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ABSTRACT OF THE DISSERTATION 
 

Development of Quantitative Phenotyping Tools to Improve Pulmonary 

Thromboendarterectomy Risk-Benefit Assessment in Patients with Chronic Thromboembolic 

Pulmonary Hypertension  

 

 
by 

 

Elizabeth Michelle Bird 

 

Doctor of Philosophy in Bioengineering 

University of California San Diego, 2024 

Professor Francisco Contijoch, Chair 
 

 

Chronic Thromboembolic Pulmonary Hypertension (CTEPH) is a disease where 

patients have unresolved clots in their pulmonary vasculature. Patients can be successfully 
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treated by Pulmonary Thromboendarterectomy (PTE) when the pulmonary hemodynamic 

impairment is due to surgically accessible CTEPH disease burden (fibrotic clot and resulting 

downstream perfusion deficits). Unfortunately, up to 10 - 50% of patients who undergo the 

surgery will have residual pulmonary hypertension, which carries higher complication and 

mortality rates. Residual pulmonary hypertension is thought to occur in patients with either 

microvascular remodeling, mixed pulmonary hypertension types, or chronic clot too distal in 

the vasculature for complete surgical removal. As such, key preoperative questions to identify 

patients likely to benefit from PTE are (1) the extent to which their vascular obstructions and 

associated perfusion deficits are the drivers of hemodynamic impairment and (2) whether the 

obstructions are surgically accessible for removal (aka located in lobar to sub- segmental 

vessels). 

Both of the above questions are currently assessed by expert visual interpretation of 

imaging studies alongside hemodynamic measures prior to PTE surgery. Unfortunately, there 

are currently no quantitative tools to aid these evaluations. As a result, the impact of specific 

lesions, the total disease burden, and the amount of surgically-accessible disease on PTE risk-

benefit determination is unclear. Thus, there is a need to develop tools to systematically and 

objectively assess CTEPH patients being evaluated for PTE surgery.  

This work aims to develop quantitative imaging measures to assess CTEPH 

characteristics important for surgical planning. To accomplish this, first we focus on the 

ability of Dual Energy CT Pulmonary Angiograms to evaluate agreement between CTEPH 

disease burden and hemodynamic severity.  Next, we evaluate the ability of Machine 

Learning Analysis of Ventilation Perfusion Images predict surgical disease level, an 

indication of clot location with important accessibility implications.
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INTRODUCTION 
 

Chronic Thromboembolic Pulmonary Hypertension 

Chronic Thromboembolic Pulmonary Hypertension (CTEPH) is a specific type of 

pulmonary hypertension, falling into group 4 of the 5 different pulmonary hypertension types 

(Figure 1)1. CTEPH is a rare form of pulmonary hypertension, affecting about 30 – 50 people 

per million in the United States2. CTEPH is due to vascular obstructions that do not resolve in 

the pulmonary vasculature, leading to pulmonary hypertension (mean pulmonary artery 

pressure/mPAP>20 mmHg, Pulmonary Vascular Resistance/PVR>240 dyn ∙ s ∙ cm!", and 

Pulmonary Capillary Wedge Pressure/PCWP<15 mmHg)3, right heart failure, and high mortality 

when not treated4,5. Obstructions typically occur in both lungs, and the pattern of obstruction in 

one lung does not have to be reflective of the pattern of obstruction in the other lung. These 

vascular obstructions have a high amount of variability in their size, number, severity of 

obstruction and location, which can influence treatment selection for a given patient6.  

 

Figure 1 Different Pulmonary Hypertension Groups 

CTEPH Treatment via Pulmonary Thromboendarterectomy Surgery 

When a patient with CTEPH’s pulmonary hypertension is predominantly caused by 

remodeled, chronic vascular obstructions in the pulmonary vasculature, removal of these 

obstructions can be an effective treatment6. Pulmonary Thromboendarterectomy (PTE) is a 

surgery that treats CTEPH by removing the chronic vascular obstructions from a patient’s 

pulmonary arterial tree7,8 (Figure 2). PTE significantly improves mortality and reduces 

Group 1 
Pulmonary Arterial

Hypertension (PAH)

Group 2
PH Associated with 
Left Heart Disease 

Group 3
PH Associated with 

Lung Disease 

Group 4
PH Associated with 
Pulmonary Artery 

Obstructions

Group 5
PH with unclear 

and/or multifactorial 
mechanisms
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pulmonary hypertension, making it the treatment of choice for patients who are good PTE 

candidates9–11.  

 

Figure 2 PTE Surgery Removes Chronic Clot from the pulmonary arteries (Image modified from Delcroix 
et al 12) 

Identification of good PTE candidates is dependent on multiple factors. First, it is 

important that patients will be able to undergo cardiovascular surgery without significant risk of 

morbidity and mortality. Currently, the Society of Thoracic Surgeons has developed a 

quantitative morbidity and mortality model and affiliated risk calculator that addresses this 

concern. This calculator uses patient demographic information, comorbidities, and organ 

function to calculate individualized risk for common cardiothoracic procedures13,14. Second, it is 

important to determine if a patients symptoms and hemodynamic severity are primarily due to 

CTEPH fibrotic clot6,15. This includes determining if a patient is likely to have a mixed 

pulmonary hypertension type, for example a CTEPH patient who also shows features of 

Pulmonary Arterial Hypertension and has a history of methamphetamine use. Patients can also 

have CTEPH microvascular remodeling and disease as a result of pulmonary blood flow changes 

that accompany macrovascular fibrotic clots4. PTE removes macrovascular fibrotic clot and does 
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not address microvascular or nonfibrotic clot contributions to pulmonary hypertension. Third and 

finally, it is important for the fibrotic clot to be surgically accessible, as successful PTE surgery 

requires the surgeon to access and remove the chronic clot from the pulmonary arterial tree. 

Location of clot origin in the pulmonary arterial tree is described using the UCSD Surgical 

Disease Level (Figure 3). Currently, disease as distal as the segmental and subsegmental 

vasculature (UCSD surgical disease level 3 and 4) can be surgically removed during PTE. 

Removal of this distal disease is more surgically challenging, and can only be successfully 

accomplished at a few surgical centers6,16,17. 

 

Figure 3 UCSD Surgical Disease Level defines the location of fibrotic clot origin and is important for 
surgical accessibility assessment. Modified from Madani et al and Delcroix et al 6,12. 

Patients who are not good candidates for PTE can potentially benefit from alternative 

treatments, such as balloon pulmonary angioplasty (BPA) or medical therapy with pulmonary 

hypertension medications. Patients with macrovascular fibrotic clots that are too distal to be 

surgically accessible can be good candidates for BPA, whereas patients who have significant 

microvascular remodeling or mixed pulmonary hypertension types may be good candidates for 

medical therapy alone or in conjunction with PTE and/or BPA12,18. As seen in Figure 3, the 

selection of patients for treatment at the segmental and subsegmental level begins to be more 

complicated, as patients in this region may benefit best from PTE if their case is addressed at an 

expert center, or they may benefit from an alternative treatment such as PTE in combination with 

PTE

BPA
Challenge region: 
• Match with expert center
• Alternative treatment 

consideration

Level I Level II

Level III Level IV

A

C D

B
Level I

Level II

Level III

Level IV

More 
proximal

More distal
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BPA, BPA alone or medical therapy alone. It is important to best match patients to a given 

therapy and appropriate center to carry out that therapy in order to avoid suboptimal treatment 

outcomes and the requirement for additional procedures to correct suboptimal outcomes. 

Selection of Good PTE Candidates 

PTE candidacy criteria are evaluated in CTEPH patients during diagnosis and clinical 

workup by a team of multidisciplinary experts19. Determination of patient general risk for cardiac 

surgery is accomplished using the Society of Thoracic Surgeons Risk Score13,14. Assessment of 

the second criteria, determining a patient’s pulmonary hypertension is likely primarily due to 

fibrotic clot, is accomplished by integrating imaging and invasive pulmonary hemodynamic 

assessment. Specifically, clinicians assess that a) the disease burden (lung parenchyma perfusion 

deficit and pulmonary arterial tree fibrotic clot) seen on imaging (Ventilation-Perfusion Studies 

for perfusion deficit; Dual Energy-CT Pulmonary Angiograms and Catheter Derived Digital 

Subtraction Angiograms for both perfusion deficit and fibrotic clot visualization) agree with one 

another, reducing suspicion for alternative causes of pulmonary hypertension. Clinicians also 

assess that (b) the visualized disease burden agrees with the severity of pulmonary hypertension, 

reducing the likelihood that there are significant microvascular contributions to disease. For the 

third criteria, clinicians again integrate clinical and imaging information. Clinicians use imaging 

information to assess where clot is likely to be in the vascular tree based on the location of 

perfusion deficit and fibrotic clot disease burden. But because fibrotic clot visualization is not 

perfect, clinicians also use known distal disease risk factors to increase their suspicion that a 

patient may have distal disease6,12,15,20. 
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Quantitative Support Needed for Pre PTE Evaluation 

 Both surgical accessibility and agreement between disease burden and hemodynamic 

severity are assessed by expert interpretation of imaging studies alongside hemodynamic 

measures and patient clinical data prior to PTE surgery. Currently, imaging evaluations and 

integration with clinical data are not supported with quantitative analysis, and therefore can be 

subjective. As a result, the impact of specific lesions, the total disease burden, and the amount of 

surgically-accessible disease on PTE risk and benefit has not been quantitatively evaluated. This 

lack of quantitative evaluation prevents systematic assessment of PTE benefit for individual 

patients and limits risk-benefit analysis.  Further, the subjective nature of the surgical criteria 

leads to center-to-center (and even expert-to-expert) variability in patient selection for PTE 

surgery, which precludes comparison of different treatment strategies within and across centers. 

There is a need to develop tools that can systematically and objectively assess CTEPH patients 

being evaluated for PTE surgery, which the work contained in this thesis focuses on addressing.  

Dissertation Overview 

 This dissertation addresses the need for quantitative tools that can assess CTEPH patients 

prior to PTE surgery in the following chapters. The first chapter focuses on the assessment of 

disease burden and hemodynamic severity. In this chapter we discuss our developed of an 

automated metric that captures hypoperfusion from Dual-Energy CT images. Our metric, called 

Hypoperfused Lung Volume or HLV, captures the total spatial amount of hypoperfusion. This 

metric distinguishes CTEPH patients from controls, agrees with expert visual assessment, and 

agrees with hemodynamic severity of CTEPH in patients who underwent PTE. 

 The second chapter focuses on the preoperative prediction of surgical accessibility. In 

this chapter we investigate the use of machine learning to analyze ventilation perfusion images 
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and from this analysis predict disease level in the left lung. We investigate two different 

approaches to predict disease level from these models (classifying all cases vs classifying only 

cases that we can make confident predictions in). We identified two models that are able to 

classify patient left lungs as proximal, segmental, or (sub)segmental.  
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CHAPTER 1: DETECTION OF PERFUSION DEFICIT IN CTEPH  

1.1. Abstract 

The purpose of this study was to assess if a novel, automated method to spatially 

delineate and quantify the extent of hypoperfusion on multi-energy CT angiograms can aid 

evaluation of chronic thromboembolic pulmonary hypertension (CTEPH) disease severity. 

DECT angiograms obtained between January 2018 and December 2020 in 51 patients with 

CTEPH (mean age, 47 ± [SD] 17 years, 27 females) were retrospectively compared with 110 

controls with no imaging findings suggestive of pulmonary vascular abnormalities (mean age, 

51±16 years, 81 females). Parenchymal iodine values were automatically isolated using deep 

learning lobar lung segmentations. Low iodine concentration (defined as ≤ 0 mg/mL) was used 

to delineate areas of hypoperfusion and calculate hypoperfused lung volume (HLV). Receiver 

operating characteristic (ROC) curves, correlations with preoperative and postoperative changes 

in invasive hemodynamics, and comparison with visual assessment of lobar hypoperfusion by 

two expert readers were evaluated. Global HLV correctly separated patients with CTEPH from 

controls (area under the ROC curve=0.84, 10% HLV cutoff: 90% sensitivity, 72% accuracy, and 

64% specificity) and correlated moderately with hemodynamic severity at time of imaging 

(pulmonary vascular resistance [PVR], ⍴=0.67, p<0.001) and change after surgical treatment 

(∆PVR ⍴=-0.61, p<0.001). In patients surgically classified as having segmental disease, global 

HLV correlated with pre-operative PVR (⍴ = 0.81) and post-operative change in PVR (⍴=-

0.70). Lobar HLV correlated moderately with expert reader lobar assessment (𝜌HLV=0.71 for 

reader 1; 𝜌HLV=0.67 for reader 2). In conclusion, automated quantification of hypoperfused areas 

in patients with CTEPH can be performed from clinical multi-energy CT examinations and may 

aid clinical evaluation, particularly in patients with segmental level disease.  
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1.2. Introduction 

Obstruction of the pulmonary arteries by chronic thromboemboli leads to chronic 

thromboembolic pulmonary hypertension (CTEPH)3,21,22. Obstructions vary in number and 

location, leading to perfusion deficits in the pulmonary parenchyma with varying spatial extent 

and spatial distributions. Agreement between location(s) of arterial obstructions, the extent and 

location of hypoperfusion, and the severity of pulmonary hypertension are important factors in 

diagnostic and treatment evaluations 6,23. 

Dual-energy CT (DECT) pulmonary angiography (DECTPA) offers a non-invasive 

approach to evaluate both arterial obstructions and hypoperfusion 24–30. Average global iodine 

concentration (termed Pulmonary Blood Volume or PBV) measured from DECTPA images is 

reduced in patients with acute pulmonary embolisms (PE) and CTEPH 31. Additionally, in 

patients with CTEPH, reduced PBV has also been correlated with hemodynamic severity 32–34. In 

addition to global assessment, PBV and DECTPA iodine maps have proven useful in aiding 

visual detection of individual perfusion deficits by expert readers 25,30,35. However, to date, 

DECTPA images have not been utilized to automatically delineate perfusion deficits in a pixel-

fashion and quantify the spatial extent of impairment.  

