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Value-guided choice sets support efficient planning
Jonathan Phillips (phillips01@g.harvard.edu), Adam Morris (adammorris@g.harvard.edu)

& Fiery Cushman (cushman@fas.harvard.edu)
Department of Psychology, Harvard University, 33 Kirkland St. Cambridge, MA, 02138

Abstract

Real-word decision making often involves selecting a single
choice from an arbitrarily large set of possible options. Given
that it is typically not feasible to evaluate every possible op-
tion in real world decision making, how are human decision
makers able to efficiently make good decisions? We propose
and evaluate a two-step architecture according to which people
first sample a small subset of options weighted by their previ-
ously learned value, and then evaluate those options within the
current decision-making context. We demonstrate that a ver-
sion of this model captures human decision making in prob-
lems where time and resource constraints prevent the evalua-
tion of every option, and connect this research to the growing
literature on the representation of non-actual possibilities.

Keywords: value-guided decision making; choice sets; modal
cognition; possibility

Introduction
It is a striking feature of ordinary life that we have far too
much to think about. Imagine a psychology student, Sally,
deciding where to eat lunch. She has certain preferences (e.g.
she likes Mexican food, dislikes walking long distances) and
constraints (e.g. she’s deathly allergic to walnuts) that she
should factor into her decision. Ideally, she would carefully
evaluate all her options, and choose the one with highest ex-
pected value. For example, she might appraise each option
based on how close it is to her office, how Mexican its cuisine
is, the likelihood that it uses walnuts, etc., and then choose
the option with the highest aggregated value. This process—
computing the expected values of options at decision time by
planning over a causal model of the environment—has been
intensively studied, and we have some idea how it could be
accomplished for a small set of options (Dolan & Dayan,
2013; Doll, Simon, & Daw, 2012).

But in any real-world decision, there are an overwhelm-
ing number of potential options (Cushman & Morris, 2015;
Phillips & Knobe, 2018). Our own workplace is within a
moderate walk of hundreds of restaurants, and thousands are
within a short taxi ride. And the problem is even worse than
this, because Sally has more options than just restaurants: She
could also grow the crops herself, or catch a wild animal to
eat, or steal food from the communal refrigerator, etc. She
couldnt possibly plan over all her options—she would die of
starvation before she finished.

Yet people like Sally are able to make these decisions with
speed and ease. How? Intuitively, people don’t consider all
possible options. Rather, they construct a small subset of op-
tions to evaluate, and ignore all the rest (Newell, Shaw, & Si-
mon, 1958). For instance, Sally might only consider Chipotle
and Taco Bell, and choose one of those. The process by which
people narrow down the enormous set of potential options to a

small set of relevant choices is known as choice set construc-
tion (Ben-Akiva & Boccara, 1995). (Colloquially, options in
the choice set just seem to “come to mind”.)

The aim of this paper is to characterize how choice sets are
constructed. Not all options are equally likely to make it into
someones choice set; people clearly favor some options (e.g.
Chipotle) over others (e.g. catching a wild animal). What
determines which options come to mind? We focus on one
potentially important factor: how good an option has been in
the past (i.e. the option’s past value). Options that have been
good in the past tend to be good in the future. Moreover, prior
research has demonstrated that people spontaneously com-
pute and maintain a representation of how good an option has
been, on average, in the past (Dolan & Dayan, 2013); the
past values of options are pre-computed, or “cached”, before
decision time. (In the reinforcement learning framework, this
process is often called “model-free learning” (Sutton & Barto,
1998).) Hence, the mechanism that constructs choice sets
might be designed to propose options with high past values—
narrowing down options to consider without incurring a high
computational cost.

We explore this idea in three ways. First, we construct
a computational model of value-guided choice set construc-
tion, and simulate its performance (and the performance of
two alternative models) in various environments. When op-
tions that have been good in the past tend to be good in the
future, the choice set model achieves good accuracy at low
computational cost.

Second, we present an experimental paradigm designed to
elucidate the role of value-guided choice set construction in
decision-making. We fit the model to people’s choices in
the experiment, and find that the best-fitting model constructs
choice sets guided by the prior value of options. These re-
sults suggest that people spontaneously construct choice sets
when faced with difficult decisions, and are often more likely
to include options with high prior values in those choice sets.

