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Abstract

Fora variety ofreasons, distributed applications often must beimplemented using exist
ing conventional programming languages and operating systems. Creating new high perfor
mance distributed applications without high-level support from the programming language
or operating system requires thatthe mechanism of distribution be selected early in thede
sign stage, reducing the flexibility and/or efficiency of the design and subsequent imple
mentation. Adding distribution to existing applications can result in an inordinate amount
of reengineering duetothecomplexity andheterogeneity of interapplication communication
mechanisms and their interfaces.

This paper describes a new architecture for high performance distributed applications
and a supporting framework. This architecture applies object-oriented design and imple
mentation techniques tobuild a framework forplatform-independent distributed application
specification and implementation using existing programming languages and operating sys
tems. It utilizes an efficient and extensible layering architecture that allows new abstract
data types, new protocols, and new interprocess communication mechanisms to be addedas
they become necessary.
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1 Introduction

Therehas been considerable researchin the areasof both distributed operating systems[l, 2,3,4,
5, 6], as well as programming languages for distributed application development[7, 8,9,10,11].
However, distributed applications must often be implemented using existing conventional pro
gramming languages and operating systems. Conventional languages are and will be used to
accommodate the "dusty deck" of existing source code, as well as to utilize the experience of
programmers accustomed to working in these languages. Conventional operating systems are
andwillbe used wherethereis no singledistributed operating systemfor everyentityin a partic
ular installation (e.g., a network management application that must communicate with dedicated
routing hardware, a distributed database application that must communicate with hosts running
a variety of operating systems). It is the current and continued presence of these environments
that motivates this work.

Developing high performance distributed applicationsusing conventional programming lan
guages and operating systems is a non-trivial task due to the complexity and heterogeneity of
interapplication communication mechanisms and their interfaces. Adding distribution to exist
ing applications can result in an inordinate amountof reengineering due to the lack of high-level
support for distribution in most traditional environments. Creating new distributed applications
requires the mechanism of distribution be selected very early in the design stage to avoid this
reengineering effort. This causes the distribution mechanisms to either be (a) tightly coupled
with the entire application (which makes changing the mechanism very difficult), or (b) loosely
coupled via abstract interfaces (requiring explieit calls to initiate and support distribution and
reducing efficiency due to additional function calls and data copying).

Tosimplifythe taskof implementing highperformance distributed applications, we arepropos
ing a two-level approach to the implementation and design of distributed applications. Each of
these two levels appliesobject-oriented designprinciples to providea framework for transparent
object distribution.

• Level 1: Communication Substrate Dependent - By creating a uniform abstract interface to
distribution/communication services (e.g., sockets[12], RPC[13], XTI[14], ADAPTIVE[15],
SNMP[16], various loeal and remote IPC and shared memory mechanisms), exactly one
interface to distributional services is necessary. This allows distribution meehanisms to
be selected late in the design process, as well as lessening the development effort when
applications must be ported to a new operating environment. Level 1 represents the com
munication infrastructure of the framework.

• Level 2: Communication Substrate Independent - By providing a family of fundamental
base classes that are capable of encoding themselves in a platform-independent manner,
migrating instances of these classes over diverse platforms requires no additional effort.
The substrate independent level is capable not only of explicitly importing and exporting
objects,but is also capableof hidingthe distributed natureof an objectby using techniques

1



referred to as distributed instantiation and remote delegation. This allows an object to
appear to exist on a local host, but any accesses to it are transparently delegated to the
remote host where the object actually resides. Level 2provides the paradigm for distributed
object management.

We combine these two levels of abstraction to create a framework for high performance dis
tributed application design and implementation. We are implementing and experimenting with
this framework using the C-H- programming language, which was chosen as the implementation
language for its efficiency, its compatibility with the large body ofexisting Clanguage code, and
its support for object-oriented programming.

