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Vitro
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1 Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America, 2 Department of
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America

Abstract

Background: Astrocytes exert a wide variety of functions in health and disease and respond to a wide range of signaling
pathways, including members of the Janus-kinase signal transducers and activators of transcription (Jak-STAT) family. We
have recently shown that STAT3 is an important regulator of astrocyte reactivity after spinal cord injury in vivo [1].

Methodology/Principal Findings: Here, we used both a conditional gene deletion strategy that targets the deletion of
STAT3 selectively to astrocytes (STAT3-CKO), and a pharmacological inhibitor of JAK-2, AG490, in cultured astrocytes in vitro,
to investigate potential functions and molecules influenced by STAT3 signaling in relation to mitochondrial function and
oxidative stress. Our findings show that the absence of STAT3 signaling in astrocytes leads to (i) increased production of
superoxide anion and other reactive oxygen species and decreased level of glutathione, (ii) decreased mitochondrial
membrane potential and decreased ATP production, and (iii) decreased rate of cell proliferation. Many of the differences
observed in STAT3-CKO astrocytes were distinctly altered by exposure to rotenone, suggesting a role for complex I of the
mitochondrial electron transport chain. Gene expression microarray studies identified numerous changes in STAT3-CKO
cells that may have contributed to the identified deficits in cell function.

Conclusions/Significance: Taken together, these STAT3-dependent alterations in cell function and gene expression have
relevance to both reactive gliosis and to the support and protection of surrounding cells in neural tissue.
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Introduction

Astrocytes play many essential roles in the healthy central nervous

system (CNS), including regulation of blood flow, provision of energy

metabolites to neurons, participation in synaptic function and plasticity,

and maintenance of the extracellular balance of ions, fluids and

transmitters [2,3]. In addition, astrocytes are primary responders to

CNS insults such as infection, trauma, ischemia and neurodegenerative

disease, where they exert important tissue defense mechanisms or

where their dysfunction may be involved in disease pathology [4–7].

Astrocytes are able to take part in this broad range of activities in part

by being able to respond to a plethora of extra- and intra-cellular

signaling mechanisms that regulate their functions and molecular

expression in a context-dependent manner [8,9]. Defining the signaling

mechanisms that regulate astrocyte activities is of interest in

understanding normal function in the healthy CNS, understanding

disease mechanisms and identifying potential novel therapeutic targets.

Many molecules have been implicated as triggers of astrogliosis,

including a broad group of growth factors and cytokines that signal

through members of the Janus-kinase signal transducers and

activators of transcription (Jak-STAT) signaling family [1,10,11].

Using a transgenic conditional gene deletion strategy, we have

recently shown that one intracellular member of this family, STAT3,

is a particularly important regulator of astrocyte reactivity after spinal

cord injury in vivo, such that conditional deletion of STAT3 signaling

from astrocytes attenuated reactive astrogliosis and disrupted scar

formation, which was associated with increased inflammation,

increased lesion size and decreased recovery of motor function [1].

In this study, we used both a genetic conditional deletion strategy and

pharmacological inhibition of STAT3 to assess whether STAT3

deficient astrocytes have impaired function that may be detrimental

to the astrocytes and ultimately to surrounding CNS tissue.

Materials and Methods

Materials
Generation of mice deficient in STAT3 expression selectively

in astrocytes (STAT3-CKO) using glial fibrillary acidic protein
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(GFAP) promoter-directed Cre/loxP technology was described

previously [1]. Mice were genotyped for Cre recombinase (Cre)

and loxP sequence by DNA isolation from liver sections using the

Qiagen DNAeasy kit (Valencia, CA) followed by PCR and agarose

gel electrophoresis as described previously. Experiments were

performed according to protocols approved by the Chancellor’s

Animal Research Committee of the Office for Protection of

Research Subjects at the University of California, Los Angeles.

Culture media and trypsin were obtained from HyClone (Logan,

UT). Versene was purchased from Gibco (Gaithersburg, MD).

Fluorescent probes dichlorofluoresceine-diacetate (DCF), dihy-

droethidine (HE), 5,59,6,69- tetrachloro-1,19,3,39-tetraethylbenzi-

midazolylcarbocyanin iodide (JC-1), MitoSOX Red, MitoTracker

Green, monochlorobimane (MCB), and propidium iodide (PI)

were obtained from Molecular Probes (Eugene, OR). The Cell-

Titre-Glo luminescence viability assay kit was from Promega

(Madison, WI). Primary antibody to GFAP was from Dako (rabbit,

Carpenteria, CA), to tyrosine705-phosphorylated STAT3 (pSTAT3)

was from Cell Signaling Technology, Inc. (rabbit 1:500, Danvers,

MA) to S100 was from QED Bioscience, Inc. (sheep, San Diego,

CA), to p-p38, pJNK, and pErk MAP kinases were from Santa Cruz

Biotechnology (rabbit 1:1000, Santa Cruz, CA) and to actin and

glutamine synthetase were from Sigma (rabbit 1:4000, St. Louis,

MO). Conjugated secondary antibodies to rabbit, goat, and donkey

IgG were from Bio Rad (1:1000, Hercules, CA). All other reagents

were from Sigma.

Cell Culture
Astrocyte cell cultures were prepared from 2-3-day-old STAT3

conditional knock-out (STAT3-CKO) mice and from littermate

CRE-negative controls (STAT3 +/+) by a modification of the

procedure of McCarthy and De Vellis [12]. Cerebral cortices from

individual mice were isolated and, after removal of meninges,

placed in 10614 cm Stomacher bags with 2 ml culture medium

(DMEM/Ham’s F12 with 4.5 g/l glucose, 15 mM HEPES, 2 mM

Glutamine, 10% fetal bovine serum and 1% Penicillin/Strepto-

mycin). The tissue was disaggregated manually by finger

compression for 3 min, triturated with 12 passes through a 1 ml

pipetter and filtered through a 100 mm nylon cell strainer. Cells

were then centrifuged at 800 rpm for 5 min, resuspended in

culture medium and transferred to one T-75 culture flask. Media

were replaced twice weekly. Upon reaching 90% confluence, cells

were passaged (1:3 in surface area) in order to generate sufficient

cell number. For passage, cells were washed three times with

phosphate-buffered saline (PBS) and incubated with 4 ml Versene

(0.02% EDTA in PBS) for 20 min at 37u C. Then 1.5 ml of 0.05%

trypsin and 0.02% EDTA were added and incubated 8 min at 37u
C. Following addition of 1.5 ml trypsin neutralizing solution

(Clonetics/Lonza), cells were collected by centrifugation (800g,

4 min) and counted with a hemocytometer.

