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Abstract

Many test statistics are asymptotically equivalent to quadratic forms of normal variables,
which are further equivalent to T = % | \;z? with 2; being independent and following
N(0,1). Two approximations to the distribution of 7" have been implemented in popular
software and are widely used in evaluating various models. It is important to know how
accurate these approximations are when compared to each other and to the exact distribution
of T'. The paper systematically studies the quality of the two approximations and examines
the effect of \;’s and the degrees of freedom d by analysis and Monte Carlo. The results
imply that one approximation can be as good as the exact distribution when d is large. When
the coefficient of variation of the \;’s is small, another approximation is also adequate for
practical model inference. The results are applied to a study of alcoholism and psychological
symptoms.

Key words: Adjusted chi-square, rescaled statistic, coefficient of variation, Kolmogorov-
Smirnov statistic, covariance structure analysis.



1. Introduction

In many statistical problems, the statistics for testing null hypotheses are asymptotically
equivalent to quadratic forms of normal variables, which may not follow a chi-square distri-
bution. Examples include the general likelihood ratio (LR) statistic when the distribution
is misspecified (Foutz & Srivastava, 1977; Vuong, 1989); the Pearson chi-square statistic for
contingency tables when the true covariance matrix of the estimated cells cannot be consis-
tently estimated (Rao & Scott, 1984); test statistics in covariance structure analysis when
the discrepancy function is specified using the normality assumption but the true under-
lying population distribution of the sample is unknown (Shapiro, 1983); test statistics for
dimension reduction in inverse regression when the underlying distribution of the predictors
is unknown (Li, 1991, 1992; Bura & Cook, 2001; Cook & Ni, 2005); the likelihood ratio
statistic in testing the number of components in a normal mixture model when the null
hypothesis holds (Lo, Mendell & Rubin, 2001). The quadratic forms are also the building
blocks for the commonly used F-statistics in ANOVA and regression. The distribution of a
quadratic form of normal variables can be characterized by a linear combination of indepen-
dent chi-square variates, each with one degree of freedom. Because the exact distribution
of a linear combination of independent chi-square variates is difficult to obtain in general,
various approximations to its distribution have been proposed (Solomon & Stephens, 1977).
Two relatively simple ones are widely used in practice, one is to rescale the involved statistic,
the other is to adjust the chi-square distribution. The purpose of this paper is to study these
two distribution approximations using analysis and Monte Carlo. In section 2 we will review
the two approximations and their use in practice. In section 3 we will study the effect of the
coefficients on the approximations. Section 4 presents Monte Carlo results. We will illustrate
the application of the two approximations using a covariance structure model in section 5.

Conclusions will be provided in section 6.
2. Two Approximations to the Distribution of Quadratic Forms

Let x ~ N,(0,T') and T' = xX'Wx be a quadratic form in x. The matrix I' is typically
of full rank while W is nonnegative definite. Let the rank of W be d and the nonzero



eigenvalues of WI' be A1, Ao, ..., A\y. There exists
d
T=xWx=> Nz, (1)
i=1
where z; ~ N(0,1) and are independent. The first approximation to the distribution of 7" is

to rescale T' by referring Tr = ¢ T to x2, where ¢ = 2%, \;/d. We will use the notation
.9 . 2
Troxg or Treexg (2)

to imply approximating the distribution of Tk by x% or that of T by cx3. It is obvious
that E(Tg) = d, so that the rescaling is actually a mean correction. A more sophisticated
correction is

Tax;, (3)
where a and b are determined by matching the first two moments of 7" with those of ax?.
Straightforward calculation leads to

d 2 d ) \2
Zlfl A and b= 7(271 )\12) .
Dim1 Ai i1 A

a =

These approximations were originally proposed by Welch (1938) and further studied by
Satterthwaite (1941) and Box (1954). When both T" and W can be consistently estimated,

¢, a and b will be estimated as
¢ =tr(WT)/d, a=tr[(WD)?/tr(WT), b= [tr(WL)]?/tz[(WT)?.