Third, we connect our model to recent work on modal
cognition—that is, the representation of hypothetical and
counterfactual possibilities. Previous work has argued that
for many real world problems (e.g., how to get to the airport
when your car breaks down), people’s default or implicit rep-
resentations of which actions are “possible” is constrained by
the value of possibilities (Phillips & Cushman, 2017; Phillips
& Knobe, 2018). Following this finding, we ask whether the
learned value of the options in an experimental context influ-
ences whether or not participants represent those options as
possible choices. Mirroring the previous work, we find that
implicit, but not explicit representations of possibility tend to
exclude options with a low value.

792



Figure 1: A schematic depiction of the choice set construction
model.

Computational model
A schematic of the choice set model is depicted in Figure
1. There is a large pool of N potential options, each marked
with a pre-computed past value. We assume that agents have
learned these values from past experience, and do not explic-
itly model the learning process. The agent samples a small
number of K options, without replacement, from this pool.

The sampling process is non-uniform, and is more likely to
sample options with high past values. Let Qp

i be the cached
the past value of option i. Then the probability of sampling
an option i is:

Prob(option i in choice set) =
eβ1Qp

i

∑ j=1:N eβ1Qp
j

where β1 is an inverse temperature parameter controlling
the degree to which sampling is biased towards options with
high past values. (This formula employs a softmax function
over the past values; we will use this terminology throughout
the paper.)1

Once the choice set is sampled, the agent uses a laborious
planning process to compute the current value Qc

i of each op-
tion in the choice set, and chooses probabilistically among
them with a softmax function over current value:

Prob(choosing option i f rom choice set) =
eβ2Qc

i

∑ j=1:N eβ2Qc
j

We do not explicitly model the planning process. Instead,
we treat it as a black box that the agent can use to compute
the current values of options at high computational cost.

1Non-uniform sampling without replacement is tricky, because
maintaining stable sampling probabilities as the pool shrinks seems
to require a costly renormalization after every sample. Fortunately,
there is a simple, highly parallelizable algorithm that can sample
without replacement in one pass over the options, without having to
constantly renormalize. The agent simulates an exponentially dis-
tributed random number (with rate parameter 1) for each option, di-
vides it by the options probability, and chooses the K options with
the lowest resulting numbers. This algorithm achieves the desired
weighted sample. See (Efraimidis & Spirakis, 2006) for proof and
elaboration.

Figure 2: A schematic depiction of two alternative models.
The no planning model is extremely computationally cheap;
the optimal planning model is extremely expensive; and our
choice set model falls somewhere in between.

Alternative models We compare the choice set model to
two alternatives, which anchor the two ends of a spectrum
of computational complexity (Figure 2). The “no planning”
model does not perform any forward planning or evaluation
of options in the current context, and simply samples an op-
tion with probability proportional to its past value. Because
past values are cached before decision time, this process is
computationally cheap, but can be highly inaccurate if cir-
cumstances change.

In contrast, the “optimal planning” model plans over all
options in the current context, and chooses the best. By plan-
ning over a causal model of the environment, this approach
achieves high accuracy, but at a high computational cost.

The choice set model falls somewhere between these two
extremes; it evaluates some options via planning, but much
less than the optimal planning model. We show that, for a
plausible range of environments, the choice set model pro-
vides major gains in accuracy over the no planning model, at
a fraction of the cost of optimal planning.

Simulation setup To show this, for each of the three mod-
els, we simulated 10,000 agents using that model to make
decisions in five different environments. Each agent made
a single decision in each environment, which consisted of
choosing among N = 1000 options based on their past and/or
present value. The past and current value of each option
were simulated anew for each agent-environment pair. The no
planning model sampled according to the options past values;
the optimal planning model deterministically chose the option
with the highest current value; and the choice set model used
the past values to construct a choice set of size K = 10, from
which it chose an option with probability proportional to the
current values. Again, we assumed that actual agents would
acquire these values through prior learning episodes (for the
past values) or online planning (for the current values), but
we did not explicitly model the learning/planning processes.

