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Abstract

Many test statistics are asymptotically equivalent to quadratic forms of normal variables,
which are further equivalent to T =

∑d
i=1 λiz

2
i with zi being independent and following

N(0, 1). Two approximations to the distribution of T have been implemented in popular
software and are widely used in evaluating various models. It is important to know how
accurate these approximations are when compared to each other and to the exact distribution
of T . The paper systematically studies the quality of the two approximations and examines
the effect of λi’s and the degrees of freedom d by analysis and Monte Carlo. The results
imply that one approximation can be as good as the exact distribution when d is large. When
the coefficient of variation of the λi’s is small, another approximation is also adequate for
practical model inference. The results are applied to a study of alcoholism and psychological
symptoms.

Key words: Adjusted chi-square, rescaled statistic, coefficient of variation, Kolmogorov-
Smirnov statistic, covariance structure analysis.



1. Introduction

In many statistical problems, the statistics for testing null hypotheses are asymptotically

equivalent to quadratic forms of normal variables, which may not follow a chi-square distri-

bution. Examples include the general likelihood ratio (LR) statistic when the distribution

is misspecified (Foutz & Srivastava, 1977; Vuong, 1989); the Pearson chi-square statistic for

contingency tables when the true covariance matrix of the estimated cells cannot be consis-

tently estimated (Rao & Scott, 1984); test statistics in covariance structure analysis when

the discrepancy function is specified using the normality assumption but the true under-

lying population distribution of the sample is unknown (Shapiro, 1983); test statistics for

dimension reduction in inverse regression when the underlying distribution of the predictors

is unknown (Li, 1991, 1992; Bura & Cook, 2001; Cook & Ni, 2005); the likelihood ratio

statistic in testing the number of components in a normal mixture model when the null

hypothesis holds (Lo, Mendell & Rubin, 2001). The quadratic forms are also the building

blocks for the commonly used F-statistics in ANOVA and regression. The distribution of a

quadratic form of normal variables can be characterized by a linear combination of indepen-

dent chi-square variates, each with one degree of freedom. Because the exact distribution

of a linear combination of independent chi-square variates is difficult to obtain in general,

various approximations to its distribution have been proposed (Solomon & Stephens, 1977).

Two relatively simple ones are widely used in practice, one is to rescale the involved statistic,

the other is to adjust the chi-square distribution. The purpose of this paper is to study these

two distribution approximations using analysis and Monte Carlo. In section 2 we will review

the two approximations and their use in practice. In section 3 we will study the effect of the

coefficients on the approximations. Section 4 presents Monte Carlo results. We will illustrate

the application of the two approximations using a covariance structure model in section 5.

Conclusions will be provided in section 6.

2. Two Approximations to the Distribution of Quadratic Forms

Let x ∼ Np(0,Γ) and T = x′Wx be a quadratic form in x. The matrix Γ is typically

of full rank while W is nonnegative definite. Let the rank of W be d and the nonzero
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eigenvalues of WΓ be λ1, λ2, . . ., λd. There exists

T = x′Wx =
d∑

i=1

λiz
2
i , (1)

where zi ∼ N(0, 1) and are independent. The first approximation to the distribution of T is

to rescale T by referring TR = c−1T to χ2
d, where c =

∑d
i=1 λi/d. We will use the notation

TR∼̇χ2
d or T ∼̇cχ2

d (2)

to imply approximating the distribution of TR by χ2
d or that of T by cχ2

d. It is obvious

that E(TR) = d, so that the rescaling is actually a mean correction. A more sophisticated

correction is

T ∼̇aχ2
b, (3)

where a and b are determined by matching the first two moments of T with those of aχ2
b.

Straightforward calculation leads to

a =

∑d
i=1 λ2

i∑d
i=1 λi

and b =
(
∑d

i=1 λi)
2

∑d
i=1 λ2

i

.

These approximations were originally proposed by Welch (1938) and further studied by

Satterthwaite (1941) and Box (1954). When both Γ and W can be consistently estimated,

c, a and b will be estimated as

ĉ = tr(ŴΓ̂)/d, â = tr[(ŴΓ̂)2]/tr(ŴΓ̂), b̂ = [tr(ŴΓ̂)]2/tr[(ŴΓ̂)2].

In many cases, a generalized Wald statistic (Boos, 1992) is also available for testing

the same null hypothesis. Such a statistic asymptotically follows a chi-square distribution.