The objective of this study was to further DECTPA evaluation of pulmonary perfusion by 

developing and validating an automated, quantitative approach to define, on a per-pixel basis, 

regions of hypoperfusion in patients with CTEPH. Our hypothesis is that the spatial extent of 

hypoperfusion measured with our approach will agree with presurgical disease severity, changes 

in hemodynamics after surgical intervention, and with expert radiologist visual assessment. In 

particular, we expect pixelwise evaluation to be particularly helpful in patients with chronic 

thromboembolic disease that originates in the segmental pulmonary arteries. 
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1.3. Methods 

1.3.1. Patient Selection 

Under institutional review board-approved (#191797) waiver of informed consent and in 

compliance with the Health Insurance Portability and Accountability Act, 395 consecutive dual-

energy acquisitions between 1/1/18 and 12/31/20 on a single CT scanner were retrospectively 

evaluated (by author FC, 12 years experience in cardiovascular imaging) in an unmatched case-

control fashion. Scans were acquired for evaluation of CTEPH (n=120) or suspicion of acute PE 

(n=275) (Figure 4). 

Error! Reference source not found.

 

Figure 4: Flow diagram of study design 

The CTEPH cohort (Figure 4) was comprised of patients who underwent pulmonary 

thromboendarterectomy (PTE) surgery for definitive treatment of CTEPH. Patient diagnosis and 

treatment selection was determined by consensus of a multidisciplinary team of cardiothoracic 



10 
 

surgeons, vascular disease expert pulmonologists, and fellowship trained cardiothoracic 

radiologists. Clinicians assessed CTEPH diagnosis using the criteria from Galiè et al, which 

include mean pulmonary artery pressure (mPAP) >25mmHg, pulmonary artery wedge pressure  

≤15 mmHg, pulmonary vascular resistance ≥240 dyn·s·cm−5, CTEPH-specific imaging signs, 

and ventilation-perfusion mismatch3. Patients diagnosed with CTEPH were excluded if they did 

not undergo PTE (including those treated medically or by balloon pulmonary angioplasty), 

lacked pre-operative dual-energy imaging (n=65), had body mass index (BMI) >50 kg/m2 (which 

reduces image quality36; n=2), or had automatic lobar segmentation measurements (see 

Hypoperfused Lung Volume Assessment) that failed visual inspection (n=2; blinded visual review 

by author EB, 5 years experience in cardiovascular imaging). The final CTEPH cohort included 

51 patients. Median time between DECT imaging and PTE surgery was 5 days (43/51 within 30 

days, range: 2-372 days). A subset of the patients with CTEPH (n=33) had pre- and post-PTE 

invasive hemodynamic values available for review, which were used for comparison with CT-

based evaluation (discussed in Invasive Hemodynamics). 

Table 1 Summary of control and CTEPH cohort characteristics 

 Controls CTEPH  
 n=110 n=51 p-value 

Age, years 51 ± 16 47 ± 17 0.14 
Sex, female (%) 81 (73.6) 27 (52.9)* 0.01 
BMI, kg/m2 39.2 ± 6.6 31.1 ± 7.5* <0.001 
Race   0.01 
     African American 5 (5) 12 (24)*  
     Asian 7 (6) 1 (2)  
     Pacific Islander 1 (1) 2 (4)  

     White 63 (57) 25 (49)  

     Other or Mixed+        33 (30) 11 (22)  

     Unknown 1 (1) 0 (0)  
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The control cohort was comprised of patients found to have no imaging findings 

suggestive of pulmonary vascular abnormalities after multi-energy CT imaging was performed to 

rule out acute PE. Patients were excluded if the radiologic report or patient medical record 

mentioned findings consistent with any PE (acute, subacute, or chronic; n=55), pulmonary 

hypertension (n=26), pulmonary venoocclusive disease (n=4), pulmonary artery sarcoma (n=4), 

pneumothorax (n=3), congenital heart disease (n=3), pulmonary vein stenosis (n=2), pulmonary 

arteriovenous malformation (n=1), partial anomalous venous return (n=1), or prior lobectomy 

(n=1) (see Figure 4). As with the CTEPH cohort, studies were excluded for patient BMI>50 

kg/m2 (n=28), poor dual-energy image quality (defined as pulmonary artery iodine signal-to-

noise ratio of <1035; n=33), or if automatic lobar segmentation failed visual inspection (n=5). 

The final control cohort included 110 patients.  

1.3.2. Image Acquisition 

Multi-energy CT pulmonary angiograms for both cohorts were acquired using the same 

dual-energy protocol on a single single-source Revolution CT scanner (GE Medical Systems, 

Chicago, IL). The acquisition rapidly switched kVP (80 to 140 kVp), and data were acquired 

helically with an 80mm detector width, median pitch of 1.38 (range: 0.98-1.38), and 0.5 s 

revolution time. Median tube current was 485 mAs (range: 240-630 mAs). Patients were 

administered iohexol contrast (Omipaque) with a concentration of 350mg/mL based on BMI 

(BMI<20: 60mL at 4mL/s, BMI 20-29.9: 75 mL at 5 mL/s, BMI 30-39.9: 80mL at 5.5mL/s, 

BMI> 40: 90mL at 6mL/s; median volume 75 mL, range: 50-150 mL). Imaging was timed for 

pulmonary arterial phase imaging using “smart prep” bolus tracking, with images acquired 8 

seconds after main pulmonary artery enhancement at the T4 level reached 125 HU37. Iodine-

water material decompositions yielding iodine concentration in mg/mL were generated using the 
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Gemstone Spectral Imaging software (GE Healthcare, Chicago IL). All images were 

reconstructed on a 512x512 image grid with xy-resolution of 0.7±0.1 mm (range: 0.5-0.9 mm) 

and section thickness of 1.25 mm. The typical field of view was 345x345 mm (range: 250-470 

mm). Virtual mono-energetic images were reconstructed from the dual-energy acquisition to 

simulate a 70 keV acquisition.  

1.3.3 Hypoperfused Lung Volume (HLV) Assessment 

Pixel-wise classification of lung parenchyma as hypoperfused was obtained from the 

multi-energy pulmonary angiograms to calculate metrics of global and lobar spatial 

hypoperfusion in a completely automated fashion. Automated processing generated iodine 

concentration maps for the lung parenchyma. First, lung lobes were automatically segmented 

from virtual monoenergetic images (Figure 5A, 5B) using a recently published machine learning 

algorithm38. The lobar segmentations were used to isolate the iodine signal (concentration in 

mg/mL) from iodine-water maps (Figure 5C), yielding lung parenchyma iodine concentration 

images (Figure 5D). The segmentation excluded large pulmonary vessels, bones, and airways, 

but smaller pulmonary vessels were removed separately. Specifically, pixels that were two 

standard deviations higher than the mean parenchymal concentration were removed. In addition, 

imperfect iodine-water separation (due to limited spectral separation of the incident x-ray beam, 

photon starvation, and artifacts from highly attenuating structures such as metal 39) can lead to 

negative iodine concentrations independent of parenchyma perfusion, so pixels with iodine 

concentration ≤ −3 mg/mL were also removed.  

After automated segmentation and isolation of the lung parenchyma iodine images, pixels 

with an iodine concentration (𝐼#$/#&) ≤ 0 mg/mL (Figure 5E, blue pixels) were classified as 
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hypoperfused. All other pixels were assigned a value of 0. This classification is shown in 

Equation 1 below.  

𝑓"𝐼!"/!$$ = &
1, 𝐼!"

!#
≤ 0	𝑚𝑔/𝑚𝐿

0, 𝐼!"
!#
> 0	𝑚𝑔/𝑚𝐿 (1) 

 

Hypoperfused lung volume (HLV) was then calculated as the total number of hypoperfused 

parenchymal pixels divided by the total number of pixels (𝑛) in the region of interest:  

𝐻𝐿𝑉 =
∑ ((!
"#$ *",&'/&))

,
  (2) 

 

In addition to global HLV, lobar HLV values (Figure 5F) were calculated by dividing the total 

number of hypoperfused pixels in each lobe by the volume of that lobe (and not the total lung 

volume). Therefore, global HLV represents a weighted average of the lobar HLV values. 

 

Figure 5 Automated lobe segmentation and summation of pixels classified as hypoperfused allows 
automatic quantification of HLV 
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For comparison, global PBV was measured according to the method described by Meinel 

et al using the same iodine concentration images and segmentations used for HLV analysis33. 

Briefly, 15% of the pulmonary artery iodine concentration was used to normalize parenchymal 

lung iodine concentrations. Mean pulmonary artery iodine concentration (𝑃𝐴#$/#&) was 

measured for each patient using a 4 cm2 circular region of interest placed in the pulmonary artery 

trunk (drawn by author EB) using Horos open-source Digital Imaging and Communications in 

Medicine (DICOM) viewer. This normalization by pulmonary artery iodine concentration yields 

a map of 𝐼,-.#/01234 values as shown by Equation 3.  

 

𝐼,-.#/01234 =	
*&'/&)

5.7"×9:&'/&)
  (3) 

 

Global PBV was then calculated as the average of 𝐼,-.#/01234 over the whole, normalized 

parenchymal lung (Equation 4) while lobar PBV was measured by averaging across an 

individual lobe.  

𝑃𝐵𝑉 = ∑ *",!*+&,-"./0
!
"#$

,
  (4) 

 

Equations 1-4 illustrate the similarities and differences between PBV and HLV. 

Specifically, HLV measures the fraction of a region of interest considered hypoperfused, while 

PBV is the spatial average of 𝐼,-.#/01234. Thus, HLV reflects the extent of hypoperfusion at a 

given severity (or greater) while PBV averages together 𝐼,-.#/01234 values from normal, 

hyperperfused, and hypoperfused areas. 
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1.3.4 Invasive Hemodynamics and Correlation with Perfusion 

For most of the patients with CTEPH (n=44/51), systolic pressure, diastolic pressure, 

mPAP, and thermodilution-derived cardiac output (CO) before and after PTE surgery were 

obtained as part of routine clinical care. Pulmonary vascular resistance (PVR) was calculated 

preoperatively using right heart catheterization-measured pulmonary artery wedge pressure 

(PAWP) according to the following equation: PVR=(mPAP – PAWP)/CO. Postoperative PVR 

was calculated using the central venous pressure to estimate PAWP, as PAWP is not measured 

by Swan-Ganz catheter in the intensive care unit at our institution1. When multiple 

hemodynamics were obtained, pre-operative values obtained just before the PTE surgery and 

post-operative hemodynamics just prior to Swan-Ganz catheter removal were selected. Patient 

hemodynamics were excluded if they had a change in pulmonary hypertension medications after 

PTE surgery to avoid the confounding effects of medications on the relationship between HLV 

and pulmonary hemodynamics. Eleven out of the 44 patients with hemodynamics had pulmonary 

hypertension medication changes after PTE. This resulted in a cohort of n=33 patients with both 

pre and post PTE hemodynamic measurements without a change in pulmonary hypertension 

medications. The median time between hemodynamic recordings and imaging was 2 days, with 

26/33 patients having presurgical imaging within 30 days of hemodynamic recordings (range 0-

326 days). Median time between surgery and post-operative hemodynamics was 1 day, (range 0-

8 days, Table 2).  
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Table 2 CTEPH cohort characteristics 

Parameter Value 
Time between CT imaging and 
surgery, days 5 [3 – 8]   
Time between Pre-Op 
Hemodynamic recordings and CT 2[1 - 24.5]  
Time between Post-Op 
Hemodynamic Recordings and 
Surgery 1[1 – 3]   
Pre- and Post-Op Hemodynamic 
recordings, 
 n (%) 33 (65)  
Pulmonary Hypertension 
Medication Changes, n (%) 11 (22)  
NYHA Functional Class, n (%)    

1 1 (2)   
2 5 (10)   
3 32 (64)   
4 4 (8)   
Undefined 9 (21)  

Disease Level, n (%) Right Left 
0 0(0) 3 (5.9) 
1 17 (33.3) 6 (11.8) 
2 23 (45.1) 25 (49.0) 
3 11 (21.6) 17 (33.3) 
4 0 (0) 0 (0) 

Hemodynamics Pre-Surgery Post-Surgery 
mPAP, mmHg 45 [36 - 54] 22 [18 - 26] 
PVR, dyn s cm-5 552 [346 - 758] 225 + 108 
CO, L/min 4.86 + 1.53 5.75 + 1.25 

 

 

1.3.5. Visual assessment of hypoperfusion and comparison with HLV 

Two fellowship-trained cardiothoracic radiologists (author SK: 13 years of post-

cardiovascular radiology fellowship experience, author LH: 3 years post cardiovascular 
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radiology fellowship experience) blinded to HLV and PB scores performed independent, semi-

quantitative visual evaluation of hypoperfusion for all patients with CTEPH. Iodine-water 

images were reviewed and scored based on the percentage of each lobe considered to be 

hypoperfused. Readers were asked to categorize each lobe as having either no (0% of lobe 

affected), minimal (1% to <25% of lobe affected), mild (25 to<50% of lobe affected), moderate 

(50% to <75% of lobe affected), severe (75% to<100% of lobe affected), or complete (100% of 

lobe affected) hypoperfusion. Both readers had clinical experience evaluating CTEPH multi-

energy CT scans as attending radiologists at our institution but were not given specific 

instructions nor training cases for this task.  

1.3.6. Surgically Defined Segmental Disease Subgroup Analysis 

HLV’s ability to assess spatial hypoperfusion deficits in patients with chronic 

obstructions originating in the segmental pulmonary vasculature (surgically defined disease level 

3) (5) was evaluated using classifications obtained during surgery. At the time of PTE surgery, 

each lung of each CTEPH case was classified as having disease located at the main pulmonary or 

lobar artery level (University of California San Diego (UCSD) surgical disease level 

classification 1 or 2), at the segmental level (UCSD surgical disease level classification 3), or at 

the subsegmental level (UCSD surgical disease level 4) by surgeons blinded to this analysis (5). 

The surgically defined segmental disease subgroup contained patients who had one or both lungs 

classified as having disease level 3. No patients in our cohort had disease level 4. Global HLV’s 

performance in patients with surgically defined segmental disease and correlation with invasive 

hemodynamics, as well as lobar HLV’s correlation with expert visual assessment were measured. 

Of the 51 patients with CTEPH analyzed, 32 had surgically defined segmental disease. Of the 33 
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patients with CTEPH with complete hemodynamics, 12 had surgically defined segmental 

disease. 

