (Set 2 fn Table 1) were found to have
higher values than in Set 1. Consequently Model Series 1 overestimates the
expected temperatures. It is a simple matter to scale the predicted tempera-
ture rises to those pertinent to Stripa granite usiﬁg the scaling factors

given in Section 6.1.4.
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Table 4 summarizes the three field situations at Stripa, the source

functions, boundary conditions, and computer programs used, and serves as an

index for the figures pertinent to the various ce.es studied. The boundary

conditions "isothermal" or "adiabatic” refer to the semi-~infinite medium
models where the floor of the heater drift is idealized as an isothermal or

adiabatic plane boundary, respectively. The results are presented in Figs.

13-48 from which the following points emerge.

e}

The wall of the heater hole is very nearly isothermal and the
isotherms are nearly vertical for small radial distances from

the heater (see Figs., 13-15), However, even shortly after
turn-on, a vertical thermal gradient exists, meaning that

results predicted by an infinite line source model would not

be accurate.

The rock within a 2 m radius of the heater reaches a quasi-steady
state in approximately one year (see Figs. 13-15), so that a two-
year operaticn period 1s certainly sufficient.

The heated zone remains localized throughout the two year-

period (Figs. 13-15),

The influence of the boundary condition at the driftr floor is
felt between one and three months after turn-on (Figs. 14 and 15).
Adiabatic boundary condition leads to highest temperatures

while isothermal boundary condition leads to highest vertical thermal
pradients, as expected (Figs. 14 and 15). Comparison among

Figs. 9, 13 and 14 reveals that the true convective boundary
condition lies somewhere between the isothermal and infinite
medium idealizations.,

The 25% incremental isotherm migrates by leass than 1 m varti-
cally and less than 2 m radially in two years (Fig. 16), with
progressively slower spreading ve?:ity since the volume of

the shell of rock that has to be heated up is proportional

to the thickness squared.

Temperatures predicted using the three different boundary

conditions are drastically different near the drift floor
and quite similar near the mid-plane (Figs. 17 and 18).
Relative difference between AT for the three cases are not
negligible even along mid-plane for r > 1m toward the end
of the experiment (Fig. 19).



Table 4.

Different cases in Stripa Thermal Madel Series 1.
Model Boundary Program

Fleld Situation Designation Source Function Condition(s) Used Figures
Expesriment 1: One 1A infinite medium a 13,17,18,19
3.6 kW full-gcale iB consgtant power igothermal FILINE 14,16,17,18,19
heater 1c adiabatic 15,17,18,19
Experiment 2: One 24 constant power, infinite wedium 20,21,22,23,29,30,31
5 kW full-scale 2B all heaters on isothermal 24,25,26,29,31,31
central heater and 2C adiabatic 27,28,29,30,31
eight 1 W 2D constant power, infinite wedium FILINE 32,33,34,35
peripheral heaters 2E only peripheral isothermal 36,37

2F heaters on adiabatic 38,39
Expeniment 3: 3A constant power infinite medium FILINE 40-44
Eight time-scaled
heaters (1.125 kW 3B constant power isothermal cCCb 45-48
initial power) 3C constant power adiabatic ccc 45-48

3D one constant power adiabatic, ccc

time-scaled heater

cased borehole

OFILINE = program based on closed form integral solution for finite linme source (see Secticn 6.1).

b

CCC = numerical code using integrated finite differeuce method.

-Q7-
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Fig. 13b, d, e, £. Isotherms of temperature rise (°C) in granite caused by one
3.6 kW full-scale heater at time = 7, 90, 365 and 730 days; wvertiecal
section, infinite medium model (14). Thermal conductivity = 2.5 W/u°C,
thermal diffusivity = 1.078 x 10~0 m2/s,
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Figs. 13d, 14d, 15d. Isotherms of temperature rise (°C) in granite
caused by a 3.6 kW full-scale heater at time = 90 days under three
different assumed boundary conditions: infinite medium (Model 1A),
Fig. 13d, heater drift modeled as isothermal boundary (Model 1B),
Fig. 14d, and heater drift modeled as adiabatic boundary (Model 1C),
Fig. 15d. Vertical section through axis of heater is illustrated.
ngernal conductivity = 2.5 W/m°C, thermal diffusivity = 1.078 x 10~6
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mid-plane as predicted by Models 1A, 1B and 1C, Thermal conductivity
= 2.5 W/m°C, thermal diffusivity = 1.078 x 10”8 m?/s.
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o Interaction between central and peripheral heaters (Experiment
2) is almost immediate with the 5°C and 100°C isotherms
enveloping all the heaters in one and seven days, respectively
(Figs. 20-22 and 24-27).

