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Purpose: CT ventilation imaging (CTVI) is being used to achieve functional avoidance lung cancer
radiation therapy in three clinical trials (NCT02528942, NCT02308709, NCT02843568). To address
the need for common CTVI validation tools, we have built the Ventilation And Medical Pulmonary
Image Registration Evaluation (VAMPIRE) Dataset, and present the results of the first VAMPIRE
Challenge to compare relative ventilation distributions between different CTVI algorithms and other
established ventilation imaging modalities.

Methods: The VAMPIRE Dataset includes 50 pairs of 4DCT scans and corresponding clinical or
experimental ventilation scans, referred to as reference ventilation images (RefVIs). The dataset
includes 25 humans imaged with Galligas 4DPET/CT, 21 humans imaged with DTPA-SPECT, and 4
sheep imaged with Xenon-CT. For the VAMPIRE Challenge, 16 subjects were allocated to a training
group (with RefVI provided) and 34 subjects were allocated to a validation group (with RefVI
blinded). Seven research groups downloaded the Challenge dataset and uploaded CTVIs based on
deformable image registration (DIR) between the 4DCT inhale/exhale phases. Participants used DIR
methods broadly classified into B-splines, Free-form, Diffeomorphisms, or Biomechanical modeling,
with CT ventilation metrics based on the DIR evaluation of volume change, Hounsfield Unit change,
or various hybrid approaches. All CTVIs were evaluated against the corresponding RefVI using the
voxel-wise Spearman coefficient rg, and Dice similarity coefficients evaluated for low function lung
(DSCjoy) and high function lung (DSCl;gp).

Results: A total of 37 unique combinations of DIR method and CT ventilation metric were either
submitted by participants directly or derived from participant-submitted DIR motion fields using the
in-house software, VESPIR. The rg and DSC results reveal a high degree of inter-algorithm and inter-
subject variability among the validation subjects, with algorithm rankings changing by up to ten
positions depending on the choice of evaluation metric. The algorithm with the highest overall cross-
modality correlations used a biomechanical model-based DIR with a hybrid ventilation metric,
achieving a median (range) of 0.49 (0.27-0.73) for rg, 0.52 (0.36—0.67) for DSCoy, and 0.45 (0.28—
0.62) for DSCh;gn. All other algorithms exhibited at least one negative rs value, and/or one DSC value
less than 0.5.

Conclusions: The VAMPIRE Challenge results demonstrate that the cross-modality correlation
between CTVIs and the RefVIs varies not only with the choice of CTVI algorithm but also with the
choice of RefVI modality, imaging subject, and the evaluation metric used to compare relative venti-
lation distributions. This variability may arise from the fact that each of the different CTVI algo-
rithms and RefVI modalities provides a distinct physiologic measurement. Ultimately this variability,
coupled with the lack of a “gold standard,” highlights the ongoing importance of further validation
studies before CTVI can be widely translated from academic centers to the clinic. It is hoped that the
information gleaned from the VAMPIRE Challenge can help inform future validation efforts. © 2018
American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13346]

Key words: 4DCT, CT ventilation imaging, deformable image registration, lung cancer

1. INTRODUCTION function of the lung, and is one of the important surrogate

markers for lung function. Ventilation is a core element in

Computed tomography ventilation imaging (CTVI) is an
image processing technique applied to breathing-correlated
CT images to measure three-dimensional distributions of
breathing-induced air volume changes in the lung, that is,
CTVI is a spatial segregate measurement of “ventilation.”
Ventilation contributes to blood-gas exchange, the primary
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spirometry, the most commonly used measure of lung func-
tion, and is an important imaging target driving the diagnosis
and treatment of lung disease as a regionally heterogeneous
system.! CTVI has been applied to functional avoidance lung
cancer radiation therapy treatments in three US clinical trials
(NCT02528942, NCT02308709, NCT(02843568) on the
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basis of clinical validation against clinical pulmonary func-
tion tests (spirometry)®” and gamma scintigraphy.* Thus far
however, it has proved difficult to establish convincing and
reproducible voxel-level correlations between CTVI and
other clinically accepted, three-dimensional ventilation imag-
ing modalities. With many possible CT acquisition protocols
and many different CTVI algorithms, there is a need for com-
mon validation datasets to better establish the cross-modality
(voxel-level) correlation between CTVIs and other already
established or “reference” ventilation imaging modalities
(RefVlIs). To address this need, we have developed the multi-
institutional VAMPIRE (Ventilation And Medical Pulmonary
Image Registration Evaluation) Dataset, which is drawn from
three existing functional lung imaging studies. This paper
describes the rationale and structure of the VAMPIRE Data-
set, as well as the results of the VAMPIRE Challenge, which
was launched in 2016 to compare relative ventilation distribu-
tions between different CTVI algorithms and different types
of RefVlIs.

Almost all CTVI algorithms hinge on three central steps:
(a) acquisition of a breathing-correlated CT scan, most com-
monly four-dimensional CT (4DCT),5 and less commonly
breath hold CT (BHCT)6 or 4D cone beam CT (4DCBCT),7
(b) deformable image registration (DIR) between the inhale
and exhale 4D phase images, and (c) application of a ventila-
tion metric which uses the DIR motion field to evaluate
breathing-induced changes in regional lung volume, or to
evaluate regional lung density changes between the spatially
aligned exhale and inhale phase images. In describing this
process, it is important to understand that the CTVIs are not
“acquired” per se, rather they are computed or synthesized
from the acquired anatomic 4DCT scan. The multitude of
techniques for synthesizing ventilation from anatomic 4DCT
(in particular, the use of different DIR methods and ventila-
tion metrics) renders the outputs equally variable.® In order to
be used in the radiation therapy treatment planning system,
the CTVI is converted to a relative ventilation distribution
(e.g., percentile map) so as to delineate functional structures
or otherwise provide a continuous distribution of functional
weightings for each lung voxel.” !

Many CTVI validation studies are fundamentally similar
in that they involve intrapatient comparisons between CTVI
and a corresponding RefVI. Comparisons with Xenon CT in
mechanically ventilated sheep,'? and ex vivo imaging of fluo-
rescent microspheres in mice'> have featured highly
controlled experimental conditions and achieved strong
cross-modality correlations (e.g., with voxel-level correla-
tions exceeding ~ 0.8 for small lung subvolumes). In con-
trast, clinical human studies using single photon emission
computed tomography (SPECT) with technetium-99m
(**™Te),'**15 positron emission tomography (PET) with gal-
lium-68 (®*Ga),*'®"”, and hyperpolarized gas MRI with either
helium-3 (*He)'® or xenon-129 ('2Xe)'? have all shown vari-
able cross-modality correlations (mean Spearman correla-
tions in the range 0.1-0.8), which has been variously
attributed to poor image quality in the 4DCT dataset or the
RefVI scan, time delays between intrapatient scans, or poor
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reproducibility of breathing patterns/maneuvers. A recent
study by Eslick et al.”’ evaluated CTVI against Galligas PET
and suggests the possibility for substantial improvement in
cross-modality correlations when the CTVI is derived from
high-quality exhale/inhale BHCT as opposed to 4DCT. The
authors reasoned that this improvement was due to the BHCT
scans having a higher spatial resolution than the 4DCT scans
and because they were less prone to image reconstruction
artifacts related to irregular breathing. Ultimately, it is diffi-
cult to make direct comparisons between the different single-
institution studies — or to draw conclusions from those com-
parisons — due to the myriad of implementation differences
in DIR, ventilation metric(s), pre-/postprocessing, and met-
rics for comparing relative ventilation distributions.