1.3.7. Cases series to highlight the utility of HLV 

Three cases are shown to demonstrate how HLV can capture known patterns of CTEPH 

impairment (n=2) and how HLV can help identify patients with significant obstructions despite 

high PBV (n=1). For each case, a representative coronal slice of the HLV map is presented 

alongside lobar scores, reader visual assessment scores, and the patient’s subsequent surgical 

specimen.  

1.3.8. Statistics 

Demographic measures, image acquisition parameters, and invasive hemodynamics were 

tested for normality using the Shapiro-Wilks test. Normally distributed variables are reported as 

mean ± standard deviation, and non-normally distributed variables are reported as median [IQR 

from Q1 to Q3]. The Student t-test and one-way ANOVA were used to assess normally 

distributed variables, while Wilcoxon rank sum and Kruskal-Wallis tests were used for non-

normally distributed variables with p=0.05. Receiver operating characteristic curves (ROC) 

curves were used to identify both an HLV and PBV cutoff that best separated CTEPH scans from 

control scans. Given that the CTEPH cohort was comprised of patients with CTEPH 

necessitating surgical treatment, we evaluated global HLV and PBV cutoff performance at 90% 

sensitivity to minimize false negatives. ROC curves were compared using the Mann-Whitney 

statistic 40,41. Differences in global HLV and PBV cutoff specificity were compared with the 

McNemar test, while differences in accuracy were compared using z-statistic42. The agreement 

between global HLV and global PBV was determined via the Pearson correlation coefficient. 

Correlation of preoperative hemodynamics (mPAP, PVR, and CO) and post-operative change in 
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hemodynamics (∆mPAP, ∆PVR, and ∆CO) for both global HLV and PBV were also evaluated 

and compared using the Pearson correlation coefficient. Correlation between reader scores and 

lobar HLV for each reader was evaluated using the Spearman correlation coefficient. Forward 

multiple regression was performed to evaluate the complementary nature of HLV and PBV in 

predicting preoperative hemodynamics (mPAP, PVR, and CO). Correlations were classified as 

little to no relationship (0 ≤ ⍴ < 0.25); fair (0.25 ≤ ⍴ < 0.5); moderate (0.5 ≤ ⍴ < 0.75); or 

excellent (⍴ ≥ 0.75)43. Correlation coefficients in dependent samples were compared using the t-

score44,45.  Agreement between reader visual assessments was evaluated using intraclass 

correlation coefficient (ICC). ICCs were classified as little to no relationship (0 ≤ ICC < 0.5); 

moderate (0.5 ≤ ICC < 0.75); good (0.75 ≤ ICC < 0.9); or excellent (⍴ ≥ 0.9)46. Analysis was 

performed in MATLAB 2021a (MathWorks, Natick, MA). Multiple regression was performed in 

SPSS (IBM SPSS Statistics Version 28.0.1.1)43,47. Statistics were performed by authors EB and 

FC. 

1.4. Results 

1.4.1 Patient Cohorts 

The CTEPH cohort comprised 51 patients, and the control cohort comprised 110 patients. 

Controls and patients with CTEPH (Table 1) were similar in age (51 ±	16 years vs 47 ± 17 

years, respectively; p =0.14). Patients with CTEPH had lower BMI than controls (31.1 ± 7.5 

kg/m2 vs 39.2 ± 6.6 kg/m2, p<0.001), and more patients in the CTEPH cohort self-identified as 

African American (n=12, 24% vs n=6, 5%, p=0.03). The control group had more females (n=78, 

71% vs n=27, 53%, p=0.03). There was a significant difference in the age of females vs males in 

the control cohort (48 ± 16 years vs 58 ± 13 years; p=0.01) and no evidence of a difference in 
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the CTEPH cohort (44±16 vs 50±17; p= 0.17).  For both cohorts, there was no evidence of 

significant differences between female and male patients in terms of BMI or race.  

Patients with CTEPH cohort had a mean preoperative mPAP of 45 [36-54] mmHg, PVR 

of 552 [346–758] dyn·s·cm−5, and CO of 4.86±1.53 L/min (Table 2). PTE decreased mean 

mPAP to 22 [18-26] mmHg and mean PVR to 225±108 dyn·s·cm−5 and increased mean CO to 

5.75±1.25 L/min. The majority of patients with CTEPH were New York Heart Association 

Heart Failure Functional Class 3 (n=32, 64%) prior to PTE.  

Right lungs had CTEPH surgical disease level 1 (n=17, 33.3%), disease level 2 (n=23, 

45.1%), and disease level 3 (n=11, 21.6%). Left lungs had CTEPH surgical disease level 0 (n=3, 

5.9%), level 1 (n=6, 11.8%), disease level 2 (n=25, 49.0%), and disease level 3 (n=17, 33.3%). 

No patients had disease isolated to the subsegmental vasculature (level 4) in either the left or 

right lung. 

1.4.2. Quantification of Hypoperfusion Lung Volume and Comparison to PBV 

Global HLV (area under the ROC curve [AUC]=0.84, 95% CI: 0.81-0.87) and PBV 

(AUC=0.79, 95% CI: 0.75–0.82) separated patients with CTEPH from controls (Figure 6A). 

Detection of CTEPH cases from controls with 90% (46/51) sensitivity corresponded to global 

HLV>10% and global PBV<80.5%. Global HLV>10% had 72% (116/161) accuracy and 64% 

(70/110) specificity. Global PBV<80.5% had similar accuracy (63%, 102/161; p=0.10) but 

significantly lower specificity (51%, 56/110; p<0.001) (Table 3). Global HLV and PBV had a 

moderate negative correlation (⍴=-0.72, p<0.001) (Figure 6B). Of the five patients with CTEPH 

with global PBV within the normal range (>80.5%), three had global HLV indicating disease 

(HLV>10%). Surgery led to a sizeable decrease in PVR (237-298 dyn·s·cm−5) in these three 

patients.  
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Figure 6 Dual-energy metrics are broadly in agreement and can complement hemodynamic assessment 
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Table 3 Separation of control patients and patients with CTEPH using global HLV and PBV. 

Metric AUC Threshold Accuracy Sensitivity Specificity 
HLV 0.837 >10.0 116/161 (72%) 46/51 (90%) 70/110 (64%) 
PBV 0.785 <80.5 102/161 (64%) 46/51 (90%) 56/110 (51%) 

p-value 0.63 N/A 0.10 N/A <0.001 

 
1.4.3. Correlation of Hypoperfusion Metrics with Hemodynamics 

Pre-operative PVR correlated moderately with global HLV (⍴=0.67, p<0.001) and mean 

PBV (⍴=-0.54, p=0.001) (Table 4). Similarly, ΔPVR after PTE correlated moderately with 

global HLV (⍴=-0.61, p<0.001) and fairly with PBV (⍴=0.43, p=0.01) (Figure 6C-F). Although 

a better degree of correlation was observed with global HLV compared with PBV, the t-score 

associated with this difference did not reach statistical significance for either preoperative PVR 

(p=0.15) or ΔPVR (p=0.08) metrics.  

Table 4 Correlation of global HLV and PBV with pre-operative hemodynamics and change in 
hemodynamics after PTE  

 HLV PBV 
 ⍴ p-value ⍴ p-value 
All patients with hemodynamics(n=33)   
Pre-Operative     

PVR  0.67 <0.001 -0.54 0.001 
mPAP  0.42 0.02 -0.29 0.10 
CO -0.52 0.002  0.37 0.03 

Change after Surgery     
ΔPVR -0.61 <0.001 0.43 0.01 
ΔmPAP -0.20 0.27 0.07 0.68 
ΔCO 0.32 0.07 -0.03 0.85 

 
Only those with Segmental Disease (n=12) 

 

Pre-Operative     
PVR  0.81 0.002 -0.48 0.12 
mPAP  0.43 0.16 -0.17 0.60 
CO -0.80 0.002 0.54 0.07 

Change after Surgery     
ΔPVR -0.70 0.01 0.31 0.33 
ΔmPAP -0.29 0.37 0.00 0.99 
ΔCO 0.45 0.14 0.1 0.76 
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Preoperative mPAP correlated fairly well with global HLV (⍴=0.42, p=0.02) and showed 

no correlation with PBV (⍴=-0.29, p=0.10). Neither global HLV (⍴=-0.20, p=0.27) nor PBV 

(⍴=0.07, p=0.68) was correlated with ΔmPAP after surgery (Figure 6G-J). Correlation of pre-

operative CO with global HLV (⍴=-0.52, p=0.002) and PBV (⍴=0.37, p=0.03) were not different 

(p=0.16). Likewise, ΔCO after surgery was not correlated with global HLV (⍴=0.45, p=0.14) or 

PBV (⍴=0.1, p=0.76).  

The addition of PBV to a linear regression using HLV (via forward multiple linear 

regression) did not improve model performance for PVR (p=0.85), mPAP (p=0.76), CO 

(p=0.75), or ΔPVR (p=0.68).Note, there were significant correlations between pre-operative 

hemodynamics; specifically, PVR and mPAP (𝜌=0.72 , p<0.001) and PVR and CO (𝜌=-0.76 , 

p<0.001). However, mPAP and CO were not significantly correlated (𝜌=-0.32 , p=0.07). 

 

1.4.4. Expert Visual Assessment of Lobar Hypoperfusion and Comparison to Lobar HLV 

For visual assessment, 255 lobes (51 patients with CTEPH each with 5 lung lobes scored) 

were independently assessed by each reader. Reader 1 identified 247/255 lobes as hypoperfused 

(16 minimal, 27 mild, 82 moderate, and 93 severe, 29 complete) in the CTEPH cohort (Figure 

7A), while reader 2 identified 225/255 lobes as hypoperfused (31 minimal, 46 mild, 58 moderate, 

and 65 severe, 25 complete) (Figure 7B). The HLV of lobes graded as completely, severely, 

moderately, and mildly hypoperfused were significantly different (p <0.001) for both expert 

readers. 
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Visual assessments by reader 1 and reader 2 correlated moderately with lobar HLV (⍴= 

0.71 and ⍴= 0.67; p<0.001 for both) and moderately with lobar PBV (⍴= -0.57 and ⍴= -0.68; p 

<0.001 for both). For reader 1, visual assessment was more strongly correlated with lobar HLV 

than with PBV (t-statistic=5.2, p<0.001). For reader 2, there was no evidence of a difference 

between correlations for lobar HLV and PBV (t-statistic=- 0.29, p=0.61). Agreement between 

the two readers was moderate, with an ICC of 0.61 (p<0.001); 60% (133/255) of lobes had 

matching classifications (Figure 7C) and 85% (218/255 lobes) had reader scores within 1 grade. 

Of the 37 disagreements of more than 1 grade, 36 occurred in lobes that reader 2 identified as 

having no to mild hypoperfusion. 

 

Figure 7 Lobar HLV percent hypoperfusion agrees with lobar hypoperfusion severity scores from expert 
radiologists 

 
1.4.5. Surgically Defined Segmental Disease Subgroup Analysis 

Separation of patients with CTEPH surgically defined as level 3 (originating in segmental 

vessels) (n=19) from controls had similar performance as the overall CTEPH cohort. A global 

HLV threshold of >10.0% led to a sensitivity of 95% (18/19) and accuracy of 67% (87/129), 

which differ from the sensitivity (p=0.52) or accuracy (p=0.67) found for the overall CTEPH 

cohort. Global PBV threshold of <80.5% led to a sensitivity of 95% (18/19) and accuracy of 57% 

(73/129), with both values similar to those found for patients with CTEPH of any disease level 
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(sensitivity, p=0.52; accuracy p=0.56). Global HLV and PBV correlated moderately (⍴=-0.71, 

p<0.001) in patients with surgically defined segmental CTEPH, which agreed (p=0.96) with the 

correlation observed in the overall CTEPH cohort.  

In patients with segmental disease and invasive hemodynamics (n=12), global HLV 

strongly correlated with pre-operative PVR (⍴=0.81, p=0.002) and moderately correlated with 

ΔPVR after PTE (⍴=-0.70, p=0.01) (Table 4). Global PBV did not significantly correlate with 

any hemodynamics in patients with segmental disease.  

Visual assessment of surgically defined segmental CTEPH moderately correlated with 

lobar HLV for reader 1 (⍴=0.68, p<0.001) and reader 2 (⍴=0.63, p<0.001). These correlation 

coefficients were similar to those calculated for visual assessment for all disease levels (reader 1: 

p=0.54; reader 2 p=0.36). Similarly, the correlation of lobar PBV with visual assessment in 

segmental CTEPH was similar to the overall CTEPH cohort (reader 1: ⍴=-0.49, p<0.001, 

psegmental_vs_all=0.56; reader 2: ⍴=-0.60, p<0.001, psegmental_vs_all =0.21). 

1.4.6. Example Cases 

Example cases (labeled as a-c in Figure 6b) were chosen to highlight the use of HLV in 

specific clinical scenarios. Patient A in Figure 8 has bilateral, predominantly lower lobe 

hypoperfusion, while Patient B presents with a unilateral pattern of disease. Both patients have 

similar global PBV values (A: 34.7%, B: 31.8%) but differ in their global HLV (A: 30.2%, B: 

22.3%) and lobar HLV values. Readers 1 and 2 agreed on the visual evaluation of both patients, 

and the rank order for the reader scores matches the rank order for the lobar HLV scores in all 

lobes except the left upper lobe of Patient A.  
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Figure 8 HLV can characterize spatial patterns of chronic thromboembolic regional perfusion deficits. 

Figure 9 demonstrates findings in a patient who had a global PBV of 97.4% (normal 

>80.5%) despite having hemodynamic impairment and removed surgical specimen. This patient 

had a global HLV of 13.5% (>10.0% cutoff). The readers agreed on the severity of 

hypoperfusion of the lobes relative to one another, but reader 1 graded the hypoperfusion as 

more severe than reader 2. 

 

Figure 9 HLV can visualize and quantify small regional perfusion deficits in patients with high PBV. 
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1.5. Discussion 

We have developed and validated an automated, quantitative approach to define, on a 

per-pixel basis, regions of hypoperfusion in patients with CTEPH using DECT and evaluated its 

potential clinical use. The developed metric, global HLV, correctly classified patients with 

CTEPH and controls (AUC: 0.84), and had higher specificity relative to global PBV (64% VS 

51%). Global HLV correlated with PVR at the time of imaging (preoperatively, ⍴=0.67) and 

predicted change in PVR after surgery in the entire cohort (⍴=-0.61) as well as in the subset of 

patients who had surgically defined segmental disease (⍴=-0.70). Lobar HLV agreed with visual 

assessment by two expert radiologists (⍴=0.71 and ⍴=0.67). 