In many cases, a generalized Wald statistic (Boos, 1992) is also available for testing
the same null hypothesis. Such a statistic asymptotically follows a chi-square distribution.
However, referring the generalized Wald statistic to y3 may perform worse than referring
Tr to X2 or referring T to ax?. In dealing with the effect of survey design on analyzing
multiway contingency tables, Rao and Scott (1984) noted that the approximations in (2)
and (3) are practically adequate and may perform better than a Wald statistic. In the
context of covariance structure analysis, Satorra and Bentler (1988, 1994) proposed using
the two approximations when 7' is the normal distribution based LR statistic. Monte Carlo
results in Hu, Bentler and Kano (1992) showed that the approximation in (2) performed very

well and much better than a generalized Wald statistic (see Browne, 1984). The rescaled



statistic Tg in (2) has been in standard software (EQS, LISREL, MPLUS) for many years and
used in numerous publications by researchers in psychology, education, sociology, medicine,
business, etc. The adjusted distribution for 7" in (3) has also been in popular software (e.g.,
MPLUS) and widely used in analyzing categorical data.

Although these two approximations have been used for inference on a variety of models,
their relative merits are not well-understood. In the context of covariance structure analysis,
Fouladi (1997) reported that (3) performs better than (2). In testing the dimensionality
of the space of the effective predictors using inverse regression, Bura and Cook (2003) also
found that (3) performs better than (2). However, Bentler and Xie (2000) found that (2)
performs much better than (3). These conclusions are based on examples and simulated type
I errors, not the whole distribution approximation. Satorra and Bentler (1994) reported
a few percentiles of T and Tk using a small simulation, they did not contrast the two
approximations. As we shall see, the performance of the two approximations depends on
the values of the coefficients \;’s in (1). None of the above studies have controlled these
coefficients. Actually, in any of these contexts, it is rather difficult to control the \;’s when
I' and W are derived from models. Even when all the \;’s can be specified, their effect on
(2) and (3) will be confounded with sampling errors due to finite sample sizes.

Because researchers commonly use these approximations for inference, it is important to
know how these approximations perform when compared to a statistic that exactly follows
a chi-square distribution. There is also a need to compare the relative goodness of the two
approximations. When studying them through a LR or Pearson chi-square statistic, we will
not be able to separate the approximation of the distribution of the statistic with that of a
quadratic form from those in (2) and (3). So we will work directly on quadratic forms with

known \;’s in the following sections.
3. Effect of the Coefficients \;’s on the Approximating Distributions

In this section we study the effect of the A;’s on the approximations in (2) and (3)
by analysis, and relate the a and b to the coefficient of variations of the \;’s. We will
also introduce the Kolmogorov-Smirnov distance and a related measure of mean distance
between two distributions, which will be used for studying the empirical performance of the

two approximations in the next section.



Consider when Ay = Ay = ... = Ay = A, then ¢ = A\, a = X and b = d, and the
approximations in (2) and (3) are perfect. When all the )\;’s in (1) change proportionally,
i.e., \; becoming 7)\;, then T changes to 71"; ¢ changes to 7¢; a changes to Ta and b remains
the same. In such a case, the qualities of the approximations in (2) and (3) do not change.
So it is the relative sizes of the \;’s that affect the two approximations.

When Y%, \; is a constant while the \;’s change, the distribution of ¢, \;2? will
change. But the scaling factor ¢ remains the same. So the quality of the approximation in
(2) is affected as variations occur among the \;’s. It is obvious that the relative sizes of the
Ai’s also affect the approximation in (3). To see how a and b change when the \;’s change,
we rewrite b as

b= (zd: )7,
i=1
where 7, = A/ 3% A, Because Y0, 7 = 1, % | 72 reaches its minimum when 7, = 7 =
. =15 = 1/d. This implies that b reaches its maximum value at d when all the \;’s are
equal; b decreases as the \;’s depart from each other. Because ab = Y%, \;, when holding
>% |\ constant, a will increase when the \;’s depart from each other. Of course, when
>4 \; decreases, it is very likely that both a and b decrease.

We may use the coefficient of variation of the \;’s,

_SD(N) _ {ZL (i — AP /dy'?
B A N Y )

to measure the relative variations among the \;’s, where A = % | \;/d. When CV()\) = 0,

CV(\)

both the approximations in (2) and (3) are perfect. They become poorer as CV()\) increases.