The motivation for this work is twofold. First, we present
the VAMPIRE Dataset which focuses on the specific problem
of comparing relative ventilation distributions between
CTVIs and different types of RefVIs. The dataset was con-
structed thanks to a collaborative effort between the Univer-
sity of Sydney, Peter MacCallum Cancer Centre, Stanford
University, the University of Iowa, and the University of
Madison-Wisconsin and is derived from three separate func-
tional lung imaging studies.*"** The dataset comprises 50
pairs of 4DCT and RefVI scans including 25 free-breathing
human subjects imaged with ° Ga-labelled nanoparticles
(Galligas) 4DPET/CT, 21 free-breathing human subjects
imaged with diethylenetriamine pentaacetate acid (DTPA)
SPECT, and four mechanically ventilated sheep imaged with
Xenon-CT. The VAMPIRE Dataset has a minimal set of
inclusion/exclusion criteria ensuring a diverse range of
healthy and diseased subjects, with a mix of different 4DCT
image quality levels.

As a second part of this work, we report on the results of
the VAMPIRE Challenge — inspired by the grand challenges
for DIR such as EMPIRE10** and MIDRAS.** For the VAM-
PIRE Challenge, seven groups from the US, Europe, Asia,
and Oceania downloaded the 4DCT scans — with a majority
of the RefVI scans blinded — and uploaded their DIR motion
fields and processed CTVIs using their algorithm(s) of
choice. We compare the relative ventilation distributions
between each CTVI and corresponding RefVI using the two
dominant evaluation metrics in the CTVI validation literature,
which reflect the intended use of the CTVIs as relative venti-
lation distributions in the treatment planning system. These
metrics are the voxel-wise Spearman correlation rg evaluated
over the whole lung, and Dice similarity coefficients evalu-
ated for low and high function lung zones (DSCj,, and
DSChign, respectively). The results are stratified according to
imaging protocol, DIR method, and ventilation metric.

In presenting the results of the VAMPIRE Challenge, we
should clarify a few points. First and foremost, we must
acknowledge that this study is not perfect or ideal due to the
lack of a known ““ground truth,” to the extent that none of the
reference ventilation imaging modalities used in VAMPIRE
measure breathing-induced air volume changes directly. That
said, we feel that this paper represents the best that can be
accomplished with the current state-of-the-art ventilation
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imaging modalities. Of the reference ventilation imaging
modalities in VAMPIRE, Xenon-CT comes closest to imag-
ing regional air volume changes directly: by analyzing the
dynamic enhancement of x-ray attenuation during the
washin/washout of an inert, nonionizing gas (Xenon). Mean-
while, Galligas 4DPET/CT and DTPA-SPECT both rely on
the imaging of radiotracer distributions which are inhaled
and deposited in the lung prior to the scan itself. Of these two
radiotracers, Galligas is the more “gas-like,” as it is produced
in a Technegas generator and consists of an ultrafine disper-
sion of % Ga-labelled carbon that penetrates deep into the
nonconducting airways due to its sub-um size.”"*> By com-
parison, 99mTe labelled DTPA is a nebulized radioaerosol
featuring liquid droplets ranging from 1 pm to larger than
10 pm: the resulting deposition mechanisms include inertial
impaction for the largest droplets, gravitational sedimentation
for mid-sized droplets, or Brownian diffusion for the smallest
droplets.25 The fact remains, however, that Xenon gas, 58Ga-
labelled carbon, and ?™Tc-labelled DTPA are all surrogates
for air. In addition to these limitations, our study is not geared
to evaluate the DIR numerical stability, short-term repro-
ducibility, or the underlying physiologic bases for any of the
modalities investigated. The importance of these issues has
been raised by a number of theoretical®® and experimen-
tal™?"2? studies, as well as in review papers.'*>*" We will
touch on these issues in the Section 4.

With these issues in mind, we note that the VAMPIRE
Dataset and Challenge is not intended to make a definitive
statement about the spatial distribution of physiologic accu-
racy for any one CTVI algorithm, or for CTVI generally.
Indeed, one could argue that our comparison of relative venti-
lation distributions in terms of the rs, DSChign and DSCigy,
metrics provides a necessary — but not fully sufficient — set
of criteria to characterize the cross-modality correlations.
Instead, we emphasize that the true value of this work is in
recognizing the rich variety in outputs between different CTVI
algorithms as implemented by different groups, to present an
initial case study of cross-modality correlations generated in a
multi-institutional setting, and to provide an online dataset
that is available by request for future CTVI researchers.

2. MATERIALS AND METHODS
2.A. The VAMPIRE dataset

The VAMPIRE Dataset and VAMPIRE Challenge were
conceived during the CT ventilation imaging workshop at the
2015 Annual Meeting of the American Association of Physi-
cists in Medicine (AAPM). Calls were put out to workshop
attendees for contributions of patient and/or animal image
datasets featuring paired sets of 4DCT and RefVI scans. The
inclusion criteria were (a) all datasets must be anonymized
and covered by existing institutional review board data shar-
ing arrangements, (b) the 4DCT component must include at
least the maximal exhale and maximal inhale phase images,
(c) the RefVI scans should be three-dimensional volumetric
images coregistered to the 4DCT, implying a focus on well-
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established ventilation imaging modalities such as *™Tc
SPECT/CT, °8Ga PET/CT, contrast enhanced (Xenon) CT,
and hyperpolarized gas MRI. Contributors were requested to
suggest a journal reference for each dataset detailing the scan
protocols.

A summary of the VAMPIRE Dataset, including informa-
tion about the subjects and imaging protocols, is shown in
Table I. Note that the tabulated values for signal-to-noise
ratio, SNR, were calculated as SNR = (u/SD) where u and
SD are the mean and standard deviation of intensity values
inside the lungs. For 4DCT scans, the calculation was per-
formed for all phase images and was based on a background
intensity of —1000 Hounsfield Units (HU). For RefVI scans,
the calculation was based on a background intensity of zero.
Details of the lung segmentation are given in Section 2.A.4.
The specific details on the three imaging studies are given in
the following subsections.

2.A.1. Study 1 — Galligas 4DPET/CT (human study)

Study 1 includes 25 lung cancer patients imaged with Gal-
ligas 4DPET/CT at the Peter MacCallum Cancer Cen-
tre.”'?°% Scans were acquired prior to radiation therapy
treatment on a combined 4DPET/CT scanner and in a single
imaging session. All subjects underwent free breathing with
respiratory signals acquired using the realtime position man-
agement (RPM) system (Varian Medical Systems, Palo Alto,
CA). The 4DCT scan component was a low-dose cine-mode
chest protocol with scans reconstructed into five respiratory
phase bins with in-plane resolution 1.07 x 1.07 mm? and
slice thickness 5 mm; a time-averaged 4DCT was also
derived.

The 4DPET scan was acquired immediately following the
4DCT using two bed positions of 5 min each. The 4DPET
was reconstructed into five phase bins with phase-matched
attenuation correction from the 4DCT. The 4DPET scans had
in-plane resolution 2.86 x 2.86 mm?2, slice thickness
3.3 mm, and were inherently coregistered to the 4DCT phase
images. Nongated (3D) Galligas PET scans were additionally
derived from the time-averaged 4DPET and thus coregistered
to the time-averaged 4DCT. Based on the findings of a previ-
ous CTVI validation study using this same dataset,'® we per-
formed the CTVI comparisons using the 3D Galligas PET
scans, owing to improved SNR as compared to the 4DPET
scans.