2 Design Goals

The framework described in Section 3 is designed to satisfy the following goals:

Basic Encoding Rule Independence and Transparency: Due to variances in processor ar
chitectures, operating systems, programming languages and their compilers, data (objects) that
must be transported toa foreign host must beencoded into a format that all communicating par
ties can recognize. Under the OSI Reference Model[17], this task is the responsibility ofLayer
6, the Presentation Layer. Presentation protocols are traditionally implemented using adata def
inition language for humans to specify thedataformats to be exchanged. These datadefinitions
are then compiled according toa set ofbasic encoding rules (BER) that specify the exact binary
representation of each data type. For maximum flexibility, our framework allows Presentation
Layer services to be transparently selected either for compatibility with existing applications
{e.g., ASN.1[18] for compatibility with OSI applications) orfor the best match to new applica
tions {e.g., XDR with Multimedia extensions forbandwidth/processing intensive applications).
A single object can be transported using multiple encoding schemes, with the eorreet one for
a given end-to-end assoeiation selected automatically via strong typing and function/operator
overloading. This allowsa communicating entityto maintain a singleintemal data format that is
most efficient for loeal processing, while using ASN.l to communicate information to network
management applications and a more efficient format for more time-eritical communications.

Object/Task LocationIndependence and Transparency: The emergence of distributed ob
jectmanagement systems and languages[19,8,20,21] has shown that using adistributed object-
oriented paradigm isapowerful and expressive way todesign and implement distributed applica
tions. Our framework seeks to provide distributed object management facilities by augmenting
objects with the necessary member functions to transparently or explieitly designate the loca
tion of data members and the constituent operations performed. The actual location of various



application objects can be transparently selected by the application designer to match the com
munication characteristics of the application. Object location can beexplicitly designated either
at the time of object instantiation, or during the object's lifetime via a single member function.
Finer-grain control of object location and migration can be specified by designating member
functions ordata members forremote invocation/instantiation, allowing theapplication designer
to distribute a single object across multiple locations.

Communication Substrate Independenceand IVansparency: There ispresently a very large
number of communicationsubstrates available to the distributedsystem designer (e.g., TCP[22],
OSI-TP4[23], VMTP[24], NETBLT[25], XTP[26], etc.), withnewprotocols on thehorizon (e.g.,
Bellcore's TP+-1-, OSI HSTP). Each of these protocols provides varying levels of performance
and types of service. To take advantage of advances in network technology, it is essential that
applications sufficiently insulate themselves fromidiosyncrasies of a given substratewithout un
duly reducing efficiency. Our framework seeks to decouple object transmission/reception from
the underlying communication subsystem. Thisallows thesame codeto be usedportably across
many different communication subsystems without regard to the selected substrate. The frame
work provides a minimal yet functional base interface to basic communication services, while
allowingaccess to substrate-specific features, functions and formats in an efficient yet isolatable
manner.

Efficient yet Robust "Higher Layer" Protocol Services: By designing the layering architec
ture for both transparency and efficiency, protocol layers which were previously considered bot
tlenecks in distributed applications can now be used in high performance systems. Studies have
shown that presentation layer processing is a major bottleneck in network performance[27, 28],
due to both the complexity of the processing involved and the additional data movement incurred
from translating data between formats. Our framework addresses both of these issues:

1. Complexity- The fundamental data types used in a presentation protocol are hand-coded
and inlined to yield a highly efficient translation. Additionally, every built-in data type
has a hand-tuned type conversion operator to allow efficient processing of built-in types.
As composite data types are directly composed of the fundamental or built-in types, their
translations are efficient as well. However, implementors are free to experiment with and
hand-tune a given composite object's encoding and/or decoding.

2. Redundant Data Copying - The entire "data path" of the framework is designed to al
low conversion-on-copy operations, scatter-read/gather-write, memory-mapped I/O, and
"pipelining" of protocol processing operations. Additionally, we are experimenting with
alternatives to the traditional socket interface to further reduce the need for copying.



Streamlined Development Process: Conventional systems require the designer to maintain
a data description in a language other than the language being used to develop the application.
Our framework allows designers and implementors to specify objects directly in the implemen
tation language (e.g., C++), without requiring an additional preprocessor or stub compiler. The
fundamental data types and formats are precisely defined within the framework specification.
This allows formats to be expressed unambiguously, while allowing the development cycle to be
streamlinedby using rapid prototyping techniques.