Actually, both a and b are closely related to CV(A). It follows from

S A2 /d— N\ >4 A2
CV2 )\ — i=1 i — d i=1"% 1
W % EPYE
and ab = 3¢ | \; that
d _

So the approximations in (2) and (3) are equivalent only when CV(\) = 0. The distribution
approximation in (2) can be regarded as approximating (3) by treating CV(\) = 0 even
when it is not. So we would expect that the difference between (2) and (3) becomes obvious

when CV()) increases.



The approximation will also depend on the degrees of freedom. As d increases, according
to the central limit theorem, the distribution of 7" may even be approximately described
by a normal distribution, and so may ax?, Tr and x3 Thus, we may expect that the
approximations in (2) and (3) will improve as d increases, which will be examined by Monte
Carlo in the next section.

We will use the well-known Kolmogorov-Smirnov (KS) statistic to evaluate the two ap-
proximations. The KS statistic measures the distance between the empirical distribution
function (EDF) F(t) and the proposed target distribution function G(t); F(t) will be re-
served for the true cumulative distribution function (CDF) of T. Suppose we have N in-

dependent observations on T'. Let the ordered statistics be £y < t9) < ...%(n), the KS is
calculated by

. .
KS = max KS; with KS; = max{|zT — Gltw)l, % — Gtw)l}-

1<i<N

Because KS is decided by one point on the real line, it does not tell us the whole picture of
the approximation. The other measure we use is the average or the mean of the KS;,
N
MKS = > KS;/N,
i=1
which is a reasonable measure of the overall discrepancy between F'(t) and G(t). The maxi-
mum value of the KS is 1.0, which implies that F'(t) and G(t) do not have any overlap. To

see the maximum value of MKS, we may assume that F(t) is above G(t) or G(ta)) = 1.0,
then KS; =1— (i —1)/N and

1 ¥ (i—1)

MKS _N;[l— ~ )
B 1 N(N+1) 1
“lemle T TNE g

The KS and MKS will be used to measure the distance between the EDF of Tk and the CDF
of x4 as well as that between the EDF of T' and the CDF of ay? in the next section.

4. Empirical Results

We will study the effect of both CV(\) and the degrees of freedom d on the two approx-
imations. We start with d = 2 and the vector of the \;’s as Ay = (1,k)’. The CV()), KS



and MKS for k = 2 to 10, over N = 2000 replications, are reported in Table 1(a). The KS
and MKS under x? are obtained by referring a simulated chi-square variate to the chi-square
distribution x?2, they represent what KS and MKS are like under a perfect situation. Because
KS does not depend on F(t) (Serfling, 1980, p. 62), we can also regard that KS and MKS
under Y3 correspond to the discrepancy between the EDF of T' and the CDF of T'. The KS
and MKS under cx? correspond to the approximation in (2), those under ax? correspond
to the approximation in (3). Because people in practice commonly refer the LR statistic to
a nominal chi-square distribution without checking the distribution of the sample, we also
include the KS and MKS under Ly?2 in Table 1(a) when referring a linear combination of
independent chi-square variates to x2.

When k = 2, CV(\) = .333, the KS under cx? is the smallest, the MKS under cy? is also
comparable to that for the ideal case. As k or CV(])) increases, the KS and MKS under x?
fluctuate; the KS and MKS under cx? also fluctuate, but they tend to increase; those under
axi also tend to increase, but the speed is a lot smaller; those under Ly?% are always the
greatest. The biggest number in each column is marked in boldface, the KS corresponding
to Lx? is about 15 times of the perfect case; that corresponding to cx? is 4 times of the
perfect case; that corresponding to ay;: is about twice of the perfect case. Comparisons of
the largest MKS’s are similar to those of the KS’s. Each number in the last row of Table
1(a) is the average of the previous rows, according to which the approximation in (3) is a
lot better than that in (2). Actually, only when k = 2 does the approximation in (2) enjoy
smaller KS and MKS than those for (3); we put this condition in boldface in the first column
of the table.

| Insert Table 1 about here |

To see the effect of the degrees of freedom on the approximations in (2) and (3), we
next study the conditions of d = 6 with A, = (15, k1)’ and d = 10 with A, = (1}, k1f)’,
where 1, represents a vector of j 1’s. The KS and MKS are reported in Table 1(b) and
1(c), respectively. Although the degrees of freedom increased, the CV(\) for a given k is the
same due to the same two distinct \;’s. The patterns of KS and MKS under Ly and cy? in

Table 1(b) and (c) are about the same as in (a), they tend to increase as CV()\) increases.