2.A.2. Study 2— Xenon CT (animal study)

Study 2 includes four healthy sheep imaged with 4DCT
and Xenon CT at the University of Iowa.”” The sheep
received computer-controlled positive pressure ventilation
under anaesthesia, with the pressure signal itself used for 4D
phase sorting. 4DCT scans were acquired in a helical mode
and used a Siemens B30f kernel to reconstruct into eight
phase bins with 1 mm?® voxels. Xenon CT scans were per-
formed subsequent to each 4DCT, using the same scanner
and without moving the animal. These scans involve the
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TaBLE I. Summary of functional lung imaging data included in VAMPIRE. Abbreviations: “4DCT” = four-dimensional computed tomography;
“PET” = positron emission tomography; “DTPA” = diethylenetriamine pentaacetate acid; “SPECT” = single photon emission computed tomography;
“RPM” = realtime position management; “mm” = millimeters; “cm” = centimeters; “mA” = milliAmperes; “kVp” = Kkilovoltage peak; “SNR” = Signal-to-
noise ratio; “SD” = standard deviation. Asterisks (*) indicate where the RefVI slice thickness/in-plane resolution was resampled to the dimensions of the 4DCT.

Study: Name: Galligas 4DPET/CT Xenon CT DTPA-SPECT
Institution: Peter MacCallum Cancer Centre University of Towa Stanford University
Grant/Trial ID: Cancer Australia National Institutes of Health NCTO01034514
(APP 1060919) (HL079406, CA166703)
Journal reference(s): [21,31,32] [22] [2]

Subjects: Type: Lung cancer patients
# Subjects, Total: 25
# Subjects, training: 5
# Subjects, validation: 20
4DCT scans: Scanner type: 4DPET/CT
Acquisition mode: Cine
Breathing condition: Free-breathing
Breathing signal: RPM
# Phase bins: 5
Slice thickness: 5.0 mm
In-plane resolution: 1.07 x 1.07 mm?
Tube voltage/current: 140 kVp/10 mA
SNR (mean + SD): 1.51 £+ 0.37
RefVI scans: Scanner type: 4DPET/CT
Imaging mechanism: Inhaled ®¥Ga
Time delay (post 4DCT): < 10 min
Anatomic CT reference: 4DCT time average
Axial coverage: Whole lung
Slice thickness: 3.27 mm
In-plane resolution: 2.87 x 2.87mm?
SNR (Mean + SD): 2.10 + 0.51

Healthy sheep

4

1

3

4DCT

Helical
Mechanical ventilation
Inflation pressure
8

1.0 mm

1.07 x 1.07 mm?
120 kVp/100 mAs
1.47 + 0.10
4DCT

Inhaled Xe

< 10 min

4DCT exhale phase
3cm

1.0 mm

1.0 x 1.0 mm?
1.51 £ 0.13

Lung cancer patients
21

10

11

4DCT

Cine or helical
Free-breathing
RPM

10

2—3 mm

0.97 x 0.97 mm?
120 kVp, 100 mAs/slice
1.63 £ 0.31
SPECT/CT
Inhaled *"Tc

4-5 days

4DCT time average
Whole lung

8 mm*

8 x §mm? *

1.89 + 0.43

measurement of Xenon washin and washout over approxi-
mately 90 breaths for a set of contiguous slices with axial
coverage ~3 cm. The Xenon CT scans were inherently
coregistered to the corresponding 4DCT exhale phase image
thus negating the need for a 4DCT time average image.

2.A.3. Study 3 - DTPA-SPECT/CT (human study)

Study 3 includes 21 lung cancer radiation therapy patients
receiving treatment planning 4DCT (standard-of-care) and
DTPA-SPECT scans at Stanford University.” The 4DCT scans
were acquired on two PET/CT scanners in either cine or heli-
cal mode, with respiratory signals acquired using the RPM
system with some patients receiving Audiovisual Biofeed-
back for breathing guidance. 4DCT scans were reconstructed
into ten breathing phase bins and a time average with slice
thickness either 2.0, 2.5 or 3.0 mm. The (mean + SD) time
delay between the 4DCT and subsequent DTPA-SPECT was
(4 £ 5) days. The DTPA-SPECT scans included a low-dose
attenuation correction CT and were reconstructed with isotro-
pic voxel spacing 8.8 mm. In order to link each SPECT/CT
with the time-averaged 4DCT, a rigid registration was per-
formed between each attenuation correction CT and the
4DCT time average using a Mattes mutual information rigid
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registration in Plastimatch (http:/plastimatch.org). The
DTPA-SPECT scans were thus linearly interpolated to match
the dimensions of the time-averaged 4DCT.

2.A.4. Lung segmentation

A set of “coarse” lung segmentations was created for each
4DCT phase image using a region-growing method from the
Insight Toolkit (ITK; see https://itk.org). Major airways were
additionally brushed out using ITK Snap http://itksnap.org.
The coarse 4DCT lung masks were provided as a conve-
nience to the Challenge participants, with the intent that they
could be (optionally) used in the participants’ own CTVI
pipelines.

In order to perform the voxel-level correlation analysis
between each CTVI and RefVI, a refined set of lung masks
was subsequently produced and propagated to the RefVI as
follows. First, the coarse 4DCT masks were adjusted to
exclude any voxels with CT number > —250 HU; this was
done to exclude “non-aerated” features such as vasculature,
solid tumor mass, pleural effusion, etc. For the case of Xenon
CT, which is inherently coregistered to the 4DCT exhale
phase image, the refined exhale lung mask was propagated
directly to the Xenon CT scan using a nearest neighbor
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interpolation. For the case of the free-breathing Galligas PET
and DTPA-SPECT scans, which are coregistered to the time-
averaged 4DCT, we produced time-averaged versions of the
(refined) 4DCT lung masks using a “majority vote” at each
voxel. The refined, 4D time average lung masks were then
propagated to the corresponding RefVI, again via a nearest
neighbor interpolation.

2.A.5. Packaging of the VAMPIRE dataset

All of the 4DCT and RefVI datasets were converted to the
Dicom and ITK Metalmage formats. All filenames, folder
names, and metadata used a straightforward alphanumeric
naming convention (e.g., the 4DCT series description is given
as  “Averagelmage,” ‘“Phaselmage_XX,” or “Phase-
Mask_XX” where “XX” represents the phase number) to
facilitate scripted CTVI generation and analysis. The dataset
was packaged with a spreadsheet including information such
as the 4DCT image dimensions and voxel spacing, range of
voxel values for the RefVI scans, and information about sub-
ject breathing patterns/maneuvers where available. Also
included were a list of the maximal exhale and maximal
inhale 4DCT phase images based on visual inspection as well
as consideration of the segmented lung volumes.

2.B. The VAMPIRE challenge
2.B.1. Participant selection

Researchers with a known interest in CTVI (via publica-
tions, conference presentations, or personal correspondence)
were invited to participate in the VAMPIRE Challenge. There
were no inclusion or exclusion criteria in terms of the choice
of DIR method(s) or ventilation metric(s).

