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Abstract 

Breast computed tomography (CT) is a relatively new breast imaging modality based upon 

cone-beam CT geometry, and there are ongoing efforts to optimize breast CT for the 

detection of breast cancer lesions. Clinical trials are considered the ideal approach when 

conducting protocol optimization studies. However, the time, expense, and extensive 

database required to conduct these studies pose significant challenges and costs. As an 

alternative to clinical studies, simulation studies have been proposed, where synthetic images 

are generated using phantom imaging or computer simulations. In addition, model observers 

have been proposed in lieu of human observers to evaluate the simulated images. By using 

simulated images and model observers, thousands of images can be generated and 

evaluated in a short period of time. In this work, we developed methods to simulate “hybrid” 

breast CT images, where mathematically generated mass lesions and microcalcifications are 

inserted into actual patient breast CT volume data sets. Then, we used model observers, 

namely the pre-whitened matched filter (PWMF) and convolutional neural networks (CNNs), 

to detect the simulated lesions.  

 First, we simulated contrast-enhanced mass lesions and explored the improvement in 

mass lesion detectability due to contrast enhancement across lesion diameter, section 

thickness, breast density, and view plane. An average 20% improvement was observed, and 

a larger improvement was observed for patients with dense breasts. Small lesions are 

generally harder to detect in dense breasts, but these results demonstrated that injected 

contrast can substantially improve detection performance in dense breasts. 

 Next, we compared the PWMF model observer with the CNN model observer for 

detecting mathematically generated unenhanced mass lesions inserted into 1) breast CT 

background and 2) Gaussian background, where the PWMF is known to be an ideal observer. 
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In Gaussian background, the CNN performed essentially identically to the PWMF across 

lesion sizes and section thicknesses. In breast CT background, the CNN outperformed the 

PWMF across lesion size, breast density, and most section thicknesses. These findings 

suggest that in breast CT images, CNNs capture more diagnostic information than PWMFs 

and may be a more pertinent observer when conducting optimal performance studies. 

 Lastly, we simulated microcalcifications and microcalcification clusters. The loss of 

intensity owing to partial volume effects was modeled and used to mathematically insert 

microcalcifications into acquired patient breast CT images. 2D and 3D CNNs were used to 

evaluate the detectability of simulated calcifications across clinical parameters. Our results 

demonstrated the utility of the maximum intensity projection (MIP) for displaying image 

volumes containing microcalcification clusters. We found that there was no statistically 

significant difference in detection performance when using the MIP compared to all slices in 

the native section thickness, but that thicker sections led to reduced detection performance. 

The MIP procedure essentially compresses 3D images to 2D images, resulting in efficient 

and better detection for microcalcifications. 

 Collectively, these studies elucidate the key factors affecting mass lesion and 

microcalcification detectability in unenhanced and contrast-enhanced breast CT and 

demonstrate the utility of model observers for examining breast CT images when human 

observers are unavailable. As breast CT advances towards translation to the clinic, these 

studies will be useful for optimizing breast CT protocols. 
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Chapter 1: Introduction 

1.1. Breast cancer and breast imaging 

The American Cancer Society predicts that 1 in 8 women will develop breast cancer during 

her lifetime1. The five-year survival rate for an individual receiving diagnosis of localized 

breast cancer is 99%, whereas the five-year survival rate for an individual receiving diagnosis 

of metastatic breast cancer is 27%1. Clearly, early detection of breast cancer substantially 

decreases mortality. 

Mammography was developed in the early 1980’s as a screening tool for breast cancer 

and remains the standard-of-care screening technique for the normal risk population at many 

institutions2. In mammography, the breast is compressed between the compression paddle 

and detector, and projection images of the compressed breast are acquired at the 

mediolateral oblique angle and the craniocaudal angle. Other institutions such as UC Davis 

are transitioning to using digital breast tomosynthesis (DBT)3 for screening and diagnostic 

imaging. DBT is another X-ray based imaging technique that produces a pseudo-3D image 

from projection images acquired over a limited angle range (15-60o) around the breast. 

Synthetic mammograms (SM) can be reconstructed from DBT data and are often read by 

breast radiologists in conjunction with DBT images4. Multiple studies have demonstrated 

lower recall rates and higher cancer detection rates using DBT with SM4,5,6. The normal risk 

population is recommended to undergo screening mammography annually starting at age 40, 

and individuals who are at higher risk of breast cancer due to family history or genetic 

disposition are recommended to undergo biannual screening starting at age 207 via 

mammography2, DBT3, ultrasound8, breast magnetic resonance imaging (bMRI)9, or a 

combination of these modalities.  
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Breast cancer varies morphologically but is generally categorized into two categories: 

masses and microcalcifications. Mass lesions are developments of abnormal cell growth 

which tend to burgeon in milk ducts and glands10. They are typically oval, round, or irregular 

in shape, and can appear smooth and obscured at their margins or spiculated and more 

conspicuous at their margins11. Microcalcifications are small calcium deposits (<1 mm) that 

are frequently associated with premalignant or malignant lesions12–14. Because mass lesions 

and microcalcifications are commonly seen on mammograms, there are several well-known 

morphological patterns that help in identifying them and assessing their potential for 

malignancy. A summary of these patterns, reported by the American College of Radiology in 

the Breast Imaging Reporting and Data System (BI-RADS)11, is shown in Table 1.1: 

Table 1.1: Morphological features of mass lesions and microcalcifications from BI-RADS. 

Mass lesions 

Shape Margin Density 

Oval Circumscribed High density 

Round Obscured Equal density 

Irregular Microlobulated Low density 

 Indistinct Fat-containing 

 Spiculated 

 

 

Microcalcifications 

Typically benign Suspicious morphology Distribution 

Skin Amorphous Diffuse 

Vascular Coarse heterogenous Regional 

Coarse or “popcorn-like” Fine pleomorphic Grouped 

Large rod-like Fine linear or fine-linear branching Linear 

Round  Segmental 

Rim   

Dystrophic   

Milk of calcium   
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The breast is composed primarily of two tissues: adipose tissue, which appears dark 

on X-ray images, and fibroglandular tissue, which appears light on X-ray images. Breast 

lesions tend to form within fibroglandular tissue structures, specifically ductal or lobular cells, 

and also appear light16. The proportion of fibroglandular tissue compared to adipose tissue in 

the breast constitutes a patient’s breast density, where a denser breast consists of more 

fibroglandular tissue. When dense breasts are imaged via mammography, fibroglandular 

tissue can obscure the visualization of tumors when they are superimposed onto a planar 

projection image. Malignant lesions can be obscured by overlapping normal tissue which can 

cause a false negative reading. Superimposition of normal tissue can cause a summation 

artifact resembling a mass, and this can cause a false positive reading. In 2023, the FDA 

updated U.S. mammography regulations to require that patients be notified of their breast 

density due to the influence of breast density on mammography accuracy15. 

1.2. Breast CT 

To address the issue of superimposition of glandular tissue in projection imaging, our lab has 

focused on the development of breast computed tomography (CT), a true 3D X-ray imaging 

modality16. In breast CT, the patient lies prone with her breast inserted in a hole on the 

tabletop such that it is pendant and not compressed. Cone-beam projections are collected 

360o  around the breast and reconstructed using the Feldkamp algorithm17 to produce a 

volume data set containing the entire breast. One notable advantage of breast CT is its ability 

to separate overlapping anatomical structures in the breast into individual tomographic 

images, enabling clearer visualization of anatomical structures inside the breast. 

Over the past two decades our lab has developed four generations of breast CT 

scanners18 and has performed several clinical trials enrolling hundreds of patients. The 
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prototype scanners are shown in Figure 1.1. Since 2005, our breast CT protocol has involved 

the intravenous injection of iodine-based contrast agent to enhance the conspicuity of 

lesions4. Contrast injection is particularly useful for the visualization of malignant tumors 

because malignant tumors uptake contrast agent more than benign tumors and thus appear 

brighter when imaged. Contrast injection is also used in breast MRI, but breast MRI utilizes a 

gadolinium-based contrast agent whereas breast CT utilizes an iodine-based contrast 

agent4,14. Contrast-enhanced breast CT and contrast-enhanced breast MRI are minimally 

invasive procedures, therefore, they may not be accepted as screening methods for the 

normal-risk population. However, these tools could be utilized for screening in high-risk 

populations and for diagnostic imaging, and they are currently being studied in those settings. 

 

Figure 1.1: Four generations of breast CT scanner prototypes developed at UC Davis. 
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1.3. Simulation studies and model observers 

There are ongoing efforts19–21 to optimize breast CT for the detection of breast cancer lesions. 

Lesion detectability in breast CT is dependent on a host of factors. Lesion size, shape, and 

contrast contribute to detectability. Patient-specific factors such as breast density can affect 

detectability. Imaging protocols, including contrast injection protocol, image acquisition 

methods, image reconstruction methods, and image display methods can affect detectability. 

It is likely that the optimal parameters for detecting mass lesions are suboptimal for detecting 

microcalcifications since mass lesions are larger, low-contrast objects, while 

microcalcifications are smaller, high-contrast objects. Protocol optimization can be complex, 

seeing that it is crucial to detect both mass lesions and microcalcifications. 

 Clinical trials are considered the ideal approach when conducting protocol optimization 

studies. However, the time, expense, and extensive database required to adequately 

represent the screening population pose significant challenges and costs. In addition, 

radiation risks are introduced when patients are repeatedly imaged under varying protocols. 

Simulation studies have been proposed as an alternative to clinical studies, where synthetic 

images are generated using phantom imaging or computer simulations. These studies are 

also called “virtual clinical trials”22–24. This dissertation will report on simulations of hybrid 

images, where mathematically generated mass lesions and microcalcifications are inserted 

into actual patient breast CT volume data sets.  

Furthermore, model observers are used in lieu of human observers to evaluate lesion 

detectability in the hybrid images. Model observers refer to mathematical or computational 

techniques used to assess the performance of imaging systems25,26. They provide 

quantitative and standardized ways to evaluate imaging systems. Generally, model observers 

are used for two main purposes: 1) to evaluate ideal observer performance, where all 



 6 

statistical information available in the image is used to determine maximum task 

performance27, and 2) to predict human observer performance, often through channelized 

observers, which mimic the human visual system’s processing of image information through 

channels or frequencies28,29. Model observers have shown to reasonably predict human 

observer performance in breast CT30,31 and other breast imaging modalities32–34. By using 

simulated images and model observers, thousands of images can be generated and 

evaluated in a short period of time. 

1.4. Dissertation outline 

This dissertation will report on key factors that contribute to mass lesion and microcalcification 

detectability in breast CT using simulated images and model observers. Chapter 2 will 

describe simulation methods for contrast-enhanced mass lesions, which will be evaluated 

using a pre-whitened matched filter (PWMF) mathematical model observer. Chapter 3 will 

compare the PWMF with a convolutional neural network (CNN) model observer for the 

detection of simulated lesions in breast CT and Gaussian background. Chapter 4 will describe 

simulation methods for microcalcifications and microcalcification clusters, which will be 

evaluated using a CNN model observer. Finally, Chapter 5 will conclude by providing a 

summary of the results and a discussion of future directions.  
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Chapter 2: Model observer performance in contrast-enhanced lesions 

in breast CT: The influence of contrast concentration on detectability 

2.1. Introduction 

The use of iodine-based contrast agent for better delineation of tumors in breast computed 

tomography (CT) has been shown to be compelling35, similar to the tumor enhancement in 

contrast-enhanced breast MRI (CE-bMRI)9 and contrast-enhanced dual-energy digital 

mammography (CE-DM)36. Indeed, the use of intravenous contrast injection in whole body 

CT applications also adds important diagnostic information to the CT examination. While 

different organs have different vascular perfusion characteristics which impact the timing of 

and peak enhancement levels for that organ37, in the case of solid tumors the “leaky vessel” 

phenomena resulting from angiogenesis leads to the “wash in” and “wash out” of iodinated 

contrast agent in the interstitial space surrounding the tumor38. This has been called the 

enhanced permeability and retention (EPR)39 effect. CE-bMRI and CE-DM also capitalize on 

the EPR effect, although CE-DM is a 2D imaging modality. 

Contrast-enhanced breast CT is a relatively new tool, and a structured evaluation of 

different imaging parameters at play has yet to be conducted. This study aims to examine the 

independent and co-dependent effects of contrast, breast density, lesion size, view plane, 

and section thickness on contrast-enhanced lesion detectability, building from previous work 

on unenhanced lesion detectability40. While a clinical trial is the ideal approach for this kind 

of study, the time, expense, and large database needed to adequately represent the 

screening population makes this approach challenging and costly. A simulation study is used 

here in lieu of a clinical study, and we have chosen a hybrid simulation method, in which 

mathematically generated lesions are inserted into actual patient CT images. This method 



 8 

has been implemented with mammographic backgrounds32,41,42 and breast CT background40. 

Moreover, a model observer is proposed in lieu of a human observer to evaluate lesion 

detectability in the simulated images. Mathematical model observers have shown to 

reasonably predict human observer performance in breast CT30,31 as well as in other breast 

imaging modalities32–34.  

In this investigation, data sets of acquired breast CT images from a cohort of patients 

imaged at our institution were used in concert with simulated mathematically inserted 

spherical lesions to study the role of contrast injection. To compare performance with previous 

work, unenhanced simulated lesions were inserted into the acquired breast CT image data 

using a previously-reported algorithm, and results of a pre-whitened matched filter model 

observer were compared to previously reported work40.  

The lesion enhancement arising from contrast-enhanced breast CT images in 22 

patients was evaluated, and the contrast enhancement (average increase in Hounsfield Unit, 

ΔHU) was characterized. These clinical results were used to compute contrast levels for the 

simulated lesions, over a range from 0% to 100% contrast enhancement levels. More 

complex methods have been proposed to simulate clinically-relevant iodinated lesions 

involving heterogenous enhancement patterns and rim enhancement43. Our model does not 

attempt to simulate intra-lesion heterogeneity, but this simplified approach may be useful in 

evaluating more general effects of contrast across a range of clinical parameters. The pre-

whitened matched filter was used to quantify detection performance using the area under the 

receiver operating characteristic curve (AUC) as a performance metric. The improvement in 

detection due to contrast injection was quantified across breast density, lesion size, view 

plane, and section thickness. 



 9 

2.2. Methods 

2.2.1. Breast CT system and imaging technique 

Prototype breast CT systems built in our laboratory at UC Davis were used to acquire breast 

CT data sets from patients in an IRB-approved study. The laboratory has developed four 

generations of breast CT scanners as described in Ghazi et al.18. Image data sets from the 

first- and second-generation breast CT scanners, which are very similar in design, were used 

in this study and are briefly described here.  

A tungsten anode x-ray tube, collimator, and flat-panel x-ray detector were integrated 

into a cone-beam breast CT scanner and powered by an integrated bearing-motor-encoder 

system. The gantry rotates in the horizontal plane during acquisition, using an 80 kV x-ray 

beam with 0.2 mm copper filtration. The flat-panel detector (Varian 4030CB; Varian, Palo 

Alto, CA) was operated in 2 × 2 binning mode, with a native dexel size of 0.194 mm. The x-

ray tube and detector rotated ≥ 360 degrees around the breast to capture 500 cone-beam 

projection images in about 16 seconds. Image acquisition protocols were not altered for 

contrast imaging. 