However, the KS and MKS under ax? may just fluctuate. Actually, the greatest KS or MKS
under ax;? in either Tablel(b) or (c) is smaller than that under x2. Comparing the averaged
KS or MKS at the bottom of Table 1(a), (b) and (c), we notice that those corresponding to
X2 tend to be stable as d changes, since the distribution of KS does not depend on F’; the
KS and MKS corresponding to cx? also appear not affected when d changes; the KS and
MKS corresponding to L obviously increase when d increases; those corresponding to ax;
tend to decrease as d increases. At d = 10, with three decimals, the averaged KS for ax? is
identical to that for x3, and so is the averaged MKS.

Mean and covariance structure analysis typically involves many variables, the degrees of
freedom can be much larger than those studied in Table 1; there can be many predictors in
regression and the degrees of freedom can also be very large in testing the number of principal
Hessian directions when using inverse regression. It is most likely that, as the dimension
increases, the corresponding CV () also change. To further compare the two approximations
in (2) and (3) under these conditions, we choose (a) d = 10 with ten conditions on \;’s:
A= (1,1.1,1.2,...,1.9), Ay = (1,1.2,1.4,...,2.8), ..., Ao = (1,2,3,...,10); (b) d =
30 with ten conditions on A;’s: A; = (1,1.1,1.2,...,3.9)", Ay = (1,1.2,14,...,6.8), ...,
Ao =(1,2,3,...,30); and (c) d = 50 with ten conditions on \;’s: Ay = (1,1.1,1.2,...,5.9)’,
X = (1,1.2,1.4,...,10.8), ..., Aio = (1,2,3,...,50). The KS and MKS using N = 2000
as well as the associated CV () are reported in Table 2(a), (b) and (c), respectively. Except
when d = 10 and k = 5 where KS and MKS under cx? are smaller than those under both 3
and ax?, all the other KS and MKS corresponding to the approximation in (3) are smaller
than those corresponding to the approximation in (2). The KS and MKS under ax? in Table
2(a) are almost as small as those under x?2; the KS and MKS on average under ax? in Table
2(b) are even smaller than those under x?2, due to sampling errors. The average KS and MKS
under ay? are identical to those under x% in Table 2(c). As d and CV()\) increase, the KS
and MKS corresponding to Ly reach their maximum; then it is meaningless to approximate

the linear combination of chi-square variate by the nominal chi-square distribution.

| Insert Table 2 about here |

In the practice of principal components and factor analysis, when ordering the eigenvalues

of a sample covariance matrix from large to small, it often happens that the first few drop



dramatically in size, the remaining ones slowly decrease. The phenomenon that most smaller
eigenvalues sit on a line is called the scree test in factor analysis (see Gorsuch, 1983, pp. 165—
169). We also include the following conditions to mimic such a phenomenon: d = 10 and
Ao = (1,1.1,1.2)...,1.7,1.8,10)", 9 eigenvalues are evenly spaced except the largest one;
d =20 and Ay = (1,1.1,1.2,...,2.6,2.7,10,20)", 18 eigenvalues are evenly spaced except
the largest two; ..., d = 100 and Ajgo = (1,1.1,1.2,...,9.7,9.8,9.9, 10, 20, 30, . .., 100)’, 90
eigenvalues are evenly spaced except the largest ten. Table 3 contains the CV(\) as well as
the KS and MKS for these conditions. The CV(\) increases as d increases, the KS and MKS
under x2 remain stable as they should be; those under Lx? reach their maximum values after
d = 50 or 40; the KS and MKS under cx? tend to increase due to the increase in CV(\);
but the KS and MKS under ax? tend to decrease due to the increasing of d although CV(\)

increases.

