
UC San Diego
UC San Diego Previously Published Works

Title
Glycan Degradation (GlyDeR) Analysis Predicts Mammalian Gut Microbiota Abundance 
and Host Diet-Specific Adaptations

Permalink
https://escholarship.org/uc/item/9wj5224f

Journal
mBio, 5(4)

ISSN
2161-2129

Authors
Eilam, Omer
Zarecki, Raphy
Oberhardt, Matthew
et al.

Publication Date
2014-08-29

DOI
10.1128/mbio.01526-14
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9wj5224f
https://escholarship.org/uc/item/9wj5224f#author
https://escholarship.org
http://www.cdlib.org/


Glycan Degradation (GlyDeR) Analysis Predicts Mammalian Gut
Microbiota Abundance and Host Diet-Specific Adaptations
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Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences,a School of Computer Science,b and School of Medicine,c Tel-Aviv University, Tel-Aviv,
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O.E. and R.Z. contributed equally to this study.

ABSTRACT Glycans form the primary nutritional source for microbes in the human gut, and understanding their metabolism is a
critical yet understudied aspect of microbiome research. Here, we present a novel computational pipeline for modeling glycan
degradation (GlyDeR) which predicts the glycan degradation potency of 10,000 reference glycans based on either genomic or
metagenomic data. We first validated GlyDeR by comparing degradation profiles for genomes in the Human Microbiome Proj-
ect against KEGG reaction annotations. Next, we applied GlyDeR to the analysis of human and mammalian gut microbial com-
munities, which revealed that the glycan degradation potential of a community is strongly linked to host diet and can be used to
predict diet with higher accuracy than sequence data alone. Finally, we show that a microbe’s glycan degradation potential is
significantly correlated (R � 0.46) with its abundance, with even higher correlations for potential pathogens such as the class
Clostridia (R � 0.76). GlyDeR therefore represents an important tool for advancing our understanding of bacterial metabolism
in the gut and for the future development of more effective prebiotics for microbial community manipulation.

IMPORTANCE The increased availability of high-throughput sequencing data has positioned the gut microbiota as a major new
focal point for biomedical research. However, despite the expenditure of huge efforts and resources, sequencing-based analysis
of the microbiome has uncovered mostly associative relationships between human health and diet, rather than a causal, mecha-
nistic one. In order to utilize the full potential of systems biology approaches, one must first characterize the metabolic require-
ments of gut bacteria, specifically, the degradation of glycans, which are their primary nutritional source. We developed a com-
putational framework called GlyDeR for integrating expert knowledge along with high-throughput data to uncover important
new relationships within glycan metabolism. GlyDeR analyzes particular bacterial (meta)genomes and predicts the potency by
which they degrade a variety of different glycans. Based on GlyDeR, we found a clear connection between microbial glycan deg-
radation and human diet, and we suggest a method for the rational design of novel prebiotics.
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The human gastrointestinal tract harbors an extensive array of
commensal microorganisms. Species composition is highly

diverse both within and between individuals (1), and the activities
of these organisms affect the host through many pathways, includ-
ing the production of short-chain fatty acids (SCFA) that regulate
epithelial cell growth and immune system development, displace-
ment of potential pathogens, detoxification of protein fer-
mentation products, and gas production (2–6). The beneficial or
detrimental outcomes of these effects depend largely on the com-
munity structure, environmental factors, diet, and the genetic
background of the host (7, 8). In order to gain a deeper under-
standing of the gut ecosystem as a whole, a systems biology ap-
proach integrating genomic, metabolic, and enzymatic informa-
tion is an invaluable tool (9, 10).

Large-scale sequencing analysis of the human gut micro-
biome has led to many tantalizing and highly important gut

microbiome-human health associations, but typically little or no
mechanistic insight is provided (11). Simplified in vitro models
aim to bridge this gap, but the reliance of these models on a few
strains and on defined culture media makes them difficult to relate
to the complexities of the human gut (12, 13). A primary issue is
the fact that very few simple metabolites escape digestion in the
small intestine (14), which makes complex carbohydrates and
their derivatives, collectively termed glycans, the predominant
nutrients for microbes in the colon (15, 16). These glycans are
poorly accounted for in any current systems biology or pathway-
related frameworks or databases, and thus they represent a major
hurdle in leveraging the full weight of systems biology methods in
the gut microbiome field. Incorporating mechanisms into micro-
biome research will therefore first require a large-scale accounting
and analysis of glycan degradation by the gut microbiota.

While some human colonic bacteria simply require acetate or
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branched-chain fatty acids (17), the detailed growth requirements
for the majority of gut bacteria remain unknown (18). Character-
izing these requirements will shed light on the different metabolic
niches organisms fill and may enable the design of dietary inter-
ventions that promote growth of particular beneficial microbes,
an approach collectively termed “prebiotics” (19). While several
glycans are currently marketed around the world as prebiotics, few
have been validated through high-quality human trials (19, 20).
Furthermore, dietary enrichment of a specific prebiotic com-
pound may permit preferential expansion of a microbial group
that is well adapted to its use, but the outcomes for the gut com-
munity as a whole can be unpredictable (21).

In this study, we investigated the connections between diet and
glycan metabolism of the human gut microbiota. Whereas the
study of the metabolic activity conducted by gut microbiota has
been the focal point of a wide range of computational studies (9,
11), current approaches have been highly limited in their ability to
analyze glycan degradation. We present a novel algorithm (termed
GlyDeR) for predicting the glycan degradation patterns of any
bacterium with a sequenced genome. The algorithm is based on
manual curation of nearly 150 carbohydrate-active enzymes (CA-
Zymes) and is applied to a set of 10,000 glycan structures and 203
microbial genomes. Given a particular bacterial (meta)genome,
GlyDeR can be used to reverse engineer the predicted potency by
which a bacterium degrades a variety of different glycans. These
predictions correlate with known KEGG reactions and expand
upon the limited, previously available glycan degradation
data 100-fold. We determined that the microbiota of herbivores
and carnivores have stronger degradation affinities for plant-
derived and animal-derived glycans, respectively, and that a West-
ern diet in humans correlates more strongly with meat-derived
glycans than a non-Western diet. Finally, we show that species-
specific glycan degradation profiles are associated with and can be
used to predict bacterial species abundance, making GlyDeR a
valuable tool for the future rational design of novel prebiotics, by
deliberately manipulating the microbiome based on nutrient
availability.