A variation of the Feldkamp algorithm17 was used to reconstruct the projection images. 

The projection data were reconstructed into a 512 × 512 matrix with an isotropic voxel size of 

0.4 mm. Low-frequency cupping artifacts were corrected using a previously-reported 

polynomial-fitting algorithm44. A previously-reported segmentation algorithm45 was then used 

to label each voxel in each breast CT image as either air, skin, adipose tissue, dense 

fibroglandular tissue, or sparse fibroglandular tissue, producing segmentation volumes which 

are perfectly aligned with the gray-scale images. 
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2.2.2. Patient study 

A total of 322 women were imaged on our first- and second-generation breast CT scanners 

as part of several IRB-approved clinical trials. Patients receiving a score of BIRADS 4 or 5 

based on their diagnostic breast examination were eligible to enroll in our studies. These 

patients eventually underwent breast biopsy, and the resulting pathology report was 

considered ground truth (benign or malignant). In our research imaging protocol, the breast 

CT scan took place just prior to the breast biopsy. For research scans involving contrast, pre- 

and post-contrast scans were acquired on both breasts. 100 mL of contrast agent 

(Omnipaque-350; GE Healthcare, Waukesha, WI)46 was intravenously injected at a rate of 4 

mL/sec using a power-injector. Post-contrast scanning in the affected breast began on 

average 90 seconds after the start of injection.  

Most patients received four breast CT scans according to contrast imaging protocol, 

but patients electing not to receive contrast and/or contralateral imaging received one to three 

scans. Of 913 total scans, 253 pre-contrast scans that were artifact-free, contained the breast 

in the field of view, and were void of breast implants were selected for this study. 

2.2.3. Relationship between iodine concentration and Hounsfield units 

Our study depends upon the assumption that HU and iodine concentration are linearly 

related47,48. This relationship was measured using spectral modeling. The breast CT system 

used to acquire patient data used an 80 kV tube potential with a 0.2 mm copper filter as 

described in Section 2.2.1. This spectrum was modeled using the tungsten anode spectral 

model using interpolating cubic splines (TASMICS) model49, and a thickness of 140 mm of 

soft tissue was added to the beam to simulate the attenuation (and beam hardening) of the 

median breast. The attenuation of 10 mm added thickness of water with various 
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concentrations of iodine (0, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 mg/mL) was simulated, 

allowing the estimation of the HU for each iodine concentration. Linear regression was used 

to compute the relationship between iodine concentration [I] and HU. An R2 value of 1.000 

was found. The spectral model demonstrated that [I] (mg/mL) is linearly related to HU. The 

linear relationship is given in Equation 2.1: 

𝐻𝑈 = 5.246	 × [𝐼]                       (2.1) 

2.2.4. Simulation of lesions 

2.2.4.1. Overview: Generation of hybrid lesion images 

The methodology for generating hybrid lesion images was described by Packard et al.40 and 

is summarized here. Mathematically generated lesions were inserted at random locations in 

patient breast CT images with the lesion centers (x, y, z) selected using a random number 

generator. A check was performed on the surrounding 64	 × 	64	 × 	64 voxels to ensure that 

the inserted lesion was fully contained within the breast parenchyma (adipose and 

fibroglandular tissue). Synthetic unenhanced lesions were inserted into these subvolumes. 

The resulting volume with the synthetic lesion, 𝑓!"#[𝑖, 𝑗, 𝑘] , is shown in Equation 2.2: 

𝑓!"#[𝑖, 𝑗, 𝑘] = 𝑓[𝑖, 𝑗, 𝑘] + 2∆𝐼 × 𝑀(𝑑$%[𝑖, 𝑗, 𝑘]) × 𝑀 8&
'
𝐷 − 𝑑()[𝑖, 𝑗, 𝑘];<  (2.2) 

where 𝑓[𝑖, 𝑗, 𝑘] is the breast CT volume and ∆𝐼  is the average difference in HU between 

adipose and fibroglandular tissue in the breast CT image. 𝑀(𝑑$%[𝑖, 𝑗, 𝑘])  is the tissue 

boundary modulation term, ranging from 0-1, which modulates based on 𝑑$%[𝑖, 𝑗, 𝑘] , the 

distance to the nearest tissue boundary from voxel [𝑖, 𝑗, 𝑘]. D is the lesion diameter, 𝑑&'[𝑖, 𝑗, 𝑘] 

is the distance to the lesion center from voxel [𝑖, 𝑗, 𝑘], and 𝑀((
)
𝐷 − 𝑑&'[𝑖, 𝑗, 𝑘]) is the lesion 
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boundary modulation term, also ranging from 0 - 1, which blurs the lesion edges based on 

the distance to the nearest lesion boundary from voxel [𝑖, 𝑗, 𝑘]. Both modulation functions are 

determined on a patient data set basis by mathematically modeling the edge roll-off at 

adipose/fibroglandular tissue boundaries to ensure that the resolution of the added lesion 

matches the resolution of the background breast CT image. 

After a lesion is inserted into the 3D volume, a 64	 × 	64	 × 	1 image of the lesion is 

generated by either extracting the center slice of the 3D volume for 0.4 mm slice thickness or 

by slice averaging across multiple adjacent slices. 

2.2.4.2. Synthetic contrast enhancement 

 

 

 

 

 

 

It has been observed in unenhanced breast CT images that when a lesion infiltrates a region 

of fibroglandular tissue, it does not change the attenuation coefficient of the native 

fibroglandular region40,50. However, when the unenhanced lesion extends into a region of 

adipose tissue, it increases the attenuation coefficient of that region to essentially match the 

Figure 2.1: Pre-contrast (a) and post-contrast (b) coronal breast CT images of invasive 
mammary carcinoma. Local enhancement is visible in the post-contrast image. 
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intensity of the native fibroglandular tissue. In iodinated contrast imaging, the same process 

is observed, but the attenuation coefficients of both fibroglandular and adipose regions are 

further increased to the same value such that the entire lesion is enhanced. Figure 2.1 

displays pre- and post-contrast images for one patient from our study with an enhancing 

invasive mammary carcinoma, where these phenomena can be observed. These 

observations inform our methodology for simulating contrast enhancement: after unenhanced 

lesions are mathematically inserted into breast subvolumes, each voxel within the spherical 

lesion boundary is enhanced to simulate contrast uptake. While there are BI-RADS lexicons 

describing enhancing lesions in terms of shape, spiculation, and enhancement pattern, our 

simple addition of a spherical, uniformly enhancing lesion does not attempt to simulate these 

clinical features. 

The extent to which each lesion is enhanced was investigated. Leaky vasculature 

resulting from angiogenesis is known to be the primary cause of rapid local enhancement in 

malignant tumors. We hypothesized that enhancement could also be patient-dependent, and 

examined potential relationships between contrast enhancement and patient-specific factors. 

22 patients from our data set who had biopsy-proven malignant mass lesions and received 

pre-contrast and post-contrast imaging were studied. For each lesion, contrast enhancement 

was quantified by computing the increase in HU (ΔHU) in the lesion between the post-contrast 

and pre-contrast images. The effects of tumor volume, differential glandular intensity (ΔI), and 

contrast delay, i.e., the time between the start of contrast injection until post-injection 

scanning, on ΔHU were investigated. In addition, the effect of patient size in terms of body 

mass index (BMI) was studied to determine potential dependencies on these parameters.  

No notable relationships were found between ∆HU and tumor volume (R2 = 0.0253), 

ΔI (R2 = 0.163), contrast delay, or BMI (R2 = 0.0406). It was concluded that	∆HU	is primarily 
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related to the extent of angiogenesis and the permeability of angiogenetic microvessels in 

any given tumor. With this observation, the method for enhancing lesions was simplified such 

that each voxel within the simulated lesion would increase by ∆𝐻𝑈888888, the mean enhancement 

observed in the 22-patient lesion cohort. The mean enhancement ∆𝐻𝑈888888 was found to be 76.0, 

and the standard deviation 𝜎  was 33.5. The equivalent iodine concentrations based on 

Equation 2.1 are 14.5 mg/cm3 and 6.39 mg/cm3, respectively.  

The resulting equation for simulating contrast-enhanced lesions is shown in Equation 

2.3: 

 

where ∆𝐻𝑈888888 = 76.0, the mean enhancement observed in the clinical data set of malignant 

lesions and a is a scaling term to study the effect of different amounts of contrast on lesion 

detectability. Five different values of a	were studied: 0, 0.25, 0.50, 0.75, 1. The corresponding 

HUs are 0, 19.0, 38.0, 57.0, and 76.0, respectively, and the equivalent iodine concentrations 

in mg/cm3 are: 0.0, 3.6, 7.2, 10.9, and 14.5, respectively. In addition to contrast level, the 

effects of lesion diameter, section thickness, breast density, and view plane on lesion 

detectability were also studied. Six different lesion diameters (1, 3, 5, 9, 11, 15 mm) and six 

different section thicknesses (0.4, 1.2, 1.9, 3.5, 5.8, 19.8 mm) were used. The selected lesion 

diameters represent the size range of mass lesions found over 322 clinical breast CT images. 

Microcalcifications were not simulated for this study. Data sets spanning a broad range of 

known breast densities were used to address the role of breast density. 

Breast density was quantified in terms of the volumetric glandular fraction (VGF), 

which is defined as: 

 
𝑓!"#[𝑖, 𝑗, 𝑘] = 𝑓[𝑖, 𝑗, 𝑘] + =(∆𝐼 × 𝑀(𝑑$%[𝑖, 𝑗, 𝑘])) + (a × ∆𝐻𝑈@@@@@@)A × 𝑀=𝐷 2B −

							𝑑()[𝑖, 𝑗, 𝑘]A   (2.3) 
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𝑉𝐺𝐹 = 	 **
**	,	*+

													            (2.4) 

where ng represents the number of fibroglandular voxels and na represents the number of 

adipose voxels in the segmentation volume of the breast. VGF was computed for each patient 

and then categorized into one of six bins (0-10%, 11-20%, 21-30%, 31-40%, 41-50%, >50%). 

2D images were generated from the coronal and axial view planes to study the role of view 

plane. The range of parameters studied herein is summarized in Table 2.1. 

 

 

Table 2.1: Range of each parameter studied: alpha (equivalent iodine concentration listed in 
italics), lesion diameter, section thickness, and view plane. 
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Examples of inserted non-contrast (a = 0) and contrast-enhanced (a = 1) lesions are shown 

in Figure 2.2. In the added lesion columns, a black voxel signifies 0 HU was added to that 

region, a gray voxel signifies ∆𝐼	HU was added to that region, and a white voxel signifies ∆𝐼 +

(a	 × 	∆𝐻𝑈888888) was added to that region. As described in Equation 2.3, each computed voxel 

was additionally modulated by 𝑀  depending on its distance to the nearest 

adipose/fibroglandular tissue boundary and to the nearest lesion boundary to ensure 

smoothness of edges. 

Figure 2.2: Example image patches of (a) simulated unenhanced lesions in breast 
background and (b) simulated contrast-enhanced lesions in breast background. In 
unenhanced lesions, intensity is only added to adipose regions. In contrast-enhanced lesions, 
intensity is added to both adipose and fibroglandular regions, with more intensity being added 
to adipose regions.  
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2.2.5. Model observer for detectability evaluation 

In the ideal scenario, human observers (e.g., expert breast imaging radiologists) would be 

used evaluate the detectability of simulated lesions. Given that we study the independent and 

codependent effects of the parameters listed in Table 2.1 across 253 patient data sets, at 

least 91,080 hybrid images would need to be evaluated, making a human observer study 

infeasible. Accordingly, a pre-whitened matched filter (PWMF)32,51, a mathematical observer, 

was used to evaluate the detectability of simulated lesions in a signal known exactly (SKE), 

location known exactly (LKE) detection study. The PWMF is considered the ideal observer 

under the assumption of a stationary Gaussian image background and has been shown to 

outperform human observers in breast CT images52. In an SKE/LKE task, the shape of the 

signal is known, and the location of the lesion is known exactly, and the PWMF makes use of 

the signal profile and image power spectrum to compute a decision variable which is used to 

evaluate detectability. Packard et al. also utilized a PWMF in lieu of human observers to 

evaluate detectability of simulated unenhanced lesions across clinically relevant parameters 

in previous work40. While the PWMF may not be perfectly accurate with respect to human 

observers, its relative performance is considered reliable in this comparative analysis across 

clinically relevant parameters.  

To implement the PWMF, the mean signal profile and the power spectrum of the image 

background must first be computed. For each breast CT volume data set, for a given 

combination of contrast level, lesion diameter, section thickness, and view plane, N viable 

lesion centers are first found, which are used to compute N  64	 × 	64	 × 	1 lesion-present 

patches and N  64	 × 	64	 × 	1 lesion-absent patches. A patch generated with an added lesion 

is denoted as 𝐼,-(𝑥, 𝑦) and a patch generated at the same lesion center without an added 

lesion is denoted as 𝐼,.(𝑥, 𝑦), where n represents the nth lesion. The mean signal across the 
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N lesion-present and N lesion-absent patches is denoted as 𝐼-888(𝑥, 𝑦)  and  𝐼.888(𝑥, 𝑦) , 

respectively, and the mean signal profile between them is defined as: 

𝑆̅(𝑥, 𝑦) = 	 𝐼,@@@(𝑥, 𝑦) −	𝐼-@@@(𝑥, 𝑦)                (2.5) 

∆𝐼,.(𝑥, 𝑦) is defined by: 

∆𝐼*-(𝑥, 𝑦) = 𝐻[𝑥, 𝑦] × (𝐼*-[𝑥, 𝑦] −	𝐼-@@@[𝑥, 𝑦])                  (2.6) 

where 𝐻[𝑥, 𝑦] is defined as the inner product of two 1-D Hamming filters53 and serves to 

mitigate artifacts arising from the cyclic nature of the discrete Fourier transform by attenuating 

the difference as it approaches the edge of the image51,54. 𝐼,.[𝑥, 𝑦]	represents the lesion-

absent patch at the nth lesion, and 𝐼.888[𝑥, 𝑦]  represents the average of all lesion-absent 

patches. The mean noise power spectrum in Fourier space is computed from the lesion-

absent patches as follows: 

𝑃𝑆@@@@=𝑓., 𝑓/A = 	
&

0-&
∑ L∆𝐼*-M(𝑥, 𝑦)L

'0
*1&             (2.7) 

where 𝑁 − 1  represents the loss of one degree of freedom since ∆𝐼,.(𝑥, 𝑦)  involves a 

subtraction, and the caret represents the 2D Fourier transform. By characterizing the 

frequency dependence of the anatomical background in Equation 2.7, dividing by this 

frequency dependence flattens the resulting frequency dependence, which is the “whitening” 

part of the PWMF observer. The PWMF in the spatial domain is then defined as: 

𝑤[𝑥, 𝑦] = 𝐹𝑇-& P 2${4̅(.,/)}
:4;;;;<=/,=0>,?