2.B.2. Division of the VAMPIRE dataset into
training and validation components

We produced a “Challenge Dataset” where the full set
of 50 subjects was divided into both a training component
and a validation component, comprising an approximate
30%—70% split, respectively. All of the 4DCT and RefVI
scans were provided for the training component, whereas
only the 4DCT scans were provided for the validation
component (i.e., the RefVI scans were blinded). The intent
of the training component was to provide participants an
opportunity to perform self-evaluation and/or optimization
of their CTVI algorithm(s) prior to submitting results for
the validation component. For the Galligas PET and
Xenon CT studies, none of the RefVI scans showed major
imaging artifacts and so the allocation of imaging subjects
to the training/validation components was performed ran-
domly. For Galligas PET, the split of training/validation
subjects was N = 5/20, and for Xenon CT, it was N = 1/3.
For the DTPA-SPECT study, the training component
comprised of N = 10 scans which were noted as having
minimal radioaerosol clumping artifacts. The remaining
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N = 11 had moderate clumping and were allocated to the
validation component. This choice was made to prevent
participants optimizing their CTVI algorithms based on
artifact-containing SPECT scans.

2.B.3. Instructions for participants

Participants were instructed to download the Challenge
Dataset and to generate a DIR motion field and CTVI for
each subject using the algorithm(s) and software(s) of their
choice. All CTVIs and DIR motion fields were either submit-
ted in the ITK Metalmage format or were converted to Metal-
mage based on provided file format documentation.
Participants were requested to use the 4DCT exhale/inhale
phase images as specified in the Challenge documentation,
with the CTVI defined on the geometry of the 4DCT exhale
phase image. Participants were also requested not to apply
masking or smoothing of the output CTVIs. This was done to
minimize variability due to factors other than the DIR method
or ventilation metric. Where participants required 4DCT lung
segmentations for use in their DIR workflow, they were
invited to use the segmentations provided in the Challenge
Dataset, but this was not mandatory.

2.B.4. Characterization of CTVI algorithms

All participants were requested to complete a ques-
tionnaire to characterize their CTVI algorithms(s). Partic-
ipants were asked details about the DIR engine(s), for
example, the type of transform model (e.g., B-spline,
Free-form, Diffeomorphisms, or finite element mod-
elling), image similarity metrics (e.g., sum of squared
differences, mutual information, normalized cross corre-
lation), the use of lung masking, motion field regular-
ization or smoothing, and the number of 4DCT phase
images included in each DIR process (e.g., exhale/inhale
only, or the full 4D set).

Participants were also asked to provide information about
the ventilation metric(s). Most DIR-based ventilation metrics
can be categorized as evaluating breathing-induced HU
changes (“DIR-AHU”) based on the equation developed by
Guerrero et al.’ or evaluating regional volume changes
(“DIR-AVol”) based on the Jacobian determinant as per Rein-
hardt et al.*> Two unpublished methods evaluated both HU
and volume changes simultaneously to correct for tissue com-
pression (“Hybrid-A”) or to determine the mechanical stress
distribution of the lung as a surrogate for function (“Hybrid-
B”). Also considered were “attenuation-type” ventilation
metrics that do not use DIR, but rather model blood-gas
exchange in terms of time-averaged 4DCT HU values."”
Some ventilation metrics incorporate a tissue density scaling
factor, p, which has been shown to improve the modelling of
radioaerosol deposition.'® Another point of difference is that
some ventilation metrics report the “specific” breathing-
induced ventilation (i.e., fractional air volume change per
voxel, as in the original Guerrero equation’) whereas others
report the “absolute” air volume change at each voxel (i.e., in
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units equal or proportional to mL/voxel, for example, as used
in the modified Guerrero equation.'®)

Participants were additionally asked to provide details on
any pre-/postprocessing applied either to the input 4DCT
phase images or output CTVIs as well as any optimization of
their algorithm(s) that was performed based on the Training
scans. More information about the ventilation metrics can be
found in the Appendix.

2.B.5. Postprocessing of participant-submitted
CTVis

All participant-submitted CTVIs were resampled to the
geometry of the corresponding RefVI scan using nearest
neighbor interpolation in Plastimatch and masked with the
predefined RefVI lung segmentations. Each CTVI scan was
smoothed using a mask-preserving median filter of
width 3 x 3 x 3voxels’. From earlier studies,'>'® the
3 x 3 x 3voxels® filter was anticipated to strike a good bal-
ance between minimizing image noise while maintaining the
spatial fidelity of the CTVI scans. The mask-preserving med-
ian filter was chosen to avoid any smearing between lung and
nonlung voxel values. The RefVI scans were not smoothed.

In order to exclude any spurious ventilation values from
the RefVIs (for example, due to radioaerosol clumping or
other nonquantitive image artifacts), we used the same
thresholding method applied by Kipritidis et al.'® That is, we
applied an iterative process of: (a) identifying and (b) remov-
ing any RefVI lung voxels with ventilation values more than
+4 standard deviations outside the mean for that image; this
was continued until the thresholding level converged to
within 1%. In general, the prevalence of any hotspots in the
RefVIs was low; the mean (range) of lung volume occupied
by hotspots was 0.6 (0-2.5)% for Galligas PET, 0.8 (0-2.1)%
for Xenon-CT, and 1.0 (0-5.9)% for DTPA-SPECT. The
same voxels were excluded from each corresponding CTVIL
Once the hotspots were excluded, four functional lung zones
were segmented for each CTVI and RefVI scan: 0-25th per-
centile (“low function”), 25-50th percentile (“moderate func-
tion”), 50-75th percentile (“good function), and >75th
percentile (“high function™).

2.B.6. Generation of standardized CTVIs from
participant-submitted DIR motion fields

For each participant-submitted DIR motion field, we used
the MATLAB-based ventilation toolkit, VESPIR,33 to derive
“standardized” versions of the DIR-AHU and DIR-AVol ven-
tilation metrics where they were not already available. For
this analysis, we refer to CTVIs as being standardized if they
used either the DIR-AHU or DIR-AVol ventilation metric,
reported specific ventilation at each voxel, and had no tissue
density scaling or image smoothing applied. The generation
of standardized CTVIs has two advantages: (a) it allows
investigation of DIR motion field singularities in cases where
a Jacobian determinant image was not submitted, and (b) it
enables a more fair comparison between different CTVI
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algorithms by controlling for the many implementation differ-
ences between different algorithms (see Table II).

The reader should note that our definition of a standard-
ized CTVI is arbitrary. Some participant-submitted CTVIs
will happen to fit the criteria of this definition even if they
were not specifically generated using VESPIR. At the same
time, some of the VESPIR-generated CTVIs can be described
as “non-standardized,” for example, where tissue density
scaling was used.

2.B.7. Statistical analyses

Our analyses focus on the Spearman rg and the DSC,
which have both been used extensively in the CTVI literature
and are appropriate for comparing relative ventilation distri-
butions in space. The Spearman rg quantifies the degree of
monotonicity between two distributions and takes a range of
values [—1,1] with —1 indicating a perfect negative correla-
tion and +1 indicating a perfect positive correlation. Unless
where otherwise specified, the rg values are calculated
between pairs of spatially correlated CTVI and RefVI voxels
for the same subject. Meanwhile, the DSC is used to indicate
the fractional volume overlap for a given functional percentile
zone as segmented from two different ventilation images.
The DSC takes a range of values [0,1] with O and 1 indicating
no overlap and perfect overlap, respectively; in this work, the
DSC values are only computed between pairs of CTVI and
RefVI images for the same subject. All statistical analyses
were performed using MATLAB version R2015a (Math-
works Inc., Natick, MA, USA). We performed three specific
investigations:

e Evaluating the relative ventilation distributions
between CTVIs and RefVIs
Here, we compare each of the CTVIs with their corre-
sponding RefVI scans across all of the 34 validation
subjects in the study. The different CTVI algorithms
are ranked according to the median rg and DSC values
in each imaging substudy (Galligas PET, Xenon CT,
and DTPA-SPECT). The results are stratified variously
by (a) the choice of DIR method, (b) ventilation met-
ric, (c) the categorization of CTVIs as standardized or
nonstandardized, and (d) whether the CTVIs were par-
ticipant-submitted or derived from participant-sub-
mitted DIR motion fields using VESPIR. The impact
of subject selection (validation versus training sub-
jects) is also considered. It is useful to visualize the
data along all of these axes so as to avoid any inherent
bias, especially when comparing the participant-sub-
mitted CTVIs with those derived from the participant-
submitted DIR motion fields.