| Insert Table 3 about here|

We may conclude from Tables 1 to 3 that, when controlling CV(\), the approximation in
(2) is almost not affected by the degrees of freedom while the approximation in (3) improves
as the degrees of freedom increase. For a given d, when CV()) increases, the approximation
in (2) tends to become worse; the approximation in (3) also tends to become worse when d is

small. At a large d, the approximation in (3) is almost not affected by the change of CV(\).
5. Illustration of Applications with a Covariance Structure Model

Neumann (1994) contains a study on the relationship of alcoholism and psychological
symptoms, based on a data set with 10 variables and 335 participants. The 10 variables
are Family History for Psychopathology, Family History for Alcoholism; the Age of First
Problem with Alcohol, the Age of First Detoxification from Alcohol; Alcohol Severity Score,
Alcohol Use Inventory; SCL-90 Psychological Inventory, the Sum of the Minnesota Multi-
phasic Personality Inventory Scores; the Lowest Level of Psychosocial Functioning during
the past year, the Highest Level of Psychosocial Functioning during the past year. With two
indicators for each latent construct, these 10 variables are respectively measuring: Family
History, Age of Onset, Alcohol Symptoms, Psychopathology Symptoms, and Global Func-

tioning. Let x represent the vector of the first two variables and y represent the vector



of the next eight variables. Using LISREL notation (Jéreskog & Sérbom, 1996, pp. 1-3),

Neumann'’s theoretical model for these variables is
x=p, +A5+6, y=p,+An+e, (4a)
and
n=Bn+T¢+(, (4b)

where p, = E(X)a Hy = E(Y)’ E(f) =0, E(’I)) =0, E(E) =0, E(C) =0,

Y

/

1 X3 0 00 0 0 O
ey oo 1 X000 0
Am_<A2>’Ay_ 00000 1X00 ]|
0O 0 00 0 0 1 X
0 0 0 0 Y11
for O 0 O 0
B: F: ,
Bs1 P2 0 0 |7 0
0 Ba2 fBaz O 0

and €, §, and ¢ are vectors of errors whose elements are all uncorrelated.

Fitting the sample covariance matrix by the model in (4), using the normal distribution
based maximum likelihood, leads to a LR statistic T, = 48.961 and a corresponding p-value
of 0.012 when referred to x3,. Because the normalized Mardia’s measure of multivariate
kurtosis for the data set is 14.763, which is highly significant, we may not trust the LR
statistic. The estimates for the constants a, b and ¢ in (2) and (3) are & = 1.372, b =
21.858 and ¢ = 1.034; the p-values when referring Tr = 47.345 to X3y and Ty to ax; are
respectively 0.017 and 0.031. So the approximation in (3) gives a little better support for
the theoretical model than that in (2). Although there is not much difference among the
p-values, b is much smaller than the nominal degrees of freedom d = 29. The estimates of
the 29 nonzero eigenvalues of the quadratic form corresponding to the LR statistic are 3.024,
2.198, 1.847, 1.652, 1.555, 1.472, 1.355, 1.266, 1.203, 1.156, 1.077, 1.059, 1.034, 0.961, 0.868,
0.815, 0.799, 0.770, 0.731, 0.671, 0.664, 0.610, 0.547, 0.536, 0.512, 0.452, 0.421, 0.401, 0.333,
with CV(A) = 0.572. So both the d and CV(A) are close to the condition at the bottom of
Table 2(b), where the approximation in (3) performs more accurately than that in (2).

Notice that the average of the sample eigenvalues ¢ is close to 1.0. We may wonder

whether all the population \;’s are equal to 1.0 or the discrepancy among the \i’s is due to



sampling error. Ten samples each with size 335 are generated from Nyo(0,I). Each of which
is further transformed to have the same sample covariance matrix S as in Neumann’s data,
using

y; = SY287 2%, j=1,2,...,335,

where x; is a simulated observation, S; is the sample covariance matrix of a simulated
sample, and y; is the transformed observation. Because the transformed y; can be regarded
as following a multivariate normal distribution, all the corresponding \;’s are equal to 1.0 and
a NONZero CV(S\) = 0 is due to sampling error. The ten CV(S\)’S of the simulated samples are
0.443, 0.441, 0.418, 0.412, 0.440, 0.417, 0.434, 0.459, 0.411, 0.443. None of them is greater
than CV(S\) = 0.572 of Neumann’s data and model. So we cannot regard the population
A;’s in Neumann’s data and model as being equal.