Medium Independence and li-ansparency: The class libraries used to encode data objects
can easily be combined with the exiting C++ iostream^ class libraries currently being stan
dardized by ANSI. This allows objects to be stored in a platform-independent format with no
additional implementation effort. It also allows persistent objects to be "played out" oyer a
communication channel by an application that is unaware of the underlying format simply by
transmitting the contents of a file.

3 Framework Components

Figure 1 shows the layering model used in our architecture. The Data Transport and Media
Convergence layers correspond to the Communication Substrate Dependent level, as shown in
Figure 2. The following isa description ofeach layer. The Presentation and Distribution layers
correspond to the Communication Substrate Independent level, as shown in Figure 3.

3.1 Data Transport Layer

TheDataTransport Layerprovides thebasiclocalandremote interprocess communication chan- -
nel. This layer represents both theIPC mechanisms and their constituent Application Program
matic Interfaces (APIs). It is assumed thateach underlying IPG mechanism provides either (1)
a basic duplex data stream with either connection-oriented or connectionless semantics or (2) a
shared memoryinterfacewith supportfor mappinga memorysegmentinto and out of an address
space.

Network Subsystems: Theremoteinterprocess communication substrate. Thebasicconnection-
oriented network service is expected to provide an error-free, in-order delivery of bytes (i.e.,
TCP[22] orequivalent). The basic connectionless network service isexpected tosimply provide
a best effort delivery of datagrams (i.e., UDP[29] or equivalent). Additionally, more diverse
classes of network services can also be supported in this model. Forexample, ADAPTIVE[15]

'The iostream library is the C++ analog to the Cprogramming language's stdio library. However, itoffers
the advantages of beingtype-safe andextensible to encompass newdata typesand I/O devices
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provides a multi-stream transport substrate thatcanbe flexibly and adaptively configured to pro
vide diverse grades of service to multimedia applications.

The Network Subsystem Layer also includes the APIs to network services, that allow user-
space applications to access data transport operations in a protocol independent manner. Several
network APIs supported include the BSD sockets, System V TLI, POSIX XTI, ADAPTIVE API,
x:-kemel[30], NetBI0S[31], and theWINSOCK[32] library. Eachof the interfaces provides both
communication operations (e.g., open, close, send, recv) and addressing/naming services (e.g.,
address formats, name resolution).

3.2 Media Convergence Layer

The Media Convergence Layer provides a consistent, buffered interface to Data Transport ser
vices. It provides a basic data source/sink interface for higher layer subsystems, and uses the
underlying Data Transportservices to drain or replenish its intemal bufferinglayer.

SAP Layer: The collectionof uniformServiceAccessPoints (SAPs) that provide a consistent
interface to diverse interapplication communicationservices. Each SAP provides an impedance
match between the native API provided by a given communication substrate and the basic com
munication service abstraction required by higher layer subsystems. There are two primary
classes of SAPs, those based on duplex communication channels and those based on shared
memory. SAPs based on duplex channels are required to support read, write, and connection
management operations. SAPs based on shared memory must support basic attachment and
detachment operations. Both classes of SAP must support a SAPAddress that can represent a
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communications endpoint for a given communication mechanism. This separation ofaddressing
from basic communication operations allows a given communication mechanism {e.g., TCP) to
utilize several possible API's{e.g., sockets, XTI) andstillmaintain a single abstract SAPAddress
format, thus decoupling the mechanism from the API. The uniformity of the SAP abstraction
decouples the Communication Substrate from higher layer client subsystems. SAPs currently
provided include socketSAP, TLISAP, ADAPTIVESAP, SHMSAP (Shared Memory viammap).
SAPAddresses include TCPAddress, UDPAddress, UNIXDSAddress (UNIX Domain Sockets),
ADAPTIVEAddress, and SHMAddress.

buf Layer: The collection of transparent buffer managers that provide an efficient buffering
scheme to the SAPs provided above. The buf^ layer is necessary to reduce the number of sys
tem calls needed to send a composite object{i.e., an object with multiple data members) and to
minimize theamount of redundant data copying. The bufLayer is based on and is interoperable
with the C++ iostream library[33, 34], which provides two sets of abstractions:

1. streambuf- the abstraction for a consumer/producer of bytes. To extend the iostream li
brary to include a newJ/0 device or interface, oneneedonlysupply a streambuf interface
to the device, and combine it with four speeific classes via inheritance to allow existing
classes to read and write to it automatically. The iostream library that accompanies the
AT&T distribution of C++ provides streambuf interfaces to files andin-core memory.