Upon reaching 70–90% confluence, cells cultured in T75 flasks

were used for gene expression array studies and in multi-well

plates for all other experiments. Levels of GFAP and STAT3

expression did not change significantly in STAT3 +/+ cells during

the culture periods used in these studies. Comparisons between

STAT3 +/+ and STAT3-CKO for glutathione and ROS levels

did not change as a function of days in vitro or between passages 2

and 3.

Immunocytochemistry
Astrocyte cultures were prepared in 48-well plates and fixed

with formalin. Cells were stained with anti-GFAP (1:2000), anti

S100b (1:1000) or anti BrdU (1:6000) followed by AlexaFluor-

tagged secondary antibodies Alexa 488 (green) or Alexa 568 (red).

Cells stained for BrdU were pretreated with 2M HCl for 30 min

and rinsed three times with PBS. Images were recorded by

fluorescence microscopy (Zeiss, Oberkochen, Germany).

Western Blot Staining
Cells cultured in 12-well plates were washed three times with

PBS and extracted with RIPA lysis buffer containing 0.8 mM

aprotinin, 20 mM leupeptin, 10 mM pepstatin A, 2 mM phenyl-

methylsulfonyl fluoride, 20 mM NaF and 1 mM sodium orthova-

nadate. Following protein measurement using The Bio-Rad DC

protein assay, 25 mg protein per well was applied to 4–12%

gradient SDS polyacrylamide gels (Invitrogen). Electrophoresis

was run at 100–130V for 2.5 hr followed by transfer to Hybond-P

membranes (Amersham Biosciences) for 1.5 hr at 30V. Mem-

branes were then blocked with 5% dry milk powder in Tris-

buffered saline with 0.05% Tween 20 and stained with 1:500

dilutions of various antibodies. Following secondary antibody

staining, membranes were exposed to ECL chemiluminescent

reagent (Amersham Biosciences - GE Health Care Bio-Sciences,

Piscataway, NJ) and exposed to Kodak XAR5 film.

Hydroethidine Assay for Superoxide
Cells in 96-well plates were washed with 200 ml of Krebs Ringer

buffer (KR: 25 mM HEPES, pH 7.4, 125 mM NaCl, 5 mM KCl,

1.2 mM KH2PO4, 5 mM NaHCO3, 6 mM glucose, 1.2 mM

MgSO4 and 1 mM CaCl2). Rotenone, or carbonyl cyanide p-

trifluoromethoxy phenylhydrazone (FCCP) or DMSO vehicle

(0.1%) was added in KR to the appropriate rows [13–16]. In select

wells PBS was used to produce glucose-starvation. The plate was

incubated for 30 minutes whereupon toxins were removed and

wells washed once with 200 ml of Krebs Ringer. 10 mM HE in KR

or PBS was then applied and fluorescence was read at Ex = 530,

Em = 595 over a 30 minute period.

Measurement of Reactive Oxygen Species, Glutathione,
and Total Cell Number

Analysis of astrocyte reactive oxygen species (ROS) production

was performed by a modification of previously described procedures

[17]. Cells were washed twice with 200 ml of Krebs Ringer buffer

KR. 20 mg/ml DCF-DA was added to the wells in 100ml of KR and

the plate was sealed with mylar tape for 20 minutes. The plate was

then washed twice more with 200 ml and 100 ml of KR and toxins

added in 100 ml KR. Fluorescence readings were taken every

15 minutes for 1 hour at Ex = 485 and Em = 530. Then KR

containing the toxins was removed and replaced with 100 ml 40 mM

MCB in KR to determine glutathione (GSH) levels. The cells were

incubated with the MCB for 20 minutes at 37uC and fluorescence

readings taken at Ex = 390, Em = 460. Ten ml of 0.5 mM PI was

added to the wells and, after incubation for 15 minutes at room

temperature, red fluorescence was read at Ex = 535, Em = 590. Ten

ml of 1.6 mM digitonin was then added to each well and incubated

for 20 minutes at room temperature. PI fluorescence measurement

was repeated to quantify total cell number which was used to

normalize ROS and GSH levels. For each probe used, subtracted

background values were obtained from wells containing fluorescent

probe without cells.

Mitochondrial Membrane Potential, ROS, and Mass
Mitochondrial membrane potential was measured by using the

fluorescent probe JC-1 as described previously [18]. Rotenone,

antimycin A, or FCCP were added to wells in a 96-well plate.

Then 1 mg/ml JC-1 in culture media was added and the plate was

incubated at 37u in a CO2 incubator for 1 hour. Red and green

STAT3 In Vitro
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fluorescence measurements were taken at 2, 30, and 60 minutes

using Ex = 485, Em = 530 for green and Ex = 530, Em = 590 for

red. Following subtraction of blank values, red/green fluorescence

ratios were calculated for each well using data from 60 min

incubation. These data were compared with those from 2 and

30 min to verify appropriate time-dependent changes.

Mitochondrial-specific ROS was measured using MitoSOX

Red. Astrocytes cultured in 96-well plates were exposed to 4 mM

MitoSOX Red in culture media containing toxins or DMSO

vehicle control. In order to measure total mitochondrial mass,

parallel wells contained 0.1 mM MitoTracker Green which

produces a green fluorescence independent of mitochondrial

membrane potential. Following 2 hr incubation in a CO2

incubator, green and red fluorescence was measured as described

for JC-1. Background fluorescence was determined from wells

containing probes without cells and subtracted from respective red

and green fluorescence values. Red fluorescence values were

normalized to mitochondrial mass represented by averaged

MitoTracker Green fluorescence values from respective STAT3

+/+ or CKO cells.