Q      (2.8) 

where 𝐹𝑇  represents the 2D Fourier transform, 𝐹𝑇.(  represents the 2D inverse Fourier 

transform, and R is a regularization constant used to mitigate high frequency noise in the 

filter. R was empirically determined to be 106. Figure 2.3 shows the mean signal 𝑆̅(𝑥, 𝑦), the 
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2D PWMF, and a surface-contoured plot of the PWMF for a 15 mm lesion. We observe that 

the PWMF weights intensities at the lesion boundary. 

 

2.2.6. PWMF performance evaluation 

The PWMF was then used to detect lesions in a separate set of hybrid breast CT image 

patches as a signal known exactly, location known exactly detection task. The PWMF was 

applied to each patch to compute a scalar valued decision variable 𝜆,. For each breast CT 

volume data set, N unique viable lesion centers were first generated using a random number 

generator. For each lesion center and combination of parameters, a lesion-present patch 

𝐼,-[𝑥, 𝑦] was generated by the lesion insertion process. For that lesion center, the decision 

variable 𝜆, is the sum of the pixel intensity of the image patch 𝐼,[𝑥, 𝑦] weighted by the PWMF, 

𝑤[𝑥, 𝑦]:  

Figure 2.3: Computation of PWMF. The leftmost column shows the mean signal of N inserted 
15 mm unenhanced lesions. The center column shows the 2D PWMF for the same lesion 
size. A surface contoured plot of the PWMF is shown in the rightmost column. The PWMF 
weights intensities at the lesion boundary. 

         Mean Signal     PWMF           PWMF (Surface Contoured) 
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𝜆*	= ∑ 𝐼*[𝑥, 𝑦] × 𝑤[𝑥, 𝑦].,/         (2.9) 

𝑁 additional unique lesion centers were then found and used to compute 𝑁 lesion-absent 

decision variables using Equation 2.9. Independent lesion centers were generated between 

the sets of lesion-present and lesion-absent patches so as not to correlate the decision 

variables. The decision variables were plotted on a histogram as depicted in Figure 2.4 and 

converted to an empirical receiver operating characteristic (ROC) curve55 by plotting 

sensitivity and false positive rate over a range of detection thresholds. For each ROC curve, 

the area under the ROC curve (AUC) was computed, where the AUC characterizes the 

detectability performance of that combination of parameters on that specific patient breast CT 

image. To get an estimate of the overall detectability related to a combination of parameters, 

the individual AUCs were averaged over the K image volumes (K = 253). The standard 

deviation of AUCs was also computed.  
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2.2.7. Statistical analysis 

Performance estimates were plotted with 95% confidence error bars in Section 2.3, which 

are given by the following equation: 

𝐶𝐼@A = 𝐴𝑈𝐶@@@@@@ ± 1.96 ×	 B
√D

      (2.10) 

where 𝐶𝐼12  is the 95% confidence interval, 𝐴𝑈𝐶888888  is the mean AUC across all breast CT 

images, 𝜎 is the standard deviation of AUCs across all breast CT images, and K is the number 

of image volumes. Confidence intervals are plotted to represent uncertainty in the plots.  

In Section 2.3, the improvement in average detectability performance, ∆𝐴𝑈𝐶888888, is computed 

between detectability estimates in contrast-enhanced ( 𝛼	 = 	1)	 and unenhanced plots 

(𝛼	 = 	0)	using Equation 2.11: 

Figure 2.4: Example PWMF response histogram for one breast. PWMF responses (i.e., 
decision variables) are computed and distinguished between input patches with lesions 
(“Lesion”) and without lesions (“Non-lesion”). Responses are used to generate the ROC 
curve, which can be used to compute the AUC.	



 22 

∆𝐴𝑈𝐶@@@@@@ = 𝐴𝑈𝐶@@@@@@EF*GHI!G-J*KI*EJL −	𝐴𝑈𝐶@@@@@@M*J*KI*EJL    (2.11) 

The percent increase is then calculated using Equation 2.12, recognizing that detection 

performance is 0% when 𝐴𝑈𝐶	 = 	0.5, and detection performance is 100% when 𝐴𝑈𝐶	 = 	1.0. 

%	𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 100	 × 	∆OP)
;;;;;;
Q.A

        (2.12) 

The percent increase serves as a metric of improvement using contrast enhancement and is 

used to observe trends in the study across clinical parameters. For all comparative tests, a 

non-parametric approach is taken using the Mann-Whitney U-test. Statistical significance is 

defined as a difference with 𝑝	 < 	 .05. When multiple comparisons are made, a Bonferroni 

correction was applied by dividing the desired significance (0.05) by the number of 

comparisons. All tests were two-sided. Statistical analyses were performed in MATLAB 

(MATLAB; TheMathWorks Inc., Natick, MA). 

2.2.8. Number of inserted lesions, N 

N is the number of lesions used to compute the mean signal profile in Equation 2.5, the mean 

noise power spectrum in Equation 2.7, and the PWMF response histogram for each image. 

Packard et al. used 𝑁	 = 	500 . Due to the computationally expensive process of lesion 

simulation, the feasibility of reducing N was investigated. Detectability estimates for 1- and 5- 

mm unenhanced lesions in the thinnest section were generated for N = 10, 25, 50, 100, 200, 

300, 400, and 500. Each detectability estimate (AUC) was repeated ten times to infer error. 

Two-sided Student’s t-tests were used to determine whether differences in detectability 
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estimates using different N’s were statistically significant. Mean AUCs were plotted as a 

function of the number of inserted lesions, N, in Figure 2.5. 

For both 1- and 5-mm lesions, it was found that when N is less than 100, there is notable 

fluctuation and larger error when estimating AUC. As N increases, error steadily decreases, 

and AUC estimates begin to converge. Based on Figure 2.5, we determined that reducing N 

to 200 could be used to reduce computational time but still provide an accurate estimation of 

detectability with high precision. The differences in performance estimates using N = 500 and 

N = 200 were not statistically significant (𝑝 = 	 .117, 𝑝	 = 	 .351  for 1- and 5-mm lesions, 

respectively). 

 

 

Figure 2.5: Effect of number of inserted lesions, N, on AUC estimation for (a) 1 mm lesion 
and (b) 5 mm lesion. Detectability estimates were repeated ten times for N = 25, 50, 100, 
200, 300, 400, and 500. The mean AUC was plotted for each N. Shaded regions correspond 
to 95% confidence interval for each estimate. 
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2.3. Results 

2.3.1. Model validation 

Detection performance for unenhanced lesions was plotted against similar results from 

Packard et al. in Figure 2.6. Performance estimates for 1-, 5-, and 15-mm diameter lesions 

averaged over all breast densities are plotted as a function of section thickness. Notably, our 

results are of the axial view plane only, while Packard et al.’s results are averaged over three 

views planes: coronal, axial, and sagittal. There were differences between the projection 

planes that likely explain the differences between the two data sets. Moreover, our data set 

contained 253 image volumes, and Packard utilized 151 image volumes. Considering the 

differences between the studies being compared, there is reasonable agreement between 

trends observed in this study and Packard et al.’s.  
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2.3.2. Effects of contrast enhancement 

Detection performance was averaged across all breast densities (i.e., VGFs) and both view 

planes and plotted as a function of contrast level (𝛼) for three lesion sizes in Figure 2.7. As 

expected, contrast injection improved detection performance for all lesion sizes (1 mm: 𝑝 <

.01; 5 mm: 𝑝 < .01; 15 mm: 𝑝 < .01). For the 1 mm lesion, detection performance steadily 

improved by 20% from 𝐴𝑈𝐶	 = 	0.85 with no contrast enhancement (𝛼	 = 	0) to 𝐴𝑈𝐶	 = 	0.95 

at full contrast enhancement (𝛼	 = 	1). 

Figure 2.6: Model validation. AUC is plotted as a function of section thickness for 1-, 5-, and 
15-mm lesions in the axial view plane. Results from this study are compared with results 
from the reference study (Packard et al). Shaded regions correspond to 95% confidence 
interval for each estimate. 
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2.3.3. Effects of section thickness 

Detection performance was averaged across all breast densities (i.e., VGFs) and both view 

planes and plotted as a function of section thickness for six lesion sizes in Figure 2.8. Figure 

2.8a displays performance estimates for unenhanced lesions (𝛼	 = 	0). The thinnest section 

(0.4 mm) may not be the ideal section thickness for unenhanced lesion detection. For the 1 

mm lesion, detection performance rises to a mild peak around 1.2 mm thickness as section 

thickness increases before falling off more rapidly. For larger lesions, detection performance 

is generally unaffected as section thickness increases up until thickness reaches 5.8 mm, 

where performance begins to decrease.  

 Figure 2.8b displays performance estimates for contrast-enhanced lesions (𝛼 = 	1). 

Detection performance improves for contrast-enhanced lesions across all section thicknesses 

and lesion sizes (family-wise 𝑝 < .01). With contrast, detection improves approximately 5-

Figure 2.7: Effect of contrast levels. AUC is plotted as a function of contrast level 𝛼 for 1-, 5-, 
and 15-mm lesion sizes. Shaded regions correspond to 95% confidence interval for each 
estimate. 
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20% until maximum detection performance (i.e., AUC = 1) is reached. When section thickness 

is less than 2 mm, the AUC estimate for contrast-enhanced lesions greater than 1 mm in 

diameter is approximately 1.0. 

 

2.3.4. Effects of lesion size 

Detection performance was averaged across all breast densities (i.e., VGFs) and both view 

planes and plotted as a function of lesion diameter for a thin section (0.4 mm) and a thick 

section (19.8 mm) in Figure 2.9. As might be expected, larger lesions are uniformly easier to 

detect than smaller lesions in both thin and thick sections. Detection performance improves 

for contrast-enhanced lesions across lesion size and section thickness (family-wise 𝑝 < .01). 

Figure 2.8: Effects of section thickness in (a) unenhanced lesion detection and (b) contrast-
enhanced lesion detection for six lesion sizes. Shaded regions correspond to 95% confidence 
interval for each estimate. 
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When contrast is used, detection performance improves up to 20% (until AUC à 1) across 

lesion diameter for both thin and thick sections. 

 

2.3.5. Effects of breast density 

The distribution of patient breast densities from our patient data set is shown in Table 2.2: 

 

Figure 2.9: Effects of lesion size. (a) Performance estimates for unenhanced lesions (𝛼	 =
	0) in the thinnest (0.4 mm) and thickest sections (19.8 mm). (b) Performance estimates for 
contrast-enhanced lesions (𝛼	 = 	1) for the thinnest (0.4 mm) and thickest (19.8 mm) sections. 
Shaded regions correspond to 95% confidence interval for each estimate 

Table 2.2: Distribution of breast densities from patient data set, represented by volumetric 
glandular fraction (VGF). 
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A small fraction of patients (3/253 patients, 1.2%) had primarily fatty breasts (VGF ≤ 10%), 

and a small fraction of patients (10/253 patients, 3.9%) had very dense breasts (VGF > 50%). 

The remaining patients (240/253 patients, 94.9%) had low to moderately dense breasts 

ranging from 11-50% glandularity. Detection performance was averaged across all section 

thicknesses and both view planes and plotted as a function of VGF for three lesion sizes.  

 Effects of breast density on detection performance can be observed in Figure 2.10. 

Figure 2.11 displays improvement in detectability with contrast injection in terms of ∆𝐴𝑈𝐶 

and percent increase. For patients with VGF ≤ 40%, detection performance improves up to 

20% (until AUC à1), and for patients with denser breasts (VGF > 40%), detection performance 

improves more drastically, ranging from 20-80% for 1- and 5-mm lesions. There is no 

statistically significant difference in detection performance for a 1 mm lesion in a fatty breast 

with and without contrast (VGF ≤ 10%; 𝑝 = 0.4). For every other breast density category, the 

improvement in detection performance for the 1 mm lesion with and without contrast is 

statistically significant (11-20%: 𝑝 < 	 .01; 21-30%: 𝑝 < .01; 31-40%: 𝑝 < .01; 41-50%: 𝑝 <

.01; >50%: 𝑝 < .01). 
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Figure 2.10: Effects of breast density. (a) Performance estimates for unenhanced lesions 
(𝛼	 = 	0) for three lesion sizes. (b) Performance estimates for contrast-enhanced lesions 
(𝛼	 = 	1) for three lesion sizes. Shaded regions correspond to 95% confidence interval for 
each estimate. 

Figure 2.11: Improvement in detectability (∆𝐴𝑈𝐶) between contrast-enhanced lesions and 
unenhanced lesions for three lesion sizes as a function of VGF. Equivalent percent increase 
is denoted on the right vertical axis. 
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2.3.6. Effects of view plane 

Effects of view plane on lesion detectability can be observed in Figure 2.12. Detection 

performance was averaged across all breast densities (i.e., VGFs) and plotted as a function 

of section thickness for 1- and 5-mm lesions viewed in the coronal and axial planes.  

Equivalent or greater detection performance is achieved using the axial view 

compared to the coronal view for all section thicknesses, both lesion sizes, and with and 

without contrast. For the 1 mm unenhanced lesion, there is no statistically significant 

difference in detection performance between axial and coronal views using 0.4 mm section 

thickness (𝑝	 = 	0.61). For thicker sections, the axial view outperforms the coronal view (z = 

1.2 mm: 𝑝 < .01; z = 1.9 mm: 𝑝 < .01; z = 3.5 mm: 𝑝 < .01; z = 5.8 mm: 𝑝 < .01; z = 19.8 mm: 

𝑝 < .01). For the 5 mm unenhanced lesion, there is no statistically significant difference in 

detection performance between axial and coronal views using section thicknesses of 0.4 mm 

(𝑝	 = 	0.45), 1.2 mm (𝑝	 = 	0.54), 1.9 mm (𝑝	 = 	0.65), and 3.5 mm (𝑝	 = 	0.15). The axial view 

outperforms the coronal view at thicker sections (z = 5.8 mm: 𝑝 < 	 .01; z = 19.8 mm: 𝑝 < 	 .01). 

Contrast injection improves detection performance approximately 20% (∆𝐴𝑈𝐶	 = 	0.1) for both 

lesion sizes across all section thicknesses. 
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2.4. Discussion 

We sought to quantify improvement in lesion detectability due to contrast enhancement 

across lesion diameter, section thickness, breast density, and view plane. Figure 2.7 shows 

the effect of contrast level on lesion detectability. At full contrast ( 𝛼 = 	1 )., detection 

performance improves up to 20% (until AUC à1) from unenhanced detection performance. 

Similar improvement is also observed when visually comparing unenhanced and contrast-

enhanced plots in Figures 2.8, 2.9, and 2.12. A larger improvement in detection performance 

is observed in Figure 2.10 when stratifying patients based on breast density. In unenhanced 

breast CT, we observe that lesion detectability has dependencies on patient breast density. 

The AUC for unenhanced lesions in patients with mostly fatty breasts (VGF < 20%) exceeds 

Figure 2.10: Effects of view plane on lesion detectability. (a) Detection performance for 
unenhanced 1 mm and 5 mm lesions (𝛼	 = 	0) viewed in coronal and axial planes. (b) 
Detection performance for 1 mm and 5 mm contrast-enhanced lesions (𝛼	 = 	1) viewed in 
coronal and axial planes. 
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0.9, while the AUC for unenhanced lesions in patients with very dense breasts (VGF > 50%) 

ranges from 0.55 – 0.70. With contrast, AUC exceeds 0.9 for all lesion sizes across all breast 

densities. In effect, when using injected contrast, lesion detectability becomes only slightly 

dependent on breast density.  