© The three-dimensional nature of the model is evident from the
various vertical and horizontal sections (Figs. 20-22 and
24-28) .

o A few weeks after turn-on, the ring of peripheral heaters
produces a nominally uniform temperature rise within its
perimeter (Figs 32-39, Models 2D, 2E and 2F), Thus these
peripheral heaters physically duplicate a condition that
might prevail in an actual repository where, over a period
of several decades, heat from the interaction of large
arrays of waste canisters ralses the ambieni rock tempera-
ture around a canister without Introducing an additiomal
thermal gradient.

o The ambient temperature caused by the peripherals is well
in excass of 100°C (Fig. 35), even after scaling for thermal
properties. A uniform temperature increase of 100°C induces
approximately a milli-strain (e ~ AT ~ 100 X 10-5 =10"7)
which is already very significant for crystalline rock.
Accordingly, it was decided that the power of peripheral
heaters be reduced to give an ambient temperature rise of
about 100°C. Furthermore, concurrent turn-on of all heaters
which produces a condition resembling sequential emplacement
of canisters in the repository (the ambient rock is hot shortly
after emplacement), leads to very high temperatures (235°C
after scaling for Stripa granite properties), exceeding the
ratings of the extensometers and stressmeters within a 1 m
radius of the main heater. To ensure that sufficient amounts
of data are collected before instrument failure, it was decided
that the peripheral heaters should be delayzd. This latter
schedule resembles the situation of simultaneous canister
emplacement in a repository, i.e. ambient rock temperature is
raised by the heat from other canisters in the array, only after
quasi-steady state has been approached locally in the immediate
vicinity of a particular canister.
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Fig. 20a, b, d, £. Isotherms of temperature rise (°C) in granite
caused by a 5 kW full-scale central heater and a ring of eight 1 kW
peripheral heaters (turned on simultaneously) at time = 1, 7, 90,
and 730 days; vertical section through azes of central heater and one
peripheral heater; infinite medium model (ZA%' Thermal conductivity
= 2.5 W/m°C, thermal diffusivity = 1.078 x 107° m2/g, °
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Fig. 22a, b, d, f. Isotherms of temperature rise (°C) in granite
caused by a 5 kW full-scale central heater and a ring of eight 1 kW
peripheral heaters (turned on simultaneously) at time = 1, 7, 90,
and 730 days; horizontal section through mid-plane of heaters;
infinite medium model (2A). Thermal conductivity = 2.5 W/m°C,
thermal diffusivity = 1.078 x 10-6 n2/s.



-33-

12 3 4 5 6 T 6
Radiol distonce (m)

mL TSt

G N L O -

N

Verticol distonce from midplone (m)

[
N O o

]

Verticol distance from midpions (m}

O

i -2 .
i 3 ]
4 - N
A 5 _
@ 's i
. 4 M
1 i ] 1 3 1 1 ] 1 1 1 | I | 1 1 1
Z 3 4 5 6 7 8 9 eI e 5 6 7 8 9
Rodial distonce (m) Radiol distance {m)

- - 7MY

Fig. 32a, ¢, d, £. Isotherms of temperature rise (°C) in granite

caused by a ring of eight 1 kW peripheral heaters at time = 1, 30,
90, and 730 days; vertical section through axis of ome peripheral
heater and the central axis of the ving; infinite medium model
(2D). Thermal conductivity = 2.5 W/m°C, thermal diffusivity
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infinite medium model (2D).