^Identifiers containing bufand stream are in lowercase to remain consistent with the C++ iostream capitalization
convention.
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2. iostream - the abstraction for formatted insertion and extraction of objects into/from a
stream. The base classes ostream and istream each provide the insertion (output) and ex
traction (input) operators (<< and >> respectively) for each of the built-in data types
supported by the language {e.g., char, int, float), istreams and ostreams must be combined
with a streambuf to provide a usable stream {e.g., istream + filebuf = ifstream, a stream
that extracts objects from a file), iostreams are not only extensible with respect to the
devices they can support, but also with respect to the types of objects they can insert or
extract. User-created data types (classes) can define their own input and output operations
by overloading the insertion and extraction operators to support the new data type.

Each available communication subsystem has a corresponding SAP and buf that accesses its
services {e.g., socketbuf, tlibuf, adaptivesap, shmbuf). These bufs can then be combined with
the standard istream and ostream classes to provide aformatted I/O channel, or with a new stream
class (described below) to provide an encoded I/O channel.

3.3 Presentation Layer

The Presentation Layer is responsible for resolving differences in data representations be
tween heterogeneous host architectures. It accomplishes this by translating local intemal data
formats into an extemal format that can interpreted by the remote entity. It typically accom
plishes this via one of two means:

1. Explicit Typing - each data object is "tagged" with a type identifier field that specifies the
data type of the object in transit. It can then be followed by a length field that indicates the
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remaining number ofoctets (orfundamental data units). These two fields are then followed
by the actual data octets. This is known as aT-L-V scheme ("Tag-Length-Value") and is
used as the basis for the Basic Encoding Rules ofOSIASN. 1. This approach is in contrast
to:

2. Implicit Typing - it is assumed that the receiver of the data is aware of exactly what type
ofdata object is coming, therefore the tag field is redundant at best. This is the approach
taken by XDR, aprotocol that is designed to take advantage ofregular data alignment and
hardware-dictated formats.

[35] contains acomparison ofthree well known presentation protocols (XDR, ASN. 1, and Apollo
NDR). The authors resolve that T-L-V encodings are more general and potentially more band
width efficient, yet can be more complex to process, while fixed-format encodings such as XDR
are more efficient to process, only slightly less efficient with respect to bandwidth, and can pro
vide T-L-V functionality if necessary.

stream Layer: The stream layer is used to bind the various coding schemes listed below to
an I/O channel (via its corresponding buf). For a given encoding scheme Z, an izstream and
ozstream are implemented, providing at least the basic insertion orextraction operators for the
built-in data types. Additionally, insertion orextraction operators will beprovided for the corre
sponding GEncode class hierarchy that defines the basic data types used by the encoding scheme.
In addition to providing the capability to statically bind anencoding scheme (stream) to anI/O
device (buf), stream manipulator^ are provided to allow encoding schemes to be switched on
the fly. By inserting (or extracting) a z_on manipulator into a stream, the previous format
ting/encoding scheme is suspended and replaced with the zencoding. Inserting (or extracting) a
z_of f manipulator restores theoriginal formatting/encoding scheme.

GEncode/XDR: GEncode/XDR is a class library ofprimitive base classes which correspond
directly with the standard eXtemal Data Representation (XDR)[36], as shown inFigure 4. This
provides a setofBasic Encoding Rules that allow objects tobe shared across diverse host plat
forms. Foreach built-in data type {e.g., char, int, double) a type-conversion operator is provided
to convert between language/compiler dependent types and formats to their corresponding GEn
code/XDR base class. Byleveraging off ofC++ type management mechanisms, the presence of
the GEncode layer can becompletely transparent to the application programmer. GEncode also
supports collection classes {e.g.. Lists, Dictionaries, Sets), C++ references, and pointers.