The five environments differed solely in the simulated cor-
relation between past and current values. The values were
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Figure 3: Simulated earnings of the three models across five
environments.

drawn from lognormal distributions with correlation either 0,
.25, .5, .75, or 1. (The lognormal distribution embodied the
assumption that most of the options available to us are bad,
while only a few are good.)

Simulation results The simulation results are shown in
Figure 3. As expected, the optimal planning model achieves
the highest accuracy across all environments (but at an ex-
treme computational cost). Moreover, when the correlation
between past and current values is low—i.e. when the past
value of options is not indicative of their current value—then
both the no planning and choice set models perform poorly.

Crucially, however, for a broad range of intermediate cor-
relations between past and current value, choice set models
are adaptive. When past values are highly but not perfectly
predictive (e.g. r = .75), the choice set model performs al-
most twice as well as the no planning model, with accuracy
approaching the optimal planning model, at a low compu-
tational cost. This result suggests that, as long as decision
environments do not change too quickly, constructing value-
guided choice sets is an efficient way to make effective deci-
sions.

Behavioral Experiment

Next, we tested whether people construct value-guided choice
sets when faced with difficult decisions. To test this, we em-
ployed an experiment with two stages. The idea was to ex-
pose people to a large set of different-value options in Stage
1, and then ask them to make decisions using those options
in Stage 2. The resulting decision patterns could be tested for
signatures of value-based choice set construction.

All parts of this experiment were pre-registered; the pre-
registration can be found at https://aspredicted.org/
blind.php?x=33tr23. (Note that, in the pre-registration
document, the experiment stages are labeled differently.)

Figure 4: Design of the experiment.

Design In Stage 1 of the experiment, participants were ex-
posed to a set of fourteen common English nouns (e.g. “bas-
ket”, “community”, “machine”). Each word was associated
with some amount of bonus points. For instance, “basket”
might have been worth 10 points, and “community” might
have been worth 0. Half of the words were randomly chosen
to have a low point value (either 0, 1, or 2 points), and half
to have a high point value (either 8, 9, or 10 points). (Points
were translated into bonus money at the end of the experi-
ment.)

In order to learn these word-value associations, in Stage 1
participants played a game where they repeatedly chose be-
tween a word and a fixed number of points (Fig. 4). For
instance, on one trial, a person might have had to choose be-
tween basket and 5 points. If they chose the word, they earned
however many points its worth. If they chose the fixed num-
ber of points, they received that many points. Thus, partici-
pants were incentivized to learn the word-value associations
and use that knowledge to win more bonus points throughout
the game.

Participants completed 8 trials per word, for a total of 112
trials. Importantly, no matter what they chose, we showed the
words point value on each trial. This procedure guaranteed
that people were exposed to each word an identical number
of times. To further ensure that people learned the word-value
associations, we asked participants to retype the word and its
value after each trial.

Then, in Stage 2, participants faced a series of decisions
such as: “Give us a word from Stage 1 with the most number
of vertical lines in its letters. You’ll win 10 points for each
vertical line in the letter of your word.” In these questions,
the potential options were the words from Stage 1, and each
options current value (e.g. the number of vertical lines in the
word) was difficult to evaluate. There were 8 decisions in to-
tal. For each decision, participants were given an example
and a comprehension check. All decisions had a time limit,
which was calibrated a priori to the difficulty of each deci-
sion (e.g. the vertical lines decision had a time limit of thirty
seconds.)

Each options current value in the Stage 2 decisions (e.g. the
number vertical lines in the word) were uncorrelated with its
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past value in Stage 1. Participants were explicitly instructed
of this fact. Nonetheless, we hypothesized that, to make these
decisions, people would construct a small set of words to
evaluate, and that words with high Stage 1 point values would
be more likely to enter this choice set.

So far we have omitted two important details about the de-
sign. First, at the end of Stage 1, participants made a series of
possibility judgments about the words from Stage 1. Second,
at the end of Stage 2, participants took a free recall test, re-
calling as many of the Stage 1 words as they could. We will
return to both of these key details below.