Thermal conductivity = 2.5 W/m°C,
n?/s.
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Fig. 35. Radial profile of tempera-
ture rise along mid-plane of ring
of peripheral heaters at various
times as predicted by Model 2D
(infinite medium)., Thermal con-
ductivity = 2.5 W/m°C, thermal
diffusivity = 1.078 x 10-6 m?/s.

o Because of the proximity of the top of the peripheral heaters
to the drift floor, their temperature field is influenced sooner
and to a greater extent by the boundary condition (Figs. 36-39).
This should be borne in mind when comparing field data with theory.
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Fig. 32d, 36d, 38d. Isotherms of temperature rise (°C) in granite
caused by a ring of eight 1 kW peripheral heaters at time >~ 90 days
under three different assumed boundary conditions: infinite medium
(Model 2D), Fig. 32d, heater drift modeled as isothermal boundary
(Model 2E), Fig. 36d, and heater drift modeled as adiabatic boundary
(Model 2F), Fig. 38d. Vertical section through axis of ome peripheral
heater and the central axis of the ring is illustrated, Thermal comn-
ductivity = 2.5 W/m°C, thermal diffusivity = 1.078 x 1076 m?/s.
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In the time-scaled experiments (Figs. 40-44) thermal interaction
beging in about a week (in the form of merging of the 5°C
incremental isotherm) between two heaters at 3 m spacing
(corresponding to 9.6 m in full scale), and in about 3 months
between two heaters at 7 m spacing (corresponding to 22.4 m in
full scale). After two years (20.4 years full scale), all the
heaters are interacting (at the 20°C or 30°C level), but the
temperature distribution is still far from being uniform.
Therefore, in designing a repository to ensure retrievability,
it is important to carry out detailed canister arrangement

studies rather than to use grosa thermal loading as the sole

revrerey
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Fig. 40. Full-plane pattern of temperature rise
in horizontal section through mid-plane of
time-scaled experiment on day 730; constant
source, Model 3A. Thermal conductivity =
zi? W/m°C, thermal diffusivity = 1.078 x 10~6
m-/s.
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thermal criterion. The low isotherms have elliptical shape
(ellipsoidal in 3-dimensional space) after two years, so that
the time-scaled experiment does resemble a scaled down
repository.

o The scaling is correct. As an example, 30 days after turn-on
the temperature rises by 30°C at 0.5 m from the heater at the
end of the time-scaled array (Fig. 41). A similar temperature
rise obtains at r = 1.6 m, one year after turn-on of the single
3.6 kW full ecale heater (Fig. 14).

o A coarse-mesh CCC model for the time-scaled experiment (Fig. 45)
yields generally similar temperature fields (Figs. 46-48) to
those predicted by the finite line model.

o A CCC conduction calculaticn (case 3D) shows that only a negligible
fraction of the time-scaled heater power will be lost through
vertical conduction up the gtainless steel heater canister.
This result is reasonable in view of the very small cross-
sectional area of the steel piping used as the canister.

7.2.2 Model Series 2

This series differs from the previoue in two respects:
1) The peripheral heaters in Experiment 2 are assumed to be turmed
on 180 days after the central heater and operated at a power of

0.72 kW each,

2) Thermal properties, Set 2 in Table 1, as measured in laboratory
specimens of Stripa granite (Pratt et al, 1977) were used.
A value of 3.2 W/w°C for the thermal conductivity was arrived at in the
following manner. First, the CCC model T3 (see Section 7.1) with 3.6 kW
power was run using the measured temperature-dependent thermal conductivity

(Pratt et al, 1977) \
K(T) = 3.60 - 0.3745-107T (W/m°C)

Next, a few more runs of the same model were made with different constant
thermal conductivity. It was found that a constant k = 3.2 W/mn°C gives the
best general agreement with the temperature-dependent thermal conductivity

model.
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Fig. 41, c, e. Isotherms of temperature rise

(°C) in granite caused by an array of eight
constant 1,125 kW time-scaled heaters;
horizontal section through mid-plane of the
heaters; Model 3A. Only one quadrant is
plotted because of the symmetry resulting
from assumed istropy. Isotherms are at 10°C
intervals unless otherwise indicated. Thermal
conductivity = 2,5 W/m°C, thermal diffusivity
= 1.078 x 10~6 n?/s.
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Five different cases using FILINE have been completed in this series,
i.e., the infinite medium model for each of the three heater experiments and
isothermal houndary model for the two full-scale experiments. Results are
presented in Tables 5-7, in AT vs. time profiles (Fig. 49 for Experiment 1;
Fig. 50 for Experiment 2) and contours {Fig. 51 [infinite medium] and Fig. 52
[isothermal boundary] for Experiment 1; Fig. 53 [infinite medium) and Fig. 54
{isothermal boundary] for Experiment 2; and Figs. 55-59 for Experiment 3
[time-scaled experiment]). Constant power calculations for Experiment 3
glving conservative estimates are presented here. Results for decaying power
will be available shortly.