Section thickness is an important factor when displaying tomographic images, but not 

the only one. Image acquisition and reconstruction methods, kernel size in filtered 

backprojection, and reconstructed voxel size also matter, and the tradeoff between image 

resolution and image noise is well known. Therefore, it is hard to determine a universal 

optimal section thickness for displaying breast CT. Aside from very thin sections, detection 

performance generally decreases as section thickness increases, as might be expected. 

Thicker sections often suffer from superposition of fibroglandular anatomy which can obscure 

lesions and reduce detectability. This is the primary limitation of 2D projection imaging 

modalities such as mammography or tomosynthesis. Reduced detectability is more 

pronounced in denser breasts compared to fatty breasts since more fibroglandular tissue is 

superimposed40, therefore, optimal section thickness is also dependent on breast density. For 

this reason, we have built our in-house breast CT viewer to enable the reader to adjust the 

display slice thickness in all three projections simultaneously in real-time. For the general 

breast CT system, a middle ground between selecting an overly thin slice at the cost of 

quantum noise and an overly thick slice at the cost of anatomical noise should be found. 

Intravenous contrast appears to improve detection performance around 20% on average and 

may compensate for losses in detection performance due to selecting an overly thin or overly 

thick section. 

In Section 2.3.6 it was determined that equivalent or greater detection performance 

is achieved using the axial plane compared to the coronal plane across clinical parameters. 
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In a previous study, Packard et al. demonstrated that the sagittal view performed very 

similarly to the axial view, which is expected as the breast is approximately radially 

symmetrical along the anterior-posterior line. For this reason, we only evaluated the two view 

planes and averaged other parameters across these two view planes. In our validation study 

in Section 2.3.1, there are differences between Packard’s performance estimates and ours, 

although both curves take on similar trends. The improved detection performance for the 1 

mm lesion in our study may be due to advanced image reconstruction techniques18 that were 

used in this study but not in Packard et al.’s study. These techniques enabled sharper image 

resolution which in turn improved the added lesion resolution, since the added lesion 

boundaries were blurred to match the resolution of the patient image. The improved resolution 

appears to be more impactful when detecting smaller lesions, i.e., 1 mm lesions. Another 

likely reason for these differences is the differences in patient data sets since Packard used 

a 151-patient data set, and a 253-patient data set was used in this study. Despite the axial 

view performing better for lesion detection, breast CT images are traditionally viewed in the 

coronal plane, or with all three orthogonal views on the same display. In clinical practice, 

radiologists tend to view breast CT images in thin sections, therefore, differences in 

detectability between the two views are likely to be minor. 

 This study had limitations. The patient images used to generate hybrid images 

contained pre-contrast images of the affected breast. It is possible that some lesion-absent 

ROIs contained real mass lesions, but these instances were likely few given the small relative 

size of a mass lesion compared to the volume of a breast in pendant position. Furthermore, 

AUC was averaged over 400 ROIs across 253 images, therefore, any bias introduced by 

individual ROIs containing mass lesions was likely mitigated by averaging procedures. Breast 

cancer presents as both masses and microcalcifications, but only mass lesions were 
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simulated in this study. Partial volume effects appear to influence lesion detectability as mass 

lesions become very small. In this study, partial volume was modeled using a single 

modulation function, 𝑀, independent of lesion size. It is possible that this function may have 

been insufficient to fully model partial volume effects for the 1 mm diameter lesion. Only 

malignant masses from our clinical contrast-enhanced breast CT data set were studied for 

enhancement calibration, but benign masses are known to minimally enhance as well35. The 

methodology for adding contrast was simplified in this study such that each voxel within the 

inserted lesion was uniformly enhanced. In clinical images, enhancing lesions can appear 

more visibly heterogenous, particularly for lesions containing microinvasions of ductal 

carcinoma in situ (DCIS), cysts, or distortions. Furthermore, a simple SKE/LKE detection task 

was implemented such that the PWMF fixed the signal profile and did not take lesion shape 

into consideration. Accordingly, a spherical lesion was inserted in 3D, although in reality, 

lesions vary in shape and size. Lesion phenotypes that are known to indicate malignancy, 

e.g., spiculations, were not simulated in this study. Furthermore, despite the simplifications of 

fixing an SKE signal, it has been shown that the PWMF models optimal detection 

performance and is similar to human detection performance52. For the purpose of modeling 

human observers, it appears that the PWMF model is useful. 

2.5. Conclusion 

Contrast enhancement was simulated for synthetic spherical lesions, and enhancement 

levels were calibrated based on 22 malignant masses from our clinical contrast-enhanced 

breast CT data set. In this model observer study, the improvement in detection due to contrast 

injection was quantified across breast density, lesion size, view plane, and section thickness. 

Small lesions are generally harder to detect in dense breasts, but these results suggest that 

injected contrast can substantially improve detection performance in dense breasts. Optimal 
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section thickness for detectability has dependencies on breast density and lesion size, 

therefore, display thickness should be adjusted in real-time using display software. 

 For emerging diagnostic tools like contrast-enhanced breast CT, it is important to 

optimize imaging protocols for lesion detection. These findings are not only useful for the 

optimization and development of contrast-enhanced breast CT but may also be relevant in 

other x-ray-based breast imaging modalities such as contrast-enhanced breast 

tomosynthesis56 and dual energy contrast-enhanced mammography57.  
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Chapter 3: Pre-whitened matched filter and convolutional neural 

network-based model observer performance for mass lesion detection 

in non-contrast breast CT 

3.1. Introduction 

Breast computed tomography (CT) is a relatively new breast imaging modality based upon 

cone-beam CT geometry16,58, or helical CT geometry59. While a number of human observer 

studies have been published on the performance of breast CT16,30,60, such studies can be 

limited when assessing a large number of images, which is often the case when fine-tuning 

an imaging system or identifying optimal parameter settings for lesion detectability. 

Mathematical model observers have been shown to reasonably predict human observer 

performance32,33, and are useful when human observer studies are infeasible20. Recently, 

convolutional neural networks (CNNs) have also been used as substitutes for human 

observers61,62, where they are referred to as anthropomorphic models. Studies have shown 

that appropriately trained CNNs have utility as an optimal observer, the so-called ideal 

observer27,63,64. Ideal observers are useful for assessing how much diagnostic information is 

contained in an image in advance of processing or display effects that make this information 

accessible to human observers65–67.  

In this study, a CNN model observer is compared to a more conventional ideal-

observer model, the pre-whitened matched filter (PWMF). The PWMF has an appealing 

definition that involves the signal to be detected as well as the texture of the image 

background, as specified by the power spectrum. The PWMF is known to be an optimal 

detection filter for images with variability that is described by a stationary Gaussian 

distribution65,68,69 and it is related to image-quality measures like noise-equivalent quanta and 
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detective quantum efficiency.  However, it has been demonstrated that breast CT images are 

not Gaussian distributed70, and so it is not clear that the PWMF represents an ideal observer 

in this case. This means that it may be possible that the PWMF is systematically missing 

diagnostic information in breast CT images and may therefore underestimate optimal 

performance across patient and imaging factors. 

Neural networks71 have been suggested as a way to implement the ideal observer 

when the analytical approach of defining a likelihood ratio is not feasible, and more recently 

CNNs specifically have been evaluated for this purpose72,73.  This general approach is based 

on the flexibility of the network architecture and the ability to train the model on samples of 

data rather than derive accurate probabilistic models of images with complex non-Gaussian 

statistical properties. Flexible network architectures allow the network models to extract 

image information that may not be accessible to a model like the PWMF that is constrained 

to be linear.  

The field has generally found that network models are capable of higher performance 

than an optimal linear filter like the PWMF, and this includes recent studies by Baek and 

colleagues74–76 using synthetic breast CT images with simulated anatomical backgrounds.  In 

this report, we seek to extend these results to breast CT images acquired from patients for 

the task of detecting a simulated lesion that is embedded in real anatomical background. This 

is, to our knowledge, the first comparison between CNNs and mathematical model observers 

in breast CT images with real anatomical backgrounds, and may provide a more accurate 

assessment of the model observers when applied to breast CT. This detection paradigm has 

been studied previously using the PWMF21,40, and was found useful for understanding how 

detection performance is dependent on the interaction between lesion diameter and section 

thickness. 
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This study involves a data set of 322 patient breast CT images acquired at the UC 

Davis Medical Center under an IRB approved protocol16,60. We also investigate Gaussian 

images matched to the mean and power-spectrum of the breast CT images. This allows us 

to implement our particular CNN in an imaging condition where the PWMF is known to be an 

ideal observer.  If the CNN is able to closely approximate the ideal observer, then we have 

some confidence that the architecture and training process is adequate for comparing 

performance more generally.  In the breast CT images, we compare the CNN to the PWMF 

across lesion diameter, slice thickness, and breast-density categories. 

3.2. Methods 

3.2.1. Image generation 

3.2.1.1. Insertion of lesions into breast background 

Spherical lesions were mathematically inserted into reconstructed patient breast CT image 

volumes to mimic 3D mass lesions in breast parenchyma. Human breast CT images were 

acquired at the UC Davis Medical Center under IRB-approved clinical trials which recruited 

patients receiving BIRADS 4 or 5 on their breast screening exams16,60. Enrolled patients were 

scanned on prototype breast CT scanners18 developed in our laboratory. All patients 

subsequently underwent biopsy to yield the ground truth diagnosis for suspicious lesions as 

benign or malignant. Of the four existing iterations of prototype breast CT scanners, the first 

two scanners, which are very similar in design, were used to scan a total of 322 women. From 

this cohort we selected 253 image volume data sets for this study on the basis of not 

containing artifacts and not involving contrast-imaging. Each volume data set contained 300-

500 reconstructed slices (512 × 512 matrix size) with isotropic voxel sizes of 0.4 mm.  
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 A previously published method developed by Packard et al.40 was used to insert 

spherical lesions into breast CT images and is briefly detailed here. Let 	 𝑓[𝑖, 𝑗, 𝑘]  be a 

reconstructed breast CT image volume and 𝑠[𝑖, 𝑗, 𝑘] be a segmented version of 𝑓[𝑖, 𝑗, 𝑘], 

where each voxel is segmented as adipose tissue, fibroglandular tissue, skin, or air. 𝑠[𝑖, 𝑗, 𝑘] 

is used to compute 𝑇𝐵[𝑖, 𝑗, 𝑘], a binary volume identifying tissue boundaries (TB) in the breast, 

and having a value of 1 for every voxel segmented as fibroglandular tissue but having one of 

its six adjacent voxels (in 3D) segmented as adipose tissue, and 0 for all other voxels. 

𝑇𝐵[𝑖, 𝑗, 𝑘] is used to compute 𝑑$%[𝑖, 𝑗, 𝑘], the distance from every voxel to the nearest tissue 

boundary identified in 𝑇𝐵[𝑖, 𝑗, 𝑘] . 𝑑$%[𝑖, 𝑗, 𝑘]  is signed such that it is positive for voxels 

segmented as adipose tissue and negative for voxels segmented as fibroglandular tissue.  

Let the index location [𝑖&' , 𝑗&' , 𝑘&'] be a randomly generated lesion center “LC” where 

the lesion is to be inserted. The lesion location [𝑖&' , 𝑗&' , 𝑘&']  is kept if the surrounding 

64	 × 	64	 × 	64 volume is fully contained within the patient breast and does not contain skin; 

otherwise, the lesion center coordinates are re-generated. Let D be the diameter of the lesion 

to be inserted and 𝑑&'[𝑖, 𝑗, 𝑘] be the distance from each voxel to lesion center [𝑖&' , 𝑗&' , 𝑘&']. 

The distance to the nearest lesion boundary 𝑑&%[𝑖, 𝑗, 𝑘] is then defined as: 

𝑑(%[𝑖, 𝑗, 𝑘] =
&
'
𝐷 − 𝑑()[𝑖, 𝑗, 𝑘]                (3.1) 

and is positive for voxels within the spherical lesion and negative for voxels outside the 

spherical lesion. Let ∆𝐼  be the mean differential intensity between all fibroglandular and 

adipose voxels in the image. Then, the resulting image volume with the inserted spherical 

lesion 𝑓!"#[𝑖, 𝑗, 𝑘]	is: 

𝑓!"#[𝑖, 𝑗, 𝑘] = 𝑓[𝑖, 𝑗, 𝑘] + =∆𝐼 × 𝑀(𝑑$%[𝑖, 𝑗, 𝑘]) × 𝑀(𝑑(%[𝑖, 𝑗, 𝑘])A    (3.2) 
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Intensity is added on a voxel-by-voxel basis in order to preserve the native image noise. 

Outside of the spherical lesion, the added term becomes zero. The added intensity at each 

voxel is modulated by 𝑀(𝑑$%[𝑖, 𝑗, 𝑘]), the tissue-boundary modulation term, which ranges 

from 0-1 and approaches 0 when 𝑑$%[𝑖, 𝑗, 𝑘] is negative. In effect, this term allows intensity 

only to be added to adipose regions and smooths the regions within the inserted lesion where 

adipose and fibroglandular tissue coincide. The added intensity at each voxel is further 

modulated by 𝑀V()𝐷 − 𝑑&'[𝑖, 𝑗, 𝑘]W, the lesion-boundary modulation term, which also ranges 

from 0-1 and serves to smooth the edge of the spherical inserted lesion. The modulation 

function 𝑀 is derived by mathematically modeling the edge-blurring at boundaries between 

adipose and fibroglandular tissue in the native patient image. These modulation terms serve 

to retain the native image resolution (~ modulation transfer function). 

A 2D 64	 × 	64		 × 	1  image was then generated from the 3D image volume by 

extracting the center slice along the axial dimension or by slice averaging across adjacent 

slices to model thicker sections. Previous model observer studies demonstrated that higher 

detection performance was found in the axial and sagittal views compared to the coronal view 

in breast CT40. The resulting patch with the added lesion is denoted as  𝐼,-(𝑥, 𝑦), where n 

represents the nth lesion, and the same patch without the added signal is denoted as 𝐼,.(𝑥, 𝑦). 

Four lesion diameters (1, 3, 5, 9 mm) and six section thicknesses (0.4, 1.2, 2.0, 6.0, 12.4, 

20.4 mm) were studied. Sample lesion-present patches with varying lesion diameters and 

section thicknesses are shown in Figure 3.1. 

The role of breast density was retrospectively studied using the range of breast 

densities spanning the patient breast CT data sets. For every patient, breast density was 

quantified by the volumetric glandular fraction (VGF). Let 𝑛3 represent the number of voxels 
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segmented as fibroglandular tissue and 𝑛4 represent the number of voxels segmented as 

adipose tissue in the segmentation volume 𝑠[𝑖, 𝑗, 𝑘]. The VGF is then defined as: 

𝑉𝐺𝐹 = 	 **
**	,	*+

            (3.3) 

3.2.1.2. Insertion of lesions into Gaussian background 

Mass lesions were mathematically inserted into Gaussian images matched to the mean and 

noise power spectrum of the breast CT images. For breast CT images a 3D lesion was 

inserted into a 3D background volume. In comparison, for Gaussian images a 2D lesion 

(derived from the breast CT patches) was inserted into a 2D background patch. Let 𝐼-888(𝑥, 𝑦) 

and  𝐼.888(𝑥, 𝑦) denote the mean lesion-present and mean lesion-absent patches, respectively. 

