UCLA

Presentations

Title

Big Data, Little Data, or No Data? Systematic Reviews in an Age of Open Data

Permalink

https://escholarship.org/uc/item/9wh1n7jn

Authors

Borgman, Christine L. Pasquetto, Irene V.

Publication Date

2018-09-15

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License, available at https://creativecommons.org/licenses/by-nc-nd/4.0/

Big Data, Little Data, or No Data? Systematic Reviews in an Age of Open Data

Christine L. Borgman, PhD

Distinguished Research Professor Center for Knowledge Infrastructures University of California, Los Angeles <u>http://christineborgman.info</u> <u>https://knowledgeinfrastructures.gseis.ucla.edu</u> @scitechprof

Irene V. Pasquetto, PhD UCLA Center for Knowledge Infrastructures

Keynote Presentation, Menti 353774 Cochrane Colloquium Edinburgh, 15 September 2018

Trusted evidence. Informed decisions. Better health.

Christine Borgman

Bernie Boscoe

Milena Golshan

Irene Pasquetto

Michael Scroggins

Cheryl Thompson

n Morgan Wofford

Data sharing policies

Menti 353774

- Research Councils of the UK
- European Union
- U.S. Federal research policy
- Australian Research Council

National Institutes of Health

Turning Discovery Into Health

• Individual countries, funding agencies, journals, universities

Supported by wellcometrust

Australian Government
National Health and Medical Research Council

Policy RECommendations for Open Access to Research Data in Europe

The number of systematic reviews and meta-analyses published each year has proliferated since 1986.

A systematic review analyses and compiles all papers, and sometimes unpublished work, on a topic. A meta-analysis is a systematic review that combines data from multiple papers.

onature

Original Investigation

The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses

JOHN P.A. IOANNIDIS 🔀

First published: 13 September 2016 | https://doi.org/10.1111/1468-0009.12210 | Cited by: 80

Publications

1.2.2.5

<u>0011000101100110</u> 01110000 10101001100 Data

Data creation and reuse: The Ideal

Planning

Re-use

- Identify grants & funding
- Collect & manage preliminary assets
- Describe & organize assets

Implementation

Collect Assets
 Organize Assets
 Analyze Assets

Research Life Cycle

Preservation

Migrate to sustainable formats
 Store reliably

Discovery & Impact

- Understand metrics
- Use social media

Publishing

- Identify open access publications
- Deposit work
- Share & cite work

Publications <-> Data: Role

Publications are arguments made by authors, and data are the evidence used to support the arguments.

C.L. Borgman (2015). *Big Data, Little Data, No Data: Scholarship in the Networked World*. MIT Press

Publications <-> Data: Mapping

- Article 1
- Article 2
- Article 3
- Article 4

• Article n

- Dataset time 1
- Dataset time 2
- Observation time 1
- Visualization time 3
- Community collection 1
- Repository 1

Data are representations of observations, objects, or other entities used as evidence of phenomena for the purposes of research or scholarship.

C.L. Borgman (2015). *Big Data, Little Data, No Data: Scholarship in the Networked World*. MIT Press

Center for Embedded Networked Sensing

Science <-> Data

Engineering researcher:

"Temperature is temperature."

CENS Robotics team

Science <-> Data

Engineering researcher: *"Temperature is temperature."*

CENS Robotics team

Biologist: "There are hundreds of ways to measure temperature.

'The temperature is 98' is low-value compared to, 'the temperature of the surface, measured by the infrared thermopile, model number XYZ, is 98.' That means it is measuring a proxy for a *temperature, rather than being in contact* with a probe, and it is measuring from a distance. The accuracy is plus or minus .05 of a degree. I [also] want to know that it was taken outside versus inside a controlled environment, how long it had been in place, and the last time it was calibrated, which might tell me whether it has drifted.."

Background Reuse in Biomedicine: Comparison, control, verification

UCSC Genome Browser – Search example (CAPZB gene)

UCSC Genome Browser - Zoom IN

Foreground Reuse: Hypothesis Testing and Statistical Analysis

"RAW" DATA

Pipeline

RESULTS

15

	BACKGROUND Reuse of Data	FOREGROUND Reuse of Data
Goal of reuse	"Ground truthing:" calibrate, compare, confirm	Analysis: identify patterns, correlations, causal relationships
Example of reuse	Instrument calibration, sequence annotation, review summary-level data	Meta-analyses, novel statistical analyses
Frequency of reuse	Frequent, routine practice	Rare, emergent practice

	BACKGROUND Reuse of Data	FOREGROUND Reuse of Data
Goal of reuse	"Ground truthing:"	Analyses: identify
	calibrate, compar	patterns, cristerns,
	confirm	causal r RA
Example of reuse	Instrume DE ATA,	Met ABUITH RS
	sequere sequeres on,	OLL'SE VEALS.
	r NV cf nary-level	RECOCH
	da	I DAI
Frequency of reuse	Freq int - routine	Rare - emergent
	practice	practice

Data Stewardship: The Ideal

Wilkinson, et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. *Scientific Data*, *3*, http://dx.doi.org/10.1038/sdata.2016.18

18

Data Stewardship: The Reality

http://www.information-age.com/cloudcomputing-pharmaceutical-industry-123462676/

http://www.datamartist.com/data-migration-part-1-introduction-to-the-data-migration-delema

Post-doctoral fellows ¹⁹

Implications for Cochrane

- What are the opportunities in open data reviews?
 - Background reuse for broader surveys
 - Foreground reuse for new knowledge production
- What are the threats in data integration?
 - Interpretation, provenance, data cleaning, statistical error, ...
 - Investment in skills and resources
 - Data stewardship commitments
- How can Cochrane collaborate with data creators to improve systematic reviews and metanalyses?

Acknowledgements

UCLA Center for Knowledge Infrastructures

Christine Borgman

Bernie Boscoe

Peter Darch

Milena Golshan

Irene Pasquetto

Michael Scroggins

Cheryl Thompson

Morgan Wofford