Choice results 300 participants took the experiment. We
excluded participants for whom any of the following was true:
They didn’t complete the study, they successfully rewrote less
than 75% of the words or values during Stage 1 training,
they showed a Pearson correlation between Stage 1 value and
Stage 1 choices of less than .75, they failed to give a Stage
1 word for more than 2 of the 8 Stage 2 trials, they repeated
an answer in Stage 2 more than twice (people were not al-
lowed to repeat words on consecutive trials), they passed less
than 50% of the Stage 2 comprehension checks, they recalled
less than 5 words in the free recall question, or they wrote
things down physically during the experiment (as measured
by a probe at the end). We also excluded any Stage 2 trials
in which the participant did not give a response that matched
a Stage 1 word. After exclusion, 205 participants remained.
All participants give informed consent, and the study was ap-
proved by Harvards Committee on the Use of Human Sub-
jects.

We tested for the presence of value-guided choice sets
in two ways. First, if people are constructing value-guided
choice sets, then their word choices in Stage 2 should show
an influence of both past value (i.e. the point values in Stage
1) and current value (i.e. the values of the words in the current
decision).

To test for an influence of current value, for each Stage
2 decision, we ranked all the words according to their cur-
rent values (from 1, the worst word, to 14, the best word).
Then, we computed the average rank of each participants
Stage 2 choices (Fig. 5). Peoples choices were ranked sig-
nificantly above chance, demonstrating that they were influ-
enced by the current values of the words (one-sample t-test,
t(204) = 51, p < .001).

To test for an influence of past value, we employed a sim-
ilar procedure. We computed the percentage of each partic-
ipants word choices which had high point values in Stage 1
(Figure 6). People chose words with high Stage 1 values sig-
nificantly more than chance, suggesting that they were also
influenced by the past values of the word (one-sample t-test,
t(204) = 2.5, p = .01).

Of course, the fact that people are influenced by both the
past and current values of the words does not prove that they
are constructing value-guided choice sets. There are other
ways that the past and current word values could combine to

Figure 5: Average rank of each participant’s word choices in
Stage 2, according to the current values of the words. Peo-
ple chose words with high current values significantly above
chance, suggesting that their choices were influenced by cur-
rent value.

Figure 6: Percentage of each participant’s Stage 2 word
choices which were high-value in Stage 1. People chose
words with high past values significantly above chance, sug-
gesting that their choices were influenced by past value as
well.

influence choice. People could be alternating between the two
approaches, computing the current values in some trials and
relying on past values in others; or, people could be basing
their choices on a linear mixture of past and current values.

To rule out these alternatives, we fit our choice set model
and non-choice-set alternatives to peoples choices, and per-
formed formal model comparison. For each type of model
(choice set, no choice set), we fit several variants, shown
in Table 1. We computed the maximum a posteriori esti-
mates for all parameters, using a Gamma prior for the inverse
temperatures and a uniform prior for the mixture weights
and choice set size. The possible choice set sizes were re-
stricted to 2,3,4. We then performed Bayesian model se-
lection, approximating the model evidences with the Laplace
method and treating model as a random effect across subjects
(Stephan, Penny, Daunizeau, Moran, & Friston, 2009).2

2To demonstrate that this model comparison was a valid tech-
nique, we first simulated choices in this task from all the models.
As predicted, the models involving value-guided choice sets were
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Figure 7: Distribution of weights of the influence of Stage 1
value on choice set sampling, across subjects.

The overwhelmingly preferred model, with a protected ex-
ceedance probability of over .999, was the choice set model
which used both Stage 1 (past) and Stage 2 (current) value to
construct choice sets. This result suggests two things. First,
as hypothesized, people were using past value—the point val-
ues from Stage 1—to guide their choice set construction.

Second, before going through the laborious computation
of current values (e.g. counting the number of vertical lines),
people likely had access to some cue that correlated with the
current value of the word (e.g. the words length). By using
this cue as an additional influence on choice set construction,
peoples choice sets also appeared to be influenced by Stage 2
value.3

According to the preferred model, when sampling a choice
set, people employed a weighted mixture of Stage 1 and Stage
2 values:

Prob(option i in choice set) =

eβ1(w∗QStage−1
i +(1−w)∗QStage−2

i )

∑ j=1:N eβ1(w∗QStage−1
i +(1−w)∗QStage−2

i )

where w captures the influence of Stage 1 value. As a final
test, we extracted each participants best-fit w and examined
the distribution (Figure 7). About half of participants showed
little influence of Stage 1 value (w < 0.1), but the other half
showed a range of influence. The mean w was 0.17, indicat-
ing that, on average, Stage 1 value contributed 17% of the
weighting on which words entered people’s choice sets.