However, referring the generalized Wald statistic to χ2
d may perform worse than referring

TR to χ2
d or referring T to aχ2

b. In dealing with the effect of survey design on analyzing

multiway contingency tables, Rao and Scott (1984) noted that the approximations in (2)

and (3) are practically adequate and may perform better than a Wald statistic. In the

context of covariance structure analysis, Satorra and Bentler (1988, 1994) proposed using

the two approximations when T is the normal distribution based LR statistic. Monte Carlo

results in Hu, Bentler and Kano (1992) showed that the approximation in (2) performed very

well and much better than a generalized Wald statistic (see Browne, 1984). The rescaled

2



statistic TR in (2) has been in standard software (EQS, LISREL, MPLUS) for many years and

used in numerous publications by researchers in psychology, education, sociology, medicine,

business, etc. The adjusted distribution for T in (3) has also been in popular software (e.g.,

MPLUS) and widely used in analyzing categorical data.

Although these two approximations have been used for inference on a variety of models,

their relative merits are not well-understood. In the context of covariance structure analysis,

Fouladi (1997) reported that (3) performs better than (2). In testing the dimensionality

of the space of the effective predictors using inverse regression, Bura and Cook (2003) also

found that (3) performs better than (2). However, Bentler and Xie (2000) found that (2)

performs much better than (3). These conclusions are based on examples and simulated type

I errors, not the whole distribution approximation. Satorra and Bentler (1994) reported

a few percentiles of T and TR using a small simulation, they did not contrast the two

approximations. As we shall see, the performance of the two approximations depends on

the values of the coefficients λi’s in (1). None of the above studies have controlled these

coefficients. Actually, in any of these contexts, it is rather difficult to control the λi’s when

Γ and W are derived from models. Even when all the λi’s can be specified, their effect on

(2) and (3) will be confounded with sampling errors due to finite sample sizes.

Because researchers commonly use these approximations for inference, it is important to

know how these approximations perform when compared to a statistic that exactly follows

a chi-square distribution. There is also a need to compare the relative goodness of the two

approximations. When studying them through a LR or Pearson chi-square statistic, we will

not be able to separate the approximation of the distribution of the statistic with that of a

quadratic form from those in (2) and (3). So we will work directly on quadratic forms with

known λi’s in the following sections.

3. Effect of the Coefficients λi’s on the Approximating Distributions

In this section we study the effect of the λi’s on the approximations in (2) and (3)

by analysis, and relate the a and b to the coefficient of variations of the λi’s. We will

also introduce the Kolmogorov-Smirnov distance and a related measure of mean distance

between two distributions, which will be used for studying the empirical performance of the

two approximations in the next section.
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Consider when λ1 = λ2 = . . . = λd = λ, then c = λ, a = λ and b = d, and the

approximations in (2) and (3) are perfect. When all the λi’s in (1) change proportionally,

i.e., λi becoming τλi, then T changes to τT ; c changes to τc; a changes to τa and b remains

the same. In such a case, the qualities of the approximations in (2) and (3) do not change.

So it is the relative sizes of the λi’s that affect the two approximations.

When
∑d

i=1 λi is a constant while the λi’s change, the distribution of
∑d

i=1 λiz
2
i will

change. But the scaling factor c remains the same. So the quality of the approximation in

(2) is affected as variations occur among the λi’s. It is obvious that the relative sizes of the

λi’s also affect the approximation in (3). To see how a and b change when the λi’s change,

we rewrite b as

b = (
d∑

i=1

τ 2
i )−1,

where τi = λi/
∑d

i=1 λi. Because
∑d

i=1 τi = 1,
∑d

i=1 τ 2
i reaches its minimum when τ1 = τ2 =

. . . = τd = 1/d. This implies that b reaches its maximum value at d when all the λi’s are

equal; b decreases as the λi’s depart from each other. Because ab =
∑d

i=1 λi, when holding
∑d

i=1 λi constant, a will increase when the λi’s depart from each other. Of course, when
∑d

i=1 λi decreases, it is very likely that both a and b decrease.

We may use the coefficient of variation of the λi’s,

CV(λ) =
SD(λ)

λ̄
=

{∑d
i=1(λi − λ̄)2/d}1/2

λ̄
,

to measure the relative variations among the λi’s, where λ̄ =
∑d

i=1 λi/d. When CV(λ) = 0,

both the approximations in (2) and (3) are perfect. They become poorer as CV(λ) increases.

