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Abstract 

Simple analytical formulae are presented for a quick optimization of the Free Electron 

Laser (FEL) gain length for given values of radiation wavelength, electron beam current, 

normalized transverse emittance and energy spread. The optimization parameters include 

the gap size of the wiggler, the wiggler period and the betatron wavelength (in the case 

of external focusing). The method is based on the handy formulae for the FEL gain 

of a Gaussian beam [1] including the effects of energy spread, emittance, and betatron 

oscillations of the electron beam. We have found a simple relation between the minimum 

FEL gain length and the optimum betatron wavelength for given energy spread, emittance, 

and gap size of the wiggler. When the emittance is about the radiation wavelength divided 

by 411" and the energy spread is negligible, this relation shows that the gain length is 

optimized if the betatron wavelength is chosen so that the betatron phase advances by a 

half radian in the gain length. 

I. Introduction 

Recently, we have developed a three-dimensional (3-D) FEL theory in the high gain 

regime before saturation based upon the Maxwell-Vlasov equation, including the effects 

of energy spread, transverse emittance, betatron focusing and oscillations of the electron 

beam, and the diffraction and guiding of the radiation field [1,2]. We have presented 

a dispersion relation for the FEL gain of a Gaussian beam and its approximate version 

* This work was supported by the Director, Office of Energy Research, Office of Basi c Energy 
Sciences, Materials Sciences Division, the U.S. Department of Energy under Contract No. DE
AC03-76SF00098. 
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that can be used as handy formulae for a quick estimate of the growth rate. Cornparison 

of the growth rates obtained by solving the dispersion relation with those obtained by 

Yu, Krinsky and Gluckstern's variational method [3], and by simulations using the code 

TDA [4] for the waterbag and the Gaussian transverse electron distributions showed good 

agreement [2]. They disagree (by about 20% at most)'only in the limiting case when the 

Rayleigh range is much longer than the one-dimensional gain length. This disagreement 

is due to the fact that'only a first-order truncated version of the exact dispersion relation 

is used in the computation. Using the above (dispersion-relation based) analytical tool, 

we can now not only carry out the optimization of FEL parameters much more easily and 

quickly than with numerical simulations, but also can obtain a physical insight into the 

dependence of the FEL performance on many parameters. 

Kim [5] and Yu [6] have derived formulae for a rough estimate of the power at satura

tion and the wiggler length required to yield saturation through self-amplified spontaneous 

emission, and proposed a procedure to design parameters so as to maximize the saturated 

power. In this paper, we deal with the optimization of the power gain length rather than 

the saturated power. For given values of radiation wavelength, electron beam current, 

normalized emittance, and energy spread, both the saturated power and the gain length 

become functions only of the gap size of the wiggler, the wiggler period, and the focusing 

strength (in the case of natural focusing, the third parameter drops). For a fixed gap 

size, the total wiggler length to obtain saturation in the case when the saturated power 

is maximized is substantially longer than that required in the case when the gain length 

is minimized. However, the saturated power is less in the latter case. This drawback can 

. be countered by employing a tapered wiggler after saturation in the uniform parameter 

wiggler. 

II .. Optimization Procedure 

The growth rate of the fundamental guided mode can be expressed in a scaled form us

ing four dimensionless scaling parameters. One form of such a scaling relation convenient 

when the total beam current is constant is 

(1 ) 

where Re( q) is the growth rate in the exponential growth regime. The power gain length 

LG can be calculated from the above growth rate function as 

(2) 
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The dispersion relation for the Gaussian beam, for instance, can be written in the above 

scaling form as 

2 roo e-X xdx 
x Jo . q . k - kl . X 2 kf3' 

--+z +z----
kwD kl D 2kl ex kwD 

(3) 

where we apply a rule that the integral signs in the multiple integrals are paired with the 

differential signs from inside to outside. Here, kw = 27r /)..w is the wiggler wave number, 

kl = 2kwi~ /(1 +](2) is the resonant radiation wave number corresponding to the resonant 

energy ir of the reference electron in units of its rest mass mc2
, c is the speed of light, ]( is 

the rrns value of the wiggler parameter, ex is the rrns transverse emittance of the electron 

beam, (J'-y is the rms relative energy spread, kf3.is the betatron wave number, and k = w/c 
is the wave number of the radiation field. The quantity D is the scaling parameter defined 

by 

D= 
8 ](2 10 
ir 1+ ](2 lA [JJ], (4) 

where 10 is the total beam current, lA = ec/re R: 17.05kA is the Alfven current, e is the 

electron charge, and re is the electron classical radius. For a planar wiggler, the Bessel 

factor [JJ] is given by 

(5) 

where Jm(x) is the Bessel function. For a helical wiggler, [JJ]=1. We have found the 

following parameterized formulae for the scaled growth rate of a beam with the Gaussian 

transverse and Gaussian energy distributions which agree well with the exact solutions of 

the dispersion relation, Eq. (3) [1,2]: 