The limited simulation results on CV(S\) indicate that );’s are more dispersed than \;’s.
Analytical results (see Muirhead, 1982, p. 388) imply that larger \i’s tend to over-estimate
their population values and smaller Ai’s tend to under-estimate their population values.

~

Thus, CV(A) tends to be greater than CV(\). Although the \;’s for the real data and model
are not equal, the corresponding CV(A) should be a lot smaller than CV(S\) = 0.572. If
CV(A) is less than 0.5, by referring to Table 2(b), the approximation in (3) should give an
equally reliable evaluation of the model as when the true asymptotic distribution of Ty, is
known and used to evaluate the model. Thus, although the p-values among the different
approximations are not much different, the analysis does give us more confidence on the
p-value obtained by using the approximation in (3).

Because ¢ ~ 1 for Neumann’s data and model, we used simulated normal samples to
roughly check whether CV(\) = 0. When ¢ is greater than 1 with practical data, one may

simulate samples from a multivariate ¢-distribution with m = 2(2¢ — 1)/(¢ — 1) degrees of

freedom for the same purpose.
6. Conclusion

In this paper, we quantified the conditions that may affect the two widely used approxi-
mations. The quality of the two approximations was studied by varying and controlling the

conditions. Because the true CDF, F'(t), of a quadratic form is hard to evaluate, we used the

10



EDF F (t) to estimate it. In addition to using Monte Carlo, one may use a numerical method
to approximate F'(¢), which can be defined through an integral with an infinite upper limit.
The procedure involves replacing the infinity limit by a finite number and followed by a
numerical integration (see Farebrother, 1990). Errors will occur when replacing the infinite
limit by a finite limit and when using a numerical method to calculate the area under a
continuous curve. The amount of error depends on the chosen upper limit and the number
of rectangles or trapezoids used in the numerical integration, it also depends on the value
of x. The amount of computation in the numerical method can be huge although the error
can be made arbitrarily small. Comparing to using numerical method to evaluate F'(t), the
EDF F'(t) approximates F(t) by Monte Carlo. The error in F(t) can be characterized by its

standard deviation. Using

~

Var[F(w)] = F(2)[1 - F(2)]/N < 1/(4N)

and N = 2000, the error in F(¢) is in the magnitude of 1/(8000)!/2 = 0.011. The error can be
made smaller if we choose a larger N. But N = 2000 is enough for our purpose, that is, we
can clearly tell the pros and cons of each of the two approximations under varied conditions.

The approximation in (2) may perform equally well as that in (3) when both CV(\)
and the degrees of freedom are small. The approximation in (3) generally performs better,
especially when d is large. When CV/()) is not large, say less than 0.5 and d is greater than
10, the approximation in (3) can be as good as knowing the exact distribution of 7T'.

In practice, the \;’s are never known, only \;’s are available. Because CV(S\) tends to
be greater than CV(\). When CV()) is small, one may use either (2) or (3) for inference.
When the degrees of freedom are large, (3) should be the choice.

In Monte Carlo studies with LR or other statistics, it may happen that the \;’s are equal
(see Yuan & Bentler, 1998). Then the approximation in (2) uses the correct assumption about
the A;’s and thus it will perform better than that in (3). Conflicting results on controlling
type I errors by the two approximations (e.g., Fouladi, 1997; Bentler & Xie, 2000; Bura &
Cook, 2003) would most likely be resolved if the population \;’s were known.