Actually, both a and b are closely related to CV(λ). It follows from

CV2(λ) =

∑d
i=1 λ2

i /d − λ̄2

λ̄2
= d

∑d
i=1 λ2

i

(
∑d

i=1 λi)2
− 1

and ab =
∑d

i=1 λi that

b =
d

CV2(λ) + 1
and a = λ̄[CV2(λ) + 1].

So the approximations in (2) and (3) are equivalent only when CV(λ) = 0. The distribution

approximation in (2) can be regarded as approximating (3) by treating CV(λ) = 0 even

when it is not. So we would expect that the difference between (2) and (3) becomes obvious

when CV(λ) increases.
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The approximation will also depend on the degrees of freedom. As d increases, according

to the central limit theorem, the distribution of T may even be approximately described

by a normal distribution, and so may aχ2
b, TR and χ2

d. Thus, we may expect that the

approximations in (2) and (3) will improve as d increases, which will be examined by Monte

Carlo in the next section.

We will use the well-known Kolmogorov-Smirnov (KS) statistic to evaluate the two ap-

proximations. The KS statistic measures the distance between the empirical distribution

function (EDF) F̂ (t) and the proposed target distribution function G(t); F (t) will be re-

served for the true cumulative distribution function (CDF) of T . Suppose we have N in-

dependent observations on T . Let the ordered statistics be t(1) ≤ t(2) ≤ . . . t(N), the KS is

calculated by

KS = max
1≤i≤N

KSi with KSi = max{|i − 1

N
− G(t(i))|, |

i

N
− G(t(i))|}.

Because KS is decided by one point on the real line, it does not tell us the whole picture of

the approximation. The other measure we use is the average or the mean of the KSi,

MKS =
N∑

i=1

KSi/N,

which is a reasonable measure of the overall discrepancy between F̂ (t) and G(t). The maxi-

mum value of the KS is 1.0, which implies that F̂ (t) and G(t) do not have any overlap. To

see the maximum value of MKS, we may assume that F̂ (t) is above G(t) or G(t(1)) = 1.0,

then KSi = 1 − (i − 1)/N and

MKS =
1

N

N∑

i=1

[1 − (i − 1)

N
]

= 1 − 1

N2
[
N(N + 1)

2
− N ] ≈ 1

2
.

The KS and MKS will be used to measure the distance between the EDF of TR and the CDF

of χ2
d as well as that between the EDF of T and the CDF of aχ2

b in the next section.

4. Empirical Results

We will study the effect of both CV(λ) and the degrees of freedom d on the two approx-

imations. We start with d = 2 and the vector of the λi’s as λk = (1, k)′. The CV(λ), KS
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and MKS for k = 2 to 10, over N = 2000 replications, are reported in Table 1(a). The KS

and MKS under χ2
d are obtained by referring a simulated chi-square variate to the chi-square

distribution χ2
d, they represent what KS and MKS are like under a perfect situation. Because

KS does not depend on F (t) (Serfling, 1980, p. 62), we can also regard that KS and MKS

under χ2
d correspond to the discrepancy between the EDF of T and the CDF of T . The KS

and MKS under cχ2
d correspond to the approximation in (2), those under aχ2

b correspond

to the approximation in (3). Because people in practice commonly refer the LR statistic to

a nominal chi-square distribution without checking the distribution of the sample, we also

include the KS and MKS under Lχ2
d in Table 1(a) when referring a linear combination of

independent chi-square variates to χ2
d.

When k = 2, CV(λ) = .333, the KS under cχ2
d is the smallest, the MKS under cχ2

d is also

comparable to that for the ideal case. As k or CV(λ) increases, the KS and MKS under χ2
d

fluctuate; the KS and MKS under cχ2
d also fluctuate, but they tend to increase; those under

aχ2
b also tend to increase, but the speed is a lot smaller; those under Lχ2

d are always the

greatest. The biggest number in each column is marked in boldface, the KS corresponding

to Lχ2
d is about 15 times of the perfect case; that corresponding to cχ2

d is 4 times of the

perfect case; that corresponding to aχ2
b is about twice of the perfect case. Comparisons of

the largest MKS’s are similar to those of the KS’s. Each number in the last row of Table

1(a) is the average of the previous rows, according to which the approximation in (3) is a

lot better than that in (2). Actually, only when k = 2 does the approximation in (2) enjoy

smaller KS and MKS than those for (3); we put this condition in boldface in the first column

of the table.