RESULTS
Construction of the glycan degradation (GlyDeR) pipeline. Al-
though the exact biochemistry of glycan degradation is missing
from all currently available databases, considerable knowledge is
embedded in the descriptions of the CAZymes that catalyze these
degradation reactions and is typically represented by enzymatic
commission (EC) numbers. We leveraged this knowledge to de-
velop a new computational pipeline that uses enzymatic and
structural data sources to predict the degradation of every glycan
in the KEGG database (22) that has a sequenced (meta)genome.
That is, given (meta)genomic data as input, GlyDeR yields pheno-
typic (glycan degradation) data as output. The construction of the
pipeline comprises two steps. (i) The first step relies on a novel
algorithm that we developed, which we term glycan degradation
(GlyDeR). The algorithm takes as input a manually curated anno-
tation of all the reactions that each known CAZyme is capable of
performing (see Table S1 in the supplemental material) and a
network representation of all the glycans in KEGG, in which the
nodes are the monosaccharides and the edges are the glycosidic
linkages (Fig. 1a; see also Table S6 in the supplemental material).
We converted the CAZyme annotations to the computer-based
rules that dictate their mechanism for breaking a given glycan into

two subcomponents. The manual curation of this critical step was
done using the help of experts with knowledge of the biochemistry
of glycan metabolism. GlyDeR then executes these rules recur-
sively on all the glycans, to generate 141,561 GlyDeR reactions,
each linking a specific enzyme to a glycan substrate and its prod-
ucts (an example reaction is given in Fig. 1a, and a more detailed
explanation is provided in Materials and Methods). (ii) In the
second step, GlyDeR reactions are mapped back to CAZymes in
order to produce a table where the rows are CAZymes, the col-
umns are glycans, and each entry contains a CAZyme score for
CAZyme i and glycan j. If CAZyme i is unable to break glycan j,
then the score is 0, otherwise the score is calculated as follows:

CAZyme scoreij �
1

gi

where gi is the number of glycans that are broken by CAZyme i.
The entire construction process is summarized in Fig. 1b. A CA-
Zymes table that contains all of the CAZyme scores can be found
in Table S5 in the supplemental material.

Use of the GlyDeR pipeline. Microbial (meta)genomes were
annotated for CAZymes by using BLAST analysis (23) against
three reference databases: the Carbohydrate-Active Enzymes
(CAZy) database (24), the Seed-RAST annotation (25), and
KEGG (26) (see Materials and Methods). Then, CAZyme scores
were assigned to genes, and a GlyDeR score was calculated for each
glycan i and (meta-) genome j as follows:

GlyDeR scoreij � � CAZyme score, ∀ nji

where nji is the number of genes in (meta)genome j which trans-
late to a CAZyme that can break glycan i.

The GlyDeR score represents the predicted potency with which
the glycan can be degraded by that (meta)genome, taking into
account how many CAZymes can degrade the glycan and with
decrements for the score of a promiscuous enzymes with low spec-
ificities (see Materials and Methods). For example, an organism
that contains three enzymes that degrade maltotetraose, each of
which also degrades four other glycans, would have a GlyDeR
score of 3/5 (two examples are provided in Fig. 1c). The use of
GlyDeR is captured in Fig. 1d.

Validating the GlyDeR pipeline. To assess the biological rele-
vance of GlyDeR, we performed a cross-validation procedure that
examined its consistency in capturing known degradation reac-
tions in KEGG (see Materials and Methods). We found that the
products of GlyDeR reactions were highly enriched with known
rather than hypothetical glycans (P � 10�19, hypergeometric test;
see also Fig. S2a in the supplemental material). As further valida-
tion, we compared the predicted genome-specific GlyDeR scores
of each bacterial strain with the glycans that, according to KEGG,
the strain is able to break (KEGG glycans). Since the above infor-
mation from KEGG was not used to construct the set of GlyDeR
reactions, a circular argument was avoided. We found a signifi-
cantly higher mean GlyDeR score for KEGG glycans across all
strains compared to non-KEGG glycans (see Fig. S2a). Notably,
our analysis produced GlyDeR scores for over 100 times the num-
ber of unique glycan degradation reactions that are currently re-
ported in KEGG (116,388 versus 1,374), highlighting the limited
scope of glycan metabolism information captured in the KEGG
database.

Characterization of glycan degradation patterns across the
major gut bacterial phyla. We first applied GlyDeR to a cohort of
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203 reference gut microbial genomes retrieved from the Human
Microbiome Project (HMP) (27). All of the available information
on these strains is listed in Table S2 of the supplemental material.
We used GlyDeR to study the extent to which different microbial
phyla metabolize different glycans. Initially, we examined whether
phylogenetic clusters are reflected in glycan degradation patterns.
We therefore computed for each of the HMP genomes a GlyDeR
profile, i.e., a vector of its GlyDeR scores for all glycans. The
species-specific GlyDeR “signature” describes the potency by
which a given species can catabolize each of the ~10,000 reference
glycans in our database and hence provides an overall view of its
glycan utilization capabilities. We then mapped each species to its
respective phylum and performed principal coordinates analysis
(PCoA) on the Bray-Curtis dissimilarities between the species
GlyDeR profiles. This yielded clusters of phyla that were statisti-
cally distinct (multivariate analysis of variance [ANOVA] test,
Wilke’s lambda � 0.001) (see Fig. S2b in the supplemental mate-
rial). Still, there were apparent significant differences in the aver-
age glycan degradation capacities of genera belonging to a given
phylum (see Fig. S2c).

Bacteroides species are highly effective degraders of animal-
derived glycoproteins. Recently, it has been shown that human
diets high in animal protein are associated with high levels of
Bacteroides, whereas diets rich in plant-derived carbohydrates and
very low in animal protein display enrichment for Prevotella (28–
30). Among the phyla in the HMP data set, we found Bacteroidetes

to be the most efficient degraders of animal-derived glycans (see
Fig. S2e in the supplemental material). Notably, this trend was
apparent for the Bacteroides genus but absent for Prevotella, which
also belongs to that phylum (Fig. 2b). Furthermore, all 19 of the
highest-scoring species with GlyDeR belonged to the Bacteroides
genus (see Table S3 in the supplemental material), consistent with
their known roles as primary glycan degraders in the gut (31–33).

Recent papers have also shown that glycans found in human
milk, such as human milk oligosaccharides (HMOs), are utilized
mainly by several Bifidobacterium and Bacteroides species (31, 34).
According to GlyDeR, 21 out of the 23 HMP genomes that are
capable of degrading HMOs belong to Bacteroides species (the
other degraders were Parabacteroides sp. D13 and Bifidobacterium
bifidum) (see Table S4 in the supplemental material). To further
investigate this point, we examined two of the most abundant
animal-derived glycoproteins in the human diet: ovalbumin (35)
and casein (36). Indeed, we confirmed that members of Bacte-
roides degrade these glycoproteins more efficiently than any other
genus (see Fig. S2f in the supplemental material). Given that many
dietary animal glycans are derived from proteins (e.g., glycopro-
teins and proteoglycans), we propose that the high capability of
Bacteroides to degrade animal glycans might explain why their
abundance is increased in Westerners (30, 37).