ATP Assay
STAT3 +/+ and STAT3-CKO cells were grown in 96-well

plates to 90% confluence. Media was removed from the wells and

50 ml of firefly extract from the CellTitre-Glo Viabiltiy assay kit

(Promega) was added to each well. The plate was shaken for

3 minutes and samples were transferred to a white 96-well plate.

The wells were rinsed with 50 ml of 10 mM Tris-HCl pH 7.4 and

the rinse was added to the samples in the white plate. ATP

standards from 2 to 400 pmole were used to generate a standard

curve. Luminescence was measured with a Molecular Devices

Spectra Max Gemini EM plate reader in top-read mode using

SoftMax Pro v5 Software.

Protein Assay
Cells in 96-well were washed three times with 200 ml KR. 50 ml

of 1M NaOH were added to each well and the plate shaken for

3 minutes. 50 ml of 1M HCl was added to each well. Each well

was mixed well with a pipette before 20 ml in duplicate were taken

from each well and placed in a new 96-well plate. IgG was used as

protein standard which included 20 ml of 1 M NaOH/HCl mix

(1:1). 20 ml of Bio-Rad Coomassie Blue reagent was added to

standards and samples. The plate was read on the SLT Spectra

plate reader at 620nm wavelength.

Cell Proliferation Assay
Astrocytes cultured to passage 2 over a period of 3 weeks were

plated into 96-well culture plates at a density of 56103/well. N-

acetylcysteine (0.5 mM) or 1 mM deferroxamine mesylate in

sterile H2O were added 1, 3, and 5 days after plating. After 1, 4,

and 7 days in culture, cell number was quantified using propidium

iodide in the presence of digitonin as described above. Values

obtained after 1 day were subtracted from values after 7 days to

derive the relative increase in cell number. GSH levels were

assayed with monchlorobimane after 4 days as described above.

Gene Expression Micro Array Studies
Total RNA was isolated from astrocytes cultured in T-75 flasks

(P3, 70–80% confluence) using the Qiagen RNeasy Kit protocol

for adherent cells. RNA yields ranged from 1 to 13 mg and had an

A260/280 ratio .1.75. Four replicates were run per condition, for

a total of 8 arrays. RNA quantity was assessed with Nanodrop

(Nanodrop Technologies) and quality with the Agilent Bioanalyzer

(Agilent Technologies). Total RNA (200 ng) was amplified,

biotinylated and hybridized on Illumina Mouse Mouseref-8

Expression Beadchips v1.1, querying the expression of ,22,000

Refseq transcripts, as per manufacturer’s protocol. Slides were

scanned using Illumina BeadStation and signal extracted using

Illumina BeadStudio software (Illumina, San Diego CA). Raw data

was analyzed using Bioconductor packages (www.bioconductor.

org, [19]). Low level quality-control analysis was performed using

several indices, including inter-array Pearson correlation, cluster-

ing based on variance, and the mean absolute deviation (MAD)

using the top 1000 most variant probes [19]. Data were

normalized using quantile normalization. Analysis of differential

expression was performed using a linear model fitting (LIMMA

package, [20]). After linear model fitting, a Bayesian estimate of

differential expression was calculated and the threshold for

statistical significance was set at p,0.005 (Bayesian modified

t-test). Differentially expressed genes were classified according to

gene ontology, using Bioconductor packages and online tools

(DAVID/EASE, http://david.abcc.ncifcrf.gov/, WebGestalt, http://

genereg.ornl.gov/webgestalt/). In DAVID, levels 3 and 4 of

molecular function, biological process and cellular localization were

selected. Literature data mining for co-occurrence of gene names

and keywords of interest (e.g., oxidative stress, mitochondria etc.)

was performed using Chilibot (www.chilibot.net). Pathway analysis

was carried out using Ingenuity Pathway Analysis (Ingenuity

Systems, www.ingenuity.com).

Statistical Analysis
Data from in vitro cellular assays were analyzed by 2-way

ANOVA with Bonferroni post-hoc test using Prism Graphpad

software. Cell proliferation assays were analyzed by 1-way

ANOVA with Tukey’s post hoc test.

Results

Characterization of STAT3-CKO Astrocyte Cell Cultures
We have previously demonstrated the specificity of the STAT3-

CKO transgenic model for targeting STAT3 gene deletion to

astrocytes by (i) analyzing Cre mediated activation of reporter

gene expression at the single cell level in vivo and (ii) analyzing the

selective deletion of STAT3 and pSTAT3 from astrocytes in vivo

and in vitro [1]. For the present study, we confirmed and extended

these observations by characterizing in various ways primary

astrocyte cultures prepared from STAT3-CKO mice.

To evaluate the effects of STAT3-CKO on the appearance and

various molecular expression profiles of astrocytes in vitro, we used

primary astrocyte cultures that are over 95% GFAP-expressing

cells [21,22]. Primary astroctye cell cultures prepared from

perinatal STAT3-CKO mice grew well under standard conditions

and had an appearance under phase-contrast microscopy similar

to that of cells from littermate control mice negative for Cre

expression. STAT3-CKO astrocytes exhibited a moderately

reduced expression of GFAP, but expressed S100b or glutamine

synthetase at normal levels as detected by immunocytochemistry

(Figs. 1A,B) and Western blotting (Fig. 1C). In agreement with our

previous report [1], STAT3-CKO cultures exhibited almost no

detectable pSTAT3, whereas pSTAT3 was present in control

(STAT3 +/+) cultures (Fig. 1C). These findings demonstrate that

(i) STAT3 is activated and signaling in STAT3 +/+ astrocytes

under basal culture conditions that contain serum, and (ii) our

Cre-loxP model for STAT3-CKO effectively deleted signaling via

STAT3. We also looked for potential effects of STAT3-CKO on

other signaling pathways, and found no detectable differences in

the levels of p-p38, pErk and pJnk MAP kinases between control

STAT3 In Vitro
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and STAT3-CKO astrocytes (Fig. 1C). We therefore focused the

present studies on the effects of STAT3-CKO on astrocyte

functions under standard culture conditions in serum that are

associated with a basal constitutive activation of STAT3.