^Manipulators are "functions" that can be inserted or extracted into/from astream. Inserting/extracting amanip
ulator has the effect ofcalling the manipulator's corresponding function with the target stream as the function's first
argument. Manipulators allow otherwise complex encoding/formatting expressions to be written as a simple series
of insertions/extractions.



GEncode/XDR Name Representation C++ Data Type
Signedlnteger 32bit 2's Comp. (Big Endlan) ctiar,short,Int,long
Unsignedlnteger 32bit unsigned (Big Endlan) u_char,u_short,uJnt ujong
Enumeration 32bit 2's Comp. (Big Endlan) enum

Boolean 32blt 2's Comp. (Big Endlan) Int

RoatlngPoint IEEE 32b FP (1s/8e/23m) float

DPFIoatlngPoint IEEE 64b FP(1s/11e/52m) double, [long double]
FIxedLengthOpaqueData Arbitrary Data (zero padded) any opaque range of bytes
VariableLengthOpaqueData 4B Len + Data (zero padded) any opaque range of bytes
CharacterString 4B Len + AscliString (zero padded) char*

FIxedLengthArray n * element representation T[n]
VariableLengthArray 4B Len + n * element representation T[n]
DIscriminatedUnion 4B Tag + Anon. Union long + union

Figure 4: GEncode/XDR Fundamental Base Classes

GEncode/ASN.l: An OSI Abstract Syntax Notation. 1version of GEncode/XDR. GEncode/ASN. 1
is morecomplex thanGEncode/XDR, as it hasto address overflow issues (i.e., reading an 8 octet
integer into a 4 octet 1ong). Also, it is difficult to. directly support theASN. 1notion ofSetusing
only C++ constructs.

GEncode/MAX: A set of primitive base classes that represent Multimedia Activity exten
sions. These classes allow multimedia objects and basic application activities to be represented
in a hostplatform independent manner. TheMultimedia extensions wearecurrently implement
ing include support for

• 8KHz, 8 bit //-law PCM audio

• 44.1KHz 16 bit linear PCM audio

• 44. IKHz 16 bit linear PCM audio (multi-channel)

• Indexed and Direct Color Pixmaps

• JPEG Still Image

• MPEG Motion Image

The Activity extensions we are currently investigating include non-blocking and asynchronous
remote procedurecalls, C++ pointer-to-member-function semantics, and language-independent
procedure name binding.

3.4 Distribution Layer

From the Presentation layer down, the support for distribution consists primarily of efficient
mechanisms for copying objects to and fromheterogeneoussystems. The Distributionlayer is the



layer thatcreates an infrastructure for transparently migrating objects without explicit initiation
from the programmer. The application programmer can simply specify the location where the
object should be located (if desired) and can then access the object as if it were located in the
local address space. The Distribution layerconsists of the following 2 sublayers:

LocationManagementLayer: TheLocation Management layer orchestrates the migration of
objects basedonbothexplicit (i. e., theobject'sexis t Onmember function isexplicitly invoked)
and implicit{i.e., a memberfunction declaredas remote is invoked) events. Object locations are
managed through the use of:

Distributed Instantiation - a technique where by overloading the language's new and
delete operators, objects can be instantiated on remote hosts simply by passing an ad
ditional argument to the new operator.

ObjectDirectory Service - a distributed directory service from which application entities
can capture a capability for an object based on an object identifier tuple.

Remote Delegation Layer: The Remote Delegation layer manages and execution of applica
tion object's member functions and arbitrates multiple accesses to a single object. By using a
techniquecalled remote delegation, an object's memberfunctions are automatically invoked on
the proper host system without programmer intervention.

4 Conclusions

We have presented a new architecture for the design and implementation of high performance
distributed applications. We are currently experimenting with, conformance testing, and bench
marking our initial prototype implementation based On XDR, TCP/sockets, ininap shared mem
ory, and ADAPTIVE, while implementing additional bufs and GEncode/ASN.l. The initial
implementation has provided an expressive environment for specifying and implementing dis
tributed applications.
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