The added lesion is the mean signal 𝑆̅(𝑥, 𝑦) across image patches from all breast CT training 

images: 

𝑆̅(𝑥, 𝑦) = 	 𝐼,@@@(𝑥, 𝑦) −	𝐼-@@@(𝑥, 𝑦)        (3.4) 

This mean signal inherently smooths the lesion boundary and dampens the signal in thicker 

sections.  

Generating the 2D Gaussian background patch requires knowledge of the breast CT 

power spectrum. The power spectrum was estimated from the training breast CT background 

images. Let 𝐼,.[𝑥, 𝑦]	 represent the nth lesion-absent patch and 𝐻[𝑥, 𝑦]  represent a 2D 

Hamming filter. The windowed deviation function ∆𝐼,.(𝑥, 𝑦) is then defined as: 

∆𝐼*-(𝑥, 𝑦) = 𝐻[𝑥, 𝑦] × (𝐼*-[𝑥, 𝑦] −	𝐼-@@@[𝑥, 𝑦])                   (3.5) 

where 𝐻[𝑥, 𝑦] is a windowing function used to attenuate artifacts arising from the cyclic nature 

of the discrete Fourier transform as it approaches the edge of an image32. Let N represent 
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the total number of lesion-absent patches. The mean power spectrum 𝑃𝑆8888Z𝑓5 , 𝑓6[ of the image 

backgrounds is then estimated as: 

𝑃𝑆@@@@=𝑓., 𝑓/A = 	
&

0-&
∑ L∆𝐼*-M(𝑥, 𝑦)L

'0
*1&          (3.6) 

where the caret is used to represent the Fourier transform. The mean power spectrum was 

then normalized to compensate for the windowing that occurs in Equation 3.5. To normalize 

the power spectrum, the mean pixel variance at each pixel across all the background images 

was first computed: 

𝑉 = 	 &
0-&

∑ (𝐼*-[𝑥, 𝑦] −	𝐼-@@@[𝑥, 𝑦])'0
*1&          (3.7) 

Then, the normalized mean noise power spectrum 𝑃𝑆8888Z𝑓5 , 𝑓6[,78# is defined as: 

𝑃𝑆@@@@=𝑓., 𝑓/A*FH# =
∑ T/,0

∑ :4;;;;<=/,=0>/,0
		× 	𝑃𝑆@@@@=𝑓., 𝑓/A   (3.8) 

𝑃𝑆8888Z𝑓5 , 𝑓6[,78# was then converted to the spatial domain using a 2D inverse Fourier transform. 

Gaussian background patches were then generated by convolving the square root of 

𝑃𝑆8888(𝑥, 𝑦),78#  with a 64	 × 	64 × 	1	  patch of random white noise 𝐸(𝑥, 𝑦) . In using the 

normalized mean noise power spectrum of breast CT images for Gaussian simulation, pixel 

variance between the two image types is maintained. The final Gaussian patch 𝐺-(𝑥, 𝑦) with 

the inserted lesion is defined as:  

𝐺,(𝑥, 𝑦) = 𝑆̅(𝑥, 𝑦) +	8𝐸(𝑥, 𝑦) 	∗ b𝑃𝑆@@@@(𝑥, 𝑦)*FH#;        (3.9) 

and the same patch without the inserted lesion is defined as 𝐺.(𝑥, 𝑦). Sample Gaussian 

lesion-present patches with varying lesion diameters and section thicknesses are shown in 

Figure 3.1.  
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Figure 3.1: Example lesion-present patches in a) breast CT background and b) simulated 
Gaussian background for varying lesion diameters and section thicknesses. 
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3.2.2.  Model observers: Pre-whitened matched filter 

3.2.2.1. PWMF computation 

The PWMF is a mathematical model observer that makes use of the mean signal and 

background power spectrum of a set of images to compute a decision variable69,70. A unique 

filter was computed for each combination of lesion diameter, section thickness, and 

background condition (breast CT or Gaussian) to tune the filter to the environment. Let 

𝐹𝑇	denote the 2D Fourier transform, and 𝐹𝑇.( denote the 2D inverse Fourier transform. Let 

𝑆̅(𝑥, 𝑦)	be the mean signal across all training images, and 𝑃𝑆8888Z𝑓5 , 𝑓6[,78# be the normalized 

mean noise power spectrum of training image backgrounds. The PWMF 𝑤[𝑥, 𝑦]  is then 

defined as: 

𝑤[𝑥, 𝑦] = 𝐹𝑇-& P 2${4̅(.,/)}
:4;;;;<=/,=0>:;<=

Q           (3.10) 

Once the PWMF was computed from a set of training images, it was then applied to an 

independent set of testing image patches in order to evaluate lesion detection performance. 

For breast CT conditions, lesion-present and lesion-absent testing patches were generated 

from completely separate breast CT volume data sets using the lesion insertion process 

described in Section 3.2.1. Let 𝐼,[𝑥, 𝑦] represent a testing image patch and 𝑤[𝑥, 𝑦] be the 

PWMF tuned to that specific lesion diameter, section thickness, and background condition. A 

scalar-valued decision variable 𝜆,	was then computed for each testing patch as follows: 

𝜆*	= ∑ 𝐼*[𝑥, 𝑦] × 𝑤[𝑥, 𝑦].,/            (3.11) 
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3.2.2.2. Training and testing the PWMF 

Out of the 253 total breast CT volume data sets, 229 data sets (N = 229, ~90%) were used 

for training the PWMF. For each training data set, 200 unique lesion centers were identified 

and used to generate 200 lesion-present patches and 200 lesion-absent patches. The 

remaining 24 data sets (K = 24, ~10%) were used for testing the PWMF. For testing, 200 

unique lesion centers were first identified to generate 200 lesion-present patches, and 200 

additional different lesion centers were identified to generate 200 lesion-absent patches so 

as not to correlate the decision variables. In total, for a given lesion diameter and section 

thickness, 91,600 breast CT training patches (i.e., 229 × 400) were generated and 9,600 

breast CT testing patches (i.e., 229 × 400) were generated. Though simulated Gaussian 

image patches were not dependent on patient data sets or lesion centers, the same number 

of training and testing data sets were generated to match the hybrid breast CT image data 

set. 

3.2.3. Model observers: Convolutional neural network 

3.2.3.1. CNN architecture 

A convolutional neural network (CNN) was implemented to perform a simple binary 

classification task and compute a decision variable. The input to the CNN was a single 2D 

image patch, and the output was a scalar-valued decision variable between 0 and 1, scaled 

by the sigmoid function. The network consisted of two convolutional layers followed by one 

fully-connected layer. The two convolutional layers served to extract feature maps from the 

preceding layer, and the fully-connected layer condensed the feature maps into a scalar-

valued decision variable. The first convolutional layer contained 3 × 3 filters with a stride of 

1, and the second convolutional layer contained 3 ×  3 filters with a stride of 1. Batch 



 47 

normalization was implemented after the first convolutional layer. Max pooling layers were 

implemented after each convolutional layer with a pool size of 2 ×  2. Dropout was 

implemented after the first max pooling layer with a rate of 0.2, after the second max pooling 

layer with a rate of 0.2, and after the fully-connected layer with a rate of 0.5. The rectified 

linear unit (ReLU) activation function was used in all layers, including the fully-connected 

layer.  

The choice of a three-layered architecture was due to the relatively simple task of 

binary classification in a signal-known-exactly (SKE) setting. Similar studies have also 

employed this architecture74,75. Increasing the depth of the network could have resulted in a 

more complex model but may have led to overfitting77. In this model, the total number of 

parameters was 821,889. A diagram of the CNN architecture is shown in Figure 3.2. 

 

3.2.3.2. Training and testing the CNN 

The same training and testing simulated data sets described in Section 2.2.2 for breast CT 

and Gaussian background images were used to train and test the CNN model observer. For 

Figure 3.2: Convolutional neural network architecture. 
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each combination of lesion diameter, section thickness, and background condition, 91,600 

images were used for training and validation, and 9,600 images were used for testing. 

 The CNN was trained to minimize the binary-cross entropy (BCE) loss. Let 𝑦 be the 

ground truth label (0 or 1), �̂� be the predicted value, and 𝑁 be the number of samples. BCE 

loss is then defined as: 

𝐵𝐶𝐸 = − &
0
∑ [𝑦" log(𝑦g) + (1 − 𝑦") log(1 − 𝑦Uh)]0
"1&     (3.12) 

The training metric was accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 #	EFHHJEG	WHJL"EG"F*!
#	GFGIX	WHJL"EG"F*!

   (3.13) 

The Adam optimizer78 was used with a learning rate of 1e-5 and a batch size of 64. The 

maximum number of training epochs was set to 150 but early stopping was implemented such 

that if the validation loss did not decrease after 4 epochs, training was stopped. The CNN 

model was implemented in Python using the Keras library79. An NVIDIA GeForce GTX 1080 

GPU was used.  

3.2.4. Performance evaluation and statistical analysis 

For detection performance evaluation, receiver operating characteristic (ROC) curve analysis 

was used on the scalar-valued decision variables produced by the model observers. For a 

range of thresholds that discriminated each variable as true positive, false positive, true 

negative, or false negative, the true positive rate was plotted against the false positive rate to 

produce an empirical ROC curve. The area under the ROC curve (AUC) was computed 

individually for each testing data set (K = 24) instead of from one pool of all decision variables 

in order to study the effect of breast density on individual breast CT images. In addition, the 
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mean and standard deviation of AUCs across all 24 data sets were also computed to 

characterize the average detectability for that combination of parameters. Mean AUCs were 

plotted with 95% confidence error bars in Section 3.3. Let 𝐴𝑈𝐶888888  and 𝜎 be the mean and 

standard deviation, respectively, of AUCs across the K testing data sets. The 95% confidence 

interval 𝐶𝐼12 is then defined as: 

𝐶𝐼@A = 𝐴𝑈𝐶@@@@@@ ± 1.96 ×	 B
√D

           (3.14) 

In Section 3.3.1, PWMF and CNN detection performance was compared on Gaussian 

background images. To quantify the similarity between the model observers, the maximum 

absolute difference between individual and mean AUCs were computed across clinical 

parameters. The maximum absolute difference between individual PWMF and CNN AUCs 

from 24 testing data sets is defined as: 

|∆𝐴𝑈𝐶|	#I. = max	(|𝐴𝑈𝐶:YZ2 − 𝐴𝑈𝐶)00|)   (3.15) 

In Section 3.3.2, PWMF and CNN detection performance was compared across clinical 

parameters using paired t-tests. To address the multiple comparisons problem, we employed 

the Bonferroni correction to adjust the family-wise error rate. One asterisk (*) is used to 

indicate 𝑝 < .05 and two asterisks (**) are used to indicate 𝑝 < .01. 
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3.3. Results 

3.3.1. Comparison of PWMF and CNN model observers in Gaussian background 

The CNN observer closely matched the PWMF observer in detection performance across all 

section thicknesses and lesion diameters. Across these parameters, |∆𝐴𝑈𝐶|	#45 was 0.0096. 

PWMF and CNN detection performance on Gaussian images for the native section thickness 

(Z = 0.4 mm) as a function of lesion diameter are displayed in Figure 3.3a. Detection 

performance is nearly identical. Figures 3.3b-c show PWMF and CNN detection 

performance on Gaussian images as a function of section thickness for 1- and 5-mm lesions. 

In these settings, the CNN observer also closely aligned with the PWMF observer. 

 

Figure 3.3: Comparison of PWMF and CNN model observers on Gaussian background 
images as a function of (a) lesion diameter, displayed in the native section thickness (0.4 
mm), (b) section thickness for a 1-mm lesion, and (c) section thickness for a 5-mm lesion. 
Detection performance is nearly identical across all parameters. Error bars correspond to 
95% confidence intervals for each performance estimate. 

 



 51 

3.3.2. Comparison of PWMF and CNN model observers in breast CT background  

3.3.2.1. Model observer comparison across lesion diameter 

Model observer performance on breast CT images displayed in the native section thickness 

(Z = 0.4 mm) were averaged across breast densities and plotted as a function of lesion 

diameter in Figure 3.4a. Across all lesion diameters, the CNN outperformed the PWMF (𝑝 <

.01). These findings were further analyzed in the context of breast density in Figures 3.4b-c. 

Of the 24 testing data sets, breast CT patches extracted from patients with lower VGF breasts 

(N = 12) were evaluated and the mean AUC was plotted in Figure 3.4b, and breast CT 

patches extracted from patients with higher VGF breasts (N = 12) were evaluated and the 

mean AUC was plotted in Figure 3.4c. The range of breast densities in the testing data set 

was [0.118, 0.597]. The CNN consistently outperformed the PWMF in higher- and lower-

density breasts (𝑝 < .05). 
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3.3.2.2. Model observer comparison across section thickness  

Model observer performance on breast CT images containing 1- and 5- mm lesions were 

averaged across all breast densities and plotted as a function of section thickness in Figures 

3.5a and 3.6a, respectively. Across all section thicknesses for both lesion sizes, the CNN 

outperformed the PWMF (𝑝 < .01). These findings were further analyzed in the context of 

breast density in Figures 3.5b-c and 3.6b-c. Of the 24 testing data sets, breast CT patches 

extracted from patients with lower VGF breasts (N = 12) were evaluated and the mean AUC 

was plotted in Figures 3.5b and 3.6b, and breast CT patches extracted from patients with 

higher VGF breasts (N = 12) were evaluated and the mean AUC was plotted in Figure 3.5c 

and 3.6c. The CNN outperformed the PWMF in higher- and lower-density breasts for the 

detection of both lesion sizes (𝑝 < .05) except when detecting the 1 mm in high VGF breasts 

Figure 3.4: Comparison of PWMF and CNN model observers on breast CT images displayed 
in the native section thickness (Z = 0.4 mm) as a function of lesion diameter across (a) all 
VGFs (N=24), (b) low VGFs (N=12), and (c) high VGFs (N=12). Paired t-tests were used with 
Bonferroni correction to adjust for multiple comparisons. One asterisk (*) is used to indicate p 
< .05, and two asterisks (**) are used to indicate p < .01. Error bars correspond to 95% 
confidence intervals for each performance estimate. 
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in section thicknesses of 1.2 and 2 mm. As might be expected, both observers detected larger 

lesions better than smaller lesions. 

Figure 3.5 shows that the thinnest section (0.4 mm) is not the ideal display thickness 

for detecting small (≤ 1 mm) lesions. Rather, the 1.2- and 2-mm section thicknesses enabled 

peak detection for both model observers. For the 5 mm lesion (Figure 3.6), detectability was 

minimally affected by section thickness, and detection performance decreased only slightly 

when section thickness exceeded 6 mm. In Figure 3.6, we observe that CNN detection 

performance of 5 mm lesions is minimally dependent on breast density. In comparison, the 

PWMF detection performance decreases for higher VGF. 
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Figure 3.6: Comparison of PWMF and CNN model observers on breast CT images with 1 
mm lesions as a function of section thickness across (a) all VGFs (N=24), (b) low VGFs 
(N=12), and (c) high VGFs (N=12). Paired t-tests were used with Bonferroni correction to 
adjust for multiple comparisons. One asterisk (*) is used to indicate p < .05, and two asterisks 
(**) are used to indicate p < .01. Error bars correspond to 95% confidence intervals for each 
performance estimate. 