STAT3-CKO Alters Functions Related to Oxidative Stress
and Antioxidant Defense

We next compared astrocyte properties contributing to

oxidative stress and antioxidant defense. Superoxide (O2
2) levels

were assessed using the fluorescent probe, HE. Superoxide

generation over a 30-minute period was 56% greater in STAT3-

CKO astrocytes relative to STAT3 +/+ astrocytes (p,0.02) under

control culture conditions (Fig. 2A). The complex I inhibitor,

rotenone, significantly increased superoxide production in both

STAT3 +/+ and STAT3-CKO astrocytes, but did so to a lesser

extent in STAT3-CKO astrocytes as compared to STAT3 +/+
astrocytes. Similar results were obtained with the mitochondrial

uncoupler, FCCP.

ROS were measured using DCF. This probe fluoresces on

reaction with H2O2, hydroxyl radical, nitiric oxide and peroxyni-

trite, but does not react with superoxide [23]. ROS levels were

significantly higher by 15% in STAT3-CKO astrocytes relative to

STAT3 +/+ astrocytes (p,0.05) under control culture conditions

(Fig. 2B). Rotenone significantly and markedly increased ROS by

73% in STAT3-CKO astrocytes relative to values under control

conditions (p,0.001) and had no significant effect on ROS in

STAT3 +/+ astrocytes. Menadione, a generator of ROS via redox

cycling [24,25], significantly and markedly increased ROS by over

90% in both STAT3 +/+ and STAT3-CKO astrocytes relative

to values under control conditions (p,0.001) and eliminated

the significant difference between the two cell types. Glucose

starvation by transfer of cells from control culture conditions to

PBS eliminated the increased ROS generation by STAT3-CKO

astrocytes relative to STAT3 +/+ astrocytes during a one-hour

incubation.

Glutathione (GSH) is a major component of cellular antioxidant

defense. To assess GSH levels, we used the fluorescent probe,

MCB. GSH levels were significantly lower by 30% in STAT3-

CKO astrocytes relative to STAT3 +/+ astrocytes (Fig. 2A). We

next compared GSH levels after subjecting astrocytes to glucose

starvation or different forms of oxidative stress. Glucose starvation

and H2O2 both moderately reduced GSH levels by about 20–35%

in both STAT3 +/+ and STAT3-CKO astrocytes relative to

control conditions, while retaining the significant reductions in

STAT3-CKO astrocytes as compared to STAT3 +/+ astrocytes.

Menadione significantly and markedly decreased GSH by 50% in

Figure 1. Immunofluorescence and Western blot staining of enriched astrocyte cell cultures derived from neonatal forebrain. (A,B)
Single channel and merged images of double labeling immunofluorescence show that in control cultures (A1–A3) essentially all astrocytes express
both GFAP and S100b, whereas in STAT3-CKO cultures (B1–B3) most astrocytes do not express detectable levels of GFAP but do express S100b. (C)
Western blotting of primary astrocyte cultures shows markedly reduced expression of pSTAT3 and GFAP, but not of phosphorylated MAP kinases or
glutamine synthetase (Gl Syn), in STAT3-CKO cultures as compared with controls. Equivalent amounts of total protein were applied to each lane.
doi:10.1371/journal.pone.0009532.g001

STAT3 In Vitro
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STAT-3 +/+ astrocytes, and by 90% in STAT3-CKO astrocytes

(p,0.001) relative to control culture conditions.

Absence of STAT3 Impairs Astrocyte Mitochondrial
Function and ATP Production

We next looked for potential effects of STAT3-CKO on

astrocyte cell energetics. Mitochondrial membrane potential was

assessed with the dual wavelength fluorescent probe, JC-1. The

ratio of red/green JC-1 fluorescence was significantly lower by

25% in STAT3-CKO astrocytes relative to STAT3 +/+ astrocytes

(p,0.001) under control culture conditions (Fig. 3A). We then

compared the effects of inhibitors of mitochondrial functions.

Rotenone, a selective inhibitor of complex I, decreased mitochon-

drial membrane potential in STAT3 +/+ astrocytes but not in

STAT3-CKO astrocytes, thereby eliminating the significant

difference between the two cell types. Antimycin A, a selective

inhibitor of complex III, significantly decreased mitochondrial

membrane potential in both STAT3 +/+ and STAT3-CKO

astrocytes, while retaining a significant relative reduction in

STAT3-CKO astrocytes as compared to STAT3 +/+ astrocytes.

FCCP, a mitochondrial uncoupler, significantly and markedly

decreased mitochondrial membrane potential in both STAT3 +/+
and STAT3-CKO astrocytes by over 75%, and eliminated the

significant difference between the two cell types.

We also assessed ATP levels which were significantly lower by

10% in STAT3-CKO astrocytes relative to STAT3 +/+ astrocytes

(p,0.05) under control culture conditions (Fig. 3B). ATP levels were

significantly decreased to varying degrees by rotenone, antimycin A

and FCCP in both STAT3 +/+ and STAT3-CKO astrocytes, while

in all cases retaining a significant relative reduction in STAT3-

CKO astrocytes as compared to STAT3 +/+ astrocytes.

In order to determine if mitochondria contributed to the elevated

ROS observed in STAT3-CKO cells, the fluorescent probe

MitoSOX Red was used. Unlike DCF and hydroethidine, MitoSOX

Red selectively fluoresces in and is retained by mitochondria as a

function of ROS generation [26,27]. For these studies, parallel

measurements using Mitotracker Green were utilized to quantify total

mitochondrial mass, as this probe selectively stains mitochondria

independent of mitochondrial membrane potential or ROS

generation [28]. While apparent mitochondrial mass was ,15%

lower in STAT3-CKO astrocytes compared with STAT3 +/+ (see

inset Fig 3C), mitochondrial ROS was ,35% higher in STAT3-

CKO when normalized to MitoTracker Green fluorescence (Fig. 3C).