Insert Table 1 about here

To see the effect of the degrees of freedom on the approximations in (2) and (3), we

next study the conditions of d = 6 with λk = (1′
3, k1

′
3)

′ and d = 10 with λk = (1′
5, k1

′
5)

′,

where 1j represents a vector of j 1’s. The KS and MKS are reported in Table 1(b) and

1(c), respectively. Although the degrees of freedom increased, the CV(λ) for a given k is the

same due to the same two distinct λi’s. The patterns of KS and MKS under Lχ2
d and cχ2

d in

Table 1(b) and (c) are about the same as in (a), they tend to increase as CV(λ) increases.
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However, the KS and MKS under aχ2
b may just fluctuate. Actually, the greatest KS or MKS

under aχ2
b in either Table1(b) or (c) is smaller than that under χ2

d. Comparing the averaged

KS or MKS at the bottom of Table 1(a), (b) and (c), we notice that those corresponding to

χ2
d tend to be stable as d changes, since the distribution of KS does not depend on F ; the

KS and MKS corresponding to cχ2
d also appear not affected when d changes; the KS and

MKS corresponding to Lχ2
d obviously increase when d increases; those corresponding to aχ2

b

tend to decrease as d increases. At d = 10, with three decimals, the averaged KS for aχ2
b is

identical to that for χ2
d, and so is the averaged MKS.

Mean and covariance structure analysis typically involves many variables, the degrees of

freedom can be much larger than those studied in Table 1; there can be many predictors in

regression and the degrees of freedom can also be very large in testing the number of principal

Hessian directions when using inverse regression. It is most likely that, as the dimension

increases, the corresponding CV(λ) also change. To further compare the two approximations

in (2) and (3) under these conditions, we choose (a) d = 10 with ten conditions on λi’s:

λ1 = (1, 1.1, 1.2, . . . , 1.9)′, λ2 = (1, 1.2, 1.4, . . . , 2.8)′, . . ., λ10 = (1, 2, 3, . . . , 10)′; (b) d =

30 with ten conditions on λi’s: λ1 = (1, 1.1, 1.2, . . . , 3.9)′, λ2 = (1, 1.2, 1.4, . . . , 6.8)′, . . .,

λ10 = (1, 2, 3, . . . , 30)′; and (c) d = 50 with ten conditions on λi’s: λ1 = (1, 1.1, 1.2, . . . , 5.9)′,

λ2 = (1, 1.2, 1.4, . . . , 10.8)′, . . ., λ10 = (1, 2, 3, . . . , 50)′. The KS and MKS using N = 2000

as well as the associated CV(λ) are reported in Table 2(a), (b) and (c), respectively. Except

when d = 10 and k = 5 where KS and MKS under cχ2
d are smaller than those under both χ2

d

and aχ2
b, all the other KS and MKS corresponding to the approximation in (3) are smaller

than those corresponding to the approximation in (2). The KS and MKS under aχ2
b in Table

2(a) are almost as small as those under χ2
d; the KS and MKS on average under aχ2

b in Table

2(b) are even smaller than those under χ2
d, due to sampling errors. The average KS and MKS

under aχ2
b are identical to those under χ2

d in Table 2(c). As d and CV(λ) increase, the KS

and MKS corresponding to Lχ2
d reach their maximum; then it is meaningless to approximate

the linear combination of chi-square variate by the nominal chi-square distribution.

Insert Table 2 about here

In the practice of principal components and factor analysis, when ordering the eigenvalues

of a sample covariance matrix from large to small, it often happens that the first few drop
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dramatically in size, the remaining ones slowly decrease. The phenomenon that most smaller

eigenvalues sit on a line is called the scree test in factor analysis (see Gorsuch, 1983, pp. 165–

169). We also include the following conditions to mimic such a phenomenon: d = 10 and

λ10 = (1, 1.1, 1.2, . . . , 1.7, 1.8, 10)′, 9 eigenvalues are evenly spaced except the largest one;

d = 20 and λ20 = (1, 1.1, 1.2, . . . , 2.6, 2.7, 10, 20)′, 18 eigenvalues are evenly spaced except

the largest two; . . ., d = 100 and λ100 = (1, 1.1, 1.2, . . . , 9.7, 9.8, 9.9, 10, 20, 30, . . . , 100)′, 90

eigenvalues are evenly spaced except the largest ten. Table 3 contains the CV(λ) as well as

the KS and MKS for these conditions. The CV(λ) increases as d increases, the KS and MKS

under χ2
d remain stable as they should be; those under Lχ2

d reach their maximum values after

d = 50 or 40; the KS and MKS under cχ2
d tend to increase due to the increase in CV(λ);

but the KS and MKS under aχ2
b tend to decrease due to the increasing of d although CV(λ)

increases.