Glycan degradation patterns can be used to predict bacterial
abundance. We studied the relationship between the glycan deg-
radation scores of a given bacterial taxon and its abundance in the

FIG 1 The GlyDeR platform. (a) A visual representation of the glycan degradation reaction performed for EC 3.2.1.115, breaking down Kojitriose into Kojibiose
and glucose. (b) A schematic representation of the construction of the computational pipeline. Information is taken from multiple databases and analyzed as
follows. Step 1 (lred arrow on left): by using CAZyme information and the GlyDeR algorithm, glycan degradation reactions are reconstructed. Step 2 (red arrow
on right): a CAZyme table is constructed that represents the potency with which different CAZymes break different glycans. (c) GlyDeR score calculation. (Top)
The organism has one enzyme (yellow PacMan) dedicated to the degradation of one glycan (purple); therefore, the GlyDeR score for the purple glycan equals 1.
(Bottom) The organism has two enzymes capable of degrading 3 and 4 glycans, respectively, and therefore the GlyDeR score for the purple glycan equals 7/12.
(d) GlyDeR utilization. (Meta)genomes are annotated for CAZymes by using CAZy, SEED, and KEGG databases, and with the CAZyme table a GlyDeR score can
be calculated, reflecting the capacity of a (meta)genome to degrade a specific glycan.
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gut. We matched the abundance of 16S rRNA marker gene se-
quences from 325 human individual gut samples found in the
HMP database with the aforementioned 203 microbial reference
genomes (see Materials and Methods). For each taxon, we ex-
tracted 6 features that characterized its glycan degradation capac-
ity, including plant-specific glycans, animal-specific glycans, di-
saccharides, oligosaccharides, short polysaccharides, and long
polysaccharides (see Table S3 in the supplemental material). Each
feature represents the sum of GlyDeR scores for the glycans that
belong in the class. Based on these features, we built a linear re-
gression model for the abundance of these taxa in the samples. In
order to apply the linear regression model, we filtered out taxa that
were not detected in any sample and taxa that were highly varied
(see Materials and Methods for criteria), resulting in 48 predict-
able taxa for the analysis. This regression yielded a correlation
coefficient of 0.46 (Fig. 2c), a score markedly higher than the cor-
relation achieved using a model based on CAZyme abundances in
a genome (R � 0.11). We next built similar regression models
independently for each class of bacteria. Remarkably, the Clos-

tridia class had the highest combination of R (0.76) and P (0.0001)
values; other classes with significantly predictive models were Bac-
teroidia and Fusobacteria (Fig. 2d; see also Table S8 in the supple-
mental material). These results suggest that glycan supplements
can be tailored to control certain species abundances, especially
those of potentially pathogenic Clostridia.

In an effort to include taxa that were initially omitted in the
analysis above due to their high levels of variation, we first clus-
tered the HMP samples according to their 16S rRNA data into 2
main groups by using KMeans (see Materials and Methods), and
we recalculated the average taxon abundance separately for each
cluster. The same procedure for building predictors of bacterial
taxon abundance based on their genome-specific GlyDeR features
was then used, and this yielded 53 predictable taxa in the first
cluster and 71 predictable taxa in the second cluster, with concom-
itant increases in the correlation coefficients (0.51 and 0.57, re-
spectively). Based on the two clusters, we assembled a list of 25
strains with highly predictable abundances (see Table S9 in the
supplemental material), and with only one exception, all the

FIG 2 Glycan degradation of gut microbiota reference genomes. (a) Distribution of species-specific GlyDeR scores (y axis) for all the glycans in KEGG. GlyDeR
scores with corresponding reactions in KEGG appear on the left, while those with no KEGG reaction appear on the right (Student’s t � 6.14, P � 0.0001). (b) Bar
plot comparing the animal-specific glycan degradation potential of different bacterial genera within the Bacteroidetes phylum. Each bar depicts the sum of
GlyDeR scores of organisms belonging to their respected phylum. The height of the bar represents the mean, while the error bars reflect standard errors. (c) The
log-log scatterplot shows the average abundance of 48 HMP strains within 325 human fecal samples (y axis) and the linear regression-predicted abundance of
each individual strain (x axis) (linear regression correlation coefficient � 0.46, P � 0.0016). (d) Bar chart denoting the correlation value (height of the bar)
between actual and predicted abundance from linear regression models built for each class of bacteria (x axis) based on the taxon’s GlyDeR features. The color
of the bar reflects the number of species in the class. The feature extraction is explained in Materials and Methods.

Eilam et al.

4 ® mbio.asm.org July/August 2014 Volume 5 Issue 4 e01526-14

mbio.asm.org


strains belonged either to the Bacteroidia or Clostridia classes (see
Discussion). Notably, based on the regression formulas of all three
models, the degradation capacity of long polysaccharides had the
highest effect on bacterial abundance. It is therefore likely that
because most long polysaccharides are not digested by the human
host prior to reaching the colon, an ability to degrade them pro-
vides a significant selective advantage for gut microbes.

Glycan degradation profiles of mammalian species are asso-
ciated with their diet. Because diet is the prime determinant of
colonic glycan composition and gut microbiota vary according to
general dietary patterns (38), we expected that glycan degradation
would systematically vary between the microbiota of different
mammalian hosts based on their diet. To test this, we analyzed
variation in diet and glycan degradation profiles across different
mammalian species, using metagenomic sequencing data from 57
fecal samples across 34 different species, including 18 human sam-
ples (38). According to the host’s diet, each sample was character-
ized as being either herbivorous, carnivorous, or omnivorous. To
correct for research biases arising from uneven annotations of
CAZymes between species, we normalized each sample by the to-
tal number of CAZymes in it before running PCoA on the GlyDeR
profiles. PCoA revealed a clear spectrum of samples over the first

principal coordinate, from herbivores, through omnivores, to car-
nivores (see Fig. S3a in the supplemental material). With a subset
of glycans that were categorized into either plant-derived or
animal-derived glycans, we discovered a striking relationship be-
tween the diet of a host organism and the glycans predicted to be
degraded by its gut microbiota: microbiota from herbivores tend
to degrade plant-derived glycans (P � 0.04 compared to carni-
vores, Wilcoxon test) (Fig. 3a), while microbiota from carnivores
prefer animal-derived glycans (P � 0.0001 compared to herbi-
vores, Wilcoxon test) (Fig. 3a). Interestingly, the degradation ef-
ficiencies of omnivores and human gut microbiota place them as
intermediates between herbivores and carnivores (Fig. 3a). Nota-
bly, the higher overall degradation efficiencies for animal-based
glycans is probably due to the higher number of animal-derived
glycans (1,898) compared to plant-derived glycans (594) in the
database.

To further explore where humans stand with respect to the
dietary spectrum, we trained a support vector machine (SVM)
classifier to distinguish between herbivore and carnivore samples
based on their inferred glycan degradation profiles (see Materials
and Methods). The classifier predicted all but one sample cor-
rectly in a leave-one-out cross-validation (area under the curve

FIG 3 The connection between glycan degradation and diet. (a) GlyDeR profiling analysis of the Muegge data set. Bars showing the average sum of plant-specific
and animal-specific GlyDeR scores of the samples grouped according to their host diet and normalized by the number of CAZymes in each sample. A fourth
group was created to segregate humans from all other omnivores. The plant- and animal-specific GlyDeR scores of herbivores and carnivores are significantly
different (P � 0.04 and P � 0.0001, respectively). (b) The Yatsunenko data set. A scatterplot showing the sample projections on the first principal coordinate and
colored according to the country of origin. Samples from individuals younger than 2 years old were omitted (see text).