The increased mitochondrial ROS in STAT3-CKO cells was also

observed in the presence of mitochondrial inhibitors rotenone,

FCCP, and antimycin A. The relative difference between STAT3 +/

+ and STAT3-CKO was potentiated to a greater extent by antimycin

A and FCCP than by rotenone.

Cell Proliferation Is Decreased in STAT3-CKO Astrocyte
Cultures

STAT3 signaling has been implicated in regulating cell pro-

liferation [29,30]. We looked for influences of STAT3-CKO on

Figure 2. Oxidative stress studies using fluorescent probes.
Cortical astrocytes cultured at passage 2 or 3 were assayed in the
presence of 25 mM rotenone, 25 mM FCCP, 100 mM menadione, PBS, or
0.5% DMSO (vehicle control). (A) Superoxide generation was measured
using the fluorescent probe HE as described in Materials and Methods
and was consistently higher in STAT3-CKO cells. Data, expressed as per
cent of STAT3 +/+ control, represent means of 7–8 determinations 6

SEM. * p,0.05 compared with STAT3 +/+. (B) Generation of ROS was
measured using DCF. Values are expressed as DCF fluorescence after

1 hr incubation normalized to total cell number derived by PI fluorescence
in the presence of 160 mM digitonin (PIDI). Values represent means of 6–34
determinations 6 SEM. * p,0.01 compared with STAT3 +/+ cells and
^ p,0.05 compared with corresponding vehicle-treated control by 2-way
ANOVA with Bonferroni post-hoc test. (C) Glutathione (GSH) levels were
measured using 40 mM MCB after 30 min incubation at 37 u. Relative
fluorescence values were normalized to total cell number and represent
means of 6 determinations 6 SEM. * p,0.001 compared with corres-
ponding STAT-3 +/+ cells and ^ p,0.05 compared with corresponding
control using 2-way ANOVA with Bonferroni post-hoc test.
doi:10.1371/journal.pone.0009532.g002
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primary astrocyte proliferation in several ways. Qualitatively we

noted that STAT3-CKO cells required longer to reach confluence

after passage and plating, suggesting a slower rate of proliferation.

To evaluate this observation quantitatively, we first compared the

number of S100b-positive astrocytes that incorporated BrdU

administered as a pulse and found that about 3.5% of STAT3-

CKO astrocytes incorporated BrdU over a 6 hour pulse, which

was significantly lower and roughly half of the 7% of STAT3 +/+
astrocytes that incorporated BrdU over the same time period

(Fig. 4A–C).

Cell proliferation was also quantified using a propidium iodide

fluorescence assay. Cell numbers which were similar one day after

plating was ,35% lower in STAT3-CKO cell cultures compared

with STAT3 +/+ after 7 days (Fig. 4D). Since oxidative stress is

known to suppress cell division, we sought to determine if the

observed higher levels of ROS in STAT3-CKO cells played a role

in the lower proliferation rate. To address this issue, the

proliferation assay was repeated in the presence of the antioxidant,

N-acetylcysteine. Inclusion of 0.5 mM N-acetylcysteine in the

medium elevated cellular GSH levels by 10% in STAT3 +/+ cells

and by 34% in STAT3-CKO cells, producing levels of GSH

similar to that in STAST3 +/+ cells. Despite these increases in

GSH level, proliferation rate was not increased in either cell type.

Similar results were obtained with 0.25 mM deferroxamine

mesylate, and iron-chelating anti-oxidant (data not shown).

Effects of Pharmacologic Inhibition of STAT3 Activation In
Vitro Using AG490

We next compared the effects of STAT3-CKO with the

pharmacological blockade of the STAT3 signaling pathway in

astrocyte cultures prepared from wild-type mice using AG490, an

inhibitor of Jak2 kinase. Dose response studies indicated that

AG490 over a concentration range of 10 to 100 mM caused no

increase in cell death measured with propidium iodide (data not

shown). AG490 was used for subsequent studies at 25 mM, a

concentration previously shown to prevent STAT3 tyrosine

phosphorylation in vascular smooth muscle cells [31]. Treatment

of wild-type astrocyte cultures with 25 mM AG490 suppressed

STAT3 phosphorylation under basal conditions (with serum) as

well as in response to added Il-6 (Fig. 5A). In addition, treatment

of wild-type astrocyte cultures with AG490 reproduced changes in

various cell functions observed in STAT3-CKO astrocytes.

Astrocyte proliferation in vitro was significantly and markedly

attenuated in wild-type astrocytes continuously exposed to AG490

(Fig. 5B). Mitochondrial membrane potential was significantly

decreased by 30% in wild-type astrocytes exposed to AG490 for

2 hours (Fig. 5C). Exposure to the oxidative stress of H2O2

significantly and markedly reduced mitochondrial membrane

potential in both control and AG490-treated astrocytes by over

60%, eliminating the significant difference between the two cell

types (Fig. 5C). GSH levels were significantly lower by 35% in

wild-type astrocytes exposed to AG490 for 2 hours (Fig. 5D).