The results do not reveal any qualitative difference from those of Series
1 except for the "two-step" nature of the radial profiles for Experiment 2
arising from the delayed turn-on of the peripheral heaters. Therefore, pre~
vious comments on Series 1 results that also apply here will not be repeated.
Several important points can be noted:
o Maximum temperature rises in the rock are 177,8°C in Experiment
1; 344.8°C in Experiment 2, and 199°C in Experiment 3.

Table 5. Time required for temperature rise (AT) at various radial distances
(r) to reach 50%, 75% and 90% of the value at the end of 730 days——
Stripa Thermal Model Series 2 (thermal properties, Set 2, Table 1),
Experiment 1 (3.6 kW full scale heater).

AT Time, Days
r(m) (730 days) 50% 75% 90%
0.203 177.8 1.5 7.4 37.5
0.5 114.0 4.2 16.7 71.0
1.0 70.3 11.3 37.0 131.0
2,0 37.2 29.3 90.0 243.0
5.0 12.6 118.0 258.0 458.0

*Experiment 1 = full scale 3.6 kW, Experiment 2 = full scale 5 kW with
peripherals, Experiment 3 = timed-scaled experiment.
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Table 6. Time required for temperature rise (AT) at various radial distances
(r) to reach 50%, 75%, and 90% of the value at the end of 730 days--
Stripa Thermal Model Series 2 (thermal properties, Set 2 of Table 1),
Experiment 2 (5 kW full-scale heate:. with eight 0.72 kW peripheral
heaters turned on 180 days later).
AT Time, Days
r (m) (730 days) 50% 75% 90%
0.203 344,76 5.1 183.2 213.0
0.5 256.80 27.0 188.2 235.0
1.0 195.65 180.5 194.7 262.4
2.0 105.46 187.0 227.6 500.8
5.0 36.17 238.7 355.0 517.0
Table 7. Temperature rise (°C) at various radial distances and time for the
Stripa full scale experiment 2 (5 kW Full-scale heater with eight
0.72 kW peripheral heatexs turned on 180 days later)-Model Series
2 (thermal properties, Set. 2, Table 1}.
“Pime Radial Distance (m)
(day) 0.203 0.5 1 2 3 5
1 102.6 28.9 2,59 0 0 0
5 171.9 85.3 31.3 3.6 0.3 0
10 194.1 106.3 48.2 10.9 2.2 0
30 218.8 130.3 70.1 26.2 10.7 1.66
90 233.6 145.0 84.3 38.8 21.0 7.2
180 239.6 151.0 90.3 44,4 26.2 11.2
210 308.7 221.0 160.4 72.5 39.0 14.1
270 326.2 238.3 177.3 87.6 51.6 21.5
360 334.6 246.6 185.5 95.5 59.0 27.4
730 344.8 256.8 195.7 105.5 68.6 36.2
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time-scaled experiment (constant power 1.125 kW) at time = 7,
90, 180, 360 days; horizontal section through mid-plane of the
heaters, Model Series 2. Thermal conductivity = 3.2 W/m°C,
thermal diffusivity = 1,47 x 10~% m/s,
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Fig. S6a, b, d, e.

Isotherms of temperature rise (°C) in Stripa time-

scaled experiment (constant power 1.125 kW) at the end of 73 days;
horizontal section at vertical distances of 1, 2, 4, 6 m from mid-

plane, Model Series 2.
diffusivity = 1.47 % 107

Ehermal conductivity = 3.2 W/m°C, thermal
n?/s.
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As Stripa granite has higher thermal diffusivity than average
granite, a quasi-steady state is reached more promptly than

in Model Series 1 (cf. Tables 3 and 5).