Figure 3.6: Comparison of PWMF and CNN model observers on breast CT images with 5 
mm lesions as a function of section thickness across (a) all VGFs (N=24), (b) low VGFs 
(N=12), and (c) high VGFs (N=12). Paired t-tests were applied with Bonferroni correction to 
adjust for multiple comparisons. One asterisk (*) is used to indicate p < .05, and two asterisks 
(**) are used to indicate p < .01. Error bars correspond to 95% confidence intervals for each 
performance estimate. 
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3.4. Discussion 

In this study, a CNN model observer was compared to a more conventional model observer, 

the PWMF, for the binary detection task of detecting a SKE mass lesion. The PWMF is a well-

established linear detection filter that has proven to be the ideal observer in background 

conditions with stationary Gaussian noise. CNNs have likewise been implemented as 

potential ideal observers given their ability to learn and extract relevant features from images 

even in the presence of complex backgrounds.  

The model observers were used to detect mass lesions in Gaussian background to 

better understand the performance of the CNN in the context of a known ideal observer (the 

PWMF). The added signal and simulated Gaussian noise were matched to the mean signal 

and mean noise power spectrum of breast CT images. We observed that the CNN performed 

nearly identically to the PWMF across lesion sizes and section thicknesses, with the largest 

absolute difference between AUCs being 0.0096. This result suggests that the CNN is 

effectively an ideal observer in Gaussian textures and that it extracts at least as much 

diagnostic information from an image as the PWMF does. It is likely that the CNN model can 

be applied to non-Gaussian imaging conditions and at minimum it would perform at least as 

well as the PWMF. 

The model observers were used to detect mass lesions mathematically inserted into 

breast CT images with real anatomical background. The CNN outperformed the PWMF in 

detecting mass lesions across lesion size, most section thicknesses, and breast density. As 

expected, both observers detected larger lesions better than smaller lesions. For both 

observers, the optimal section thickness of display was between 1.2 - 2.0 mm, the equivalent 

of 3-5 reconstructed slices, and reduced detection performance was observed in thinner and 

thicker sections. We suspect that quantum noise interference contributes to reduced 
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detection performance in thinner sections, and that anatomical noise contributes to reduced 

detection performance in thicker sections due to the superposition of fibroglandular anatomy. 

Packard et al. observed similar results in a previous study40. 

 It is notable that the CNN outperformed the PWMF in breast CT background while in 

Gaussian conditions the two observers performed equally. These findings suggest that there 

is a substantial amount of diagnostic information in breast CT images that the CNN captures 

that is not accessible to the PWMF. The PWMF employs only the mean signal and mean 

noise power spectrum of an image to formulate a decision variable. The PWMF and linear 

model observers in general are evidently limited. In contrast, neural networks, which are non-

linear, can perform (perhaps ideally) in an SKE setting. Our results should serve as motivation 

for future studies that identify the specific informative features that allow the CNN to 

outperform the PWMF (e.g., using reverse-correlation methods61). 

Previous studies have demonstrated that the PWMF is the ideal observer in Gaussian 

image backgrounds65,68,69. This study suggests that in non-Gaussian backgrounds (such as 

breast CT), the PWMF fails to recognize higher order statistical information and image 

features, whereas the CNN clearly yields superior performance. Furthermore, previous 

studies in our laboratory suggested that the PWMF outperforms human observers (i.e. expert 

breast radiologists) in detecting simulated lesions embedded in real breast CT background 

across the parameters of lesion size and section thickness30. Therefore, these studies 

collectively suggest that the CNN observer may be most appropriate for estimating peak 

performance in breast CT images. 

This study had limitations. Model observers were compared for the detection of 

relatively simple signals: SKE-LKE mass lesions. Microcalcifications were not simulated in 

this study, and an appropriate simulation would require more complex modeling of partial 
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volume effects. Previously, human observer studies have indicated that microcalcifications 

are more difficult to detect than mass lesions in breast CT16. Therefore, to fully understand 

the utility of PWMF and CNN model observers in breast CT, an evaluation of their abilities to 

detect microcalcifications is necessary. Future studies will investigate this. A three-layered 

CNN was used in this study. We recognize that for more complex detection tasks, a deeper 

architecture may be required and that additional training methods such as transfer learning 

may be useful. Furthermore, we recognize that the CNN performed exceptionally well in this 

study primarily due to two reasons: 1) the signal was known exactly, and 2) there was a large 

amount of labeled training data. These conditions were only possible since we mathematically 

simulated the training signals, albeit on actual breast anatomy. Finally, we chose the PWMF 

among other linear observers for this study. Future studies comparing CNNs with other linear 

observers such as the Hotelling observers may be useful to underscore the utility of the CNN-

based observer in breast CT. 

3.5. Conclusion 

In this study, we used PWMF and CNN model observers to detect SKE mass lesions in patient 

breast CT images. The CNN outperformed the PWMF across lesion size, most section 

thicknesses, and breast density. We conclude that the CNN captures more diagnostic 

information from breast CT images than the PWMF and may be a more suitable observer 

when conducting optimal performance studies. 

While model observer studies are important, they do not fundamentally replace the 

need for human observer studies. However, there is an increasing emphasis on virtual clinical 

trials in the literature. The power in these model observer studies is of course that many more 

lesions and lesion placements can be studied than with human observers, and this provides 
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the ability to generate statistically meaningful results which can aid in optimizing breast CT 

parameters prior to human observer studies. 
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Chapter 4: Microcalcification detectability in hybrid breast CT images 

using CNN observers 

4.1. Introduction 

Microcalcifications are key indicators of potential early-stage breast cancer which can 

manifest in various morphologies and distributions12–14. The American College of Radiology 

has released a BI-RADS report11 on morphological patterns of microcalcifications commonly 

seen in mammography along with their potential for malignancy. Large rod-like calcifications, 

for instance, are typically benign and do not necessitate further diagnostic imaging or biopsy. 

Clustered microcalcifications – dense groupings of small (< 1 mm) calcifications within a small 

region – are likely to be  malignant80,81, and generally necessitate biopsy. During breast 

cancer screening exams, it is crucial to accurately detect and characterize microcalcifications.  

 Digital mammography has historically been used for breast cancer screening, and its 

capabilities for imaging with high resolution have been valuable for microcalcification 

detection82,83. Mammography’s sensitivity substantially decreases, however, when used to 

image patients with dense breasts due to the superposition of fibroglandular tissue which can 

obscure lesions. In recent years, breast computed tomography (CT) has emerged as a 

promising alternative imaging tool16,84, with the key advantage of accessing fibroglandular 

anatomy inside the breast without the superposition of neighboring tissue. Initial clinical 

studies16 suggested that breast CT is better than mammography at detecting mass lesions, 

but that mammography is better than breast CT at detecting microcalcifications. Since this 

study was published, our laboratory at UC Davis has developed a higher-resolution breast 

CT scanner which achieves nearly four times the spatial resolution than that of the earlier 

generation scanner based on their system modulation transfer functions18. This scanner’s 
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ability to detect microcalcifications is under evaluation, and protocols for optimizing the 

scanner for microcalcification detection are being developed. Ideally, such optimization would 

involve extensive clinical trials with human observers to evaluate image quality, diagnostic 

performance, and the impact of various imaging parameters. However, the challenges of 

conducting large-scale clinical trials, such as time and cost limitations, necessitate the 

exploration of alternative approaches. 

Simulation studies have been proposed as an alternative to clinical studies, where 

synthetic images are generated using phantom imaging20,85,86 or computer simulations40,41,87–

89. These studies are also called “virtual clinical trials” 22–24. In this work, hybrid images are 

computer simulated, where mathematically generated microcalcifications are embedded into 

clinical patient breast CT images acquired at our institution using the high-resolution breast 

CT scanner. This approach enables the investigation of many lesion-related parameters (e.g., 

size) while preserving crucial patient- (e.g., breast density) and imaging-related parameters 

(e.g., resolution). To detect the simulated microcalcifications, a convolutional neural network 

(CNN) is used in lieu of a human observer. CNN-based model observers are thought to 

approximate human visual perception62,74,90, providing an efficient and reproducible means of 

quantifying microcalcification detectability across several important parameters. CNNs have 

shown to be useful and versatile across imaging contexts including breast CT62,74,75. While 

CNNs do not necessarily accurately predict human observer performance, they can be useful 

in assessing trends across individual parameters as well as the interplay between multiple 

parameters that affect detection performance76,90. In this study, 2D and 3D CNN models are 

used to detect individual microcalcifications and microcalcification clusters embedded in 109 

patient breast CT data sets, and parameters related to calcification size, calcification contrast, 
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cluster diameter, cluster density, and image display method (i.e., single slices, slice 

averaging, and maximum-intensity projections) are studied. 

4.2. Methods 

4.2.1. Breast CT system 

Four generations of pendant geometry, cone-beam breast CT scanners have been designed 

and fabricated in our laboratory over the past two decades. The fourth-generation prototype 

scanner follows a similar design as previously reported scanners16 but achieves nearly four 

times the spatial resolution of the early scanners based upon modulation transfer function 

(MTF) analysis18. This is due to the combination of a pulsed X-ray source, a smaller focal 

spot, and a higher resolution flat-panel detector. A comparison of system MTFs for the second 

(Bodega), third (Cambria), and fourth (Doheny) generation breast CT systems is shown in 

Figure 4.118. 
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4.2.2. Patient images 

An IRB-approved clinical trial was conducted at UC Davis Medical Center evaluating the 

fourth-generation breast CT system as a tool for breast cancer screening and for the 

diagnostic breast exam. Patients with suspicious lesions (BI-RADS 4 or 5) based on 

screening breast imaging (mammography or tomosynthesis) were eligible to participate in the 

study. The scanning protocol involved four sequential scans of the 1) unaffected breast prior 

to contrast-injection, 2) affected breast prior to contrast injection, 3) affected breast after 

contrast injection, and 4) unaffected breast after contrast injection. After scans were acquired, 

patients underwent breast biopsy on areas of suspicion based upon standard of care which 

provided the ground truth diagnosis. To date, 58 women have been scanned on the Doheny 

breast CT system resulting in 222 breast CT volume data sets. Contrast injection is 

Figure 4.1: From Gazi et al.: Comparison of system MTFs for second (Bodega), third 
(Cambria), and fourth (Doheny) generation breast CT systems at most challenging periphery 
of the FOV.  
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advantageous for visualizing malignant solid tumors due to local perfusion of contrast agent 

through “leaky” angiogenetic vessels,38,39 and this contrast greatly improves lesion 

conspicuity60. Because this study focuses on microcalcification detectability, only pre-contrast 

volume data sets were used to avoid contrast enhancement in and around microcalcifications. 

In total, 109 pre-contrast volume data sets were selected for this study to be used as 

anatomical background for mathematical microcalcification insertion. Each volume data set 

contained 800-900 reconstructed slices (1024 ×  1024 matrix size) with isotropic voxel 

dimensions of 0.2 mm. 

4.2.3. Microcalcification simulation 

Spherical microcalcification profiles were generated using methodology developed by 

Hernandez et al.20 First, a single high-resolution microcalcification profile was generated by 

inserting a sphere of intensity 𝐻 in the center of a 330	 × 	330	 × 	330 matrix with an isotropic 

voxel dimension of 0.01 mm. Then, the volume was blurred in the 𝑥𝑦 plane by (i) converting 

each coronal slice to the frequency domain using the 2D Fourier transform, (ii) multiplying the 

slice by the 2D coronal plane MTF measured on the breast CT system, and (iii) converting 

the blurred slice to the spatial domain using the 2D inverse Fourier transform. The volume 

was then blurred in the 𝑧 dimension by (i) converting each vector in the 𝑧-direction to the 

frequency domain using the 1D Fourier transform, (ii) multiplying the vector by the 1D 𝑧-

direction MTF measured on the breast CT system, and (iii) converting the blurred vector to 

the spatial domain using the 1D inverse Fourier transform. The MTFs were not assumed to 

be equal in the 𝑥𝑦 and 𝑧 directions due to the role of the Shepp-Logan reconstruction kernel 

in the 𝑥𝑦 dimensions but not the 𝑧 dimension. The high-resolution profile was then down 

sampled to match the voxel dimensions of the breast CT system (0.2 mm), resulting in a 
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17 × 	17	 × 	17  matrix, 𝑚(𝑥, 𝑦, 𝑧) . The microcalcification profile generation process is 

illustrated in Figure 4.2 for a 0.2 mm diameter calcification. 

In addition to edge blurring, the blurring procedure resulted in grayscale reduction due to 

partial volume effects. Let the intensity of a simulated high-resolution calcification, 𝐻, be 1000 

HU, and the intensity of the background volume, 𝐵, be -200 HU, as shown in Figure 4.2. Let 

𝑦 be the peak intensity in HU of the calcification after the blurring procedure described above. 

𝑦 was computed for a range of computer-generated calcification diameters between 0 and 1 

mm. A plot of peak intensity as a function of calcification diameter in mm, 𝐷>4?>, is shown in 

Figure 4.3.  

 

 

Figure 4.2: Simulation of a 0.2 mm microcalcification profile. As a (a) mathematically 
generated high-resolution microcalcification undergoes (b) XYZ MTF blurring and (c) down 
sampling, the microcalcification’s edges are blurred and signal is attenuated. 
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Based on Figure 4.3, it was found that intensity reduction resulting from the blurring 

procedure can be modeled using a logistic function for any input intensity in HU, 𝐻 , 

calcification diameter in mm, 𝐷>4?>, and background intensity in HU, 𝐵, using Equation 4.1: 

𝑦(𝐷EIXE, 𝐵, 𝐻) = 𝐵 + 	 [-%

&,J
@A
BC+DC@.FG

.HF I
                                  (4.1) 

Equation 4.1 is unique to our imaging system but illustrates the key principle of partial volume 

that occurs in any imaging system: objects smaller than the spatial resolution of the imaging 

system experience blurring and signal attenuation when imaged. In Figure 4., as the 

calcification diameter approaches zero, the peak intensity of the blurred calcification 

approaches the intensity of the background, 𝐵, and as calcification diameter exceeds 1 mm, 

the peak intensity of the blurred calcification approaches the native intensity, 𝐻. In this study, 

Figure 4.3: Peak intensity in HU of calcifications after blurring as a function of calcification 
diameter, 𝐷>4?>showing the partial volume effects in the system. The grayscale values of the 
initial high-resolution calcification and background were 1000 HU and -200 HU, respectively. 
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𝐵 was computed for each simulated microcalcification as the median intensity of a 7	 × 	7	 × 	7 

subvolume of anatomical background surrounding the location of microcalcification insertion. 