Exposure to H2O2 significantly reduced GSH levels by about 15%

in both untreated and AG490-treated astrocytes relative to levels

Figure 3. Analysis of mitochondrial function. Mitochondrial
membrane potential (A), ATP levels (B), and mitochondrial ROS (C) of
cortical astrocytes. Cells treated with the mitochondrial inhibitors 25 mM
rotenone, 10 mM antimycin A (Ant A)or 25 mM FCCP. (A) Cells cultured in
48-well plates were first exposed to the inhibitors or vehicle control (0.5%
DMSO) for 1 hr prior to addition of 1mM JC-1. After an additional hour of
incubation in a CO2 incubator, both red (Ex = 530, Em = 590 nm) and
green (Ex = 485, Em = 530 nm) fluorescence was measured. After
background subtraction, the ratio of red to green fluorescence was
calculated as a measure of mitochondrial membrane potential. Values
represent means of 16 determinations 6 SEM. * p,0.05 compared with
STAT3 +/+ using 2-way ANOVA with Bonferroni post-hoc test. ^ p,0.05
compared with control. (B) ATP levels were measured using the Promega

CellTitre-Glo luminescence assay and a standard curve for ATP
quantification. Values represent means of 6 determinations 6 SEM. The
experiment was repeated twice with similar results. (C) Mitochondrial-
specific ROS assays were performed in 96-well culture plates as described
in Materials and Methods. Values represent means of 60 determinations
6 SEM. * p,0.05 compared with STAT3 +/+ using 2-way ANOVA with
Bonferroni post-hoc test. ^ p,0.05 compared with vehicle-treated
control cells.
doi:10.1371/journal.pone.0009532.g003
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under control conditions, thereby retaining the significant

reductions in AG490-treated astrocytes as compared to untreated

astrocytes (Fig. 5D).

Effects of STAT3-CKO on Astrocyte Gene Expression
To identify candidate molecules regulated or influenced by

STAT3 signaling that might be involved with mechanisms related

to mitochondrial function and the response to oxidative stress we

studied global gene expression profiles using microarrays compar-

ing astrocytes from STAT3-CKO mice with astrocytes from

STAT3 +/+ mice. Cells were cultured to passage 3 over a period

of 4–6 weeks and four biological replicates per condition were

performed. Over 1200 genes exhibited statistically significant

(p,0.005) increases or decreases in expression levels of 50% or

more. As expected, and in agreement with Western data, GFAP

mRNA was decreased nearly 5-fold in STAT3-CKO cells, as was

the related intermediate filament nestin (Table 1).

As relates to the other experiments in this study, differences

were observed in expression of genes involved cell cycle control

and proliferation (Table 1), mitochondrial function (Table 2),

oxidative stress and oxidative defense (Table 3), and apoptosis

(Table 4). The majority of mitochondrial genes impacted were

negatively regulated in the absence of STAT3 signaling, including

NADH dehydrogenase NDUFS4 (1.4-fold decrease), MAP kinase

10 (2.1-fold decrease) and PARK7 (1.4-fold decrease) (Table 2).

Notable among the gene expression differences were a number of

genes involved in oxidative stress and antioxidant defense.

STAT3-CKO cells displayed lower levels of mRNA for peroxir-

edoxin 5 (1.4-fold), peroxiredoxin 6 (2.1-fold), glutathione

reductase (1.5-fold) and metallothione 2 (3.5-fold) compared with

STAT3 +/+ cells (Table 3). Conversely glutathione synthetase,

glutathione peroxidase 7, NADPH quinine oxidoreductase, and

glutathione-S-transferase A3 mRNA were elevated (1.3-fold, 2.8-

fold, 7.5-fold and 4.9-fold, respectively). mRNA for superoxide

dismutases (SOD) 1 and 2 were not significantly different in

STAT3-CKO cells. mRNA for SOD3 was 2-fold lower in

Figure 4. Astrocyte cell proliferation analyzed by BrdU
incorporation and propidium iodide fluorescence. Merged
images of double labeling immunofluorescence for S100b and BrdU
(A,B) and graph (C) of cell counts show that significantly fewer S100b
expressing astrocytes are dividing and labeled with BrdU in STAT3-CKO
(B) compared with littermate control (A) cultures (n = 3 per group,
* p,0.01 t-test). (D) Cells were cultured to passage 2 over a period of 3
weeks and plated into 96-well plates at a density of 56103/well. 0.5 mM
N-actetylcysteine (NAC) was added 1, 3, and 5 days after plating. Cell
number and GSH assays were performed as described in Materials and
Methods. * p,0.01 compared with STAT3 +/+ control using one-way
ANOVA with Tukey’s post-hoc test.
doi:10.1371/journal.pone.0009532.g004

Figure 5. Effect of AG490 on cortical astrocyte cell function and
STAT-3 phosphorylation. Cells from wild-type black C6 mice were
pretreated for 2 hr with 25 mM AG490 followed by 1 hr exposure to
10 ng/ml interleukin 6 (IL-6) or 100 mm H2O2. (A) AG490 (AG)
suppressed both basal and IL-6-stimulated STAT-3 phosphorylation.
25 mg of total protein was applied to each lane. (B) Prolonged AG490
exposure suppressed cell proliferation and reduced cell number after 1
day in vitro. Cell number was assessed by relative fluorescence of
propidium iodide in the presence of 160 mM digitonin (C, D)
Measurement of mitochondrial membrane potential using JC-1 and
reduced GSH using MCB. Values represent means of 4 determinations 6
SEM. These studies were repeated twice with similar results.
* p,0.05 comparing AG490-treated with untreated cells. ^ p,0.05
comparing H2O2- treated with corresponding control cells by 2-way
ANOVA with Bonferroni post-hoc test.
doi:10.1371/journal.pone.0009532.g005
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STAT3-CKO cells although statistical significance was not quite

attained n = 4 (p,0.11). Catalase levels were low and comparable

in the two cell types. In addition several apoptosis-related genes

were affected. Bcl-2 was reduced 2-fold while caspases 6 and 8

were elevated (50% and 30%, respectively) (Table 4).

Discussion

Previous studies with transgenic mice expressing a conditional

deletion of the STAT-3 gene in astroglial cells demonstrated the

role of STAT-3 in regulating astrogliosis [1]. While astrogliogen-

esis resulted in normal astrocyte numbers and morphology in these

mice, cellular response to injury was significantly altered. In

addition to GFAP synthesis, nestin and vimentin were under-

expressed and cells demonstrated impaired ability to regulate

inflammation. These findings raised the possibility that intrinsic

properties of STAT3-CKO astrocytes diminished their capacity to

withstand stress and their ability to protect neurons. In this study

we sought to determine the effects of STAT3 deletion on astroglial

mitochondrial functions and on oxidative stress response and

defense.