A delay of 180 days for the turn-on of the peripheral heater

is sufficient (Fig. 50a).

The ring of peripheral heaters raises the temperature of the
rock within its perimeter by about 100°C a few months after
turn on but does not introduce additional thermal gradients.
This is clear from the nearly parallel curves in Fig. 50a.
Midway between the two full-scale experiments (r = 11 m), the
rock temperature 18 raised by 4°C by Experiment 1 and 11°C

by Experiment 2. Thermal interference between the two experi-
ments is, therefore, minor.

Maximum heat flux into the heater drift was found to be
slightly less than one-third of the total power of the heater
array in Experiment 2 with isothermal boundary conditions.
Time-scaled heaters at 3 m spacing interact at the 30°C level
in 90 days while those at 7 m spacing only interact at the 20°C
level even after 730 days when the 40°C isotherms have already
merged for the more closely spaced heaters (Fig. 55). Thus the
time-scaled experiment will demonstrate tiie effect of different
canister spacing in a repository over a period of 20.4 years.
Various horizontal sections (Fig. 56) illustrate that at short
vertical distances from the time~scaled heater array, the
presence of the individual heaters can still be recognized.
However, further above (e.g. 6 mabove mid-plane), no trace of
individual heaters can be distinguished. Thus the 10°C
incremental isotherm is an ellipsoidal surface after the
heaters have been operating for two years.

Throughout the duration of the experiments the temperature
rise is less than 100°C at a radius of 2 m from the central
heater in Experiment 2 (Fig. 53, 54) and less than 50°C, 1 m
from any heater in Experiment 3 (Fig. 55), so the high tempera-
ture zones are localized in all three experiments. Therefore,
in order to physically simulate the thermal effects on the
excavation and repository scales, it 1s necessary to carry out

other types of heating experiments whereby a large volume of
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rock is heated up, e.g., by using many electrical heaters, by
dielectric heating or by pressurized hot water heating.

8. SUMMARY AND CONCLUSION

Thermal conduction calculations have been carried out for the three
heater experiments at Stripa using a semi-analytic method based on the Green's
function solution of a finite length line source in & semi-infinite wmedium as
well as a numerical model based on the integrated-finite-difference technique.
The more important results cen be summarized as follows:

o Geometric attenuation is an important factor. Therefore, in
evaluating the near~field thermal effects of a planar repository,
the detailed geometrical arrangement of the waste canisters
should be taken into accoumnt.

o Results from a seml-analytic constant power finite line source
model are in close agreement with those from a constant flux
nunerical model.

o The boundary condition at the floor of the heater drift has
negligible effect on the temperature field close to the mid~
plane of the full scale heaters in the first few months of
operation.

o The correct boundary condition should lie somewhere between the
infinite medfium and isothermal boundary idealizations.

o The temperature fields within a 1 m radius of the central heater
in the two full-scale experiments approach a quasi-steady state
3 or 4 wonths after the turn-on of the central heater or the
peripheral heaters.

o The local temperature gradient within a 0.5 m radius of the
central heater reaches a maximum within a few days of start-up
and hardly changes thereafter.

o Thermal gradients near the outer edge of the heated zone decline
with time.

o There 18 a vertical temperature gradient throughout the duration
of the experiments.

o A ring (0.9 m radius) of eight 0.72 kW peripheral heaters will
provide a nominally uniform temperature rise within its perimeter
a few weeks after turn-on, thereby increasing the amblent rock
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temperature just as it would in a repository when a large array
of waste canisters interact. The maximum temperature rise due
to the peripheral heaters is approximately 100°C.

The scaling for the time-scaled experiment is correct in the
sense that the temperature increases 0.5 m from a 1.125 kW

time~scaled heater 30 days after turn-on is equal to that 1.6 m
from a 3.6 W§ full-scale heater 306 days after turn-on.

Two time-scaled heaters at 3 m (corresponding to 9.6 m in full
scale) spacing interact at the 30°C level in 90 days (corres-
ponding to 918 days in full scale) and at the 40°C level in 730
days (corresponding to 20.4 years in full scale), whereas two
time~scaled heaters at 7 m (corresponding to 22.4 m in full scale)
interact only at the 20°C level in 730 days.