 𝐻 was estimated empirically by applying Equation 4.1 to select calcifications found in 

our clinical patient data sets. Two large calcifications in two separate patients were identified 

using the patients’ screening exam radiology reports and verified using the corresponding 

pathology reports. Only large, pathology-confirmed calcifications were used for determining 

𝐷>4?> in order to maximize accuracy in delineating calcification edges. Custom-built breast CT 

viewing software was used to measure the diameter and peak intensity for each calcification.  

The median intensity of the tissue surrounding the calcifications was also measured. These 

variables were applied to Equation 4.1 and resulted in native intensity values, 𝐻, of 361 HU 

and 768 HU. The range of native intensity values corresponds to varying densities and 

compositions of individual calcifications in our clinical data sets12,91.   

4.2.4. Hybrid image generation 

For every breast CT volume, lesion-present and lesion-absent region of interest (ROI) 

patches were generated at random locations within the breast. For each ROI, a lesion center 

was computer generated using a random number generator and kept if the surrounding 

volume 𝑉[𝑖, 𝑗, 𝑘] was fully contained within the patient’s breast and did not contain skin. 

Otherwise, a new lesion center was computer generated. For viable lesion centers, the 

surrounding volume 𝑉[𝑖, 𝑗, 𝑘]  served as the anatomical background for mathematical 

microcalcification insertion. The lesion centers were saved and used for every iteration of ROI 

generation in this study to reduce variability, but the selection of training ROIs were different 

than testing ROIs because different patient data sets were held-out for testing as explained 

in the following section. 
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4.2.4.1. 2D image generation 

First, 2D hybrid image ROIs were generated such that each ROI contained a single 

microcalcification of known diameter at the center of the ROI. This setting can be described 

as signal-known-exactly (SKE), location-known-exactly (LKE). SKE, LKE tasks can be used 

to establish baselines for evaluating an observer’s detection performance prior to 

experimenting with unknown or uncertain signals and locations.92 

Let 𝑉[𝑖, 𝑗, 𝑘]  be a 120 ×  120 	×  120 anatomical background volume, 𝑀[𝑖, 𝑗, 𝑘]  be a 

volume of the same size with a blurred microcalcification profile 𝑚[𝑥, 𝑦, 𝑧] in the center, and 

zeros elsewhere, and 𝑉!"#[𝑖, 𝑗, 𝑘] be the simulated volume with the inserted calcification. 

𝑀[𝑖, 𝑗, 𝑘] is scaled such that when it is added to 𝑉[𝑖, 𝑗, 𝑘], the peak intensity of 𝑉!"#[𝑖, 𝑗, 𝑘] 

equals 𝑦(𝐷>4?> , 𝐵, 𝐻) from Equation 4.1. This process simulates the partial volume-related 

blurring of a calcification with surrounding voxels. Let [𝑖#45 , 𝑗#45 , 𝑘#45] be the indices of the 

peak intensity voxel in 𝑀[𝑖, 𝑗, 𝑘]. The simulated volume 𝑉!"#[𝑖, 𝑗, 𝑘] is then defined as: 

𝑉𝑠𝑖𝑚[𝑖, 𝑗, 𝑘]= 𝑉[𝑖, 𝑗, 𝑘]+ c
𝑦J𝐷𝑐𝑎𝑙𝑐,𝐵,𝐻N−𝑉[𝑖𝑚𝑎𝑥,𝑗𝑚𝑎𝑥,𝑘𝑚𝑎𝑥]

𝑀[𝑖𝑚𝑎𝑥,𝑗𝑚𝑎𝑥,𝑘𝑚𝑎𝑥]
×𝑀[𝑖, 𝑗, 𝑘]d             (4.2) 

𝑉!"#[𝑖, 𝑗, 𝑘] was generated at each lesion center and displayed in 2D by either extracting the 

center slice of 𝑉!"#[𝑖, 𝑗, 𝑘] in the axial view plane or by slice averaging across adjacent slices 

to model thicker sections. Similarly, lesion-absent ROIs were generated and displayed in 2D 

by either extracting the center slice of 𝑉[𝑖, 𝑗, 𝑘] in the axial view plane or by slice averaging 

across adjacent slices. The resulting 2D ROIs had dimensions of 120 ×  120 ×  1. Five 

microcalcification diameters 𝐷>4?> (0.04, 0.10, 0.15, 0.20, 0.40 mm), three input intensities 𝐻 

(361, 565, 768 HU), and five section thicknesses (0.2, 0.6, 1.0, 3.0, 11.0 mm) were studied. 

The equivalent number of slices 𝑛!?">Q! for each section thickness was 1, 3, 5, 15, and 55 

slices, respectively. 
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Out of the 109 total breast CT volume data sets, 99 data sets (N = 99, ~90%) were 

used to generate training ROIs for training the model observer. For each volume data set, 

200 lesion-present ROIs and 200 lesion-absent ROIs were generated from different lesion 

centers resulting in 39,600 total training ROIs. 10% of the training ROIs (3960 ROIs) were 

reserved for validation during the training process. The remaining 10 breast CT volume data 

sets (N = 10, ~10%) were used to generate a testing data set. Again, 200 lesion-present ROIs 

and 200 lesion-absent ROIs were generated from each volume data set resulting in 4000 

total testing ROIs. Sample lesion-present ROIs of simulated SKE LKE microcalcifications are 

shown in Figures 4.4 & 4.5. 
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Figure 4.5: Example ROIs of a simulated 0.4 mm microcalcification displayed using 
different section thicknesses. Field of view within each ROI: 24 mm × 24 mm. 

Figure 4.4: Example ROIs of a single simulated microcalcification centered in the field of 
view. Microcalcification diameter is varied across columns. Native intensity of 
microcalcifications prior to the blurring procedure (𝐻) is varied across rows. Partial volume 
effects reduce microcalcification conspicuity as microcalcification diameter becomes 
smaller than the resolution of the imaging system (0.2 mm). Field of view within each ROI: 
24 mm × 24 mm. 
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4.2.4.2. 3D image generation  

3D hybrid image volumes were generated with simulated microcalcification clusters. A single 

cluster was inserted at the center of every volume of interest (VOI), and microcalcifications of 

uniform diameters were randomly placed within the cluster. This task had similarities to 

location-known-exactly tasks because the cluster was centered at a known location, but 

similarities as well to location-known-statistically tasks because individual calcifications were 

randomly placed within the cluster across different lesions. 

Let 𝑉[𝑖, 𝑗, 𝑘] be a 50 × 50	× 50 anatomical background volume at a random lesion 

center in the breast. Let 𝑀,[𝑖, 𝑗, 𝑘]  be a volume of zeros of the same size. A spherical 

boundary is defined within 𝑀,[𝑖, 𝑗, 𝑘] based on the cluster diameter, 𝐷>?R!SQ8, representing the 

boundary of the cluster. A random number generator was used to define the location, 

[𝑖,, 𝑗,, 𝑘,], within the cluster where a blurred microcalcification profile, 𝑚[𝑥, 𝑦, 𝑧], was inserted. 

𝑚[𝑥, 𝑦, 𝑧] is inserted at	𝑀,[𝑖,, 𝑗,, 𝑘,]. 𝑀,[𝑖, 𝑗, 𝑘] is then scaled such that when it is added to 

𝑉[𝑖, 𝑗, 𝑘] , the peak intensity of 𝑉!"#[𝑖, 𝑗, 𝑘]  equals 𝑦,(𝐷>4?> , 𝐵, 𝐻)  from Equation 4.1. 

Microcalcifications are repeatedly inserted at random locations within the cluster until the 

desired number of microcalcifications, 𝑁>4?>! , are inserted. Because 𝑦,(𝐷>4?> , 𝐵, 𝐻)  is 

computed at every location [𝑖,, 𝑗,, 𝑘,] within the cluster, microcalcifications within the same 

cluster varied in intensity, as is common in breast CT images. Let [𝑖#45 , 𝑗#45 , 𝑘#45] be the 

indices of the peak intensity voxel in 𝑀,[𝑖, 𝑗, 𝑘]. The simulated VOI with inserted clusters is 

defined as: 

𝑉𝑠𝑖𝑚[𝑖, 𝑗, 𝑘] = 𝑉[𝑖, 𝑗, 𝑘]+ ∑ c
𝑦𝑛J𝐷𝑐𝑎𝑙𝑐,𝐵,𝐻N−𝑉[𝑖𝑚𝑎𝑥,𝑗𝑚𝑎𝑥,𝑘𝑚𝑎𝑥]

𝑀𝑛[𝑖𝑚𝑎𝑥,𝑗𝑚𝑎𝑥,𝑘𝑚𝑎𝑥]
×𝑀𝑛[𝑖, 𝑗, 𝑘]d

𝑁𝑐𝑎𝑙𝑐𝑠
𝑛	=	1        (4.3) 

𝑉!"#[𝑖, 𝑗, 𝑘] volumes (50 × 50 × 50) were used as lesion-present VOIs, and 𝑉[𝑖, 𝑗, 𝑘] volumes 

(50 × 50 × 50) generated from separate lesion centers were used as lesion-absent VOIs. 
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Thicker sections were modeled by averaging every 𝑛!?">Q! slices, resulting in 50 × 50 × N 

VOIs, where N is defined as: 

𝑁 = o AQ
*VDWCXV

p              (4.4) 

The maximum intensity projection (MIP) was also generated from each VOI in the axial view 

plane, resulting in 50 × 50 × 1 ROIs. Five microcalcification diameters 𝐷>4?> (0.20, 0.25, 0.30, 

0.35, 0.40 mm), six 𝑁>4?>! (1, 3, 5, 7, 10, 15), and six cluster diameters 𝐷>?R!SQ8 (1, 3, 5, 6, 8, 

10 mm) were studied. Six section thicknesses (0.2, 0.6, 1.0, 2.2, 3.0, 9.8 mm) in addition to 

the MIP were studied to understand the role of image display method on microcalcification 

detectability. The equivalent number of slices 𝑛!?">Q! for each section thickness was 1, 3, 5, 

11, 15, and 49 slices, respectively. Native intensity 𝐻 was fixed at 565 HU. 

 Out of the 109 total breast CT volume data sets, 99 data sets (N = 99, ~90%) were 

used to generate the training data set for training the model observer. For each volume data 

set, 150 lesion-present VOIs and 150 lesion-absent VOIs were generated from different lesion 

centers resulting in 29,700 total training VOIs. 10% of the training VOIs (2970 VOIs) were 

reserved for validation during the training process. The remaining 10 breast CT volume data 

sets (N = 10, ~10%) were used to generate the testing data set. Again, 150 lesion-present 

VOIs and 150 lesion-absent VOIs were generated from each volume data set resulting in 

3000 total testing VOIs. Sample VOIs of simulated microcalcification clusters displayed using 

MIP are shown in Figure 4.6. 
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4.2.5. Detectability estimation using CNN 

4.2.5.1. 2D CNN 

A 2D convolutional neural network (CNN) was used to detect simulated microcalcifications in 

the SKE, LKE image data sets. The input to the CNN was a 2D ROI (120 × 120 × 1), and the 

output was a decision variable between 0 and 1 scaled by the sigmoid function. The decision 

variables were used for ROC curve analysis to estimate overall detectability of a data set. 

Figure 4.6: Example images of simulated microcalcification clusters displayed using 
maximum intensity projection (MIP). Calcification diameter, cluster diameter, and number of 
calcifications are varied. Field of view within each ROI: 24 mm × 24 mm. 
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 The CNN architecture is shown in Figure 4.7. The CNN consisted of three layers: two 

convolutional layers and one fully-connected layer. The choice of the three-layered 

architecture was due to the relative simplicity of the SKE, LKE detection task, similar to 

previous studies93. The convolutional layers used 3 × 3 convolutional filters with strides of 1. 

Batch normalization was implemented after the first convolutional layer. Max pooling was then 

implemented after both convolutional layers with a pool size of 2 × 2 and a stride of 1. Dropout 

was implemented after both max pooling layers with a rate of 0.2, and after the fully-

connected layer with a rate of 0.5. The rectified linear unit (ReLU) activation function was 

applied in all three layers. The binary-cross entropy (BCE) loss function was used: 

𝐵𝐶𝐸 = − &
0
∑ [𝑦" log(𝑦g) + (1 − 𝑦") log(1 − 𝑦Uh)]0
"1&               (4.5)  

where 𝑦 is the ground truth label (0 or 1), �̂� is the predicted value, and 𝑁 is the number of 

samples. The training metric was accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 #	EFHHJEG	WHJL"EG"F*!
#	GFGIX	WHJL"EG"F*!

                            (4.6) 

The CNN model was implemented in Python using the Keras library79. The Adam optimizer78 

was used with a learning rate of 1e-5 and a batch size of 64. Training ran between 50 – 150 

epochs. An NVIDIA GeForce GTX 1080 GPU was used.  
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4.2.5.2. 3D CNN 

A 3D CNN was used to detect simulated microcalcification clusters in the hybrid 3D image 

VOIs. The input to the CNN was a 50 × 50 × N VOI, where N varied with section thickness, 

and the output was a scalar-valued decision variable between 0 and 1 scaled by the sigmoid 

function. The 3D CNN model was designed to mimic the sequential 2D analysis performed 

by human observers when examining 3D breast CT volumes. Human observers review 3D 

image volumes slice-by-slice without immediate access to true 3D depth information. 

Findings from each slice are synthesized into one classification decision for each image 

volume. To mimic this process, a 3 × 3 × 1 convolutional kernel was used instead of a 3 × 3 

× 3 convolutional kernel, which is commonly employed for 3D image data. The 3 × 3 × 1 

kernel capitalizes on local spatial information within each slice while disregarding inter-slice 

information. The CNN synthesizes information from each slice into one decision variable in 

the fully-connected layer. This kernel choice also suited the range of slices comprising 

different data sets owing to section thickness: slice averaging across the entire VOI resulted 

Figure 4.7:  2D CNN architecture: two convolutional layers followed by a fully-connected 
layer. 
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in a single 50 × 50 × 1 slice which required 2D convolutional kernels, while VOIs displayed 

in the native section thickness contained 50 slices. 

The CNN consisted of four layers: three convolutional layers and one fully-connected 

layer. While the 2D and 3D CNN architectures were similar, an extra convolutional layer was 

added to the 3D CNN due to the difficulty of detecting relatively small targets (1-15 

calcifications) compared to the background space (up to 503 voxels). Moreover, the 

microcalcifications in the 3D generated data sets were signal-known-statistically (SKS), 

whereas the microcalcifications in the 2D generated data sets were SKE, LKE, increasing the 

complexity of the detection task. All three convolutional layers used 3 × 3 × 1 convolutional 

kernels with strides of 1. Batch normalization was implemented after the first convolutional 

layer. Max pooling was implemented after all three convolutional layers with a pool size of 2 

× 2 × 1 and a stride of 1. The pooling layers further downscaled the spatial dimensions of the 

feature maps, reducing computational complexity and providing translational invariance. 

Dropout was implemented after the three max pooling layers with a rate of 0.2, and after the 

fully-connected layer with a rate of 0.5 to enhance generalization by randomly deactivating 

neurons during training. The rectified linear unit (ReLU) activation function was applied in all 

four layers. 

The 3D CNN model was trained using the Adam optimizer with a learning rate of 1e-

5, a batch size of 64, and the BCE loss function. Training occurred over 100-300 epochs. 