Throughout the manuscript, HLV findings are presented alongside a previously-

published, dual-energy based measurement of global mean lung parenchymal perfusion (PBV) 

25,27,32–34. PBV and HLV are expected to provide complementary information as HLV measures 

the spatial extent of impairment while PBV is an average of parenchymal iodine concentration. 

As we have shown, impairments limited to a small portion of the lung may not affect the global 

mean iodine concentration but may result in pixels identified as being hypoperfused. We 

highlight how HLV mapping agrees with known CTEPH phenotypes. This could aid clinical 

evaluation, as the surgical technique and expertise required varies based on phenotype48. Further, 

our approach to measure HLV results in pixel-wise, lobar, and global values of hypoperfusion 

that can be easily integrated with other patient data. Future work is planned to prospectively 

evaluate the use of these HLV metrics and determine an optimal way to combine PBV, HLV, 

and other patient data to further improve clinical assessment.  

HLV correlated with preoperative and post-operative change in hemodynamic severity, in 

the form of PVR, in patients with surgically defined disease originating in the main or lobar 
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artery as well as patients with disease originating in the segmental arteries. While HLV may 

potentially help identify patients who are likely to have excellent or limited response pre-

operatively (by identifying preoperative features of surgical success), few patients in our cohort 

had what would be considered limited surgical response 7,49. Thus, the ability to detect these rare 

events is left for future work. Cases of primarily segmental or subsegmental level disease are 

technically more challenging surgically, and patients may not receive adequate or thorough 

clearance except in the highest volume endarterectomy centers. As a retrospective study, we did 

not target enrollment of patients with these specific subtypes. Further, we did not evaluate non-

operated cases such as patients treated with balloon pulmonary angioplasty, medications, or a 

combination of treatment modalities. Therefore, the use of HLV in these cohorts should be 

investigated in future work. 

Visual evaluations of lobar hypoperfusion by two expert readers moderately agreed with 

one another and with lobar HLV. 85% (217/255) of lobes were scored as having the same 

severity or differed by only 1 category. Readers did not undergo specific training for this visual 

scoring task (outside their normal clinical training), which may explain variation in grading. 

However, this variation reflects typical clinical practice in which individual readers may vary in 

sensitivity and specificity regarding hypoperfusion, particularly given relatively recent clinical 

adoption of dual energy imaging. The moderate agreement of HLV with both readers suggests 

that lobar HLV could serve to support and adjudicate reader evaluations, as having an external 

quantitative metric has shown to improve agreement in visual assessment for other pulmonary 

visual assessment tasks50. However, further studies are needed to evaluate these potential clinical 

uses of HLV. 
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The correlation between global PBV and PVR in our study (⍴=-0.54) was similar to that 

found by Takagi et al34 (⍴=0.47) and higher than that reported by Meinel et al33 (⍴=-0.20). Both 

Takagi et al (⍴=0.48) and Meinel et al (⍴=-0.57) reported correlations between global PBV and 

mPAP, which were not observed in this study. These differences may be due to the differences in 

the CTEPH samples studied. In our study, all patients with CTEPH underwent PTE surgery; 

however, Takagi et al included patients who underwent non-surgical treatments (medical therapy 

and balloon pulmonary angioplasty), and Meinel et al studied patients with CTEPH regardless of 

intervention. Further, we found that global HLV did not correlate with ΔCO after surgery. This 

may be due to evaluation of post-operative hemodynamics while patients recovered in the 

intensive care unit (typically within 7 days of surgery). Long-term post-operative hemodynamic 

evaluation should be evaluated in future work.  

Our study had several limitations. First, given the observational and retrospective nature 

of the study, patients in the control cohort had clinical symptoms that merited CT investigation 

even though they did not have pulmonary findings. It is possible that undetected pulmonary or 

vascular disease in control patients could have impacted iodine values and limited HLV 

specificity. For example, we did not exclude patients with small airway disease, which can lead 

to hypoperfusion. Additionally, the study did not evaluate other types of pulmonary 

hypertension. The study’s retrospective design and the resulting effects on cohort differences is 

also a limitation. Despite excluding patients with BMI>50 kg/m2, control patients had 

significantly higher BMIs than patients with CTEPH; this may be attributed to dual energy CT 

being used for improved imaging of suspected PE in patients with high BMI at our institution. 

However, the higher BMI in the control cohort further highlights the robustness of the approach, 

as high BMI could decrease parenchymal iodine (and increase HLV) in control patients, making 
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it more difficult to separate CTEPH and control cases. We also observed racial and sex 

differences between the cohorts, which can be attributed to differences between patients referred 

for PTE surgery (a national referral population) and patients imaged for suspicion of PE (our 

local population).  

Additionally, iodine concentration maps were subject to material decomposition errors, 

leading to negative iodine concentration values. In thoracic dual energy CT images, it is common 

to have highly negative pixels due to streak artifacts from regions with high contrast 

concentrations, such as in the superior vena cava. Additionally, motion artifacts from cardiac and 

diaphragmatic motion can lead to photon starvation artifacts 39,51. We aimed to minimize these 

artifacts by using a lower intensity threshold (-3mg/mL iodine) to remove pixels with values 

likely due to artifact. Dual energy material decomposition can also have a bias in the iodine 

concentration. In phantom imaging studies, negative biases of -1.5 mg/mL have been reported. 

This bias supports our hypoperfusion threshold of 0mg/mL as capturing pixels with poor 

perfusion. 

Furthermore, while our study evaluated a considerable number of patients with CTEPH 

who underwent surgical treatment, inclusion of more patients would improve subgroup analysis 

and generalizability of this study. The study design did not control for the level of CTEPH 

disease removed at the time of PTE surgery nor the timing of CT imaging, hemodynamic 

assessment, and surgery. As a result, our cohort did not include patients with disease originating 

in the subsegmental arteries (surgical disease level 4) and may be limited by changes between 

imaging and hemodynamic measurement. Thus, future investigation in a broader patient cohort 

reflecting all disease levels, is warranted. Additionally, the single site design reduced variability 
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in CTEPH diagnostic and treatment criteria, and our results should be confirmed in a validation 

cohort as well as at other institutions.  

Another limitation is that we compared HLV and PBV with only visual evaluation by 

expert readers. Future work should compare HLV and PBV with detailed analysis of surgically 

removed specimens and evaluate changes in HLV and PBV after PTE surgery for additional 

clinical validation. Unfortunately, the surgical specimens we evaluated did not document 

whether specific vessels were open, partially obstructed, or completely obstructed. This 

precluded quantitative comparisons between imaging metrics and surgical findings. In future 

work, we aim to assess the agreement between areas detected using HLV and presence of 

surgically confirmed specimens. Finally, post-operative imaging was not obtained in our 

patients. Longitudinal DECTPA imaging would allow for confirmation that areas of 

hypoperfusion improve with surgery. 

1.6.  Conclusion 

In conclusion, dual-energy perfusion imaging of the lungs can be combined with lobar 

segmentation to automatically visualize perfusion deficits and provide pixel-wise quantification 

of the spatial extent of hypoperfusion. The spatial extent of hypoperfusion, global HLV, was able 

to separate patients with CTEPH from controls and correlated with invasive PVR and change in 

PVR with surgery, even in patients with surgically defined segmental disease. Lobar HLV values 

agreed with expert visual assessment. These findings suggest that HLV evaluation could provide 

quantitative, imaging-derived, perfusion metrics to evaluate disease progression or response 

either independently or when combined with other patient clinical and imaging data, warranting 

further investigation. 
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CHAPTER 2: QUANTIFICATION OF FIBROTIC CLOT IN CTEPH 
 
2.1. Abstract 

The purpose of this study was to determine if quantitative evaluation of fibrotic clot burden 

in the both the large pulmonary arteries and segmental arteries can aid pre PTE evaluation of 

chronic thromboembolic pulmonary hypertension (CTEPH) disease severity. DECT angiograms 

in 32 patients with CTEPH (mean age, 47 ± 18 years, 15 females) had fibrotic clot location and 

obstruction severity annotated by thoracic radiologists as part of normal CTEPH clinical 

evaluation. Fibrotic clot annotations were retrospectively converted into a fibrotic clot score, 

which was a percent obstruction of the lung vasculature determined based on the location and 

severity of the annotated obstructions for a given patient. Fibrotic clot scores correlated 

moderately with pre-operative PVR (⍴=0.60, p<0.001) and pre-operative CO (⍴=-0.56, 

p<0.001), but only fairly with pre-operative mPAP (⍴=0.43, p<0.001). Fibrotic clot score 

achieved only fair correlation with post-operative change in PVR (⍴=-0.49 p=0.004) and change 

in CO (⍴=0.49, p<0.001), and had no correlation with post-operative change in mPAP. Both 

fibrotic clot score and HLV had moderate strength correlations with pre-operative PVR and fair 

correlations with post-operative change in PVR, but only fibrotic clot score had a significant 

correlation with both pre-operative CO and post-operative change in CO. Fibrotic clot score and 

Hypoperfused Lung Volume (HLV) significantly correlated with one another, with a moderate 

strength of correlation (⍴=0.52, p=0.002). Fibrotic clot score that takes into account vascular 

obstruction down to the segmental level and agrees with CTEPH pre-operative and post 

operative pulmonary hemodynamic severity, as well as perfusion deficit measured as HLV.  
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2.2. Introduction 

As mentioned in chapter 1, patients with CTEPH that are thought to be good PTE 

candidates have agreement between their disease burden and the hemodynamic severity of their 

pulmonary hypertension6,23. Disease burden includes both the fibrotic clots that a patient has in 

their pulmonary vasculature, as well as the related pulmonary parenchymal perfusion deficits. 

PTE primarily directly intervenes on chronic thrombotic obstructive sources of pulmonary 

hypertension (fibrotic clots), so elevations in pulmonary pressures due to microvascular disease 

or other causes of pulmonary hypertension are less likely to be improved. These non-chronic 

thrombotic sources of pulmonary hypertension are suspected when patients have pulmonary 

hypertension that is out of proportion to their fibrotic clot burden or when patients have 

perfusion deficits that do not correspond to fibrotic clot obstruction.  Because pulmonary 

thromboendarterectomy surgery treats the elevated pulmonary pressures of CTEPH through 

removal of a patient’s fibrotic clot, it is important that the fibrotic clot and pulmonary 

parenchymal perfusion deficit, as well as hemodynamic severity, all agree with one another.  

Contrast enhanced, monoenergetic CT pulmonary angiograms (CTPAs) offer high resolution 

approach to evaluate fibrotic clot location and obstruction severity within the pulmonary arterial 

tree. Additionally, CTPAs can be obtained as part of a dual-energy CT pulmonary angiogram 

acquisition (see chapter 1), which provides more complete disease burden information with the 

addition of pulmonary parenchymal perfusion information in addition to intravascular fibrotic 

clot information. Vascular obstruction due acute pulmonary embolism has been quantified 

previously on CTPA using the Qanadli score, which captures the proportion of the lung 

vasculature that is obstructed based on obstruction location and severity, with consideration of 

central and peripheral vessels (down to the segmental and subsegmental level)52. In patients with 
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acute PE, this score has been found to agree with DECT perfusion deficit findings 53,54 In 

CTEPH patients however, modified Qanadli scores have shown no or only fair correlation with 

either pre-operative or post-operative pulmonary hemodynamics55,56. This is likely because, to 

date, no study calculates fibrotic clot score that captures both central and peripheral clot location 

in a cohort of CTEPH patients that has undergone PTE surgery. Without such a study, agreement 

between fibrotic clot score and perfusion deficit in patients who have undergone PTE can not be 

assessed. 

The objective of this study was to further pre-operative disease burden evaluation in CTEPH 

patients. First, we aim to determine if quantitative CT pulmonary angiogram fibrotic clot scoring 

provides utility in prediction of CTEPH pre-operative and post-operative pulmonary 

hemodynamic severity. Next, we assess if CT pulmonary angiogram fibrotic clot scores agree 

with, and provide complimentary information to, perfusion deficit scores obtained from dual 

energy CT pulmonary angiograms. Our hypothesis is that the fibrotic clot score will agree with 

presurgical disease severity, changes in hemodynamics after surgical intervention, and perfusion 

deficit measured as Hypoperfused Lung Volume (HLV).  