Toward the end of the time-scaled experiment the 5°C and 10°C
ineremental isotherms have ellipsoidal shapes, as expected for

a planar repository.

Maximum temperature rise in the rock has been predicted to be
178°C for the 3.6 kW full-scale heater experiment, 345°C for

the full-scale experiment with a 5 kW central heater and eight 0.72
peripheral heaters, and less than 200°C for the time-scaled experiment,
The high temperature zonme is localized throughout the duration

of all three experiments. In the second full-scale experiment

(5 kW) the 100°C incremental isotherm 1ies within a 2 m radius
while in the time-scaled experiment the 50°C incremental iso-
therm has a radius less than 1 m.

It can be concluded that while the type of heater experiments
modeled in the present work provides indispensable information

on the thermal effects in the immediate vicinity of an individual
canister as well as the effect of different spacing on thermal
interaction between adjacent canisters, it will be necessary to
carry out larger scale heating experiments to evaluate the
thermal effects on the excavation and repository scales.



51—

ACKNOWLEDGMENTS

We would like to acknowledge the assistance of J. Chin, N. Littlestone,
and J.S. Remer for their assistance in computer programming. We also wish
to extend our thanks to Drs. C.W. Miller and P. Nelson for a number of com—
ments which helped to improve the clarity of the presentation. We also
thank C. Goranson and M. Lippmann for their help in the use of the CCC model.



-52-

REFERENCES

Béckblom, G., Appendix I in Carlsson, H., A Tilot Heater Test in the Stripa
Granite, Lawrence Berkeley Laboratory Keport LBL-7086, SAC-06 (1978).

Carlsson, H., A Pilot Heater Test in the Stripa Granite, LBL-7086, SAC-06
(1978) .

Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids (Oxford University
Press, 1959).

Chan, T.and Ballentine, L.E., Physics and Chemistry of Liquids 2, 165 (1971).

Chan, T. and Remer, J.S., Thermal and Thermomechanical Modeling of in situ

Heater Experiments at Hanford: Preliminary Results, Lawrence Berkeley
Laboratory Report LBL-7069 (1978).

Cruse, T.A. and Rizzo, F.J. (eds.), "Boundary-Integral Equation Method:
Computational- Applications in Applied Mechanics," Proc. Am. Soc. Mech.
Eng. Spec. Pub. 11 (1975).

Edwards, A.L., TRUMP: A Computer Program for Transient and Steady State
Temperature Distribution in Multidimensional Systems, Lawrence Livermore
Lab, Rpt. UCRL-14754, Rev. 3., 1972.

Hodgkinson, D.0., Deep Rock Disposal of High Level Radioactive Waste:
Transient Heat Conduction from Dispersed Blocks, AERE-R-8763 (1977).

Jackson, J.D., Classical Electrodynamics, 2nd edition (Wiley, New York,
1975).

Lippmann, J.M., Tsang, C.F. and Witherspoon, P.A., Paper SPE 6537, presented
at 47th Annual California Reglonal Meeting of the Soc. of Petrol. Eng.
of AIME, Bakersfield, California, April 1977.

McElroy, M.B., "Data Acquisition, Handling and Display for the Heater Experi-
ments at Stripa,” LBL-7062, 1978.

‘Morse, P.M. and Feshbach, H. Methods of Theoretical Physics (McGraw-Hill,
New York, 1953). o



=~53-

Narag{mhan, T.N. and Witherspoon, P.A., Water Resour. Res., 12, No. 1.,
p. 57-64, 1976.

Mufti, I.R., Journ. Geophys. Res. 76, 8568 (1971).

Pratt, H.R., Schrauf, T.A., Bills, L.A., and Hustrulid, W.A., Thermal r d
Mechanicasl Properties of Granite: Stripa, Sweden, Summary Report TR-77-
92 (Terratek, Salt Lake City, Utah, 1977).

Witherspoon, P.,A, and Degerman, 0., Swedish-American Cooperative Propram on

Radioactive Waste Storage in Mined Caverns Program Summary, LBL-7049,
SAC-01 (1978).