More epochs were required for training the 3D CNN compared to the 2D CNN due to the 

increased difficulty of the task. The model's performance was evaluated using accuracy 

metrics. The CNN was implemented in Python using an NVIDIA GeForce GTX 1080 GPU. 

The 3D CNN model with the 3 × 3 × 1 convolutional kernel is shown in Figure 4.8. 
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4.2.6. Performance evaluation and statistical analysis 

CNN-generated decision variables were used with receiver operating characteristic (ROC) 

curve analysis to estimate overall detection performance. For all decision variables related to 

one testing breast CT volume, an empirical ROC curve was constructed by plotting the true 

positive rate against the false positive rate at various threshold values. The area under the 

ROC curve (AUC) was computed, signifying detection performance in that breast CT volume. 

AUCs were computed on a breast-volume basis to elucidate variability related to breast 

density, anatomical and quantum noise, and motion artifacts. To estimate overall detection 

performance across all the testing breast CT volumes, the mean and standard deviation of 

testing-volume AUCs were also computed. In Section 4.3, 𝐴𝑈𝐶888888  was plotted with 95% 

confidence error bars to represent uncertainty in the detectability estimations. 95% 

confidence error bars were computed using Equation 4.7: 

Figure 4.8: 3D CNN architecture: three convolutional layers followed by a fully-connected 
layer. 
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𝐶𝐼@A = 𝐴𝑈𝐶@@@@@@ ± 1.96 ×	 B
√D

                                      (4.7) 

where 𝐶𝐼12 is the 95% confidence interval, 𝐴𝑈𝐶888888 is the mean AUC across 𝐾 testing breast CT 

volumes, 𝜎 is the standard deviation of AUCs across 𝐾 testing breast CT volumes, and 𝐾 is 

the number of testing volumes (𝐾 = 10). 𝐴𝑈𝐶888888 was the primary performance metric in this 

study. 

For all comparative tests, the Mann-Whitney U-test was employed. All tests were two-

sided, and statistical significance was defined as a difference with a p-value less than 0.05. 

In cases where multiple comparisons were conducted, Bonferroni correction was applied by 

dividing the desired significance level by the number of comparisons. Statistical analysis was 

performed using Matlab (Matlab; TheMathWorks Inc., Natick, MA). 

4.3. Results 

4.3.1. SKE, LKE detection task 

4.3.1.1. Effect of microcalcification size and native intensity  

SKE LKE detection performance is plotted as a function of microcalcification diameter for 

three native intensities in Figure 4.9. When the signal and location are known, 

microcalcifications that are notably smaller than the resolution of the imaging system (0.20 

mm) can be detected despite partial volume effects. Detection performance increases 

monotonically with calcification diameter and native intensity, and maximum detection 

performance is achieved when calcification diameter equals or exceeds 0.40 mm.  As 

expected, larger and “brighter” calcifications are more conspicuous than smaller and 

“dimmer” calcifications. For the remainder of the study, 𝐻 = 565 HU is used. 
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4.3.1.2. Effect of section thickness 

 SKE LKE detection performance is plotted as a function of section thickness for five 

calcification diameters in Figure 4.10. For the largest calcification (0.40 mm), detection 

performance is generally unaffected as section thickness increases until the thickness 

reaches 1.0 mm (5 slices), where performance begins to decrease. For calcifications smaller 

than 0.40 mm, thicker sections reduce detection performance. The native section thickness 

(0.20 mm) of breast CT enables peak detection performance across all calcification 

diameters, and detection performance degrades precipitously as section thickness increases. 

Figure 4.9: Effect of size and native intensity on SKE, LKE microcalcification detectability. A 
single microcalcification was placed at the center of the ROI for this SKE LKE task. AUC is 
plotted as a function of calcification diameter 𝐷>4?> for three native intensities 𝐻. Error bars 
correspond to 95% confidence intervals for each estimate. 
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4.3.2. Cluster detection task 

4.3.2.1. Effect of image display method 

Figure 4.11 shows the effect of image display method on CNN detection performance of a 5-

mm diameter cluster containing 3 microcalcifications. Mean AUC is plotted as a function of 

section thickness, and detection performance using maximum intensity projection (MIP) is 

also plotted for five calcification diameters. Data points representing 0.20- and 0.25-mm 

Figure 4.10: Effect of section thickness on SKE LKE microcalcification detectability for five 
calcification diameters and five section thicknesses (0.2, 0.6, 1.0, 3.0, 11.0 mm). A single 
microcalcification was placed at the center of the ROI for this SKE LKE task. Error bars 
correspond to 95% confidence intervals for each estimate. 
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calcifications across section thicknesses are omitted from the plot for ease in visualization of 

other differences.  

 Detection performance decreases with increasing section thickness, and peak 

detection performance occurs using the native section thickness (0.2 mm) and the MIP. When 

slices are averaged across the entire volume (50 slices or 9.8 mm thickness), 

microcalcifications of all three sizes are indistinguishable from anatomical background (AUC 

~ 0.5). For the three microcalcification sizes, there was no statistically significant difference 

in detectability between using the MIP and using the native section thickness (𝑝	 = 	 .08, 𝑝	 =

	.52, 𝑝	 = 	 .76 for 0.30, 0.35, and 0.40-mm microcalcifications, respectively). The MIP images 

contained a single slice while the native section thickness images contained 50 slices, thus 

computing time for MIP images was nearly 50 times shorter than the computing time of the 

native section thickness images. For the remainder of the study, MIP was used to display the 

simulated images. 
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4.3.2.2. Effect of cluster diameter 

Figure 4.12 shows the effect of cluster diameter on CNN detection performance for clusters 

containing 3 microcalcifications displayed using MIP. Mean AUC is plotted as a function of 

cluster diameter for four calcification diameters. 

The 0.40 mm microcalcification diameter data points frame the diagnostic 

performance of breast CT when the detection target is 3 calcifications. For the 0.40 mm 

microcalcification, near optimal detection performance is achieved (AUC ~ 1.0), and cluster 

diameter has minimal effect on cluster detectability. For microcalcifications on the threshold 

of detectability (i.e., 0.20 mm, 0.25 mm, and 0.30 mm microcalcifications), cluster diameter 

Figure 4.11: Effect of image display method. Detection performance using slice averaging 
(i.e., section thickness) for a 5-mm cluster of 3 calcifications is plotted for three calcification 
diameters (0.30, 0.35, 0.40 mm) and denoted using solid circles. Detection performance 
using maximum intensity projection (MIP) is plotted for five calcification diameters (0.20, 
0.25, 0.30, 0.35, 0.40 mm) and denoted using solid triangles. Error bars correspond to 95% 
confidence intervals for each estimate. 
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becomes important, and larger cluster diameters result in lowered overall detectability, while 

smaller cluster diameters result in increased overall detectability. 

 

4.3.2.3. Effect of number of calcifications 

Figure 4.13 displays the effect of the number of calcifications on CNN detection performance 

for clusters measuring 5-mm in diameter displayed using MIP. Mean AUC is plotted as a 

function of number of calcifications for four calcification diameters. 

Similar to Figure 4.12, Figure 4.13 shows that clusters of relatively large (0.40 mm) 

microcalcifications are minimally affected by the number of microcalcifications. For 

microcalcifications at the threshold of detectability (i.e., 0.20 mm, 0.25 mm, and 0.30 mm 

microcalcifications), the presence of more microcalcifications improves the overall cluster 

Figure 4.12: Effect of cluster diameter on detection performance for clusters of 3 
microcalcifications displayed using MIP. Error bars correspond to 95% confidence intervals 
for each estimate.  
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detectability, while fewer calcifications within a cluster decreases the overall cluster 

detectability.  

 

4.4. Discussion 

Our results demonstrated the utility of the maximum intensity projection (MIP) for displaying 

image volumes containing microcalcification clusters. We found that there was no statistically 

significant difference in detection performance when using the MIP compared to the native 

section thickness, but that thicker sections led to reduced detection performance. This result 

suggests that the CNN is primarily accessing maximum intensities within breast CT image 

volumes to determine microcalcification presence. The MIP display method, despite using a 

single slice, yielded comparable performance to the native section thickness, which employed 

50 slices. Reduction in slices did not sacrifice detection accuracy, and this is useful in the 

Figure 4.13: Effect of number of calcifications on detection performance for clusters 
measuring 5-mm in diameter displayed using MIP. Error bars correspond to 95% confidence 
intervals for each estimate.  
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context of CNNs, where there are significant computational advantages to using MIPs over 

multi-slice image volumes. The MIP procedure essentially compresses the 3D image to a 2D 

image, resulting in efficient and better detection for microcalcifications. Future studies will 

capitalize on the MIP for investigating additional parameters with improved efficiency. While 

CNNs do not necessarily predict human observer performance, it is likely that human 

observers may also benefit from viewing MIPs compared to individual slices. 

 It is noteworthy that the native section thickness was the optimal section thickness for 

detecting individual microcalcifications and clusters of microcalcifications. These findings 

differ from those of previous studies conducted in our laboratory for the detection of mass 

lesions, where the optimal section thickness for detecting small (1 mm), unenhanced mass 

lesions was the equivalent of 3-5 reconstructed slices40. We suspect that the lowered 

detection performance of mass lesions in the thinnest section was due to the interference of 

quantum noise with the signal. Microcalcifications are higher-contrast objects compared to 

mass lesions and may be more immune to quantum noise. One advantage of breast CT over 

mammography is the ability to adjust the display (section thickness or MIP) of the image 

volume in real-time using viewing software, and this ability will be important during screening 

exams when lesion positions are not known a priori, or when lesions of interest vary in 

morphology. 

The effects of cluster diameter and number of calcifications on overall cluster detection 

performance was also investigated. Our results indicated that cluster diameter affects the 

detectability of microcalcification clusters, particularly for smaller microcalcifications near the 

threshold of detectability. Larger cluster diameters resulted in reduced overall detectability, 

while smaller cluster diameters led to increased detectability. Additionally, we observed that 

the presence of more calcifications within a cluster improved the overall detectability, while 
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fewer calcifications decreased it. These results begin to elucidate how model observers 

interact with microcalcification clusters in a 3D volume.  

These results underscore the well-known reality that the challenge of detecting 

microcalcifications is the challenge of resolving small objects. The voxel size of our current 

breast CT scanner is 0.2 mm. Assuming two calcifications of the same composition but 

differing only in that one is larger than the voxel size resolution, and the other is smaller than 

the voxel size resolution, the larger calcification will appear notably brighter when imaged on 

our breast CT system due to partial volume effects. In this study, we mathematically model 

the loss of intensity owing to partial volume effects specific to our system, and then evaluate 

the detectability of partial-volumed calcifications across clinical parameters. These models 

may be useful to quantitatively estimate the improvement in detectability that may arise from 

adjusting components of the breast CT system or protocols such as reconstructed voxel size. 

This study had a number of limitations. The field of view of the 2D 120 × 120 × 1 ROIs 

was 24 mm × 24 mm. Due to GPU memory constraints, when generating 3D VOIs, the field 

of view was reduced to 10 mm × 10 mm × 10 mm (50 × 50 × 50 voxels). The reduced 

volumetric field of view limited our ability to simulate larger cluster diameters and limited the 

CNN’s learning of anatomical background. Nevertheless, the extensive training dataset 

consisting of 29,700 VOIs derived from 109 distinct breast CT datasets likely enabled the 

CNN to effectively grasp the nuances of breast anatomical background during its training 

process. Moreover, the methodology for simulating microcalcifications and microcalcification 

clusters was simplified such that each microcalcification was spherical, and that each cluster 

contained microcalcifications of homogeneous size. While this simplification does not capture 

the full complexity of real-world microcalcifications and clusters, it enabled a controlled 

investigation into specific parameters of interest: microcalcification size, native intensity, 
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cluster diameter, number of calcifications, and image display methods. Contrast imaging was 

not explored in this study, but initial studies have demonstrated the utility of contrast-

enhanced breast CT in improving the conspicuity of small, malignant calcifications such as 

ductal carcinoma in situ (DCIS)94, and will likely bring added benefit. Future studies should 

investigate the influence of these additional factors to obtain a more comprehensive 

understanding of breast CT optimization for microcalcification detection.  

4.5. Conclusion 

This study investigated individual effects and the interplay of parameters affecting 

microcalcification detectability in breast CT. We inserted mathematically generated 

microcalcifications into acquired patient breast CT images and used CNN-based model 

observers to evaluate microcalcification detectability across clinical and imaging parameters. 

As breast CT is still a relatively new breast imaging modality, there is an ongoing need to 

identify optimal imaging protocols. The results of this investigation will be useful for future 

studies investigating a broader set of parameters related to breast CT and microcalcification 

detection. 
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Chapter 5: Conclusions 

This dissertation focused on key factors that contribute to mass lesion and microcalcification 

detectability in breast CT using hybrid images and model observers.  

 In Chapter 1, a new method was developed for simulating contrast-enhanced mass 

lesions based on enhancement levels arising from contrast-enhanced mass lesions from our 

clinical data set. Acquired patient breast CT images were used in concert with simulated 

contrast-enhanced mass lesions to study the role of contrast enhancement on detectability. 

A mathematical model observer, the pre-whitened matched filter (PWMF), was used to 

evaluate detectability across clinical parameters, and the improvement in detection due to 

contrast injection was quantified. An average 20% improvement in lesion detectability due to 

contrast enhancement was observed across lesion diameter, section thickness, breast 

density, and view plane, and a larger improvement was observed for patients with dense 

breasts. Small lesions are generally harder to detect in dense breasts, but these results 

demonstrated that injected contrast can substantially improve detection performance in 

dense breasts. 

 In Chapter 2, a CNN model observer was compared to the PWMF model observer for 

detecting simulated unenhanced mass lesions mathematically inserted into real patient 

breast CT images. The model observers were used to detect mass lesions in Gaussian 

background to better understand the performance of the CNN in the context of a known ideal 

observer (the PWMF). In the Gaussian background, the CNN performed essentially 

identically to the PWMF across lesion sizes and section thicknesses. In the breast CT 

background, the CNN outperformed the PWMF across lesion size, breast density, and most 

section thicknesses. These findings suggest that in breast CT images, CNNs capture more 
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diagnostic information than PWMFs and may be a more pertinent observer when conducting 

optimal performance studies in breast CT images. 

In Chapter 3, a new method was developed for mathematically simulating 

microcalcifications and microcalcification clusters. The loss of intensity owing to partial 

volume effects was modeled and used to mathematically insert microcalcifications into 

acquired patient breast CT images. 2D and 3D CNN models were used to evaluate the 

detectability of simulated calcifications across clinical parameters. We found that there was 

no statistically significant difference in detection performance when using the MIP compared 

to the native section thickness, but that thicker sections led to reduced detection performance. 

 Together, these studies elucidate the key factors affecting mass lesion and 

microcalcification detectability in unenhanced and contrast-enhanced breast CT and 

demonstrate the utility of model observers for examining breast CT images when human 

observers are unavailable. Future studies will investigate a broader set of parameters such 

as the role of morphology in lesion detection, the influence of contrast injection in 

microcalcification detection, and the role of reconstruction kernel in mass lesion and 

microcalcification detection. As breast CT advances towards translation to the clinic, these 

studies will be useful for optimizing breast CT protocols.  
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