Insert Table 3 about here

We may conclude from Tables 1 to 3 that, when controlling CV(λ), the approximation in

(2) is almost not affected by the degrees of freedom while the approximation in (3) improves

as the degrees of freedom increase. For a given d, when CV(λ) increases, the approximation

in (2) tends to become worse; the approximation in (3) also tends to become worse when d is

small. At a large d, the approximation in (3) is almost not affected by the change of CV(λ).

5. Illustration of Applications with a Covariance Structure Model

Neumann (1994) contains a study on the relationship of alcoholism and psychological

symptoms, based on a data set with 10 variables and 335 participants. The 10 variables

are Family History for Psychopathology, Family History for Alcoholism; the Age of First

Problem with Alcohol, the Age of First Detoxification from Alcohol; Alcohol Severity Score,

Alcohol Use Inventory; SCL-90 Psychological Inventory, the Sum of the Minnesota Multi-

phasic Personality Inventory Scores; the Lowest Level of Psychosocial Functioning during

the past year, the Highest Level of Psychosocial Functioning during the past year. With two

indicators for each latent construct, these 10 variables are respectively measuring: Family

History, Age of Onset, Alcohol Symptoms, Psychopathology Symptoms, and Global Func-

tioning. Let x represent the vector of the first two variables and y represent the vector
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of the next eight variables. Using LISREL notation (Jöreskog & Sörbom, 1996, pp. 1–3),

Neumann’s theoretical model for these variables is

x = µx + Λxξ + δ, y = µy + Λyη + ε, (4a)

and

η = Bη + Γξ + ζ, (4b)

where µx = E(x), µy = E(y), E(ξ) = 0, E(η) = 0, E(ε) = 0, E(ζ) = 0,

Λx =

(
λ1

λ2

)
, Λy =




1 λ3 0 0 0 0 0 0
0 0 1 λ4 0 0 0 0
0 0 0 0 1 λ5 0 0
0 0 0 0 0 0 1 λ6




′

,

B =




0 0 0 0
β21 0 0 0
β31 β32 0 0
0 β42 β43 0


 , Γ =




γ11

0
0
0


 ,

and ε, δ, and ζ are vectors of errors whose elements are all uncorrelated.

Fitting the sample covariance matrix by the model in (4), using the normal distribution

based maximum likelihood, leads to a LR statistic TML = 48.961 and a corresponding p-value

of 0.012 when referred to χ2
29. Because the normalized Mardia’s measure of multivariate

kurtosis for the data set is 14.763, which is highly significant, we may not trust the LR

statistic. The estimates for the constants a, b and c in (2) and (3) are â = 1.372, b̂ =

21.858 and ĉ = 1.034; the p-values when referring TR = 47.345 to χ2
29 and TML to âχ2

b̂
are

respectively 0.017 and 0.031. So the approximation in (3) gives a little better support for

the theoretical model than that in (2). Although there is not much difference among the

p-values, b̂ is much smaller than the nominal degrees of freedom d = 29. The estimates of

the 29 nonzero eigenvalues of the quadratic form corresponding to the LR statistic are 3.024,

2.198, 1.847, 1.652, 1.555, 1.472, 1.355, 1.266, 1.203, 1.156, 1.077, 1.059, 1.034, 0.961, 0.868,

0.815, 0.799, 0.770, 0.731, 0.671, 0.664, 0.610, 0.547, 0.536, 0.512, 0.452, 0.421, 0.401, 0.333,

with CV(λ̂) = 0.572. So both the d and CV(λ̂) are close to the condition at the bottom of

Table 2(b), where the approximation in (3) performs more accurately than that in (2).

Notice that the average of the sample eigenvalues ĉ is close to 1.0. We may wonder

whether all the population λi’s are equal to 1.0 or the discrepancy among the λ̂i’s is due to
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sampling error. Ten samples each with size 335 are generated from N10(0, I). Each of which

is further transformed to have the same sample covariance matrix S as in Neumann’s data,

using

yj = S1/2S
−1/2
I xj, j = 1, 2, . . . , 335,

where xj is a simulated observation, SI is the sample covariance matrix of a simulated

sample, and yj is the transformed observation. Because the transformed yj can be regarded

as following a multivariate normal distribution, all the corresponding λi’s are equal to 1.0 and

a nonzero CV(λ̂) = 0 is due to sampling error. The ten CV(λ̂)’s of the simulated samples are

0.443, 0.441, 0.418, 0.412, 0.440, 0.417, 0.434, 0.459, 0.411, 0.443. None of them is greater

than CV(λ̂) = 0.572 of Neumann’s data and model. So we cannot regard the population

λi’s in Neumann’s data and model as being equal.