Glycan Degradation (GlyDeR) Analysis of Gut Microbiota

July/August 2014 Volume 5 Issue 4 e01526-14 ® mbio.asm.org 5

mbio.asm.org


[AUC] � 0.93, F � 0.96) and notably outperformed a classifier
based only on the abundance of CAZymes found in each sample
(which had three misclassifications; AUC � 0.71, F � 0.84), con-
firming the added predictive value of GlyDeR. We next applied
this classifier to the 11 available nonhuman omnivore samples and
classified 6 and 5 of the samples as herbivores and carnivores,
respectively. These samples were missing direct dietary labeling;
however, a comparison of these classifications versus the fiber in-
dex for these mammals (39) showed a nice correspondence with
the predicted dietary regimens of the animals (Table 1). We next
applied the classifier to predict the dietary habits for the human
samples, which were unknown, resulting in 15 out of the 18 sam-
ples being labeled as carnivores. Thus, at least in the small popu-
lation sample analyzed here, humans may be closer to carnivores
in some functional aspects of their gut microbiota.

We next explored whether humans who live in different geo-
graphical areas with markedly different diets exhibit different Gly-
DeR profiles. We analyzed the Yatsunenko et al. data set (29),
which contains metagenomic sequences from fecal samples of 110
humans who live in Venezuela, Malawi, and the United States.
Malawian and Venezuelan diets are dominated by plant-derived
polysaccharides, while typical U.S. diets contain large quantities of
meat (29). As before, we ran GlyDeR and performed PCoA on all
the GlyDeR profiles. Because infants display large variabilities
over the first coordinate (see Fig. S3b in the supplemental mate-
rial) and have an unusual diet relative to adults, we filtered out all
samples from individuals younger than 2 years old. This led to a
clear separation over the first coordinate between low meat con-
sumers (Malawians and Venezuelans) and high meat consumers
(Americans) (Fig. 3b). The ratio of animal- to plant-specific Gly-
DeR scores revealed significant differences between samples from
different countries of origin (ANOVA; F � 6.56, P � 0.005), with
a higher animal/plant ratio in the United Staets (P � 0.003) and
Venezuela (P � 0.03) than in Malawi. The ratio for the United
States was slightly but not significantly higher than for Venezuela
(Tukey-Kramer honestly signficant difference test; see Fig. S3c).

DISCUSSION

In this analysis, we aimed to determine the association between
human diet and microbial metabolism in the gut. We maintain
that in order to properly study this relationship, one must incor-
porate the degradation of glycans into the equation.

We detected diet-driven adaptations at both the level of single
species (Fig. 2b) and of communities (Fig. 3a). We found species
of the Bacteroidetes phylum to be the most efficient degraders of
animal-derived glycans and human milk oligosaccharides. While
this trend was apparent for Bacteroides, it was absent for Prevotella,
another key member of that phylum. Diets that are high in animal
protein have been associated with high levels of Bacteroides,
whereas enrichment of Prevotella has been associated with diets
rich in plant-derived carbohydrates and very low in animal pro-
tein (28–30). Given that many dietary animal glycans are derived
from proteins (i.e., glycoproteins and proteoglycans), we propose
that the high capabilities of Bacteroides and Parabacteroides to de-
grade animal glycans explains why their abundance is increased in
Westerners (30, 37).

The plethora of novel glycans and their predicted glycan deg-
radation efficiencies supplied by our method may prove to be
highly important for designing prebiotic interventions. For exam-
ple, the inability of some prebiotics to result in significant changes
to the gut microbiota may be due to the use of glycans that are
utilized too universally by the communities and thus do not pro-
vide a competitive advantage to individual, beneficial microbiota
community members. GlyDeR provides researchers and clini-
cians with the ability to predict exactly what glycans are best me-
tabolized by a given desirable taxon and excluded by others in a
very specific way. As a striking example, a linear regression model
based on GlyDeR-related features was capable of accurately pre-
dicting the abundance of bacterial strains that displayed low inter-
sample variance. Degradation of long polysaccharides was the
most predictive feature in the model, an unsurprising result con-
sidering the importance of these glycans as the main carbon and
energy sources for colonic bacteria. Finally, our results were im-
proved significantly by dividing the HMP samples into two clus-
ters and reanalyzing each cluster individually. This supports the
notion that microbiome analysis should not be general, but
should rather be based carefully on the background community
structure.

Our GlyDeR profiling revealed that the relative abundances of
many taxa, especially those of Clostridia, are significantly corre-
lated with their ability to degrade glycans. It was recently shown
that Clostridium difficile and other pathogenic gut bacteria rely on
microbiota-liberated mucosal glycans during their expansion in

TABLE 1 Mammalian host diet predictions based on GlyDeR profilesa

Sample no. Mammalian species SVM diet predicted Fiber index Correspondence?

4461343 Hamadryas baboon Herbivore 50–500 Yes
4461344 Hamadryas baboon Herbivore 50–500 Yes
4461347 North American black bear Carnivore 0-50 Yes
4461348 Black lemur Carnivore NAb NA
4461351 Goeldi’s marmoset Carnivore 0–50 No
4461353 Chimpanzee Herbivore 50–500 No
4461354 Chimpanzee Herbivore 50–500 No
4461374 Ring-tailed lemur Herbivore 50–500 No
4461375 White-faced saki Herbivore 0–50 No
4461376 Spectacled bear Carnivore 50–500 No
4461378 Prevost’s squirrel Carnivore 0–50 Yes
a An SVM classifier was trained based on the GlyDeR profiles of herbivores and carnivores. A diet fiber index for these species was obtained from Ley et al. (40), with the
percentages in each diet of acid-detergent fiber (ADF) and neutral-detergent fiber defined. A higher index suggests a diet that is more plant-based. The last column displays the
correspondence between the GlyDeR-predicted diet of the animal and its fiber index, where values of 0 to 50 correspond to carnivores and values of 50 to 500 correspond to
herbivores.
b NA, not available.
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the gut following antibiotic treatment (40). Thus, it may be pos-
sible to design prebiotics that help increase the levels of beneficial
Clostridia and prevent the expansion of pathogenic strains. More
generally, since the breakdown of a given substrate can be highly
species specific (18), the prediction of bacterial glycan degradation
efficiencies may prove to be an important tool for designing nu-
tritional interventions to help alter microbial communities.

In analyzing the mammalian fecal samples data reported by
Muegge et al. (38), we demonstrated that differences in microbial
community compositions carry functional importance—that is,
the microbiota of herbivores and carnivores have stronger affini-
ties to plant- and animal-derived glycans, respectively. To the best
of our knowledge, this is the first time that a computational frame-
work has been able to provide such observations. The lack of large-
scale in vitro glycan utilization assays makes straightforward vali-
dation of many of our predictions difficult at present.
Nevertheless, our ability to train an accurate classifier to predict
the diet of a host based on its microbiota glycan degradation pro-
file, and the correspondence between the classifier’s predictions
and animal nutrition (Table 1), both provide a strong operative
testimony to the veracity and utility of GlyDeR.

Although humans are generally thought of as omnivores, there
is an ongoing debate on the subject of our dietary history and
adaptations. Tackling this question through the lens of our micro-
biota, we used the aforementioned binary herbivore-carnivore
classifier in order to classify humans. Remarkably, the classifier
predicted 15 out of 18 human subjects to be carnivores. This result
is less surprising considering that all of the human subjects were
U.S. residents and that the United States is the highest meat-
consuming country per capita in the world (41). In contrast to the
U.S. population, the diets of individuals from Malawi and Vene-
zuela mainly include plant-derived polysaccharides (these popu-
lations consume, on average, 8.3 and 76.8 kg of meat per year, as
opposed to 120.2 kg per year in the United States [41]). We con-
sequently found a lower ratio for animal versus plant degradation
potency in the microbiota of individuals from these countries (see
Fig. S4c in the supplemental material). Notably, GlyDeR does not
predict a reduced potency of plant degradation within the U.S.
population. Therefore, it seems that the capacity of Western indi-
viduals to degrade glycans has not diminished over the course of
evolution, but merely shifted toward the direction of carnivores.