One established function of astrocytes is to limit the oxidative

stress of ROS generation resulting from the high rate of neuronal

oxygen consumption. Astroglial protection from oxidative stress

has been documented with excitotoxicity [32–34], neuropatho-

logical disorders (eg., Alzheimer’s, Parkinson’s, ALS) [35–37],

autoimmune diseases (eg., multiple sclerosis) [38,39], and heavy

metal [40,41] or chemical [42,43] neurotoxicity. A common tool

used for detection of ROS is the cell-permanent fluorescent probe

DCF-DA which becomes oxidized and fluorogenic in the presence

of H2O2, OHN, peroxinitrite and other oxidants [44]. Using this

method ROS was 23% higher in STAT3-CKO cells compared

with STAT3 +/+ cells. This pattern was not observed in the

absence of glucose and was strongly enhanced in the presence of

25 mM rotenone, suggesting differential sensitivity of complex I of

the electron transport chain in the two cell types. However, DCF-

DA fails to detect the superoxide anion. Using the probe, HE,

which specifically detects superoxide anion [45], we observed 66%

higher basal levels of superoxide production in STAT3-CKO cells.

Rotenone increased superoxide production two-fold but attenuat-

ed the relative difference between STAT3 +/+ and STAT3-CKO

cells to 25%, further suggesting that STAT3 may ultimately

impact complex I of the mitochondrial electron transport chain.

This STAT3-dependent difference in superoxide generation was

also diminished with the uncoupling agent, FCCP, suggesting a

dependence on the mitochondrial membrane potential gradient.

One possible explanation for the elevation and O2
2 would be

lower levels of superoxide dismutase in STAT3-CKO cells.

STAT3 has been shown to up-regulate expression of MnSOD

(SODII) in hepatocytes [46], cardiomyocytes [47], and hippo-

campal neurons [48]. In support of this hypothesis, gene

expression array studies suggested that there may be small

decreases in mRNA for SOD enzymes in the STAT3-CKO cells.

Elevated levels of NADPH quinone dehydrogenase (7.6-fold),

GSH peroxidase 7 (2.5-fold) and GSH synthetase (30%) in

STAT3-CKO cells are indicative of ARE promoter activation and

chronic oxidative stress. However, several other genes normally

associated with the ARE pathway such as hemoxygenase I and

peroxiredoxin 6 were not elevated. Decreased expression of

peroxiredoxins, metallothionein 2, and GSH reductase may be

contributing factors to lower levels of reduced GSH and increased

oxidative stress.

Numerous indicators of mitochondrial function were diminished

in STAT3-CKO cells. Apparent mitochondrial mass, as revealed by

MitoTracker Green, was lower by ,15%. Mitochondrial membrane

potential and cellular ATP levels were also lower. These abnormal-

ities suggested to us that mitochondria may play a contributing role

to the elevation in ROS in STAT3-CKO cells. Evidence for this

effect was provided by studies using MitoSOX Red. When

normalized to mitochondrial mass, mitochondrial-specific ROS

Table 1. Gene expression differences: cytoskeletal and cell cycle proteins.

Abrev Access. NM Protein CKO (+/+) CKO Effect Fold Change p value

GFAP 010277.1 Glial Fibrillary Acidic Protein 8.7a 11.0 22.3 24.9 0.0004

Nes 016701.2 Nestin 10.5 12.4 21.9 23.7 0.0011

CCND 007631.1 Cyclin D1 11.4 12.4 21.0 22.1 0.0023

Skp1A 001543.2 S-phase kinase-associated protein 1 11.3 11.8 20.5 21.4 0.0001

CDKN 009877.1 Cyclin dependant kinase inhibitor 2A 13.1 12.3 0.83 + 1.8 0.028

alog2-transformed absolute RNA expression level.
doi:10.1371/journal.pone.0009532.t001

Table 2. Gene expression differences: mitochondrial proteins.

Abrev Access. NM Protein (CKO) (+/+) CKO Effect Fold Change p value

MAPK10 009158 Mitogen-activated Protein Kinase 10 7.3a 8.3 21.09 22.1 ,0.00001

BACE2 019517.2 Beta-site API-cleaving enzyme 2 7.5 8.3 20.8 21.7 0.0009

PRDX5 012021.1 Peroxiredoxin 5 14.2 14.8 20.61 21.5 0.0002

PARK7 020569.1 Parkinson Disease 7 13.8 14.3 20.49 21.4 0.0033

NDUFS4 010887.1 NADH Dehydrogenase 13.5 13.9 20.48 21.4 0.0002

GPX7 024198.1 GPX 7 11.9 10.4 21.5 +2.8 0.0026

alog2-transformed absolute RNA expression level.
doi:10.1371/journal.pone.0009532.t002
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was 38% higher in STAT3-CKO cells. Antimycin A potentiated the

difference between STAT3 +/+ and STAT3-CKO cells and

produced an ,6-fold greater stimulation of mitochondrial ROS

than did rotenone.