The limited simulation results on CV(λ̂) indicate that λ̂i’s are more dispersed than λi’s.

Analytical results (see Muirhead, 1982, p. 388) imply that larger λ̂i’s tend to over-estimate

their population values and smaller λ̂i’s tend to under-estimate their population values.

Thus, CV(λ̂) tends to be greater than CV(λ). Although the λi’s for the real data and model

are not equal, the corresponding CV(λ) should be a lot smaller than CV(λ̂) = 0.572. If

CV(λ) is less than 0.5, by referring to Table 2(b), the approximation in (3) should give an

equally reliable evaluation of the model as when the true asymptotic distribution of TML is

known and used to evaluate the model. Thus, although the p-values among the different

approximations are not much different, the analysis does give us more confidence on the

p-value obtained by using the approximation in (3).

Because ĉ ≈ 1 for Neumann’s data and model, we used simulated normal samples to

roughly check whether CV(λ) = 0. When ĉ is greater than 1 with practical data, one may

simulate samples from a multivariate t-distribution with m = 2(2ĉ − 1)/(ĉ − 1) degrees of

freedom for the same purpose.

6. Conclusion

In this paper, we quantified the conditions that may affect the two widely used approxi-

mations. The quality of the two approximations was studied by varying and controlling the

conditions. Because the true CDF, F (t), of a quadratic form is hard to evaluate, we used the
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EDF F̂ (t) to estimate it. In addition to using Monte Carlo, one may use a numerical method

to approximate F (t), which can be defined through an integral with an infinite upper limit.

The procedure involves replacing the infinity limit by a finite number and followed by a

numerical integration (see Farebrother, 1990). Errors will occur when replacing the infinite

limit by a finite limit and when using a numerical method to calculate the area under a

continuous curve. The amount of error depends on the chosen upper limit and the number

of rectangles or trapezoids used in the numerical integration, it also depends on the value

of x. The amount of computation in the numerical method can be huge although the error

can be made arbitrarily small. Comparing to using numerical method to evaluate F (t), the

EDF F̂ (t) approximates F (t) by Monte Carlo. The error in F̂ (t) can be characterized by its

standard deviation. Using

Var[F̂(x)] = F (x)[1− F (x)]/N ≤ 1/(4N)

and N = 2000, the error in F̂ (t) is in the magnitude of 1/(8000)1/2 = 0.011. The error can be

made smaller if we choose a larger N . But N = 2000 is enough for our purpose, that is, we

can clearly tell the pros and cons of each of the two approximations under varied conditions.

The approximation in (2) may perform equally well as that in (3) when both CV(λ)

and the degrees of freedom are small. The approximation in (3) generally performs better,

especially when d is large. When CV(λ) is not large, say less than 0.5 and d is greater than

10, the approximation in (3) can be as good as knowing the exact distribution of T .

In practice, the λi’s are never known, only λ̂i’s are available. Because CV(λ̂) tends to

be greater than CV(λ). When CV(λ̂) is small, one may use either (2) or (3) for inference.

When the degrees of freedom are large, (3) should be the choice.

In Monte Carlo studies with LR or other statistics, it may happen that the λi’s are equal

(see Yuan & Bentler, 1998). Then the approximation in (2) uses the correct assumption about

the λi’s and thus it will perform better than that in (3). Conflicting results on controlling

type I errors by the two approximations (e.g., Fouladi, 1997; Bentler & Xie, 2000; Bura &

Cook, 2003) would most likely be resolved if the population λi’s were known.

In addition to the KS and MKS, we have also obtained the quantile and quantile (QQ)

plots for each of the conditions in Tables 1 to 3. These plots indicate that the major

discrepancy between the proposed distribution in (2) or (3) and the corresponding empirical