Taken together, these results further advance our understand-
ing of human diet-specific adaptations, but conclusions must be
drawn with caution. First, the data upon which GlyDeR relies are
often incomplete. For instance, only 74 out of the 146 CAZymes
mapped to at least one HMP genome (see Fig. S2c in the supple-
mental material). Furthermore, 31 CAZymes were not capable of
breaking any glycan, either because some glycan structures are
missing from the database or because of inaccurate enzymatic
annotation (see Fig. S2c). Second, several biases may arise from
the existence of nonproportional representation of different gly-
can categories in the KEGG Glycan database. For example, the
animal-derived GlyDeR scores are always higher than plant-
derived scores because there are three times more animal-derived
glycans in the database. We therefore suggest looking only at rel-
ative scores and conducting comparisons within a given glycan
category (e.g., comparing the degradation of animal-derived gly-
cans in Malawi and the United States) and not between different
glycan categories. Finally, the GlyDeR platform does not take into
account many important factors, such as enzyme transcription

levels, kinetic parameters, and downstream biochemical pathways
for glycan utilization. Nevertheless, GlyDeR is the first computa-
tional analysis framework that successfully enables one to directly
model how the microbiota can respond to dietary glycans from a
mechanistic point of view.

The current study was focused on developing a novel method
for the study of glycan degradation processes and establishing this
method’s value in assessing a wide spectrum of diet-related trends.
Future studies will examine whether GlyDeR could capture sub-
tler differences in microbiomes that are derived from individuals
with more homogeneous backgrounds (e.g., only meat-eaters).
Another open question is the identification of strain differences
within a given bacterial species. Since the current study involved
only a selected set of 203 microbial genomes, we did not have
sufficient coverage of any single species in order to establish sig-
nificant strain differences in glycan degradation. Since the number
of sequenced genomes is constantly increasing, we expect that a
larger analysis would be able to provide insight into the glycan
degradation capabilities of different strains within species. Finally,
an important issue to tackle is the aspect of microbial cross-
feeding. GlyDeR is fully capable of analyzing metabolic interac-
tions in the degradation of complex substrates that demand more
than one strain for breakdown, and it therefore provides a golden
opportunity to examine glycan degradation processes that occur
in synthetic communities (and ultimately in natural ones).

While metagenomics are still the gold standard for high-
throughput functional analysis of microbial communities, 16S
rRNA sequencing is a strong alternative in the many circum-
stances where metagenomic data are not available, or prohibi-
tively expensive. To this end, we plan to extend and integrate
GlyDeR into routine 16S rRNA analyses (e.g., with the help of
PICRUSt [42]), as well as incorporate GlyDeR within the larger
framework of genome-scale metabolic modeling (9, 43–46).
Within this integrated framework, glycan analysis will hopefully
become a standard tool in the arsenal of microbial researchers.

MATERIALS AND METHODS
We developed various tools for glycan degradation data integration, ma-
nipulation, and analysis, and these can be divided into 3 categories: (i)
data retrieval, for which we describe here the sources of information for
this study and how they were used; (ii) reconstruction of glycan degrada-
tion reactions and cross-validation, by which we reconstructed novel gly-
can degradation reactions by implementing our GlyDeR algorithm; (iii)
data analysis, that is, the steps we performed in order to analyze single taxa
and 16S rRNA and metagenomics sequence data and generated microbial
(meta)genome glycan degradation potency predictions.

Data retrieval. Information about glycans and the enzymes that might
break them down is spread across many databases and tools. The types of
data sources used to infer genome-based glycan degradation capacities
included bacterial taxa, genome annotations, and glycans.

(i) Bacterial taxa. A catalog of 281 taxa was downloaded on 8 October
2011 from The Human Microbiome Project website (http://www.hmp-
dacc.org/) using the following filters: NCBI superkingdom Bacteria; HMP
isolation body site: gastrointestinal tract; project status complete; NCBI
submission status annotation (and sequence) public on NCBI site. The
catalog contains the following annotation fields: HMP ID, GOLD ID,
organism name, domain, NCBI taxon ID, NCBI superkingdom, NCBI
phylum, NCBI class, NCBI order, NCBI family, NCBI genus, NCBI spe-
cies, all body sites, all body subsites, current finishing level, NCBI project
ID, Genbank ID, Gene count, size (kb), GC content, Greengenes ID,
NCBI 16S accession, strain repository ID, oxygen requirement, cell shape,
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motility, sporulation, temperature range, optimum temperature, Gram
stain, type strain.

(ii) Genome annotations. All of the HMP taxa were searched against
the Seed database (http://pubseed.theseed.org/) using the key of NCBI
Taxon Id number as a cross-reference. A total of 204 matches were de-
tected, and their RAST genome annotations were extracted by using the
web services of API.

(iii) Glycans. The entire KEGG Glycan database (http://
www.genome.jp/kegg/glycan/) was downloaded on 7 January 2011. The
database contains information on 10,978 glycans. We used the following
annotation fields from the annotations: G number, name, KCF file, and
class. An additional biological origin field was retrieved from an external
source, as described below.

The KCF file for each glycan describes a graphical representation of its
two-dimensional structure. This representation takes into account the
monomeric building blocks (nodes) and the glycosidic linkages (edges) of
the glycan. Textual and visual representations of the KCF graph for glycan
G00010 are given in Fig. S1a and b in the supplemental material.

The glycans database was subsequently filtered according to the fol-
lowing criteria related to nodes, edges connecting two nodes, and syn-
onym glycans (i.e., glycans with identical structures but different ID num-
bers). Since the database contains more than 800 nodes denoting glycan-
related building blocks, many of which are extremely rare, we chose to
focus on a subset of 35 nodes that corresponded to the most prominent
sugar monosaccharides, prevalent modifications, amino acids found in
glycoproteins, and ceramide found in glycolipids. Therefore, we removed
from the analysis all of the glycans which contained nodes not part of this
subset. The full list of known nodes can be found in Table S7 in the
supplemental material.

Similar to the nodes, an edge connecting two nodes in KEGG Glycan
mostly has a standard form denoting whether the sugar at the nonreduc-
ing side is in an alpha- or beta-conformation, as well as the numbers of the
carbons participating in the glycosidic linkage, e.g., “Glc a1-3 Glc” de-
notes glucose(�-1,3)glucose. However, there are some rare edges that
have a different form. In order to maintain consistent reaction rules, we
defined an edge to be legal if it had the common form of “R z$-$ R,” where
R is any node except for Thr (threonine), Ser (serine), Ser/Thr (serine or
threonine), Asn (asparagine), S (sulfate), or P (phosphate); z is either a or
b; $ is any number. Since threonine, serine, asparagine, sulfate and phos-
phate are not monosaccharides, the glycosidic linkages they are involved
in are not created via a carbon atom and therefore the edge description is
different. In this case, the rule we used is “R z$-R*,” where R is a regular
node and R* is a nonmonosaccharide node. All other edges were marked
as illegal, and their glycans were omitted from the analysis.