2.3. Methods 

2.3.1. Patient Selection 

Patient selection was performed under institutional review board-approved (#191797) 

waiver of informed consent and in compliance with the Health Insurance Portability and 

Accountability Act. Our cohort was comprised of patients diagnosed with CTEPH who had 

undergone per-operative CT pulmonary angiogram under specific CTEPH clinical protocol, 

which includes annotation of the main pulmonary arteries down to the subsegmental arteries 

fellowship trained thoracic radiologist. Patient diagnosis and treatment selection was determined 



36 
 

by consensus of a multidisciplinary team of cardiothoracic surgeons, vascular disease expert 

pulmonologists, and fellowship trained cardiothoracic radiologists. Clinicians assessed CTEPH 

diagnosis using the criteria from Galiè et al, which include mean pulmonary artery pressure 

(mPAP) >25mmHg, pulmonary artery wedge pressure  ≤15 mmHg, pulmonary vascular 

resistance ≥240 dyn·s·cm−5, CTEPH-specific imaging signs, and ventilation-perfusion 

mismatch3. While more current criteria defines pulmonary hypertension as mPAP > 20mmHg, 

the Gailé criteria were used as they reflected the pulmonary artery pressure criteria at the time 

that the cases were evaluated. Patients were included if they had also obtained a dual-energy CT 

pulmonary angiogram at the time of annotated contrast CT pulmonary angiogram, had 

preoperative pulmonary hemodynamics measured by right heart catheterization, and had 

undergone PTE surgery at our institution for definitive treatment of CTEPH. Patients were 

excluded if they were taking pre PTE pulmonary hypertension medications, or had CT 

pulmonary angiograms that had missing vessel by vessel annotations. This led to a cohorts of 32 

patients (similar but not identical to that in chapter 1) with CT pulmonary angiogram 

annotations, dual energy CT iodine maps, and pre- and post-operative pulmonary 

hemodynamics. Patient characteristics are summarized in Table 5. 
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Table 5 Demographics of patients undergoing fibrotic clot scoring 

 CTEPH (n=32) 
  

Age, years 47 ± 18 
Sex, female, n (%) 15 (46.9) 
BMI, kg/m2 32.8 ± 7.5 
Race, n (%)  
     African American 8 (25) 
     Asian 0 (0) 
     Pacific Islander 2 (6) 
     White 25 (47) 
     Other, Mixed, or 
Unknown        7 (22) 

 

2.3.2. Image Acquisition 

CT pulmonary angiograms, including mono-energetic contrast enhanced CT Pulmonary 

angiogram as well as multi energy CT pulmonary angiogram, were acquired using the same 

dual-energy protocol on a single single-source Revolution CT scanner (GE Medical Systems, 

Chicago, IL). The acquisition rapidly switched kVP (80 to 140 kVp), and data were acquired 

helically with an 80mm detector width, median pitch of 1.38 (range: 0.98-1.38), and 0.5 s 

revolution time. Median tube current was 485 mAs (range: 240-630 mAs). Patients were 

administered iohexol contrast (Omipaque) with a concentration of 350mg/mL based on BMI 

(BMI<20: 60mL at 4mL/s, BMI 20-29.9: 75 mL at 5 mL/s, BMI 30-39.9: 80mL at 5.5mL/s, 

BMI> 40: 90mL at 6mL/s; median volume 75 mL, range: 50-150 mL). Imaging was timed for 

pulmonary arterial phase imaging using “smart prep” bolus tracking, with images acquired 8 

seconds after main pulmonary artery enhancement at the T4 level reached 125 HU37. Iodine-

water material decompositions yielding iodine concentration in mg/mL were generated using the 

Gemstone Spectral Imaging software (GE Healthcare, Chicago IL). All images were 
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reconstructed on a 512x512 image grid with xy-resolution of 0.7±0.1 mm (range: 0.5-0.9 mm) 

and section thickness of 1.25 mm. The typical field of view was 345x345 mm (range: 250-470 

mm). Virtual mono-energetic images were reconstructed from the dual-energy acquisition to 

simulate a 70 keV acquisition.  

2.3.3. CT Pulmonary Angiogram Clinical Assessment and Vessel Annotation 

CTPAs were assessed by fellowship trained thoracic radiologists performing standard 

clinical reads in accordance with the CTEPH CTPA protocol at our institution whereby 

radiologists annotated all vessels in the vasculature to state the location and severity of fibrotic 

clot obstruction. Vessels annotated included the main pulmonary artery, the left and right main 

pulmonary arteries, lobar arteries, segmental arteries and subsegmental arteries. Vessel severity 

was annotated to include whether an obstruction was partial or complete. Complete obstruction 

was indicated on annotations as abrupt vascular narrowing, no vessel opacity, or complete 

occlusive thrombus indicating complete obstruction. Partial obstruction was indicated on 

annotation by the presence of vascular webs or bands, eccentric thrombus with lumen narrowing, 

or mild- severe vascular narrowing without direct clot visualization. No obstruction was 

indicated on annotation by normal contrast opacity, a finding of no obstruction in the vessel, or a 

lack of annotated clot annotation in a given vessel.   

2.3.4 Fibrotic Clot Score Calculation 

Vessels were scored using the Qanadli method, which captures the percentage of the 

segmental arteries that are obstructed in the arterial tree52. Figures 10 and 11 highlight the 

segmental arteries for the left and right lung, respectively. Scores were determined first by 

assessing if the vascular territory of each segment was completely obstructed, partially 

obstructed or unobstructed. Obstruction status for each vessel was determined from radiologist 
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annotations. A segment was determined to be completely obstructed if any artery directly 

upstream of it (eg Main Pulmonary Artery for any of the segments; R. Basilar Artery obstruction 

for the Right Lower Lobe Medial Segmental Artery; etc.) or the segment itself had a complete 

occlusion. A segment was determined to be partially obstructed if it or any artery directly 

upstream of the segment itself had a partial occlusion. Segments were also determined to be 

partially obstructed if there was a subsegmental occlusion in the region of that segment, but this 

was not reflected in our cohort as there were no patients with subsegmental disease (Table 6). 

Segments deemed completely obstructed were given a score of 2, partially obstructed were given 

a score of 1, and unobstructed a score of 0. After each segment had been given a score, the total 

obstruction for each individual could be summed and divided by 40 (the maximum score if all 

segments in the bilateral lungs were affected) and multiplied by 100%. This gave a final fibrotic 

clot score that was the percentage of the segmental arterial tree that was obstructed relative to the 

whole segmental arterial tree.  

 

Figure 10 Arterial Tree of the Left Lung Including Segmental Arteries 
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Figure 11 Arterial Tree of the Right Lung Including Segmental Arteries 

2.3.5. Hypopefused Lung Volume Assessment 

Hypoperfused lung volume, a pixel-wise classification and quantification of 

hypoperfused lung parenchyma to obtain a global hypoperfusion metric, was obtained from the 

multi-energy pulmonary angiograms using the methods described in detail in chapter 1. Briefly, 

lung parenchyma iodine concentration maps were automatically generated using automated 

segmentations from the lung parenchyma of the corresponding virtual monoenergetic images38. 

Smaller pulmonary vessels were removed next based on thresholded iodine values (pixels that 

were two standard deviations higher than the mean parenchymal concentration), as automatic 

segmentation previously excluded large pulmonary vessels, bones, and airways. Lung 

parenchyma pixels with an iodine concentration ≤ 0 mg/mL were classified as hypoperfused. All 

other pixels were assigned a value of 0. Hypoperfused lung volume (HLV) was then calculated 
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as the total number of hypoperfused parenchymal pixels divided by the total number of pixels in 

the region of interest. 

2.3.6 Invasive Hemodynamics and Correlation with Perfusion 

Mean pulmonary artery pressure and thermodilution-derived cardiac output (CO) before 

and after PTE surgery were obtained as part of routine clinical care. Pulmonary vascular 

resistance (PVR) was calculated preoperatively using right heart catheterization-measured 

pulmonary artery wedge pressure (PAWP) according to the following equation: PVR=(mPAP – 

PAWP)/CO. Postoperative PVR was calculated using the central venous pressure to estimate 

PAWP, as PAWP is not measured by Swan-Ganz catheter in the intensive care unit at our 

institution1. When multiple hemodynamics were obtained, pre-operative values obtained just 

before the PTE surgery and post-operative hemodynamics just prior to Swan-Ganz catheter 

removal were selected. Patients were only included in this study cohort if they had no change in 

pulmonary hypertension medications after PTE surgery to avoid the confounding effects of 

medications on the relationship between fibrotic clot score and pulmonary hemodynamics. Mean 

hemodynamics and CTEPH characteristics of the patient cohort are summarized in Table 6. 
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Table 6 Cohort hemodynamic and CTEPH characteristics 

Parameter Value 
NYHA Functional Class, n (%)   
1 0 (0)  
2 1 (3)  
3 23 (72)  
4 2 (6)  
Undefined 6 (19)  

Disease Level, n (%) Right Left 
0 0 (0) 2 (6) 
1 10 (31) 2 (12) 
2 15 (47) 17 (57) 
3 7 (22) 11 (37) 

       4 0 (0) 0 (0) 
Hemodynamics Pre-Surgery Post-Surgery 

mPAP, mmHg 41 + 13 21.5 [17.5-25.5] 
PVR, dyn s cm-5 496 + 287 211 [138-285] 
CO, L/min 2.28 [1.73-2.83] 5.87 + 1.12 

 
2.3.7. Statistics 

Demographic measures and invasive hemodynamics were tested for normality using the 

Shapiro-Wilks test. Normally distributed variables are reported as mean ± standard deviation, 

and non-normally distributed variables are reported as median [IQR from Q1 to Q3]. Correlation 

of preoperative hemodynamics (mPAP, PVR, and CO) and post-operative change in 

hemodynamics (∆mPAP, ∆PVR, and ∆CO) with fibrotic clot score and HLV were evaluated and 

compared using the spearman correlation coefficient. The agreement between fibrotic clot score 

and HLV was determined via the spearman correlation coefficient. Correlations were classified 

as little to no relationship (0 ≤ ⍴ < 0.25); fair (0.25 ≤ ⍴ < 0.5); moderate (0.5 ≤ ⍴ < 0.75); or 

excellent (⍴ ≥ 0.75)43. Analysis was performed in MATLAB 2021a (MathWorks, Natick, MA). 

Multiple regression was performed in SPSS (IBM SPSS Statistics Version 28.0.1.1)43,47.  

 



43 
 

2.4. Results 

2.4.1 Correlation Between Fibrotic Clot Score and Invasive Hemodynamics 

A summary of all the correlations between both fibrotic clot score and HLV with pulmonary 

hemodynamics are shown in Table 7. 

Table 7 Summary of correlations between pulmonary hemodynamics and fibrotic clot score 

 Fibrotic Clot Score HLV 
 ⍴ p-value ⍴ p-value 

All patients with 
hemodynamics  

    

Pre-Operative     
   PVR  0.60 <0.001 0.60 <0.001 
   mPAP  0.43 0.01 0.43 0.01 
   CO -0.56 <0.001 -0.39 0.03 
Changer after Surgery     
   ΔPVR -0.49 0.004 -0.46 0.008 
   ΔmPAP 0.00 1.00 -0.16 0.37 
   ΔCO 0.49 <0.001 0.21 0.25 

 

Pulmonary Vascular Resistance 

Fibrotic clot scores correlated moderately with pre-operative PVR (⍴=0.60, p<0.001, Figure 

12A) and fairly with post-operative change in PVR (⍴=-0.49, p-0.004, Figure 12B). HLV also 

correlated moderately with pre-operative PVR (⍴=0.60, p<0.001) and fairly with post-operative 

change in PVR (⍴=-0.46, p-0.008).  
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Figure 12 Fibrotic Clot Score Correlation with Pulmonary Vascular Resistance 

Cardiac Output 

Fibrotic clot scores correlated moderately with pre-operative CO (⍴=-0.56, p<0.001, Figure 

13A) and fairly with post-operative change in CO (⍴=0.49, p<0.001, Figure 13B). HLV also 

correlated only fairly with pre-operative CO (⍴=-0.39, p=0.03) and did not correlate with post-

operative change in CO (⍴=0.21, p=0.25).  

 

 

Figure 13 Fibrotic Clot Score Correlation with Cardiac Output 
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Mean Pulmonary Artery Pressure 

Fibrotic clot scores correlated fairly with pre-operative mPAP (⍴=0.43, p=0.01, Figure 

14A). HLV also corelated fairly with pre-operative mPAP(⍴=0.43 p=0.03) . Neither fibrotic clot 

score (⍴=0.00, p=0.9996, Figure 14B) nor HLV (⍴=-0.16, p=0.37) correlated with post-

operative change in mPAP.  

 

Figure 14 Fibrotic Clot Score Correlation with Mean Pulmonary Artery Pressure 

 
2.4.2 Correlation between Fibrotic Clot Score and Hypoperfused Lung Volume 

 Fibrotic clot score correlated moderately with HLV, with spearman correlation 

coefficient of	⍴=0.52 (p=0.02, Figure 15).  
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Figure 15 Fibrotic Clot Score Correlation with Hypoperfused Lung Volume 

 
 

2.5. Discussion 

We have quantified fibrotic clot amount and location and investigated its agreement with 

both perfusion deficit and invasive pulmonary hemodynamics in patients with CTEPH who have 

undergone PTE. As expected in a CTEPH population of good PTE candidates (most patients 

with post-operative PVR < 450 dyn·s·cm−5), fibrotic clot score, a measure of disease burden, 

agrees with CTEPH pulmonary hypertension hemodynamic severity (moderate correlation with 

pre-operative PVR and fair correlation with pre-operative CO and mPAP). Additionally, fibrotic 

clot score agrees with the quantified perfusion deficit, HLV, with a moderate strength spearman 

correlation coefficient. Fibrotic clot score also correlates with post-operative improvement in 

pulmonary hemodynamics, with a fair correlation with both post-operative change in PVR and 

post-operative change in CO. 
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Our fibrotic clot scores agree with invasive pulmonary hemodynamics better than fibrotic 

clot scores reported previously. Heinrich et al calculated a Qanadli based fibrotic clot score in 60 

CTEPH patients who underwent PTE and had preoperative CT pulmonary angiograms55. They 

found no correlation between their fibrotic clot score and pre-operative pulmonary 

hemodynamics, including PVR (⍴=0.03, p-0.85) and mPAP (⍴=0.21, p=0.11). In contrast, they 

did see a fair correlation between their fibrotic clot score and post-operative PVR (⍴=-0.36, 

p=0.007), similar to our findings. The difference in observed fibrotic clot score correlation with 

preoperative hemodynamics is likely due to methodology differences and timing of the studies. 

The fibrotic clot score calculated by Heinrich et al still calculated the proportion of the segmental 

vasculature affected, but they did not score the segmental or subsegmental vessels directly.  

Instead, they calculated clot score as only the “central” obstructions (proximal to the segmental 

arteries) that would affect a given segmental territory. This is likely because Heinrich et al 

performed their 2005 study on patients scanned between 1996 and 2002, representing a different 

CTEPH cohort, with segmental clots that were thought to be surgically inaccessible. Their metric 

of peripheral scar and perfusion score, which are two peripheral metrics including a mix of 

perfusion and fibrotic clot measures, also supports the idea that our differences in hemodynamic 

correlations are likely due differences in direct segmental evaluation. Both of these metrics 

correlated with preoperative mPAP (⍴peripheral scar=0.32, pperipheral scar=0.017; ⍴perfusion=0.66, 

pperfusion<0.001) and PVR (⍴peripheral scar=0.44, pperipheral scar<0.001; ⍴perfusion=0.76, pperfusion<0.001). 

Post-operative PVR also fairly correlated with the peripheral scar score and perfusion score 

(⍴peripheral scar=0.26, pperipheral scar=0.047; ⍴perfusion=0.37, pperfusion=0.007). 