e Evaluating the impact of DIR spatial accuracy.
In this part of the analysis, we investigate possible
links between the measured rg values and the spatial
accuracy of DIR. The DIR spatial accuracy is quanti-
fied in two ways based on the AAPM Task Group 132

report on the quality assurance of image registration.*
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Firstly, for each DIR motion field, we consider the per-
centage of negative Jacobian values, J_, inside the
lung volume of the 4DCT exhale phase image. This
quantity is of interest because negative Jacobian values
indicate singularities in the DIR motion field and are
taken to suggest physically implausible deformations.
We note that the Jacobian determinant maps were not
modified or filtered for this analysis.

Secondly, we assessed the DIR spatial accuracy in
terms of the three-dimensional target registration error
(TRE) for anatomic landmark pairs defined on each
4DCT exhale/inhale phase image pair. The landmark
pairs are included with the VAMPIRE Dataset and
were generated using a fully automated landmark
selection method which is based on the scale invariant
feature transform (SIFT) as implemented in Plasti-
match by Paganelli et al.>> The SIFT algorithm identi-
fies and characterizes candidate landmarks in both the
exhale/inhale images using the following steps: (a)
scale-space extrema detection using a differences of
Gaussians technique, (b) selection of candidate land-
marks based on contrast and curvature thresholds, and
(c) generation of feature descriptors in terms of the
gradient magnitude and direction. An association is
then generated between landmark pairs having similar
feature descriptors and similar euclidean distances to
neighboring landmarks in both images. In VAMPIRE,
the SIFT landmarks were generated only within the
coarse 4DCT lung segmentations described in Sec-
tion 2.A.4. As a preprocessing step, the ITK vesselness
filter was applied to the 4DCT exhale and inhale phase
images to enhance the contrast of any tubular struc-
tures in the lung.

Following the landmark detection process, each of the
submitted DIR motion fields was used to warp the
inhale landmarks to the exhale geometry in order to
compare TRE both before DIR and after DIR (written
TREgefore—pir and TREAfier—pIR» respectively). In order
to exclude any spurious landmarks (i.e., landmarks
with too much or too little motion), we applied two
levels of filtering to the detected landmark pairs: (a)
we excluded any landmarks with TREgfore_pir Smaller
than the voxel spacing, and (b) we excluded any land-
marks with TREgetore_pr in excess of 1.5 SD out-
side of the mean for that subject. This general method
was previously validated against a manual landmark
selection method by Hegi-Johnson et al."> As per the
Task Group 132 report, it is expected that the TRE
should be no larger than about 2 mm; however, in this
work, we mainly use TRE to understand the relative
performance of the different DIR methods.

e Evaluating the impact of CTVI self-consistency
measures.
Here, we investigate the possible links between the
measured rg values and the agreement between pairs of
CTVIDlRfAVol and CTVIDIRfAHU derived from the
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same DIR motion field. In particular, we anticipate that
where a CTVI indicates a true and major ventilation
defect, that there should exist a strong correlation with
other ventilation metrics derived from the same DIR
motion field. For this analysis, we focus on the stan-
dardized CTVIs so as to control for the many imple-
mentation differences between different algorithms
(see Table II).

3. RESULTS

3.A. Summary of the CTVI and DIR motion field
submissions

For the VAMPIRE Challenge, seven participants submit-
ted DIR motion fields based on 13 independent DIR meth-
ods. Based on these motion fields, a total of 37 different sets
of CTVIs were submitted either directly based on partici-
pants’ in-house software (five algorithms) or were derived
from the participant-submitted DIR motion fields using VES-
PIR (32 algorithms). A summary of each algorithm in terms
of the details of the DIR method and ventilation metric is
shown in Table II. The algorithm numbers (#) were assigned
in the order in which the data were received and processed.

In terms of DIR method, participants used a range of com-
mercial DIR software including Velocity (Varian Medical
Systems, Palo Alto, CA) and RayStation (RaySearch Labora-
tories, Stockholm, Sweden), as well as open source DIR soft-
ware including Plastimatch (http://plastimatch.org), Elastix
(http://elastix.isi.uu.nl), and Advanced Normalization Tools
(ANTs, http://stnava.github.io/ANTs/). The Velocity, Plasti-
match, and Elastix DIR all used B-spline-based transform
models, whereas ANTs used diffeomorphisms. Of the two
distinct DIR engines in Raystation, MORFEUS is a biome-
chanical model-based DIR that models the lungs and body as
tetrahedral elements and applies boundary conditions on the
chest Wall,36 and ANACONDA is essentially a free-form
transform using a correlation coefficient based on image sim-
ilarity.”” Within ANACONDA, we can distinguish a “Lung”
option which applies a varied correlation coefficient to allow
larger deformations typically seen in lungs. Additionally, the
“Lung + ROI” option uses the same correlation coefficient
as for the “Lung” setting, plus controlling contours to penal-
ize contour variations between the registered images. One
participant also used a custom version of the MORFEUS
algorithm that incorporates boundary conditions on the lung
vessel tree.*®

Where the DIR cost function incorporated image similar-
ity metrics, these were based on the intensity mean square
error (MSE), cross correlation (CC), squared sum of tissue
volume differences (SSTVD), or mutual information (MI).
All of the DIR methods used some form of motion field regu-
larization to avoid nonphysical folding of tissue (i.e., negative
values of the Jacobian determinant), and a majority of DIR
methods also used a “lung focus” (that is, where the DIR
optimizer focuses on the lung voxels and/or lung contours).


http://plastimatch.org
http://elastix.isi.uu.nl
http://stnava.github.io/ANTs/
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All but one of the DIR methods used the 4DCT exhale/inhale
phase images only.

In terms of ventilation metrics, the CTVIs for participants
#1 and #7 were all derived from DIR motion fields using
VESPIR. By comparison, participants #2—6 submitted at least
one set of CTVIs generated using in-house software other
than VESPIR. The most commonly used ventilation metrics
were different implementations of DIR-AHU and DIR-AVol
(comprising around 54% and 30% of all CTVIs, respec-
tively). Approximately 65% of all CTVIs were classified as
“Standardized” as they reported the specific ventilation using
either the DIR-AHU or DIR-AVol metrics with no tissue den-
sity scaling. Only two of the participants (#2 and #3) reported
performing any optimization of their CTVI algorithms based
on the Training component of the Challenge Dataset.

In terms of the study completion rate, participants #1—-6
successfully generated DIR motion fields and CTVIs for all
50 of the VAMPIRE Dataset subjects. Participant #7 encoun-
tered errors at the DIR stage for some of the subjects; algo-
rithms #30-33 failed for a single Galligas PET subject,
algorithms #30-31 failed for a single SPECT subject, and
#3437 failed for all of the Xenon subjects. None of the par-
ticipants applied explicit smoothing to their submitted
CTVIs. For participant #2 (algorithm #17) and participant #3
(algorithm #20), however, smoothing filters of size 5-10
voxels® were applied to the input 4DCT phase images and
these smoothed phase images were propagated through to the
CTVI calculation; this could be considered an “implicit”
form of CTVI smoothing.