Some glycans in the database have different IDs but identical struc-
tures; therefore, we denote these as “synonym glycans.” Synonym glycans
were grouped together, and one glycan from each group was chosen to
represent the entire group for further analyses.

We developed glycan structure definitions in order to process infor-
mation in our database to conform to our subsequent glycan degradation
(GlyDeR) reactions. We identified several types of glycans: regular gly-
cans, linear repeating glycans, nonlinear repeating glycans, and polysac-
charides. Regular glycans are those glycans with a fixed and known length
(see Fig. S1c in the supplemental material). Linear repeating glycans are
built completely from a repeating sugar segment (repeating parts are
marked with asterisks in Fig. S1d). Nonlinear repeating glycans have a
repeating linear segment but also contain modifications on some of the
sugars, which make them nonlinear (see Fig. S1e). Polysaccharides are
glycans that meet one of the following conditions: it is a repeating glycan,
it has the value “polysaccharide” in its class field in the KEGG Glycan
database, or it has more than 10 nodes.

(iv) EC numbers and glycan degradation rules. We obtained a list of
146 CAZymes with a textual description of their enzymatic function
within the CAZy database (http://www.cazy.org/). The CAZy database
describes families of structurally related catalytic and carbohydrate-

binding modules (or functional domains) of enzymes that degrade, mod-
ify, or create glycosidic bonds. We retrieved from the database all the EC
numbers that belong to following families: EC 2.3.1, acyltransferases,
transferring groups other than amino-acyl groups; EC 2.4.1, glycosyl
transferases; EC 3.1.1, carboxylic ester hydrolases; EC 3.2.1, glycoside hy-
drolases; EC 3.5.1, hydrolases acting on carbon-nitrogen bonds, other
than peptide bonds, in linear amides; EC 4.2.2, polysaccharide lyases.

Based on the information available for these EC numbers in ExPASy
(http://expasy.org/) and KEGG (http://www.genome.jp/kegg/), we man-
ually generated a table that linked each EC number with the following
fields: enzyme name, linkages broken, contained subglycan (linkage must
be part of the subglycan), contains only (nodes), glycan released, Endo
versus Exo, DP preference (number of nodes), terminal side preference,
enzymatic reaction, and comments. These fields were later used to gener-
ate glycan degradation reactions by defining and implementing a set of
rules for analysis of the KCF file of all the glycans (see Fig. S1d in the
supplemental material for further informaton on the reconstruction of
glycan degradation reactions). These fields can be further described as
follows:

Enzyme Name—The accepted name of the enzyme. KEGG Reactions—
The reactions from KEGG that map to the EC number. Linkages Bro-
ken—In the case of glycosidic linkages the value is a string representing
two nodes and an edge that connects them based on the KCF graph rep-
resentation of the glycan structure. For example, in the case of deacetyla-
tion reactions, this value is “Ac-R,” denoting the removal of an acetyl
group from node R. Contained Subglycan—A G# identifier of a glycan
structure contained within the structure of a larger glycan, e.g., “Glc b1-4
Glc” is a subglycan of Man a1-3 Glc b1-4 Glc. Contains Only (nodes)—A
G# identifier for one or more nodes that the glycan must contain and only
contain. Glycan Released—A G# identifier that defines a glycan that must
be one of the products after the reaction with the enzyme takes place. Endo
vs. Exo—“exo” enzymes, which remove only terminal sugars (the edges of
the terminal nodes), “endo” enzymes, which break all glycosidic bonds
except for terminal ones (remove all edges except the ones of the terminal
nodes), and “both” enzymes, which can break any bond (remove any
edge). DP preference—This field reflects the degree of polymerization of
the glycans upon which the enzyme works. This number is also the exact/
minimal (�)/maximal (�) number of nodes that the KCF graph for the
glycan structure must contain. Terminal Side Preference—This field is
unique for exo-acting enzymes and describes their specificity toward the
reducing or nonreducing end. The KCF graph is directional, hence “re-
ducing” means only the removal of the right-most node is allowed,
“nonreducing” refers to the left-most, and “both” allows the removal of
both edges. Notice that the terminal node of the reducing end is always
at position 1 in the KCF graph, except for repeating glycans. Enzymatic
Reaction—A textual description of the enzymatic reaction performed
by a given enzyme (EC number) was obtained from http://
enzyme.expasy.org/. Comments—Specific comments about an enzyme
(EC number) were also taken from http://enzyme.expasy.org/. (Special
characters used in the above descriptions included the following. $ signi-
fies any number. R signifies any type of the following sugars [nodes; ab-
breviations are those used for the http://enzyme.expasy.org/ website]: ara,
Araf, D/LAra, D/LAraf, LAra, LAraf, D/LAraf, D/LAra, Api, Apif, D/LApi,
D/LApif, 3,6-Anhydro-LGal, L3,6-anhydro-Gal, 3,6-Anhydro-Gal, GalA,
D/LGalA, GalNAc, GalfNAc, D/LGalNAc, GalN, GlcNAc, D/LGlcNAc,
GlcA, D/LGlcA, GlcN, D/LGlcN, Glc, Glcf, D/LGlc, Fru, Fruf, D/LFru,
D-Fruf, Man, Manf, D/LMan, ManA, Rha, D/LRha, LRha, D/LRha, Gal,
Galf, D/LGal, D/LGalf, Fuc, D/LFuc, Fucf, LFuc, D/LFuc, Xyl, D/LXyl,
Xylf, Neu, Neu5Ac, Neu5Gc, MurNAc. # indicates an “or” association,
and & denotes an “and” association.) Overall, this workflow resulted in
141,561 glycan degradation reactions, of which 9,325 were reactions that
degrade KEGG glycans and newly reconstructed glycans and 132,236 were
intermediate glycan-degrading reactions.

(v) CAZyme annotation. We used sequence similarity to match the
genes which belong to the HMP taxa with specific CAZymes. We therefore
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performed BLAST analysis for all of the genomes of the HMP taxa against
the bacterial protein sequences found in the CAZy database. Each enzyme
family in CAZy contains a set of manually curated enzymes that have been
determined to execute a specific catalytic function. We used the NCBI
BLAST utility and filtered errors at the level of 10 e�10 and matches below
97% identity. At that point, we had a mapping between genes in the HMP
taxa and CAZyme families. Because many families contain a one-to-many
mapping between a family and its associated EC numbers, we had to refine
this annotation. We therefore extracted the genes predicted for enzymatic
annotations from the SEED and KEGG databases. While the CAZyme
annotations are more comprehensive, they are sometimes not as accurate
as the manually curated ones. Thus, we integrated the information ob-
tained from all of these sources by using the following logic: for proteins
that were mapped to families of 1 EC number in CAZy, we accepted this
annotation. For proteins that were mapped to families of multiple EC
numbers, we first checked if they had an available annotation in SEED or
KEGG, and if that was the case, then we checked if this annotation be-
longed to one of the multiple annotations in CAZy. If it did, then we
accepted the KEGG/SEED annotation.