Our cohort has a stronger fibrotic clot score correlation with pulmonary hemodynamics than 

another more recent CTEPH with fibrotic clot scores analyzed by Abozeed et al56. Our cohorts 
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has similar agreement between fibrotic clot score and pre-operative mPAP, with both cohorts 

showing fair correlations (⍴=0.28, p=0.018 for Abozeed et al). Our cohort had a stronger, 

moderate correlation with pre-operative PVR, compared to only a fair correlation in the Abozeed 

et al study (⍴=0.27, p=0.026).Post-operative hemodynamics are not comparable between the two 

groups as the patients in Abozeed et al did not undergo PTE surgery. These differences in 

hemodynamic correlations are likely due to two main methodological differences. First, as 

mentioned above, the patients in the Abozeed et al cohort did not under go treatment by PTE. 

This may reflect that the patients were not ideal PTE candidates. Additionally, the fibrotic clot 

scoring method used by Abozeed et al did not distinguish partial vs complete obstructions, nor 

did it represent the portion of the segmental vessels obstructed (instead representing total 

cumulative clot in the lung, giving rise to higher clot scores).  

Our cohort had moderate agreement between fibrotic clot score and HLV, our perfusion 

deficit metric discussed in chapter 1. As most of our patients had good PTE outcome (post-

operative PVR < 450 dyn·s·cm−5), our cohort represents a cohort of CTEPH patients that are 

good PTE candidates. This quantitatively supports the PTE selection criteria that patients who 

are good PTE candidates should have agreement with their fibrotic clot and their perfusion 

deficit6. Additionally, our fibrotic clot score and perfusion deficit metric (HLV) both agree with 

pre-operative PVR and post-operative change in PVR. This further quantitatively supports the 

PTE selection criteria that good PTE candidates will have agreement between their CTEPH 

disease burden (fibrotic clot and perfusion deficit) and their pulmonary hypertension severity 

(PVR). Given that fibrotic clot score agrees with but is not fully explained by HLV (moderate 

not strong correlation), future work should focus on investigating how fibrotic clot score and 

HLV can be combined to improve pre PTE assessment. Specifically, more detailed analysis of 
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the regional instead of global agreement between fibrotic clot score and HLV should be 

investigated. This could facilitate the creation of a combined fibrotic clot and perfusion deficit 

disease burden score that may further aid prediction of pulmonary hemodynamic severity.  

Despite our studies strengths, there were multiple limitations in our study. First, the patients with 

CTEPH represented in our cohort are a small number of patients relative to the annual cohort that 

undergoes PTE at UCSD. While CT pulmonary angiograms occur for most patients currently as 

part of routine CTEPH clinical evaluation, dual-energy CT studies (enabling HLV calculation 

and comparison) are not part of the current standard clinical practice. Additionally, while our 

cohort does contain patients with segmental disease, there are no patients with disease level 4 

represented in our cohort. Further, our fibrotic clot score was comprised of annotations provided 

by clinical readers, who were not aware of our research question given the retrospective nature of 

the study. While this may lead to more fibrotic clot score variability, it can also be seen as an 

advantage, as our fibrotic clot scores represent annotations obtained from a real clinical work 

flow. Finally, bronchiole or coronary artery collateral flow to the pulmonary parenchyma was 

not considered in our study. Bronchiole artery collaterals can directly affect pulmonary blood 

flow by supplying blood to parenchyma downstream of a clot. In addition to having diagnostic 

utility, they have also are associated with lower post-operative PVR and lower mortality rate 

after PEA.57–60. Collateral flow circumventing fibrotic clot may be an important consideration for 

future work. 

 

2.6.  Conclusion 

In conclusion, fibrotic clot score from pre-operative CT pulmonary angiograms can 

quantitatively capture CTEPH disease burden severity. In patients who have undergone PTE, 
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fibrotic clot score moderately agrees with pre-operative PVR and CO, and fairly agrees with 

post-operative change in CO and PVR. Fibrotic clot score also moderately agrees with our 

perfusion deficit metric of disease burden, HLV. These findings suggest that fibrotic clot score 

evaluation could provide quantitative, imaging derived metrics to evaluate  CTEPH disease 

severity or PTE response. Further investigation into the utility of fibrotic clot score 

independently and in combination with HLV for assessment of disease severity and PTE 

planning is warranted.  
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CHAPTER 3: PREDICTION OF DISEASE LOCATION IN CTEPH 
 
3.1. Abstract 

The purpose of this study was to assess if UCSD surgical disease level could be predicted 

preoperatively from Ventilation-Perfusion (VQ) Imaging in patients with CTEPH. A training set 

of 625 pre-operative pulmonary ventilation-perfusion images in patients with CTEPH who 

underwent PTE (median age 55 with interquartile range 31-79 years, 289 females) was used to 

train three different transfer-learning initialized convolutional neural networks (MobileNetV2, 

VGG-16, and Xception) with linear regression output layer to predict left lung UCSD surgical 

disease level. Network disease level prediction performance was evaluated using the validation 

cohort (154 cases, median age 54.5 years with interquartile range 52-78 years, 61 females). 

Classification accuracy of all VQ cases (proximal vs disease level 3 vs disease level 4) was not 

better than naïve prediction (selection of most common class, 55%) accuracy for any model, but 

confidence based prediction on only a subset of cases performed better than naïve accuracy for 

all models (p<0.001). Confident cases classification had 71% accuracy with prediction in 14% of 

cases for VGG-16 and 69% accuracy with prediction in 27% of cases for Xception, and had 

moderate agreement with known surgical disease level (ICC VGG-16=0.70 p VGG-16<0.001; ICC 

XCEPTION =0.64 pXCEPTION<0.001). Likely thresholds increased the percentage of cases that were 

classified (57%  for VGG-16 and 67% for Xception), while still performing better than naïve 

accuracy (67%  for VGG-16 and 67% for Xception), and maintaining moderate agreement with 

known disease level (ICCVGG-16=0.55 p VGG-16<0.001;  ICCXCEPTION=0.55 p XCEPTION<0.001). In 

conclusion, left lung UCSD surgical disease level can be predicted from VQ images. VQ based 

machine learning predictions of disease level could aid clinician presurgical assessment of 
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CTEPH, and serve as the foundation for future multi-modality models to pre-operatively predict 

CTEPH disease level. 

 
3.2. Introduction 

Pulmonary Thromboendarterectomy (PTE) is the preferred treatment for patients with 

CTEPH, because of its significant improvement in patient mortality and resolution or drastic 

mitigation of pulmonary hypertension8,61. One of the factors dictating successful PTE outcome is 

the location and depth in the vascular tree of a patient’s chronic vascular obstructions, which 

influences a surgeons ability to reach and completely remove them6,15. Different patients have a 

variety of chronic obstruction locations and origins, and not all patients will have surgically 

accessible disease. Therefore, preoperative assessment of patient chronic clot location is critical. 

A standardized metric of clot location is the UCSD surgical disease level, which 

specifically described the location of chronic clot origin within the vascular tree of a given lung. 

Surgical disease level ranges from 1 to 4, with the origin of clot being the main pulmonary 

arteries (disease level 1), the lobar pulmonary arteries (disease level 2), the segmental pulmonary 

arteries (disease level 3), or the subsegmental arteries (disease level 4)6. Surgical disease level is 

definitively determined for the right and left lung (independent value for each lung) at the time of 

PTE surgery, based on the chronic obstruction location the surgeon encounters. Unfortunately, 

disease level determination during surgery limits its utility preoperative decision making and 

planning. Current preoperative estimation of clot location and disease level is accomplished by a 

multidisciplinary team (pulmonologists, radiologists, surgeons, and specialized practitioners) 

through integration of multiple data sources (imaging and clinical) for a given patient8,19. 

Unfortunately, though, there is no quantitative tool to assist with clinician prediction of disease 

level. 
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Prior studies have shown relationships between different preoperative findings, and 

patient disease location18,48,62,63. For relationships identified in the clinical data, several general 

modeling strategies exist to integrate this data into a single disease level prediction, although 

none of these strategies have been published at this time. However, imaging data provides more 

of a challenge, despite the high resolution blood flow and perfusion information (visual features) 

it provides. Specifically, it is challenging to convert visual features into numeric ones that can 

predict disease location on their own or be readily integrated with clinical data for multimodality 

predictions.  One available strategy is the conversion of detailed, expert-determined annotations 

into numeric values representing important disease location features and predicting disease level 

from these values64. This strategy is not ideal, it increases the workload of the clinical team and 

depends on the availability of subspecialized readers. We would like to streamline the process of 

clinical image feature detection and disease level prediction, without increasing clinician 

workload.  

Machine learning offers an approach to identify and predict on imaging features 

indicative of fibrotic clot location without requiring expert image annotation. Machine learning 

strategies have previously been used on problems analogous to disease location prediction, with 

the successful identification of clot presence or absence in patients with suspected acute 

Pulmonary Embolism65–68. One imaging modality used in the prediction of acute PE, planar 

Ventilation-Perfusion (VQ) studies, is obtained in almost all patients with suspected CTEPH as 

part diagnostic workup and surgical planning12,20. Thus, there is a large number of pre PTE VQ 

studies in patients with CTEPH. The high availability of studies and utility in analogous machine 

learning predictions suggests that machine learning based prediction of CTEPH disease location 

from VQ studies could be feasible. 
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The objective of the work contained in this chapter was to further pre PTE assessment of 

disease location through development of systematic and quantitative approach to predict disease 

level from pre-operative imaging in CTEPH patients. Our hypothesis was that a machine 

learning model can predict surgical disease level from pre PTE VQ scans, and that these 

predictions would agree with the surgically confirmed disease level. 

3.3. Methods 

3.3.1. Cohort Selection 

Under IRB approved (#191797) waiver of informed consent, 797 consecutive CTEPH 

cases treated by Pulmonary Thromboendarterectomy (PTE) performed at our institution between 

April 2013 and June 2018 were retrospectively evaluated (by author F.C.). Cases were excluded 

if they were missing disease level information (n=6) or if their Ventilation perfusion Scans had a 

different arrangement than those obtained at our institution (n=12). This resulted in 779 cases for 

model training and evaluation. Patient CTEPH diagnosis and PTE eligibility was determined by 

consensus of a multidisciplinary team which included cardiothoracic surgeons, vascular disease 

expert pulmonologists, and fellowship trained cardiothoracic radiologists. CTEPH diagnosis was 

based on the criteria from Galiè et al3. These criteria require pulmonary hypertension evaluation 

using right heart catheterization, with mean pulmonary artery pressure (mPAP) >25mmHg, 

pulmonary artery wedge pressure  ≤15 mmHg, pulmonary vascular resistance ≥240 dyn s cm-5. 

Additionally, diagnostic criteria require CTEPH specific imaging signs, including ventilation-

perfusion mismatch seen on Ventilation-Perfusion SPECT Imaging.  

Our cohort (Figure 16) was comprised of patients who underwent PTE surgery for 

definitive treatment of CTEPH and found to have bilateral disease during PTE, and had pre PTE 

VQ scans obtained within 90 days of PTE (n=686 VQ scans). These patients were randomly split 
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into a training cohort (n=532 cases), used to determine the model parameters that best predicted 

disease level, and a validation cohort (n=154 cases) used to monitor training progress and 

evaluate model performance. While not reflective of the overall CTEPH cohort, cases that had 

VQ scans obtained greater than 90 days prior to PTE (n=74) and cases with only unilateral 

disease level (n=19) were included in the training cohort to increase number of training cases. 

This led to an 80/20 split between training and validation cohorts (n=625 training cases and 

n=154 validation cases).  

 

Figure 16. VQ cases in validation and training cohort 

ValidationCohort Total: 154 Cases

797 Consecutive pre-PTE VQ Scans for retrospective review
(PTE date between April 2013 and July 2018)

779 VQ Scan + Disease level data sets

686 VQ + DL data sets with:
 -bilateral disease 
-VQ scans with < 90 days between VQ and PTE

532 VQ + DL data sets with:
 -bilateral disease 

-VQ scans with < 90 days between VQ and PTE

19 VQ + DL data sets with:
 -unilateral disease 

74 VQ + DL data sets with: 
-VQ scans with > 90 days between VQ and PTE

154 VQ + DL data sets with:
-bilateral disease 

-VQ scans with < 90 days between VQ and PTE

Training Cohort Total: 625 Cases
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3.3.2. Image Acquisition and preprocessing 

Ventilation Perfusion SPECT images were acquired during workup for suspected CTEPH to 

rule out other forms of PH 3,12. Planar VQ images were acquired using Xe-133 (ventilation) and 

Tc-99 macroaggregated albumin (perfusion) on a gamma camera. Ventilation Images were 

acquired with patients upright after inhalation of Xe-133 gas from a non-rebreathing mouthpiece 

for the wash-in, equilibrium and 2 washout phases of gas inhalation. After ventilation image 

acquisition, planar perfusion images of 8 standard views (Anterior, Posterior, Left Posterior 

Oblique, Right Posterior Oblique, Left Lateral, Right Lateral, Left Antior Oblique and Right 

Anterior Oblique) were acquired after intravenous administration of Technetium-99 

microaggregated albumin, also with patients in the upright position. All images within an 

individual Ventilation-Perfusion Scan study were compiled into a single 1584 x 1024 pixel 

image containing 4 ventilation images, 8 perfusion views, and header information. These images 

were deidentified using the Virtual Research Desktop provided through the Altman Clinical 

Translational Research Center at UC San Diego into 1584 x 768 images containing only the 4 

ventilation images and 8 perfusion images without personal health information. Images were 

preprocessed before neural network training to create a 244 pixel x 244 pixel x 3 channel input 

image with the anterior perfusion view in channel 1, posterior perfusion view in channel two and 

wash-in ventilation image in channel 3 (Figure 17, Step 1. VQ image preprocessing). Posterior 

perfusion images and ventilation images were flipped across the vertical access, leading to all 

images having the left lung on the same side of the image. Images were normalized by dividing 

by 255 (the maximum pixel value), leading to all pixel values falling in the 0 – 1 range.   
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3.3.3. Surgical Disease Level Determination 

Patients diagnosed with CTEPH and selected as good PTE candidates underwent PTE as 

is described in detail in both Madani et al and Gernhofer and Pretorius 6,8. During PTE surgery, 

the surgeon assigns the surgical disease level for each lung based on the most proximal location 

or most proximal origin of fibrotic clot. The location of most proximal fibrotic clot or fibrotic 

clot origin corresponding to each disease level are as follows: disease level 1 has disease 

originating in the left or right main pulmonary, disease level 2 has disease originating in a lobar 

or the interlobar pulmonary artery, disease level 3 had disease originating in a segmental 

pulmonary artery and disease level 4 has disease originating in a subsegmental pulmonary artery 

6. Disease level is determined independently for each lung, and lungs can have different disease 

levels from one another. Likewise, it is also possible for one lung to have disease when the other 

lung does not. The majority of patients who undergo bilateral PTE have surgical disease level 

assessed for both lungs, but patients who have undergone minimally invasive PTE (included in 

the training but not validation cohort) have the surgical disease level for only one lung assessed. 