Gene expression array studies also identified decreased

expression of NDUFS4, a subunit of NADH dehydrogenase of

complex I of the mitochondrial electron transport chain. Since

complex I is a source of ROS generation, abnormal function of

this site could account for both increased production of superoxide

anion and diminished ATP production [49,50]. Further evidence

for a role of astrocyte STAT3 in mitochondrial function is

provided by studies of cell energetics. Using JC-1, mitochondrial

membrane potential was found to be 25% lower in STAT3-CKO

cells compared with STAT3 +/+ cells. This mitochondrial effect

was accompanied by a 10% decrease in cellular ATP. The

dissimilarity in membrane potential values was eliminated by

rotenone exposure, as this agent did not change mitochondrial

membrane potential in STAT3-CKO cells while lowering it by

,25% in STAT3 +/+ cells. Antimycin A, however, caused a 70%

reduction in mitochondrial membrane potential in STAT3-CKO

cells and had a more potent effect on ATP level and mitochondrial

ROS generation relative to rotenone. These findings again

suggested that the STAT3 effect

on mitochondria was dependent on mitochondrial complex I

function. Recent studies have identified a direct interaction

between STAT3 and mitochondria in cells from heart and liver

[51,52]. This interaction appeared to be dependent on serine

phosphorylation of STAT3 and independent of transcriptional

activity of the STAT3 protein. Mitochondrial respiration was

reduced via inhibition of activities of complexes I and II of the

electron transport chain. Our present observations of increased

superoxide generation and decreased mitochondrial function

modified by rotenone in STAT3-CKO cells support this novel

mechanism of STAT3 action in cortical astrocytes.

Table 3. Gene expression differences: oxidative stress and defense proteins.

Abrev Access. NM Protein (CKO) (+/+) CKO Effect Fold Change p value

Mt 2 008630.1 Metallothioneine 2 10.1a 11.9 21.8 23.5 0.0001

IDH2 173011.1 Isocitrate Dehydrogenase a (NADP+) 10.1 11.3 21.2 22.3 0.0001

OPLAH 153122.1 5-oxoprolinase (ATP Hydrolyzing) 8.6 9.8 21.2 22.3 0.003

PRDX6 007453.2 Peroxiredoxin 6 10.7 11.8 21.1 22.1 0.0077

SOD3 011435.2 Superoxide Dismutase 3 8.5 9.5 21.0 22.0 0.111

GPX4 008162 Glutathione Peroxidase 4 14.7 15.3 20.6 21.5 0.0003

GSR 010344.3 Glutathione Reductase 8.4 9.0 20.6 21.5 0.0011

PRDX5 012021.1 Peroxiredoxin 5 14.3 14.8 20.5 21.4 0.0002

NFE2L1 008686.2 Nuclear Factor -like 1 13.7 13.9 20.2 21.1 0.001

SOD2 013671.2 Superoxide Dismutase 2 12.0 12.1 20.1 21.1 0.208

SOD1 011434.1 Superoxide Dismutase 1 13.7 13.7 20.0 1.0 0.533

GSS 008180.1 GSH Synthetase 10.1 9.7 +0.4 +1.3 0.085

GGTLA1 001820.2 c-Glutamyltransferase-like Activity 1 7.9 7.2 +0.7 +1.6 0.0003

GPX 7 024198.1 GSH Peroxidase 7 11.9 10.4 +1.5 +2.8 0.0026

ANPEP 008486,1 Alanyl (Membrane) Aminopeptidase 9.8 8.3 +1.5 +2.8 0.0046

GSTA3 010356.2 Gl Glutathione S-transferase A3 11.4 9.1 +2.3 +4.9 ,0.00001

Ptges 022415.2 Prostaglandin E Synthetase 10.2 7.6 +2.6 +6.1 ,0.00001

NQO1 008706.1 NAD(P)H Dehydrogenase Quinone 1 12.1 9.2 +2.9 +7.5 ,0.00001

Ptgis 008968.2 Prostagland I (prostacyclin) Synthetase 13.8 8.7 +5.1 +34.3 ,0.00001

alog2-transformed absolute RNA expression level.
doi:10.1371/journal.pone.0009532.t003

Table 4. Gene expression differences: apoptosis.

Abrev Access. NM Protein (CKO) (+/+) CKO Effect Fold Change p value

BCL2 009741.2 B-cell CLL/Lymphoma 2 9.6a 10.3 20.7 21.6 ,0.00001

TXNDC1 028338.1 Thioredoxin Domain Containing 1 9.4 9.8 20.4 21.3 0.0004

TNFRSf6 007987.1 Fas (TNF Receptor Superfamily, 6) 10.0 11.1 21.1 22.1 ,0.00001

CASP8 009812.2 Caspase 8 11.0 10.5 0.5 +1.4 0.0361

CASP6 009811.2 Caspase 6 11.6 11.0 0.6 +1.5 0.0011

DAPK1 029653.1 Death-Associated Protein Kinase 1 9.1 8.4 0.7 +1.6 0.0001

TNFRSf22 023680.2 Fas (TNF Receptor Superfamily, 22) 12.1 10.6 1.5 +2.8 ,0.00001

alog2-transformed absolute RNA expression level.
doi:10.1371/journal.pone.0009532.t004
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Results from studies using the Jak-2 kinase inhibitor, AG490,

with enriched cortical astrocyte cell cultures confirmed the notion

that prevention of STAT3 activation alters cellular function and

compromises cell defense capabilities. Two-hr exposure to 25 mM

AG490 suppressed basal and Il-6-induced STAT3 phosphoryla-

tion and lowered astrocyte GSH levels, mitochondrial membrane

potential and rate of cell proliferation. The magnitudes of these

effects were similar to those observed when comparing astrocytes

from STAT3-CKO and control STAT3 +/+ mice. Unlike the

STAT3-CKO model, wherein STAT3 activation was absent

selectively in the astrocyte lineage throughout pre- and postnatal

development, AG490-treated cells were acutely deprived of

activated STAT3 for only two hr after many days of normal

activity. Our results suggest that the duration of STAT3 inhibition

in normal, unstressed cells was of little consequence for the effects

on mitochondrial and cellular defense properties examined in this

study.

The present studies identify several abnormalities in astrocytes

lacking the STAT3 gene. Mitochondria displayed lower mass and

were less efficient in maintaining their membrane potential and

producing ATP. Elevated rates of superoxide generation in

STAT3-CKO cells and loss of GSH are indicative of oxidative

stress. Finally, lower rates of DNA synthesis and cell proliferation

were observed. The decreased cell proliferation was not corrected

by antioxidants and likely resulted from altered expression of cell

cycle control and apoptosis regulatory genes. These defects would

likely compromise the ability of astrocytes to promote gliosis and to

protect neurons [53].
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