(vi) Subcellular localization annotation. To define the subcellular
localization (SCL) of reactions, we used the RAST genome annotation as
a first proxy. We mined the function and subsystem fields of the annota-
tion for special keywords. For our purposes, we were only interested in
whether the enzyme exerts its function inside the cell or outside. Enzymes
were defined as intracellular if their associated genes contained the key-
words cytoplasm, cytosol, or cytoplasmic. Enzymes were defined as cross-
membrane if their associated genes contained one of the keywords
periplasm, periplasmic, inner membrane, or cytoplasmic membrane. Fi-
nally, enzymes were defined as extracellular if their associated genes con-
tained one of the keywords cellulosome, outer membrane, secreted, cell
wall, or extracellular. For enzymes that were not associated with any
meaningful keyword, we took advantage of the LOCtree localization pre-
diction software (https://rostlab.org/owiki/index.php/LOCtree). LOC-
tree uses a protein amino acid sequence to predict the SCL. It supplies five
possible SCLs: cytosol, inner membrane, periplasmatic, outer membrane,
and secreted. Enzymes with the value cytosol were classified as intracellu-
lar, enzymes with the values secreted or outer membrane were classified as
extracellular, and enzymes with the values periplasmatic or inner mem-
brane were classified as cross-membrane, i.e., enzymes that exert their
function on the cross-membrane between the cell and its environment. To
fix possible erroneous annotations, we refined our localization selection
based on specific knowledge of the glycan degradation biochemistry. A
literature survey suggested that there are no polysaccharides within the
bacterial cytoplasm (with glycogen being the only exception). Thus, en-
zymes that were predicted as intracellular or cross-membrane were fil-
tered out if the glycan that they processed was either repeating, defined as
a polysaccharide, or had more than 10 subcomponents.

(vii) Biological origin of glycans. We accessed the CarbBank database
(47) and mapped the KEGG glycans to it using the KEGG Glycan ID (G
number) as a cross-reference. CarbBank contains detailed descriptions of
where a specific glycan can be found in nature. We parsed these data in
order to define certain glycans as either plant-derived or animal-derived.

(viii) Degree of polymerization of glycans. Glycans are routinely cat-
egorized into one of four possible degrees or classes of polymerization.
With respect to classes, glycans were defined as disaccharides if they con-
tained 2 nodes, oligosaccharides if they contained 3 to 10 nodes, short
polysaccharides if they contained �10 nodes, and long polysaccharides if
they had a repeating structure.

Construction of the CAZyme table (a key step in the GlyDeR pipe-
line). We manually curated all of the CAZymes (146 EC numbers) and
mapped each one to a set of computer-based rules dictating the mecha-
nism by which it can break a given glycan (i.e., split its graph into two
separate components). These rules account for structural features such as
the glycosidic linkages the enzyme can break, the cleavage mechanism, the
chemical neighborhood, and the degree of polymerization of the glycan

(see Table S3a and b for a list of the rules). We then executed these rules on
all the glycans that appear in the KEGG Glycan database, which yielded
141,561 glycan degradation (GlyDeR) reactions. In the following section
we describe the logic behind the reconstruction of glycan degradation
reactions by identifying for each glycan which enzymes are able to break it
and how the degradation reaction will look. GlyDeR reactions are then
mapped back to CAZymes in order to produce a table where the rows are
CAZymes, the columns are glycans, and each entry contains a CAZyme
score, calculated as follows:

CAZyme scoreij � � 1

gk
, ∀ ei

where ei is an enzyme that can degrade glycan j and gk is the number of
glycans that it breaks down. The entire construction process is summa-
rized in Fig. 1b. A CAZymes table which contains all of the CAZyme scores
can be found in Table S5 in the supplemental material.

(i) Glycan degradation (GlyDeR) rules. A reaction is represented by
its substrate(s), product(s), the enzyme(s) responsible for the catalysis,
and a subcellular localization. For the GlyDeR reaction generation pro-
cess, we used all the computer-based glycan breaking rules described in
Table S1 of the supplemental material. For an EC number-related enzyme
(rule) to break a glycan, the glycan and the resultant reaction must comply
with all the limitations defined in the fields of the given rule, namely, the
glycan must contain at least one of the glycosidic linkages (or nodes con-
taining an acetyl group in case of deacetylation reactions) described in the
Linkages Broken field; the glycosidic linkage hydrolyzed must appear in
the terminal edges of the glycan if the value in the Endo Vs. Exo is set to
Endo, and vice versa; the number of nodes the glycan contains must con-
form to the value described in the DP Preference field; in case the Endo
versus Exo field is set to Exo, the terminal side of the glycosidic linkage
hydrolyzed must be located on the right side of the graph of the glycan if
the value in the Terminal Side Preference field is set to Reducing and on
the left side if this field is set to Nonreducing. If this field is set to “Both,”
then location of this linkage on both sides is allowed. The glycan must
contain the structure of a glycan (nodes and edges) described in the Con-
tained Subglycan field, and the linkage being broken must also be part of
this subglycan. The reaction must contain the glycan described in the
Glycan Released field as one of its products. Figure 1a gives an example of
an Exo-acting enzyme breaking a regular glycan.

(ii) Deacetylation rules. Some of the EC numbers (enzymes) we ana-
lyzed have a deacetylation activity, i.e., they have the capability to remove
acetyl groups. In the KEGG Glycan database, monosaccharides contain-
ing an acetyl group are described as a single unique node, e.g., the node
GlcNAc corresponds to N-acetyl-glucosamine. Therefore, if an enzyme
has the capability to remove an acetyl group, we simply remove the sub-
string “Ac” from the label of the node and make it the product of the
reaction, e.g., GlcNAc ↔ GlcN � Ac.

(iii) Reconstruction of new glycans. We manually constructed a set of
107 glycans which we determined were important but that were missing
from the KEGG Glycan database. To distinguish these glycans from the
ones previously available in the database, we gave these new glycans the
prefix TAU instead of G, which is assigned by KEGG. A list of all the TAU
glycans can be found in the supplemental material. Furthermore, in most
cases the products of the degradation reactions did not have a preexisting
G number, meaning they currently do not exist in the KEGG Glycan
database. Working under the assumption that most glycans in nature are
still uncharacterized in databases, we decided to add these new glycans
automatically. Thus, whenever a reaction produced a new glycan, we gave
this glycan a unique ID beginning with “TAUS” (to distinguish it from
original glycans, designations for which begin with G or TAU).

Data analysis. (i) Single-taxon data analysis. To define microbial
genome-specific GlyDeR scores, after building the CAZyme table we as-
sociated the CAZymes with the genomes of the HMP gut taxa. For every
taxon-specific gene we calculated, based on its enzymatic annotation and
the enzyme’s subcellular localization, a GlyDeR score. Given a bacterial
taxon i and glycan j, the GlyDeR score was calculated as follows:
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GlyDeR scoreij � � njk

gk
, ∀ ek

where ek is an enzyme that can degrade glycan j, nik is the number of genes
in its genome which translate to enzyme ek, and gk is the number of glycans
broken by enzyme ek. This metric decrements the contribution of CA-
Zymes that are more promiscuous versus those specifically geared to de-
grade the glycan in question (Fig. 1b). For some categories of glycans such
as long polysaccharides and plant-specific glycans, we defined a category-
specific score, GSic, which is the sum of GlyDeR scores for glycans that
belong in that group:

GlyDeR scoreic � � GSij, ∀ j � c

where GSij is the GlyDeR score for genome i and glycan j and c is the
collection of glycans that belong to category C. This scoring system has the
feature that summing the GlyDeR scores over all the glycans in a given
genome gives the total number of CAZymes in the genome, according to
the following equation:

Total CAZymesi � � GSij, ∀ j � j

where j � j is the set of all glycans and i is the index of a specific taxon.
Subsequently, we defined the GlyDeR profile of a bacterial taxon as fol-
lows:

GlyDeR profilei � {GSi1, GSi2, � , Gij�1, GSij}.