The surgically defined disease level is used as the ground truth fibrotic clot location. For 

compatibility with CNN training, known disease levels were arranged in the following ordinal 

categories: Disease level 1, Disease Level 2, Disease Level 3, Disease Level 4 and No Disease. 

These ordinal categories were mapped to a value between 0 and 1 prior to being used for CNN 

training (Disease level 1=0, Disease Level 2=0.25, Disease Level 3=0.5, Disease Level 4=0.75 

and No Disease=1). 

3.3.4. Model Training 

Three different CNN architectures, VGG-16, Xception and MobileNetV2, were trained to 

predict the disease level of the left lung using transfer learning. Networks were all initialized 
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with ImageNet weights and had their classification/fully connected layers removed and replaced 

by a single neuron regression output layer with linear activation function (Figure 17, 2. CNN 

analysis of VG Image). No layers were frozen, giving weights in all layers of the network the 

opportunity to update with training. Input images of 224x224x3 containing the Anterior 

Perfusion Image, Posterior Perfusion Image and Ventilation perfusion image were used to train 

the network. Image augmentation using a random combination of rotation (< 20 degrees), 

shifting (< 20 pixels), and cropping (< 20 pixels) was used to supplement the 625 training cases. 

The training data sets used were the same for all 3 models, with the only differences being 

differences in random data augmentation. Training was accomplished using a weighted mean 

absolute error loss function, ADAM optimizer, and a learning rate schedule initialized at 8 x 10-4 

that reduced by 0.8 times the prior learning rate after 10 epochs with no improvement in loss. 

Networks training was stopped after networks trained for 200 epochs or after 50 epochs without 

validation loss improvement, whichever happened first. Models were trained on a GPU using 

Keras from Tensorflow (version 2.2.0). 

 

Figure 17 Analysis pipeline to predict disease level from VQ images 
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3.3.5. Model Evaluation 

CNN performance was evaluated using the validation data set (same individual cases for 

all 3 networks) that was also used to monitor network training. First, correlation between raw 

CNN regression output (continuous value between 0.0 and 1.0; prior to conversion to disease 

level classification of 1,2,3, or 4) and known surgical disease level was assessed. Next, CNN 

regression outputs differences between group known disease level groups were assessed. Group 

comparisons included cases with surgically defined proximal (disease level 1 or 2) vs segmental 

or subsegmental (disease levels 3 or 4; referred to as (sub)segmental disease for the remainder of 

the chapter) disease, as well as cases with adjacent disease levels (ex: disease level 2 vs 3). Initial 

ability of the CNN output to separate a) proximal vs (sub)segmental cases and b) disease level 3 

vs disease level 4 cases was evaluated using the Receiver Operating Characteristic Curve (ROC). 

ROC curves were used to select different thresholds to classify CNN regression outputs into a 

disease level prediction. CNN outputs were classified into proximal, disease level 3 or disease 

level 4. Disease levels 1 and 2 were not separated out, as the main increase in surgical case 

difficulty occurs with disease level 3 and disease level 4 16.Two different classification 

approaches were investigated: an all case classification approach and a confidence based 

classification approach. The agreement between these classification approaches and known 

disease level was evaluated and accuracy of the classifications were compared to the accuracy of 

a naive prediction. The naïve prediction was the classification of all cases as the most common 

disease level. 

3..3.6. All Case Classification 

The first evaluated classification method classified all validation cases. Thresholds for 

classification of CNN outputs into disease level were selected from the highest accuracy 
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operating point of the ROC curves. First, cases were classified into proximal or (sub)segmental 

using the highest accuracy ROC operating point for the separation of proximal vs (sub)segmental 

cases. If CNN regression output was able to successfully separate disease level 3 from disease 

level 4 in isolated (sub)segmental cases (based on ROC analysis), then the highest accuracy 

operating point was used to define the CNN output threshold for disease level 3 vs 4. In the case 

that multiple operating points had the same accuracy, the point with the higher positive 

predictive value was used (Figure 18). 

 

Figure 18 All case classification example 

3.3.7. Confidence Based Classification 

Under the second evaluated classification method, confidence-based classification, cases 

were classified only if their CNN regression output values were within a range of values that had 

a high predictive value for a given disease level (Proximal, (sub)segmental/disease level 3, and 

disease level 4). Predicted values that did not meet the threshold for classifying patients as likely 

proximal or likely distal were not classified. Two different confidence levels were used with this 

approach, “confident” and “likely”. The range of values was defined based on the predictive 

values of different points along the ROC curve. Confident thresholds were defined as the highest 
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accuracy ROC operating point with predictive value close to 90% (range 87.5-92.5%). If there 

was no predictive value between 87.5-92.5%, then the range was expanded to 85%-95%, and 

finally 85%-100%.  Likely thresholds were defined as the highest accuracy ROC operating point 

with predictive value close to 80% (range 77.5-82.5%). If there was no predictive value between 

77.5-82.5%, then the range was expanded to 75%-85%, and finally 70%-85%. The thresholds 

defining the CNN output values as “confident” or “likely” were chosen based on the positive and 

negative predictive values of different operating points along the ROC curve (Figure 19).  

 

Figure 19 Confidence based classification example 

3..3.8. Statistics 

Demographic measures and disease level distribution in the left lung were compared 

between the training and validation cohort. Parameters were tested for normality using the 
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Student’s t-test and one-way ANOVA were used to assess normally distributed variables, while 

Wilcoxon rank sum and Kruskal-Wallis tests were used for non-normally distributed variables 

with p=0.05. Agreement between CNN output predicted disease level value and known surgical 

 

 

 

 

 

 

Known Disease Level
1 432 1 432

C
N

N
 O

ut
pu

t

0

0.8

0.2

0.6

0.4

0

0.8

0.2

0.6

0.4

Known Disease Level

DL 4 predicted
DL 3 predicted
DL 1&2 predicted

correct
incorrect

A B

no prediction

no prediction



62 
 

disease level was determined via Spearman’s correlation coefficient. Correlations were classified 

as little to no relationship (0≤⍴<0.25); fair (0.25≤⍴<0.5); moderate (0.5≤⍴<0.75); or excellent 

(⍴≥0.75)43. Comparison of CNN output predicted disease level value in different known disease 

level groups was accomplished with one-way ANOVA followed by student’s t-test for individual 

group differences (including of known proximal vs know (sub)segmental studies) with p=0.125 

(Bonferonni correction for 4 comparisons). ROC curves identified the cutoffs used to classify 

predictions as proximal vs distal, including a single threshold to classify all patients and 4 

thresholds to identify confident proximal, likely proximal, confident (sub)segmental and likely 

(sub)segmental classifications. The area under each receiver operating curve and its 95% 

confidence interval were calculated. Accuracy, percent classified, sensitivity and specificity for 

each classification strategy/mode was compared within a given model type using the Z statistic. 

Analysis was performed in MATLAB 2021b (MathWorks, Natick, MA).  

3.4. Results 

3.4.1. CTEPH cohort demographics 

 The training cohort cases were 55 [31-79] years old, 46% female (n=289). Pre PTE 

hemodynamics in the training cohort were 44 [29-59] mmHg for mPAP, 569 [98.5-1050] 𝑑𝑦𝑛 ∙

𝑠 ∙ 𝑐𝑚!" for PVR, and 4.6 [3.8-5.4] L/min. The training cohort (n=625) and validation cohort 

(n=154) were similar in age, percent female, and preoperative hemodynamics (Table 8). The 

validation cohort cases were 54.5 [52-78] years old, 40% female (n=61). Pre PTE hemodynamics 

in the training cohort were 43+12 mmHg for mPAP, 550 [137-963] 𝑑𝑦𝑛 ∙ 𝑠 ∙ 𝑐𝑚!" for PVR, and 

4.3 [2.5-6.1] L/min. The training cohort and validation cohort were similar in age, percent 

female, and preoperative hemodynamics (Table 8).  
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 Aside from the exclusion of No Disease cases from the validation cohort, the disease 

level distributions were similar between the validation and training cohorts. In the training 

cohort, the disease level distribution was 11% (n=74) disease level 1, 39% (n=233) disease level 

2, 34% (n=215) disease level 3, 13% (n=84) disease level 4, and 3% (n=19) No Disease. In the 

validation cohort, the disease level distribution was 15% (n=18) disease level 1, 40% (n=61) 

disease level 2, 34% (n=58) disease level 3, and 10% (n=17) disease level 4. Because the largest 

percentage of validation cases fell in disease level 1 and 2, the naïve prediction accuracy was 

55% for proximal vs (sub)segmental classification and also proximal vs disease level 3 vs 

disease level 4 classification. 

 
Table 8. Training and validation cohort characteristics 

 Training Val p-value 
Age 55 [31-79] 54.5 [52-78] 0.63 
Sex 46% (n=289) 40% (n=61) 0.14 

mPAP 44 [29-59] 43+12 0.53 
PVR 569 [98.5-1040] 550 [137-963] 0.59 
CO 4.6 [3.8 - 5.4] 4.3 [2.5-6.1] 0.09 

Disease Level 1 11% (n=74) 15% (n=18) 0.81 
Disease Level 2 39% (n=233) 40% (n=61)  
Disease Level 3 34% (n=215) 34% (n=58)  
Disease Level 4 13% (n=84) 10% (n=17)  

No Disease 3% (n=19) -  
 
3.4.2.    Agreement of CNN Linear Regression Output with Known Disease Level  

CNN outputs of all three models had a fair correlation with the true disease level values 

in the validation cohort (MobileNetV2 ⍴=0.37, p <0.001; VGG-16 ⍴=0.36, p <0.001; Xception 

⍴=0.45, p <0.001). Boxplots of CNN output for each known disease level are shown in Figure 

20. Using MobileNetV2 (Figure 20A), the median and interquartile range for CNN output was 

0.36 [0.24 -0.47], 0.36 [0.23-0.50],  0.43 [0.28-0.59], and 0.50 [0.38-0.62] for known surgical 

disease levels 1-4, respectively. There was a significant difference in the CNN output for 
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proximal vs (sub)segmental disease (p <0.001) as well as in known surgical disease levels 2 vs 3 

(p=0.003). There was not a significant difference in CNN disease level outputs in known surgical 

disease levels 3 vs 4 (p=0.054). Like MobileNetV2, VGG-16 (Figure 20B) disease level outputs 

were also significantly different between proximal vs (sub)segmental disease (p< 0.001) and 

surgically known disease level 2 vs 3 (p=0.004), with median outputs of 0.31 [0.22-0.40], 0.31 

[0.16-0.46],  0.39 [0.21-0.57] , and 0.53 [0.21-0.85] for known surgical disease levels 1-4, 

respectively. The difference in output between known surgical disease levels 3 and 4 (p=0.0138) 

was not different after Bonferoni correction (requiring p< 0.0125 for significance). For Xception 

(Figure 20C), the median and interquartile range for CNN output was 0.27 [0.15 -0.38], 0.28 

[0.16-0.42],  0.44 [0.26-0.62], and 0.47 [0.23-0.72] for known surgical disease levels 1-4, 

respectively. Like MobileNetV2 and VGG-16, there was a significant difference in the CNN 

predicted disease level outputs in proximal vs (sub)segmental disease (p <0.001) as well as in 

known surgical disease levels 2 vs 3 (p <0.001). There was not a significant difference in CNN 

disease level outputs in known surgical disease levels 3 vs 4 (p=0.35). There was not a 

significant difference in CNN disease level outputs in known surgical disease level 1 vs 2 for any 

of the CNN Models (MobileNetV2 p=0.43; VGG-16 p= 0.61; Xception p=0.35). 

 
Figure 20 CNN regression output of three different models for each known disease level 
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3.4.3.    Receiver Operating Characteristic Curves  

The receiver operating characteristic curves for separation of proximal and 

(sub)segmental disease based on CNN output is shown in Figure 21. All three models separate 

proximal and (sub)segmental disease better than chance (AUC >0.5). AUC and 95% Confidence 

intervals were 0.70 (0.66-0.74), 0.69 (0.65-0.73), and 0.76 (0.72–0.79) for MobileNetV2, VGG-

16, and Xception, respectively.  

 
Figure 21 ROC analysis showing separation of proximal vs (sub)segmental cases in all three CNN models 

The receiver operating characteristic curves for the separation of disease level 3 vs 4 in 

known (sub)segmental disease based on CNN output is shown in Figure 22. VGG-16 (yellow 

line) and Xception (red line) CNN output separated known (sub)segmental cases into disease 

level 3 vs 4, with AUC and 95% CI of 0.62 (0.68 – 0.56), and 0.60 (0.65 – 0.56) for VGG-16 and 

Xception models, respectively. MobileNetV2 (blue line) was not able to separate known 
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(sub)segmental patients into disease levels 3 and 4 (AUC and 95% Confidence Interval of 0.56 , 

0.47 – 0.65). 

 
Figure 22 ROC curve of CNN output shows VGG-16 and Xception but not MobileNetV2 separate disease 

level 3 vs 4 

 
 
3.4.4.    All Case Classification 

MobileNetV2: The MobileNetV2 all case classification CNN output thresholds (Table 9) 

were>0.369 for (sub)segmental classification (Figure 21B). Because MobileNetV2 could not 

separate disease levels 3 and 4 in (sub)segmental cases, there is no identified threshold for 

classifying disease level 3 from 4. Classification of all validation samples as proximal or 

(sub)segmental had an accuracy of 68%, sensitivity of 68%, and specificity of 47% (Table 10). 