11



distribution occurs almost always on the right tail. So a larger KS or MKS also implies a

poorer tail approximation. Because there are a total of 67 conditions, we elect not to include

these QQ plots in the paper.
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Table 1(a). KS and MKS with λk = (1, k)′ (d = 2)
KS MKS

k CV(λ) χ2
d Lχ2

d cχ2
d aχ2

b χ2
d Lχ2

d cχ2
d aχ2

b

2 0.333 0.018 0.150 0.017 0.029 0.006 0.098 0.008 0.011
3 0.500 0.012 0.235 0.037 0.033 0.004 0.149 0.016 0.014
4 0.600 0.011 0.278 0.054 0.050 0.004 0.183 0.030 0.020
5 0.667 0.028 0.330 0.074 0.046 0.011 0.207 0.038 0.018
6 0.714 0.018 0.376 0.064 0.045 0.007 0.233 0.038 0.020
7 0.750 0.018 0.408 0.077 0.060 0.010 0.256 0.039 0.022
8 0.778 0.012 0.430 0.084 0.056 0.003 0.267 0.047 0.021
9 0.800 0.030 0.421 0.120 0.062 0.014 0.269 0.063 0.026
10 0.818 0.015 0.462 0.109 0.066 0.004 0.289 0.053 0.021

Ave 0.662 0.018 0.343 0.071 0.050 0.007 0.217 0.037 0.019

Table 1(b). KS and MKS with λk = (1′
3, k1

′
3)

′ (d = 6)
KS MKS

k CV(λ) χ2
d Lχ2

d cχ2
d aχ2

b χ2
d Lχ2

d cχ2
d aχ2

b

2 0.333 0.020 0.269 0.020 0.024 0.008 0.178 0.010 0.008
3 0.500 0.014 0.409 0.040 0.018 0.007 0.270 0.021 0.007
4 0.600 0.021 0.510 0.057 0.025 0.007 0.324 0.030 0.010
5 0.667 0.018 0.572 0.079 0.029 0.006 0.361 0.041 0.013
6 0.714 0.016 0.623 0.086 0.033 0.006 0.382 0.046 0.014
7 0.750 0.042 0.666 0.098 0.025 0.018 0.400 0.051 0.011
8 0.778 0.015 0.709 0.103 0.022 0.004 0.421 0.048 0.009
9 0.800 0.031 0.754 0.071 0.026 0.014 0.433 0.040 0.016
10 0.818 0.018 0.760 0.101 0.020 0.006 0.441 0.049 0.006

Ave 0.662 0.022 0.586 0.073 0.025 0.009 0.357 0.037 0.010

Table 1(c). KS and MKS with λk = (1′
5, k1

′
5)

′ (d = 10)
KS MKS

k CV(λ) χ2
d Lχ2

d cχ2
d aχ2

b χ2
d Lχ2

d cχ2
d aχ2

b

2 0.333 0.022 0.332 0.025 0.012 0.010 0.220 0.012 0.004
3 0.500 0.015 0.523 0.047 0.016 0.004 0.336 0.019 0.005
4 0.600 0.016 0.630 0.071 0.025 0.007 0.386 0.032 0.012
5 0.667 0.029 0.698 0.083 0.031 0.015 0.422 0.043 0.015
6 0.714 0.034 0.786 0.054 0.033 0.018 0.453 0.032 0.016
7 0.750 0.016 0.815 0.069 0.014 0.005 0.461 0.037 0.005
8 0.778 0.010 0.838 0.085 0.022 0.004 0.467 0.043 0.007
9 0.800 0.019 0.859 0.094 0.012 0.005 0.476 0.047 0.005
10 0.818 0.019 0.882 0.082 0.015 0.006 0.483 0.044 0.006

Ave 0.662 0.020 0.707 0.068 0.020 0.008 0.412 0.034 0.008



Table 2(a). KS and MKS with λk = 110 + k(0, 0.1, 0.2, . . . , 0.9)′ (d = 10)
KS MKS

k CV(λ) χ2
d Lχ2

d cχ2
d aχ2

b χ2
d Lχ2

d cχ2
d aχ2

b

1 0.198 0.022 0.304 0.022 0.019 0.010 0.208 0.010 0.007
2 0.302 0.015 0.505 0.020 0.015 0.004 0.331 0.007 0.003
3 0.367 0.016 0.632 0.041 0.029 0.007 0.388 0.016 0.011
4 0.410 0.029 0.701 0.053 0.035 0.015 0.424 0.025 0.015
5 0.442 0.034 0.799 0.032 0.032 0.018 0.460 0.015 0.018
6 0.466 0.016 0.824 0.029 0.012 0.005 0.466 0.016 0.005
7 0.484 0.010 0.853 0.036 0.018 0.004 0.475 0.018 0.006
8 0.500 0.019 0.875 0.040 0.013 0.005 0.482 0.018 0.004
9 0.512 0.019 0.903 0.032 0.023 0.006 0.488 0.018 0.007
10 0.522 0.022 0.924 0.036 0.024 0.010 0.491 0.017 0.006