3.B. Visual comparisons of CTVIs with RefVI scans

The visual agreement between CTVI and RefVI relative
ventilation distributions is observed to vary markedly
between different algorithms and between different imaging
subjects. As an example, the upper left panel of Fig. 1 shows
the coronal view of a RefVI scan for one of the Galligas PET
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validation subjects. The subject has an emphysematous
region in the right upper lobe (RUL) and a clipped artery
with bleeding visible as a high CT number. The RefVI is dis-
played as an amber color wash superimposed on the 4DCT
exhale phase image, with a [window/level] setting of [0.5/1.0]
after normalization to the 90th percentile ventilation in the
lung. Similarly, the other 37 panels show all of the CTVIs for
this same patient, with the algorithm # indicated in top-right
corner. Each CTVI was normalized in the same method as
the RefVI scan to provide a similar visual contrast in terms of
the relative ventilation distributions.

We can see immediately that the character of each CTVI is
quite different. Due to the use of DIR motion field regulariza-
tion, many of the DIR-AVol based algorithms (#4, 9, 15, 22,
24,26, 31, 33, 35, and 37) take on a smooth appearance com-
pared to the DIR-AHU, Hybrid A/B, or Attenuation CTVIs
which all incorporate HU information directly. Some excep-
tions include algorithms #17 and #20, which used the DIR-
AHU and Hybrid-B metrics, respectively, and applied filter-
ing to the input 4DCT phase images. Meanwhile, algorithm
#29 uses the DIR-AVol method but appears less smooth due
to the highly localized nature of the transformations produced
by the diffeomorphic DIR method. For this subject, the
majority of CTVIs show reasonably good concordance in
terms of the RUL defect, though for some CTVI algorithms a
spurious ventilation defect is also observed in the right lower
lobe (RLL).

Figure 2 shows axial views for one of the mechanically
ventilated sheep imaged with Xenon CT. In this case, the
RefVI shows a normal anterior—posterior (AP) gradient with
no clear ventilation defect; here, the AP gradient is likely
gravity induced. The CTVIs are largely concordant with the
RefVI in terms of the AP gradient; however, once again the
character of each CTVI is unique. A common feature among
the DIR-AHU based images is a slight lateral streaking which
may be due to streak-type reconstruction artifacts in the
4DCT phase images. For this subject, the DIR operation for

o o5 o

|/ -Fr'-l|

s gy #15
r.., . rig_: i .g

Fra Pl

’F
w

e B M,

et |

(pazijewiou) uone|puan

|

Fic. 1. Comparison of RefVI scans and corresponding CTVIs submitted for the VAMPIRE Challenge. This example shows coronal views of a human subject
imaged with Galligas PET. The CTVIs and RefVI are all separately normalized to the 90th percentile ventilation in the lung, with a [window/level] of [0.5/1.0]

applied to all images. [Color figure can be viewed at wileyonlinelibrary.com]
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Sheep subject, Xenon CT:
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FiG. 2. Comparison of RefVI scans and corresponding CTVIs submitted for the VAMPIRE Challenge. This example shows axial views of a mechanically venti-
lated sheep imaged with Xenon CT. The CTVIs and RefVIs are all separately normalized to the 90th percentile ventilation in the lung, with a [window/level] of
[0.5/1.0] applied to all images. Note that the CTVIs for algorithms #3437 are not available since the DIR could not be completed (“DNF” in the figure). [Color

figure can be viewed at wileyonlinelibrary.com]

algorithms #34—37 could not be completed and so the CTVIs
are not available.

Finally, in Fig. 3, we see a coronal view for one of the
training subjects, a lung cancer patient imaged with DTPA-
SPECT. Here, the RefVI scan exhibits defects in both the left
upper lobe (LUL) and RUL. Some clumping is visible around
the right middle lobe (RML) but this was noted as nonsevere.
Unlike in Figs. 1 or 2, here the different CTVIs tend to bare
very little resemblance either to the RefVI or each other. Only
a small number of CTVIs (e.g., algorithms #5, 11 and 20)
show a ventilation defect in either of the upper lung lobes. In
fact several algorithms (e.g., #4, 9, 17, 22, 24, 26, 31, 35, and
37) show spuriously high ventilation in the upper lung. A
number of CTVI pairs appear very different despite being
derived from the same DIR motion fields (e.g., # 21 and 22,
30 and 31, 32 and 33).

Human subject DTPA-SPECT:

Re ] CTV

3.C. Evaluating the relative ventilation distributions
between CTVIs and RefVIs

3.C.1. Spearman rs values

The boxplots in Figs. 47 show the distributions of rg val-
ues evaluated between all CTVIs and their corresponding
RefVI scans, where the CTVI algorithms are categorized
according to DIR method (Fig. 4), ventilation metric (Fig. 5),
standardization (Fig. 6), or submission type (i.e., participant-
submitted or derived from participant-submitted DIR motion
fields; Fig. 7). Each boxplot corresponds to a single algo-
rithm # and imaging substudy, where the Galligas PET,
Xenon CT, and DTPA-SPECT data are limited to the N = 20,
3, or 11 validation subjects, respectively. For each box, the
upper, middle, and lower edges show the upper, middle, and
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FiG. 3. Comparison of RefVI scans and corresponding CTVIs submitted for the VAMPIRE Challenge. This example shows coronal views of a human subject
imaged with DTPA-SPECT. The CTVIs and RefVIs are all separately normalized to the 90th percentile ventilation in the lung, with a [window/level] of [0.5/1.0]

applied to all images. [Color figure can be viewed at wileyonlinelibrary.com]
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CTVI algorithms categorized by DIR type:
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Fic. 4. Boxplots showing the distributions of Spearman rg values evaluated between each CTVI and the corresponding RefVI. Each boxplot refers to a specific
CTVI algorithm # and imaging substudy (Galligas PET, Xenon CT or DTPA-SPECT). Within each subject cohort, the CTVI algorithms are ranked in descending
order from left to right based on the median value of rs. Here, the CTVI algorithms are categorized by the DIR method. [Color figure can be viewed at wileyon

linelibrary.com]

lower quartiles with whiskers extending out to 1.5 times the
interquartile range; outliers are indicated by “+” symbols. In
each panel, the CTVI algorithms are ranked in descending
order from left to right based on the median value of rg. We
note that Figs. 5-7 show an identical set of rg values as for
Fig. 4, aside from the different CTVI categorization.

The rg values in Fig. 4 vary markedly between different
CTVI algorithms, different imaging studies, and different
subjects within each study. Taking into account all 34 valida-
tion subjects, the overall highest rg values were achieved by
algorithm #20, which used a Biomechanical model-based
DIR and the Hybrid-B ventilation metric. Algorithm #20
achieved rg values with an overall median (range) of 0.49
(0.27-0.73). The second highest ranked algorithm was algo-
rithm #17, which used B-spline DIR with a nonstandardized
DIR-AHU ventilation metric and achieved 0.38 (—0.10 to
0.65). The third highest ranked algorithm was algorithm #11,
which did not use DIR and had an overall median (range) of
0.37 (—=0.20, 0.60).

The rankings for median rg values change somewhat
when considering the validation subjects on a per-study
basis. Notably, algorithm #20 performed worse for the
sheep study (median r = 0.28) than for the human studies
(combined median r = 0.51). A similar pattern was
observed for algorithm #33, which also used a biome-
chanical model-based DIR. Conversely, the non-DIR
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algorithm #11 performed better for the sheep subjects
(median r = 0.52) than for human subjects (combined
median r = 0.36).