Ruling out a memory encoding effect One worry about
our design is that people might be failing to choose low-
value words not because they’re excluding the words from

only preferred when the simulated choices were produced by value-
guided choice sets.

3The existence of these cues does not stop a person from plan-
ning once the choice set is constructed. The cues would be very
rough estimates of current value, and further evaluation of the op-
tions in the choice set would still be beneficial.

Figure 8: Mean percentage of words judged to be impossi-
ble to select in Stage 1 as a function of whether the words
had been randomly assigned a low value (left), a high value
(middle) or were absent entirely (right). Red bars indicate re-
sponses made after a time delay; blue bars indicate responses
made under time pressure. Errors bars depict +/−1SEM.

their choice sets, but because they simply couldn’t remem-
ber them; they never encoded the low-value words in the first
place.

To rule this out, at the end of Stage 2, we asked partici-
pants to recall as many of the Stage 1 words as they could.
(Participants were able, on average, to remember most of the
words; the average number recalled was 10.7). Then, when
fitting the computational models to each person’s choices, we
restricted the models to only consider words which that per-
son could recall. Thus, when the preferred model estimated
the influence of Stage 1 value on choice set construction, it
was only calculating that influence among words which the
participant was able, in principle, to recall. This rules out that
our effect is due solely to memory encoding.

Including the free recall test allowed us to run an addi-
tional, exploratory test of our hypothesis. The free recall test
itself can be thought of as a decision, where some options (i.e.
words) will come more easily to mind than others. The words
that come more easily to mind will, on average, be recalled
earlier in the free recall test.

Consistent with our hypothesis, words that were high-value
in Stage 1 were consistently recalled earlier. We estimated
a linear mixed effects model, regressing, for each partici-
pant, the order in which each word was recalled on the Stage
1 value of the word (with maximal random intercepts and
slopes for subject and word). Words that were high-value
in Stage 1 were recalled earlier (β = 0.7, t(28.6) = 3.6, p =
.001).

Possibility judgments As described above, participants
were asked to make judgments of whether it each word was a
“possible” option in Stage 1. Prior work on high-level modal
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cognition demonstrates that under time pressure (but not time
delay), participants show a tendency to regard ‘low-value’ op-
tions (e.g., immoral or irrational actions) as strictly ‘impossi-
ble’ (Phillips & Cushman, 2017; Phillips & Knobe, 2018).
In order to extend this finding to the present context, some
participants made possibility judgments under time pressure
and others under time delay; we hypothesized that the for-
mer group would show a stronger effect of option value on
possibility judgment.

We therefore analyzed participants’ possibility judgments
using a mixed 2×2 ANOVA with word type (Low Stage 1
value vs. High Stage 1 value) as a within-subjects factor and
time condition (Time delay vs. Time pressure) as a between-
subjects factor. This analysis revealed a main effect of time
condition, F(200) = 30, p < .001, a main effect of word
type F(200) = 21, p < .001, and critically, an interaction
effect F(200) = 10, p = .002 (see Fig. 8). More specifi-
cally, when participants had to answer quickly, they exhibited
a tendency to judge that low-value words were actually ‘im-
possible’ to select in Stage 1. This tendency was absent when
participants underwent a time-delay before responding, and
occurred much more strongly for low-value words than for
high value words.

Conclusion
Our work builds on the idea that people narrow down the set
of options to consider (Newell et al., 1958; Browne et al.,
2012; Huys et al., 2012), and that certain options are more
“available” and thus more likely to be evaluated (Tversky &
Kahneman, 1973). We proposed a specific feature—high past
value—that makes options more available, and demonstrated
that decisions with large option sets can be made effectively
with this decision strategy. We then used a novel behavioral
paradigm to show that a large percentage of people appear to
spontaneously employ this architecture. Finally we directly
connected this implicit representation of a set of available
options in an experimental context to prior work on modal
cognition for real-world problems and demonstrated that the
prior value of an option plays a similar role in both. These
finding represent a key step toward understanding how people
make quick, effective decisions in environments of real-world
complexity.
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