I 
Re(q) 

og kwD - - (0.759 + O.238X + O.0139X2 
) 
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and \ 

Re(q) --
, 1 

_ [0.0628 - 0.219X - 0.000568X2 ] 2" 

,[ k{3 2 I 1 ' (2k1cx k D) U 

x exp w k{3 - ( 11.92 + 2.202X + 0.1414X2 ) . (/;)2 
(1.091 + 0.1345 kw D ) , 

~D ~ () for 2k1cX kp < 0.05 or kw
D 

> 1, 7 

where 

/ (8) 

Let us now consider a procedure for the optimization of the power gain length. We 

assume that the required radiation wave length At, the electron beam current la, the 

normalized emittance co = cx"Y, and the rms relative energy spread u-y are all fixed. Under 

these conditions, the power gain length becomes a function only of the wiggler period Aw 

and the gap size of the wiggler, g. All the other FEL parameters can be determined from 

these two parameters in the following five steps: 

1) For a given wiggler type, there is a relation between Aw and the peak wiggler 

magnetic field Bo. For example, for a Nd-Fe-B wiggler (g/ Aw :::; 0.722), 

Bo(T) = 3.44 exp[-5.00 ({w) + 1.54 ({w) \ (9) 

The ~ms value of the wiggler parameter, J(, is given by 

, 0.934 ( ) () 
J( = -d-Aw cm Bo T , (10) 

where d = V2 for a planar wiggler, and d=1 for a helical wiggler. 

2)' From the resonant condition, the electron energy corresponding to the radiation 

wave length Al is determined by / 

3) 
4) 

"Yr = 
Aw 1 + J(2 

2Al J(2 . 

The scaling parameter D can be calculated from Eqs. (4) and (5). 

The emittance cx at the energy "Yr is determined to be 

co 
cx= -. 

"Yr 

4 

(11) 

(12) . 

~ .. 
" 



5) In the case of natural focussing with equal focusing on the x- and y-planes by 

parabolic pole faces, the betatron wave number is given by 

k 
I<kw 

(3 = .Jilr· (13) 

Now, the gain length LG can be obtained by substituting these parameters into Eqs. (6), 

(7) and (2). 

The enhancement· of the growth rate may be achieved by employing the. external 

focusing. In this case, the value of k(3 which maximizes the scaled growth rate Re(q)j(kwD) 

can be found easily by applying an optimization program to Eqs. (6) and (7). The result 

can be conveniently parameterized in the following form: 

xexp {(23.51 + 8.865e + 1.125e) . [(~)2 - 3.914(~ )4]} , (14) 

where 

(15) 

Similarly, the maximized growth rate can be parameterized in the following form: 

( Re(q)) = 0.2504. (2k1cx)-O.7368. exp( -0.0915ge) 
kw D opt 

X exp {[-3.925 - 14.027(2k1Cx) + 0.1329(2lC1cX?] . (~?}. (16) 

The above formulae agree well with the exact solutions obtained from Eqs. (6) and (7) 

within 5 % in the range where u . .,j D ~ 0.4 and 0.04 ~ 2k1Cx ~ 10. 

It may be interesting to point out that (Re(q)j(kwD))opt and (k(3j(kwD))opt hold a 

rough relation 

( Re(q)) + 2 (u-y) ~ (2klCX)~ (~) . 
kwD t D kwD t op op 

(17) 

In terms of LGl the above relation can be rewritten as 

1 .. l 
2(L

G
)opt + 2kwu-y ~ (2k1Cx)3 (k(3)opt. (18) 

A strong resemblance can be observed between Eq. (17) and the denominator of the first 

integral over x and t in Eq. (3): ~" 

q .u-y i k{3 2 -- + 2z-t - -2k1c --x 
kwD D 4 xkwD' 

(19) 

5 



L 

when t = 1 and x = 2. The term (19) represents the Landau damping due to the lon

gitudinal velocity variati,on by the energy spread and the transverse emittance. When 

the betatron focusing is increased for a given emittance, the reduced beam size tends to 

increase the growth rate, while the increased longitudinal velocity spread tends to reduce 

the growth rate at the same time. These two conflicting tendencies get balanced at the 

focusing strength (k(3/(kw D))opt. Equation (17) suggests that this balancing point that 

gives the maximum growth rate is actually the point where the value of the growth rate 

.(in units of kw) becomes comparable to the longitudinal velocity spread (in units of c). 

This relation can b~ used for a rough estimate of the optimum focusing strength once a 

desirable power gain length is given. One interesting'conclusion from this relation is that 

the gain length is optimized if the betatron wavelength is chosen so that the betatron 

phase advances by a half radian in the gain length when 2k1ex ~ 1 and the energy spread 

is negligible. 