At the lower end of the performance range, the small-
est median rg value was —0.04 (—0.40, 0.34), exhibited
by algorithm #22. This used the same Biomechanical
DIR as algorithm #20 but with a standardized form of
the DIR-AVol ventilation metric. Aside from algorithm
#20, all of the algorithms exhibited at least one negative
correlation across all 34 validation subjects. The negative
correlation values occurred predominantly within the two
human studies; by comparison, the sheep study yielded
only one negative correlation across all of the CTVIs (al-
gorithm #33).

Comparing the standardized versus nonstandardized
CTVIs in Fig. 6, the rankings appear skewed toward nonstan-
dardized CTVIs in the top ten rankings in each subject group.
The rankings appear less skewed in Fig. 7, when comparing
the participant-submitted CTVIs versus CTVIs derived from
the participant-submitted motion fields.

3.C.2 DSC values for high and low function lung

Qualitatively, we observe that the DSCo, and DSCh;gn
values show a similar level of variability to the rg values
plotted in Figs. 4-7. So as not to replicate the plots, we
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CTVI algorithms categorized by ventilation metric:
B DIR-AHU B DIR-AVO
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Fic. 5. Boxplots showing the same distributions of Spearman rg values as for Fig. 4, but with the CTVIs categorized by the ventilation metric. [Color figure can

be viewed at wileyonlinelibrary.com]

have not plotted the DSC distributions individually, but
instead report on the corresponding results as for the rg
data.

We observed that algorithm #20 achieved the highest
overall performance across all 34 validation subjects with a
median (range) of 0.52 (0.36-0.67) for DSCj,, and 0.45
(0.28-0.62) for DSChign. The second highest overall ranking
was algorithm #17 for DSCyo, with 0.47 (0.22-0.66), and
algorithm #11 for DSCg, with 0.43 (0.17-0.59). For
DSCjow, the third highest ranking was algorithm #11 (median
value 0.41), and for DSCpgp, it was algorithm #10 (median
value 0.41).

Similar to the rg data, the performance of certain algo-
rithms changed markedly between different subject groups.
For example, in terms of DSC),,, values, algorithms #20 and
#33 were among the top four ranked results for Galligas PET
and DTPA-SPECT, but were in the bottom six results of those
provided for Xenon-CT. Also similar to the rg data, the top
ten DSC values for the different subject groups appeared
skewed toward nonstandardized CTVIs over standardized
CTVIs.

3.C.3. Considering the impact of subject selection

It is worth comparing the impact of subject selection on
the correlation of relative ventilation distributions between
the CTVIs and RefVIs. This is particularly the case for the
DTPA-SPECT substudy, where the training subjects were
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judged to have RefVI scans with nonsevere clumping, as
opposed to the validation subjects who had RefVI scans with
moderate (or worse) clumping. Focusing only on the DTPA-
SPECT study, the median (range) of rg values across all
CTVI algorithms was 0.15 (—0.39, 0.71) for training subjects
and 0.13 (—0.33, 0.73) for validation subjects. Extending this
across all three of the Galligas PET, Xenon CT, and DTPA-
SPECT studies, the mean (range) rs values changed only
slightly, from 0.18 (—0.39, 0.71) for training subjects to 0.17
(—0.40, 0.76) for validation subjects.

By comparison, subject selection can have a very marked
effect when considering the individual algorithm rankings.
This is shown in Fig. 8, where each datapoint represents a
single algorithm ranked separately for the training subjects
(horizontal axis) and validation subjects (vertical axis). The
separate plots for the rg, DSCjoy and DSChign comparison
metrics have a zigzag appearance where the rank for any
given algorithm can change by as many as +10 places
between the different subject cohorts. Each algorithm is addi-
tionally given an “overall” rank obtained by taking an average
of the rankings for the rs, DSCjoy, and DSCy;g, metrics. The
overall rank appears less sensitive to subject selection with a
nearly monotonic relationship.

3.D. Evaluating the impact of DIR spatial accuracy.

As a self-consistency measure, we analyzed the percent-
age of negative Jacobian values, J_, associated with each
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DIR motion field. We did not note any major issues with
the DIR in this respect. Referring to the DIR method #
from Table II, we found that DIR methods #1, 4, 7-10,
12, and 13 were all completely free of negative Jacobian
values within the exhale lung volume for any of the vali-
dation subjects. DIR methods #2, 5, 6, and 11 exhibited at
most 1.3% negative Jacobian values for any single valida-
tion subject, and for methods #2, 5, and 12, the mean per-
centage across all validation subjects was still zero. We
posit that the small number of negative Jacobian values
observed is an artifact of our (VESPIR-based) method for
generating the standardized CTVIs, which involves a B-
spline interpolation of the participant-submitted DIR
motion fields. Where the submitted motion fields contain
discontinuous (sliding) motion at the chest/lung boundary,
the B-spline interpolation may subsequently produce small
residual errors at that lung boundary. In any case, the
influence of negative Jacobian values in this study appears
to be very small, and no statistically significant correla-
tions were observed between the J_ values and the Spear-
man rg values for any of the CTVI algorithms.

The next set of results concern the SIFT-based TRE
and consider both validation and training subjects. The
(mean =+SD) number of SIFT-detected landmarks per
4DCT scan was (235 £ 109) for the Galligas PET sub-
jects, (276 &= 70) for the Xenon CT subjects, and
(376 &+ 174) for the DTPA-SPECT subjects. For these
subjects, the (mean +SD) values for TREgefore_pIR Were
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5.7+ 14) mm, (54 +£06)mm and (5.1 £ 2.5) mm
respectively. One DTPA-SPECT subject was subsequently
excluded from the TRE analysis since the number of
landmarks was very low (< 10) indicating a failure of the
SIFT algorithm.

Figure 9(a) plots the mean values of TREafe_pr Vver-
sus TREgefore_pir On a per motion field basis (i.e., there
are 589 data points, which correspond to 50 sub-
jects x 12 DIR methods, excluding 11 cases of failed
DIR). The vertical and horizontal lines indicate the 4DCT
slice thicknesses for each of the different imaging studies;
this should be considered as a limiting factor in the TRE
values actually observed. For the Galligas-PET and
DTPA-SPECT subjects, the best DIR spatial accuracy was
achieved by a B-spline method (DIR method #5, corre-
sponding to CTVI algorithms #17-19). This achieved
TREAfier—pir  Values with a (mean £+ SD) of (3.0 &+ 1.0)
mm for Galligas PET and (2.3 £ 1.1) mm for DTPA-
SPECT. For Xenon CT subjects, the best accuracy was
exhibited by another B-Spline method (DIR method #1,
corresponding to CTVI algorithms #1-5), which achieved
mean TREage, pir values of (1.4 4+ 0.2) mm.

With regard to the poorest performing DIR methods, for
Galligas PET, this was a B-Spline method (DIR method #8),
which exhibited a mean TREfe;—pr value of 5.4 mm. For
the Xenon-CT and DTPA-SPECT studies, a Biomechanical
model method (DIR method #11) performed worst with mean
TREafer—pir Values of 3.5 and 4.8 mm, respectively. Of the
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589 submitted DIR motion fields, we identified six motion
fields yielding a mean TREage—pir value in excess of
10 mm. The worst case had TRE sger_pir ~ 21 mm; on closer

Medical Physics, 46 (3), March 2019

inspection, the DIR appeared to have been run in the wrong
direction (i.e., Exhale — Inhale as opposed to Inhale —
Exhale). For the other five cases mentioned above, the fault
appears to be with the DIR algorithm itself, rather than any
human error in its application.