Ave 0.420 0.020 0.732 0.034 0.022 0.008 0.421 0.016 0.008

Table 2(b). KS and MKS with λk = 130 + k(0, 0.1, 0.2, . . . , 2.9)′ (d = 30)
KS MKS

k CV(λ) χ2
d Lχ2

d cχ2
d aχ2

b χ2
d Lχ2

d cχ2
d aχ2

b

1 0.353 0.020 0.899 0.027 0.017 0.005 0.488 0.012 0.005
2 0.444 0.022 0.987 0.047 0.021 0.010 0.500 0.021 0.007
3 0.485 0.013 0.996 0.039 0.011 0.004 0.500 0.020 0.004
4 0.509 0.027 0.999 0.032 0.016 0.009 0.500 0.018 0.006
5 0.525 0.027 1.000 0.036 0.022 0.016 0.500 0.019 0.011
6 0.535 0.020 1.000 0.042 0.022 0.007 0.500 0.021 0.008
7 0.543 0.019 1.000 0.043 0.019 0.007 0.500 0.023 0.007
8 0.550 0.021 1.000 0.039 0.013 0.005 0.500 0.020 0.004
9 0.554 0.028 1.000 0.034 0.017 0.008 0.500 0.017 0.007
10 0.558 0.015 1.000 0.050 0.026 0.006 0.500 0.024 0.013

Ave 0.506 0.021 0.988 0.039 0.018 0.008 0.499 0.019 0.007

Table 2(c). KS and MKS with λk = 150 + k(0, 0.1, 0.2, . . . , 4.9)′ (d = 50)
KS MKS

k CV(λ) χ2
d Lχ2

d cχ2
d aχ2

b χ2
d Lχ2

d cχ2
d aχ2

b

1 0.418 0.015 0.997 0.031 0.010 0.005 0.500 0.015 0.003
2 0.489 0.025 1.000 0.026 0.020 0.009 0.500 0.015 0.005
3 0.518 0.029 1.000 0.043 0.026 0.014 0.500 0.021 0.014
4 0.534 0.018 1.000 0.033 0.017 0.006 0.500 0.017 0.007
5 0.545 0.017 1.000 0.032 0.018 0.006 0.500 0.016 0.006
6 0.551 0.013 1.000 0.040 0.022 0.004 0.500 0.022 0.006
7 0.557 0.010 1.000 0.054 0.016 0.004 0.500 0.024 0.007
8 0.560 0.028 1.000 0.057 0.037 0.012 0.500 0.030 0.013
9 0.563 0.040 1.000 0.054 0.028 0.018 0.500 0.028 0.014
10 0.566 0.015 1.000 0.049 0.016 0.005 0.500 0.027 0.006

Ave 0.530 0.021 1.000 0.042 0.021 0.008 0.500 0.022 0.008



Table 3. KS and MKS with λd = (1, 1.1, 1.2, . . . , 1 + .1[d − d/10 − 1], 10, 20, . . . , d)′

KS MKS
d CV(λ) χ2

d Lχ2
d cχ2

d aχ2
b χ2

d Lχ2
d cχ2

d aχ2
b

10 1.147 0.022 0.519 0.116 0.062 0.010 0.328 0.067 0.030
20 1.352 0.022 0.838 0.154 0.054 0.008 0.472 0.083 0.029
30 1.462 0.022 0.960 0.157 0.042 0.010 0.498 0.088 0.024
40 1.531 0.017 0.993 0.181 0.051 0.007 0.500 0.098 0.023
50 1.579 0.029 1.000 0.172 0.039 0.014 0.500 0.096 0.018
60 1.613 0.013 1.000 0.171 0.033 0.005 0.500 0.093 0.016
70 1.640 0.018 1.000 0.185 0.034 0.008 0.500 0.100 0.018
80 1.660 0.012 1.000 0.190 0.041 0.004 0.500 0.103 0.024
90 1.677 0.028 1.000 0.191 0.029 0.008 0.500 0.103 0.014
100 1.691 0.019 1.000 0.191 0.029 0.005 0.500 0.107 0.013
Ave 1.535 0.020 0.931 0.171 0.041 0.008 0.480 0.094 0.021

λ10 = (1, 1.1, 1.2, . . . , 1.7, 1.8, 10)′, λ20 = (1, 1.1, 1.2, . . . , 2.6, 2.7, 10, 20)′, . . .,

λ100 = (1, 1.1, 1.2, . . . , 9.7, 9.8, 9.9, 10, 20, 30, . . . , 100)′