Accuracy for proximal vs (sub)segmental accuracy was better than naïve prediction accuracy 

(p<0.02). 
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VGG-16: The VGG-16 all case classification CNN output thresholds (Table 9) were>0.414 for 

proximal vs (sub)segmental classification (accuracy 68%, sensitivity 52%, specificity of 82%; 

Figure 21C, Table 10) and>0.616 for disease level 4 classification (disease level 3 vs 4 accuracy 

86%, sensitivity 35%, specificity of 98%). The operating point accuracy for all case 

classification into proximal or (sub)segmental performed better than naïve classification 

(p=0.02). Classification of CNN output for all cases into predicted disease level (proximal, 3 or 

4) had low agreement with ground truth surgical disease level (ICC= 0.44 p<0.001). All cases 

classification accuracy was 64% for VGG-16 (Table 11), which was not statistically different 

than the naïve accuracy of 55% (p=0.12). 

Xception: The Xception all case classification CNN output thresholds (Table 9) 

were>0.369 for proximal vs (sub)segmental classification (proximal vs (sub)segmental accuracy 

71%, sensitivity 68%, specificity of 75%; Figure 21D, Table 10) and>0.606 for disease level 4 

classification (accuracy 81%, sensitivity 24%, specificity of 100%) for disease level 4 

classification. The operating point accuracy for all case classification into proximal or 

(sub)segmental performed better than naïve classification (p=0.004). Classification of CNN 

output for all cases into predicted disease level (proximal, 3 or 4) had low agreement with 

ground truth surgical disease level (ICC=0.37 p <0.001). All cases classification accuracy was 

64% for Xception (Table 11), which was not statistically different than the naïve accuracy of 

55% (p=0.47). 
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Table 9 Thresholds for disease level classification from CNN output 

  
(Sub)segmental 

Threshold NPV 
Proximal 
Threshold  PPV 

 
Disease 
Level 4 

Threshold 

 
 

PPV 

MobileNetV2 All Cases 0.433 - 0.433 - - - 

 
Confident 

Cases 0.552 0.88 0.270 0.86 
- - 

 
Likely 
Cases 0.536 0.80 0.295 0.78 

- - 

VGG-16 All Cases 0.414 - 0.414 - 0.616  

 
Confident 

Cases 0.503 0.89 0.168 1.00 
 

0.593  
 

0.86 

 
Likely 
Cases 0.452 0.78 0.296 0.71 

 
0.587 

 
0.78 

Xception All Cases 0.369 - 0.369 - 0.606  

 
Confident 

Cases 0.546 0.88 0.256 0.88 
 

0.625 
 

1.00 

 
Likely 
Cases 0.450 0.78 0.291 0.78 

 
0.606 

 
0.80 
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Figure 23 Classification of proximal disease level, disease level 3, and disease level 4 for all case and 

confidence-based classification strategies 
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3.4.5.    Confidence Based Classification 

MobileNetV2: MobileNetV2’s confident thresholds were<0.267 for proximal 

classification and>0.552 for (sub)segmental classification (Table 9). Because MobileNetV2 

could not separate disease levels 3 and 4 in (sub)segmental cases, there is no identified threshold 

for classifying disease level 3 from 4. Confident thresholds classified 15% of cases as proximal 

or (sub)segmental with 87% accuracy, 88% sensitivity and 86% specificity. Confident threshold 

classification of proximal vs (sub)segmental cases had higher sensitivity (p=0.006), but similar 

accuracy (p=0.058) and specificity (p=0.88) compared to MobileNetV2 all case classification 

(Table 10). 

 

MobileNetV2’s likely thresholds were <0.295 for proximal classification and>0.536 for 

(sub)segmental classification (Table 9). Because MobileNetV2 could not separate disease levels 

3 and 4 in (sub)segmental cases, there is no identified threshold for classifying disease level 3 

from 4. Likely thresholds classified 28% of cases as proximal or (sub)segmental with 79% 

accuracy, 80% sensitivity and 78% specificity. Likely threshold classification of proximal vs 

(sub)segmental cases had higher sensitivity (p=0.007), but similar accuracy (p=0.14) and 

specificity (p=0.36) compared to MobileNetV2 all case classification (Table 10). 

 

VGG-16: VGG-16’s confident thresholds were<0.168 for proximal classification,>0.503 

for (sub)segmental classification, and>0.593 for disease level 4 classification (Table 9). 

Proximal vs (sub)segmental classification thresholds (Table 10) had higher accuracy (p=0.03), 

sensitivity (p=0.001), and specificity (p=0.04) than the all case proximal vs (sub)segmental 

threshold. Confident thresholds classified 14% of cases as proximal, disease level 3 or disease 
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level 4 with 71% accuracy, which was significantly better than the naïve prediction accuracy of 

55% (p<0.001;Table 11). Confident only classification moderately agreed with known surgical 

disease level (ICC=0.70 p<0.001).  

 

VGG-16’s likely thresholds were<0.296 for proximal classification and>0.452 for 

(sub)segmental classification, and>0.587 for disease level 4 classification (Table 9). Proximal vs 

(sub)segmental classification thresholds (Table 10) had higher sensitivity (p<0.001) and 

specificity (p=0.04), but not accuracy (p=0.30) compared to the all case proximal vs 

(sub)segmental threshold. Likely thresholds classified 57% of cases as proximal, disease level 3 

or disease level 4 with 67% accuracy, which was significantly better than the naïve prediction 

accuracy of 55% (p<0.001; Table 11). Likely case classification moderately agreed with known 

surgical disease level (ICC=0.55 p<0.001).  

Xception: Xception’s confident thresholds were<0.256 for proximal classification,>0.546 

for (sub)segmental classification, and>0.625 for disease level 4 classification (Table 9). 

Proximal vs (sub)segmental classification thresholds (Table 10) had higher accuracy (p=0.03) 

and sensitivity (p=0.01), but not specificity (p=0.07) compared to the all case proximal vs 

(sub)segmental threshold. Confident thresholds classified 27% of cases as proximal, disease 

level 3 or disease level 4 with 69% accuracy, which was significantly better than the naïve 

prediction accuracy of 55% (p<0.001; Table 11). Confident only classification moderately 

agreed with known surgical disease level (ICC=0.64 p<0.001).  

 

Xception’s likely thresholds were<0.291 for proximal classification and>0.450 for 

(sub)segmental classification, and>0.606 for disease level 4 classification (Table 9). Proximal vs 
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(sub)segmental classification thresholds (Table 10) had similar accuracy (p=0.26), sensitivity 

(p=0.10),  and specificity (p=0.57) as the all case proximal vs (sub)segmental threshold. Likely 

thresholds classified 67% of cases as proximal, disease level 3 or disease level 4 with 67% 

accuracy, which was significantly better than the naïve prediction accuracy of 55% (p<0.001; 

Table 11). Likely case classification moderately agreed with known surgical disease level 

(ICC=0.55 p<0.001).  

 
Table 10 Proximal vs (sub)segmental operating point comparison for all case vs confidence-based 

classification methods 

 

Proximal vs 
(sub)segmental 
classification 

Percent 
Classified 

Accuracy 
(Predicted) 

Accuracy 
(All) 

Sen Spec 

MobileNet
V2 

All Cases 100 
 

0.68 
 

0.68 
 

0.57 
 

0.77 
 

 
Confident Cases 

15 
0.87 

(0.06) 0.13 
0.88 

(0.01) 
0.86 

(0.36) 

 
Likely Cases 

28 
0.79 

(0.14) 0.22 
0.80 

(0.01) 
0.78 

(0.88) 

VGG-16 
All Cases 

100 
0.68 

 
0.68 

 
0.52 

 
0.82 

 

 
Confident Cases 

14 
0.90 

(0.03) 0.13 
0.89 

(0.001) 
1.00 

(0.04) 

 
Likely Cases 

57 
0.74 

(0.30) 0.42 
0.78 

(< 0.001) 
0.71 

(0.04) 

Xception 
All Cases 

100 
0.71 

 
0.71 

 
0.68 

 
0.75 

 

 
Confident Cases 

27 
0.88 

(0.03) 0.24 
0.88 

(0.01) 
0.88 

(0.07) 

 
Likely Cases 

67 
0.78 

(0.26) 0.52 
0.78 

(0.10) 
0.78 

(0.57) 
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Table 11 Classification of proximal, disease level 3 and disease level 4 using all case or confidence based 
classification 

 

Proximal vs DL 3 
vs DL 4 

classification % Classified Accuracy ICC 
VGG-16 All Cases 100 0.64 0.44 

 Confident Cases 14 0.71 0.70 
 Likely Cases 57 0.67 0.55 

Xception All Cases 100 0.59 0.37 
 Confident Cases 27 0.69 0.64 
 Likely Cases 67 0.67 0.55 

 

 
3.5. Discussion 

This chapter outlines the development, training and evaluation of a machine learning 

approach to predict left lung CTEPH disease level from VQ images. All three models were able 

to distinguish proximal from (sub)segmental disease (disease level 1 and 2 vs disease level 3 and 

4) based on AUC. All three models had all case proximal vs (sub)segmental classification that 

predicted with better accuracy than the naïve prediction. Confidence based predictions into 

proximal disease, segmental disease, or subsegmental disease moderately agreed with surgical 

disease level and had prediction accuracy better than naïve prediction for VGG-16 and Xception. 

We will focus on Xception for the remainder of the discussion, as it classified the highest 

number of samples using the confidence based thersholds 

All case classification into proximal or (sub)segmental disease shows similar accuracy 

compared to clinician prediction from a prior study of clinician disease level prediction before 

PTE (Table 12)69. Clinician prediction of disease level as proximal vs (sub)segmental in a series 

of 50 consecutive cases that included all available clinical data had an accuracy of 68%, with 

72% of (sub)segmental cases correctly classified and 59% of proximal cases correctly classified 

in the left lung69. The class balance in the left lung of these cases was 34% proximal, 64% 
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(sub)segmental, and 2% with no disease (excluded in the proximal vs (sub)segmental accuracy). 

Xception had similar performance when classifying all cases (55% proximal and 45% 

(sub)segmental), with overall accuracy of 71%, 68% (sub)segmental accuracy, and 75% 

proximal accuracy for the left lung. Both clinician and Xception had increased difficulty 

agreeing with surgical disease level when predicting on all cases. There was slight agreement 

(based on reported kohen’s kappa greater than 0 but less than 0.2) between left lung surgical 

disease level and clinician predicted disease level was when predicting 5 disease locations in the 

50 cases (no disease or disease level 1 -4). Similarly, Xception had slight agreement when 

classifying all cases as proximal, disease level 3 or disease level 4. In contrast, confidence-based 

classifications of Xception and VGG-16 outputs moderately agreed with surgical disease level. 

Given that clinician agreement only improved to fair when classifying cases as proximal or 

(sub)segmental, future work should assess if confidence-based predictions from machine 

learning models used in conjunction with clinician expertise can aid clinician prediction.   

 
Table 12 Previously published disease level prediction from Pirompanich et al69.   

Left Lung Known 
Cases 
(n=50) 

Number predicted 
correctly 

 

 Left Lung Known 
Cases 
(n=49) 

Number predicted 
correctly 

 
Disease Level 1 2/4 (50%)  Proximal 10/17 (59%) 
Disease Level 2 3/13 (23%)  Sub(segmental) 23/32 (72%) 
Disease Level 3 9/25 (36%)    
Disease Level 4 5/7 (71%)    

No Disease 1/1 (100%)    
 
 
 While current disease level classification performance is promising, further evaluation of 

our models is needed. First, the evaluation presented in this chapter focuses exclusively on the 

validation cases used to monitor training progress of the networks. While the network did not 

train specifically on the validation cases, they did influence the choice of model architecture and 
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when to stop network training. Future work will utilize the 2019 and onward cases to have a hold 

out test cohort for evaluation. Identification of a test cohort that underwent PTE at a different 

institutions is also necessary. Second, the clinical utility of these models depends on their ability 

to aid clinician evaluation. While comparison to published clinician accuracy aids machine 

learning model evaluation, direct comparison between our model and clinician prediction on the 

same cases is needed and will be included in future work. Finally, our models currently only 

predict on the left lung. Development and evaluation of models that predict on disease level in 

the right lung is also required.  

 Our models used only VQ images when predicting disease level. Despite their low spatial 

resolution, proximal vs (sub)segmental disease could be predicted with better than naïve 

accuracy when performing all case or confidence based predictions using Xception and 

confidence based predictions for both MobilenetV2 and VGG-16. Additionally, our VQ only, all 

case predictions with Xception had similar performance with previously reported clinician 

performance using all data modalities. This performance using only VQ scans is promising for 

further model development and clinical implementation. First, many higher resolution images are 

available, such as CT Pulmonary Angiograms which allow direct visualization of vessel 

obstruction. Integrating the machine learning based prediction of disease level from these images 

has the potential to improve predictions over VQ images alone. Addition of patient clinical 

history and cardiopulmonary data also have the potential to improve machine learning prediction 

of disease level. Specifically, age, female sex, BMI, DVT history, identified coagulopathy, prior 

intravenous device, or use of pulmonary hypertension medication16. The use of exclusively VQ 

images also provides exciting clinical potential given VQ’s location in the CTEPH and 

diagnostic work up pathway. Ventilation perfusion scans are one of the first imaging modalities 
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acquired in the diagnosis of CTEPH, since they are required to confirm the presence of vascular 

obstruction (perfusion deficit without corresponding ventilation deficit/ventilation-perfusion 

mismatch) and rule out other causes of pulmonary hypertension. Combining this early diagnostic 

time point with confidence-based prediction of disease could provide a method to triage high 

confidence distal patients to expert centers earlier.  

3.6. Conclusion 

 In conclusion, machine learning models can be used to predict left lung CTEPH disease 

location as disease level from VQ scans. Proximal vs (sub)segmental disease can be identified in 

all VQ cases when using all three models, and confident cases when using Xception, VGG-16, 

and MobileNetV2. Confidence based predictions using Xception and VGG-16 classify over half 

of cases and can further split (sub)segmental into specific segmental vs subsegmental groups. 

These findings suggest VQ based machine learning predictions of disease level could aid 

clinician presurgical assessment of CTEPH patients, and serve as the foundation for future 

models that can combine multiple data modalities to predict CTEPH disease location. 
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