For the GlyDeR reaction consistency check and cross-validation, when
applied to all the glycans available in KEGG, the GlyDeR pipeline pro-
duced a list of 114,573 intermediate glycan products, most of which were
novel and thus do not appear in the original KEGG database. We refer to
these as hypothetical glycans in the text. To test the consistency of GlyDeR,
we performed a cross-validation process where we picked a random sub-
set of 1,000 glycans from KEGG and applied GlyDeR to degrade them. We
then tested whether the products obtained from these 1,000 glycans were
enriched with known versus novel intermediate glycans. A hypergeomet-
ric test indicated that the products were highly enriched for known gly-
cans (P � 10�19) (see Fig. S2a in the supplemental material). A sensitivity
analysis with subsets of different initial random sets and sizes still resulted
in highly significant enrichments (data not shown). This result testifies
that GlyDeR is capable of recapitulating the biochemical knowledge im-
printed in the CAZymes that constitutes its computational foundation.

For principal coordinates analysis on GlyDeR profiles, we calculated
the pairwise Bray-Curtis dissimilarities between all the GlyDeR profiles
and performed PCoA on the resulting dissimilarity matrix to project the
differences in degradation into two dimensions (see Fig. S2d in the sup-
plemental material). The GlyDeR analysis file for the HMP taxa is given in
Table S3 of the supplemental material and lists for each genome the
unique CAZymes, total CAZymes, plant-specific GlyDeR score, animal-
specific GlyDeR score, and bacterium-specific GlyDeR score.

For the GlyDeR-related features definition, we extracted 6 features
that characterized the several dimensions of a (meta)genome glycan deg-
radation potential. These features were the GlyDeR scores for plant-
specific glycans, animal-specific glycans, disaccharides, oligosaccharides,
short polysaccharides, and long polysaccharides. Each feature represented
the sum of the GlyDeR scores for the glycans that belong in the class.

(ii) 16S rRNA sequence data analysis. We retrieved the 16S rRNA
sequence data and metadata from fecal samples belonging to 325 healthy
human individuals from the HMP Data Analysis and Coordination Cen-
ter (DACC) (48). Because we were not interested in time series data, we
only used samples from the initial time point. 16S rRNA sequences were
mapped to the HMP genomes based on sequence similarity and further
used to build an operational taxonomic unit table that described the
abundances of the HMP taxa in each sample. For this purpose, we used the
QIIME software (49) with the following exact commands:

pick_otus.py -i HMP_samples_seqs -r HMP_taxa_ref_seqs -m uclust_ref -C
make_otu_table.py -i pick_otus_output

(iii) Metagenomics sequence data analysis. We retrieved the Muegge
et al. (38) and Yatsunenko et al. (29) data sets from MG-RAST (50). For
both data sets, we downloaded the FragGeneScan gene-calling output,
which maps each original read to 0, 1, or more open reading frames
(ORFs). This way, many reads could be assigned to a single ORF and so the
abundance of each ORF was taken into account. Next, ORFs were assigned
to CAZymes and to specific subcellular localizations, as described above.
The percent identity used for the BLAST search was changed to 60%, a
value commonly used in metagenomic annotation projects (51). We then
constructed a CAZymes abundance table to describe the abundances of all
the CAZymes in each sample. In order to calculate a sample-specific Gly-
DeR score, we used the sample CAZymes abundance table and precalcu-
lated CAZyme scores table. Thus, the GlyDeR score, GSkj, of glycan j in
sample k was defined as follows:

GSkj � � njk

gk
,

Dmax

Dk
, ∀ ek

where ek is an enzyme that can degrade glycan j, nik is the number of genes
in sample k that map to enzyme ek, and gk is the number of glycans broken
by enzyme ek. Dmax/Dk is a normalization factor that denotes the ratio
between the depth (i.e., the total number of sequenced reads) of the sam-
ple with the maximum depth (Dmax) and the depth of the current sample,
Dk. Next, we defined the GlyDeR profile of sample k as follows:

GPk � {GSk1, GSk2, � , GSkj�1, GSkj}

(iv) Multivariate regression between GlyDeR features and bacterial
abundance. We analyzed the 16S rRNA sequences from the HMP fecal
samples in order to determine the abundance of our 203 bacterial taxa in
each sample. To increase the signal-to-noise ratio (SNR), we excluded
species with a high abundance variability based on the following criterion:

SNR �
mean abundance

standard deviation
� 0.3

The 6 features described in the previous section were used to build a
linear regression model with bacterial abundance as the dependent vari-
able: bacterial abundance � (�13.248 � plant-specific GlyDeR score) �
(28.1822 � disaccharides score) � (9.6206 � oligosaccharides score) �
(32.701 � long polysaccharides score) � 42.7354. To eliminate the pos-
sibility of overfitting the data, we used a standard 10-fold cross-validation
method. All calculations were performed using WEKA (51).

To assess the added value of using the GlyDeR features over genomic
information alone, we defined for each HMP taxon a vector containing
the genomic copy number of the CAZymes used in the analysis. We then
built a similar linear regression model with these 82 CAZymes used as
features and bacterial abundance in the HMP samples as the dependent
variable.

Because of the high variability in bacterial taxa abundance across the
samples, we used the KMeans algorithm to cluster the samples. We chose
to use 3 clusters because this option resulted in the lowest cubic clustering
criterion (CCC). However, one cluster was composed of only one outlier
taxon, so we omitted it from further analysis. Indeed, after removing the
outlier point, the lowest CCC was achieved for k � 2. We built a cluster-
specific linear regression model, as described above: cluster 1 bacterial
abundance � (�40.6116 � plant-specific GlyDeR score) � (33.283 �
long polysaccharides score) � 31.6149; cluster 2 bacterial abundance �
(�15.9773 � oligosaccharides score) � (69.8184 � long polysaccharides
score) � 70.697.

We defined a list of 25 bacterial taxa with highly predictable accuracy.
A taxon was included in the list if the standard error of its predicted
abundance obeyed the following rule for either cluster 1 or cluster 2:

predicted abundance � actual abundance

actual abundance
� 1

(v) Classification of dietary patterns based on GlyDeR scores. The
GlyDeR scores of all herbivore and carnivore mammals from the Muegge
et al. data set were used to train a binary SVM classifier. The SMO imple-
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mentation of this classification algorithm in WEKA (51) was used for the
computation. To estimate the accuracy of the classifier, we used a standard
leave-one-out cross-validation. To apply this classifier to the remaining
human and nonhuman omnivore samples, we hid the labels of the sam-
ples and classified them as either carnivore or herbivore.
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