In addition to the KS and MKS, we have also obtained the quantile and quantile (QQ)
plots for each of the conditions in Tables 1 to 3. These plots indicate that the major

discrepancy between the proposed distribution in (2) or (3) and the corresponding empirical

11



distribution occurs almost always on the right tail. So a larger KS or MKS also implies a
poorer tail approximation. Because there are a total of 67 conditions, we elect not to include

these QQ plots in the paper.
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Table 1(a). KS and MKS with Ay = (1, k)" (d = 2)

KS MKS
ko CVN)  xa  Lxi  oxa  axg Xa  Lxi  oxd axg
2 0333 0018 0150 0017 0029 0006 0.095 0.008 0.011
3 0500 0.012 0235 0037 0033 0004 0149 0.016 0.014
40600 0011 0278 0054 0050 0004 0.183 0.030 0.020
5 0667 0028 0330 0074 0046 0011 0207 0.038 0.018
6 0714 0018 0376 0064 0045  0.007 0.233 0.038 0.020
7 0750 0.018 0408 0.077 0.060  0.010 0.256 0.039 0.022
8 0778 0012 0430 0084 0056  0.003 0.267 0.047 0.021
9 0800 0.030 0421 0.120 0062  0.014 0.269 0.063 0.026
10 0818 0015 0.462 0.109 0.066  0.004 0.289 0.053 0.021
Ave 0.662 0018 0343 0.071 0.050  0.007 0.217 0.037 0.019
Table 1(b). KS and MKS with A, = (1}, k15)" (d = 6)
KS MKS
ko CVN)  xi  Lxi  exa  axg Xa  Lxi  oxa axg
2 0333 0020 0269 002 0024 0008 0178 0.010 0.008
30500 0.014 0409 0.040 0018  0.007 0270 0.021 0.007
40600 0.021 0510 0057 0025 0007 0324 0.030 0.010
5 0667 0018 0572 0079 0029 0006 0361 0.041 0.013
6 0714 0016 0.623 008 0.033  0.006 0.382 0.046 0.014
7 0750 0.042 0.666 0.098 0.025  0.018 0.400 0.051 0.011
8 0778 0015 0709 0.103 0022 0004 0421 0.048 0.009
9 0800 0.031 0754 0071 002 0014 0433 0.040 0.016
10 0818 0018 0.760 0.101 0.020  0.006 0.441 0.049 0.006
Ave 0.662 0022 058 0.073 0025 0009 0.357 0.037 0.010
Table 1(c). KS and MKS with A, = (1%, k1%)" (d = 10)
KS MKS
ko GV xi  Lxd  exa axg Xa  Lxi  oxa  axg
2 0333 0022 0332 0025 0012 0010 0220 0012 0.004
3 0500 0015 0523 0047 0016 0004 0.336 0.019 0.005
4 0600 0.016 00630 0071 0025 0007 038 0.032 0.012
5 0667 0029 0.69% 008 0031 0015 0422 0.043 0.015
6 0714 0.034 078 0054 0.033 0.018 0.453 0.032 0.016
7 0750 0.016 0815 0.069 0.014  0.005 0461 0.037 0.005
8 0778 0010 0.838 0085 0022 0004 0467 0.043 0.007
9 0800 0.019 0.859 0.094 0012 0005 0476 0.047 0.005
10 0818 0019 0.882 0.082 0.015  0.006 0.483 0.044 0.006
Ave 0.662 0.020 0.707 0.068 0.020  0.008 0412 0.034 0.008




Table 2(a). KS and MKS with Ay = 119+ £(0,0.1,0.2,...,0.9) (d = 10)