As an example of the optimization, we consider the following case: the required 

radiation wavelength Al is 50.11, and the electron beam parameters are 10 = 1000A, 

eo = eXT = 1.5 X 1O-6 (m-rad), and u.., = 2.2 X 10-4• We assume a planar wiggler made 

of Nd-Fe-B magnetic blocks with parabolic pole faces providing equal natural focusing on 

the x- and y-planes. At first, we take into account only the natural focusing. Figure 1 

shows the power gain length LG as a function of the wiggler period Aw for several gap 

sizes g. We find that LG has its minimum values at Aw ~ 1.06 cm, 1.5 cm and 1.88 cm for 

9 = 2 mm, 4 ffiffi, and 6 ffiffi, respectively. The resonant electron energy, the wiggler field, 

and the rms wiggler parameter at these minimum points are Tr = 1338, 1734, 1986.5, 

B(T) = 1.346, 1.012; 0.827, and K = 0.8/89, 1.002, 1.038, for 9 = 2 ffiffi, 4 mm, and 6 

mm, respectively. 

Now, we Consider the effects of the external focusing on the gain length. Equation (14) 

is used to obtain the strength of the external focusing which minimizes the gain length 

for given 9 and Aw. In Figs. 2 and 3, we plot the power gain length LG and the betatron 

wave length A(3 as functions of the wiggler period Aw for several gap sizes g. It is found 

that the gain length is reduced only slightly (by about 20% at most) at the minimum 

points, but the reduction factor increases as Aw increases. For a small Aw, the optimum 

A(3 for the external focusing is similar to that of the natural focusing. For a large Aw" it 

slowly decreases as Aw increases, in contrast to the natural focusing case where A(3 is ~n 

increasing function of Aw. The gain length increases more slowly as a function of Aw than 

in the natural focusing case for Aw 2:, 2.0 cm. 
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III. Minimum Gain Length 

We can now proceed to a further optimization of the wiggler parameters. The wiggler 

period (Aw )opt for the minimum power gain length LG for a given 9 satisfies the equation 

(20) 

Among the variables in the above equation, kw and Re(q)j(kwD) are moilOtonously de

creasing and increasing functions of Aw , respectively. Only the scaling parameter D has 

a structure with a single peak over Aw for each g. Therefore, Eq. (20) can be well 

approximated by dDjdAw -:- O. Substituting Eq. (4) into Eq. (20), we have 

[JJ] + 
4 

where we have assumed that the wiggler parameter can be expressed as 

(22) 

Here, the parameter e = 1 for a planar wiggler, and e = 0 for a helical wiggler,. It should 

be noticed that Eq. (21) involves only Aw and 9 as variables. The numerical solutions of 

Eq. (21) for the planar wiggler with Nd-Fe-Bmagnetic blocks case are shown in Fig. 4 

by the solid curve. The value of (Aw)opt for 9 =2 mm, 4mm, and 6 mm are about 0.99 cm, 

1.42 cm, and 1.78 cm, respectively. They agree well with the corresponding Aw for the 

minimum LG shown in ,Fig. 1. The broken curve is obtained by fitting the exact Curve 

using the following polynomials: For a planar wiggler, we have 

and for a helical wiggler, 
) 

where 9 is in units of millimeter. These approximate solutions agree with the exact 

solutions to within about 6 % over the range 1 < 9 ~ 15 mm. Now, the minimum gain 

length is a function only of g. Once 9 is chosen, the optimum Aw can be estimated from 
~, 

Eqs. (23) and (24), and the minimum gain length and all the other FEL parameters can 

be calculated quickly through the optimization procedure described in Sec.' II. 

.01, O. 



IV. Conclusions 

We have presented simple formulae and optimization procedure for a quick estimate 

of the FEL parameters which minimize, the power gain length. These formulae include 

the formulae for the optimum strength of the external focusing for the maximized growth 

rate (Eq. (14)) and for the maximized growth rate itself (Eq. (16)), and the one for 

the optimum wiggler p'eriod for the minimum gain length (Eqs. (23) and (24)). Our 

numerical example shows' that the minimum gain length was reduced only slightly by 

employing the external focusing. It helps to maintain a slow growth ~f the gain l~ngth 

as the wiggler period increases. Typically, the optimum wiggler period for the maximum 

saturated power is several times longer than that for the minimum gain length. Since 

the saturated power is proportional to (1/ La)\ the external focusing may be much more" 

effective in the enhancement of the saturated power than the gain length. 
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Figure Captions 

FIG. 1. The power gain length La as a function of wiggler period Aw_for several gap sizes 

9 with the natural focusing only. 

FIG. 2. The power gain length La as a function of wiggler period Aw for several gap sizes 

9 with the optimized external focusing. 

FIG. 3. The optimum betatron wavelength (Ap)opt as a function of wiggler period Aw for 

sever~l gap sizes g. 

FIG. 4. The optimum wiggler period (Aw')opt for the minimum gain length as a function 

of the gap size g. 
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