KS MKS
ko CVN)  xa  Lxi  exa  axg Xa  Lxi  oxd axg
1 0198 0022 0304 0022 0019 0010 0208 0010 0.007
2 0302 0015 0505 0.020 0015 0004 0.331 0.007 0.003
3 0367 0016 0632 0041 0029 0007 0.388 0016 0.011
4 0410 0.029 0701 0.053 0.035 0015 0424 0.025 0.015
5 0442 0.034 0799 0.032 0032  0.018 0.460 0.015 0.018
6 0466 0.016 0.824 0.029 0012 0005 0.466 0.016 0.005
7 048 0010 0.853 0.036 0.018  0.004 0.475 0.018 0.006
8 0500 0.019 0875 0.040 0013  0.005 0.482 0.018 0.004
9 0512 0019 0903 0.032 0023 0006 0488 0.018 0.007
10 0522 0022 0.924 0.036 0.024 0010 0.491 0.017 0.006
Ave 0420 0.020 0.732 0.034 0.022  0.008 0421 0.016 0.008
Table 2(b). KS and MKS with Ay = 1350 + £(0,0.1,0.2,...,2.9)" (d = 30)
KS MKS
ko CVN)  xi  Lxi  exa ax; Xa  Lxi  oxa axg
1 0353 0020 0899 0027 0017 0005 0488 0.012 0.005
2 0444 0.022 0987 0047 0021  0.010 0.500 0.021 0.007
3 0485 0.013 00996 0.039 0011  0.004 0.500 0.020 0.004
40509 0.027 0999 0.032 0016 0009 0.500 0.018 0.006
5 0525 0.027 1.000 0.036 0022  0.016 0.500 0.019 0.011
6 0535 0.020 1.000 0.042 0022  0.007 0.500 0.021 0.008
7 0543 0.019 1.000 0.043 0.019  0.007 0.500 0.023 0.007
8 0550 0.021 1.000 0.039 0013  0.005 0.500 0.020 0.004
9 0554 0.028 1.000 0.034 0017  0.008 0.500 0.017 0.007
10 0558 0.015 1.000 0.050 0.026  0.006 0.500 0.024 0.013
Ave 0506 0.021 00988 0.039 0018  0.008 0.499 0.019 0.007
Table 2(c). KS and MKS with A, = 150 + £(0,0.1,0.2,...,4.9)" (d = 50)
KS MKS
ko CVN)  xi  Lxi  exa  axg Xa  Lxi  oxa  axg
1 0418 0015 0997 0031 0010 0.005 0.500 0.015 0.003
2 0480 0.025 1.000 0.026 0020  0.009 0.500 0.015 0.005
3 0518 0.029 1.000 0.043 0026  0.014 0500 0.021 0.014
4 0534 0018 1.000 0.033 0017 0006 0.500 0.017 0.007
5 0545 0.017 1.000 0.032 0018  0.006 0.500 0.016 0.006
6 0551 0.013 1.000 0.040 0.022  0.004 0.500 0.022 0.006
7 0557 0.010 1.000 0.054 0.016  0.004 0.500 0.024 0.007
8 0560 0.028 1.000 0.057 0.037  0.012 0.500 0.030 0.013
9 0563 0.040 1.000 0.054 0028  0.018 0.500 0.028 0.014
10 0566 0.015 1.000 0.049 0.016  0.005 0.500 0.027 0.006
Ave 0530 0.021 1.000 0.042 0021  0.008 0.500 0.022 0.008




Table 3. KS and MKS with Ay = (1,1.1,1.2,...,1+.1[d — d/10 — 1], 10,20, . .., d)’

KS MKS

d CV(N) x3 Lxi o3 axi Xa Lxi  oxd axp

10 1.147 0.022 0.519 0.116 0.062 0.010 0.328 0.067 0.030
20 1.352 0.022 0.838 0.154 0.054 0.008 0472 0.083 0.029
30 1.462 0.022 0960 0.157 0.042 0.010 0.498 0.088 0.024
40 1.531 0.017 0.993 0.181 0.051 0.007  0.500 0.098 0.023
50  1.579 0.029 1.000 0.172 0.039 0.014 0.500 0.096 0.018
60 1.613 0.013 1.000 0.171 0.033 0.005 0.500 0.093 0.016
70  1.640 0.018 1.000 0.185 0.034 0.008 0.500  0.100 0.018
80 1.660 0.012 1.000 0.190 0.041 0.004 0.500 0.103 0.024
90 1.677 0.028 1.000 0.191 0.029 0.008 0.500 0.103 0.014
100  1.691 0.019 1.000 0.191 0.029 0.005 0.500 0.107 0.013
Ave 1535 0.020 0.931 0.171 0.041 0.008 0.480 0.094 0.021

Ao = (1,1.1,1.2,...,1.7,1.8,10), Apo = (1, 1.1,1.2,...,2.6,2.7,10,20), ..,
Ao = (1,1.1,1.2,...,9.7,9.8,9.9, 10, 20, 30, . . ., 100)’