Figure 9(b) investigates the link between TREafer—pir and
Spearman rs. The figure includes 1778 data points covering
all of the available CTVIs for all of the DIR-based CTVI
algorithms. Overall, we found a moderately negative correla-
tion between Spearman rs and TREag—pr for the case of
Xenon CT subjects (linear correlation —0.47, P < 0.0001);
however, the correlation was almost zero for the case of Galli-
gas PET subjects (linear correlation —0.05, P = 0.10) and
DTPA-SPECT subjects (linear correlation —0.06, P = 0.09).
For some of the CTVI algorithms using the DIR-A Vol met-
ric, significant negative correlations were observed within
specific subject groups: namely CTVI algorithm #26 for the
Galligas PET subjects and CTVI algorithms #31, 35, and 37
for the DTPA-SPECT subjects. In each of these cases, the lin-
ear correlations were all within the range (—0.49, —0.45),
with P = 0.02—0.05. No other statically significant correla-
tions were observed between rg and TRE afier—pIr.-

3.E. Evaluating the impact of CTVI self-consistency
measures.

Figure 10(a) investigates whether the rg values computed
between a given CTVIpr-_avo and RefVI are related to the
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rs values computed between that same CTVIpRr_avo and the
corresponding CTVIpr_any. In other words, each datapoint
in the figure refers to a pair of standardized CTVIpr_avol
and CTVIpr_anyu derived from the same DIR motion field.
Figure 10(b) performs a similar comparison but plots the ver-
tical axis in terms of CTVIpr_agu. We observed moderate
linear correlations of 0.60 for the datapoints in Fig. 10(a) and
0.50 for the datapoints in Fig. 10(b), both with P < 0.001.
The implication is that, where the relative ventilation distribu-
tions of CTVIpr_aver and CTVIpgr_angy correlate more
strongly with each other, they also correlate more strongly
with the RefVI scan.

4. DISCUSSION

For the VAMPIRE Challenge, we quantified the cor-
relation of relative ventilation distributions between
CTVIs and RefVIs for 37 individual CTVI algorithms
based on submissions from seven different groups. The
correlation analyses were made using the voxel-wise
Spearman rg evaluated over the whole lung, and the
DSC evaluated separately for high and low function
lung. A summary of the overall best-performing CTVI
algorithms for the three different RefVI modalities is
shown in Table III. For the nuclear medicine modalities
— Galligas PET and DTPA-SPECT — the best-perform-
ing CTVI algorithm (#20) used a biomechanical model-
based DIR with maximum principle stress as the ventila-
tion metric. Meanwhile, for Xenon CT, the best-perform-
ing CTVI algorithm (#11) computed a 4D time average
of the tissue-air product and did not use DIR at all.
Paradoxically, neither of these CTVI methods compute
“ventilation” in the strict sense of breathing induced air
volume changes at the voxel level. Rather, they compute
other abstracted quantities, related to tissue aeration and
tissue elasticity, which might be reasonably expected to
correlate with ventilation. Since the various RefVI
modalities also operate on fundamentally different imag-
ing targets (i.e., radioaerosol deposition versus gas
washin/ washout), it is difficult to make a statement
about the “accuracy” of these CTVIs beyond comparing
the relative distributions in space.

If the goal of CTVI is to replace a given type of
RefVI for functional avoidance treatment planning, then
the level of intersubject variability for the rg values in
Figs. 4-7 is concerning. With the exception of algorithm
#20, all of the algorithms exhibited at least one rg value
less than zero (i.e., negatively correlated with the RefVI
scan). Moreover, in Fig. 8, we see that the subject selec-
tion had a marked impact on the CTVI rankings in terms
of the rs, DSCiow and DSCpig, evaluation metrics; the
implication being that a CTVI algorithm may appear to
perform “better” for some subjects than others. Based on
Fig. 9(b), the rg values do not appear to be determined by
the spatial accuracy of the DIR; indeed, it is possible to
identify DIR motion fields that have a relatively large reg-
istration error while still yielding CTVIs with relatively
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high rg. Currently, we can only speculate as to why such
significant interpatient variability was observed.

One possibility is suggested by the studies of Du et al.*”®
who showed that spontaneous changes in breathing ampli-
tude, frequency, and breathing mode that occur during free-
breathing can reduce the reproducibility of CTVIs generated
from repeat 4DCT scans. Unfortunately, the VAMPIRE Chal-
lenge is ill-posed to deal with this question, since we do not
have adequate information to correct for breathing effort dif-
ferences between the 4DCT and RefVI scans. Since repeat
(short-interval) scans were unavailable, it is impossible to
determine whether the differences between CTVI algorithms
were within the repeat variability of the different methods
themselves. A distinct, but related, problem is to determine
the numerical stability of each CTVI algorithm as this could
be influenced by patient-specific factors. The theoretical
study by Castillo et al.*® presented a framework for evaluating
the impact of small DIR perturbations on a resulting Jaco-
bian-based ventilation image; they found that it was possible
to compute two DIR transformations with similar TRE yet
producing very different CTVIs. In future multi-institutional
validation studies, it would be interesting to quantify the
uncertainty in observed rg and DSC values based on DIR per-
turbations which are comparable to the motion differences
between short-interval scans. This could provide a better
understanding of the impact of stochastically varying breath-
ing motion parameters.

When interpreting the observed rg and DSC distributions
as “good” or “poor”, the reader should bear in mind that there
exists little data regarding what level of rg or DSC correla-
tions are required to justify the use of CTVI for functionally
guided radiation therapy treatments. To our knowledge, only
the study by Kida et al.'” broaches this topic. Kida et al. com-
pared functional plans derived from CTVI and DTPA-SPECT
for the case of eight lung cancer patients, where the CTVIs
and SPECT ventilation scans had a mean Spearman correla-
tion of rg ~ 0.4. Those authors observed acceptable agree-
ment between the CTVI and SPECT-based functional plans
in terms of the functional dose—volume parameters (e.g., the
fV>0, which exhibited differences less than 4%). The study by
Kida et al. is directly relevant to the VAMPIRE Challenge
because some of their study subjects are included as Training
subjects in our DTPA-SPECT data; also, the CTVI algorithm
used in their study corresponds to algorithm #17 of the VAM-
PIRE Challenge. Looking at the DTPA-SPECT results in
Fig. 4, we see that many CTVI algorithms did achieve
r > 0.4 for at least one of the validation subjects. However,
the variability of rs values also suggests that CTVI guidance
may not be effective or appropriate for all patients.

In this work, we generated “standardized”” CTVIs from the
user-submitted DIR motion fields, and have proposed this as
a means to overcome the large number of implementation dif-
ferences between different CTVI algorithms. However, one
caution with this approach is that the nonstandardized CTVIs
tended to demonstrate higher cross-modality correlations
than the standardized CTVIs (as evident from panel (c) from
each of Figs. 4-6). This could indicate some bias in the



1214 Kipritidis et al.: The VAMPIRE challenge: CT ventilation 1214

(a) (b)
25 . . . . . 0.8 r T
i \ % Galligas-PET study
| | o Xenon CT study _ X
i | x + DTPA-SPECT study = 06 E ]
20 | \ 1 &
- | | o o
g P € 04} | .
~ | | = r
. >
o
5 15F | } 1 © 0.2
g P §
E | | = x
w i [ ] L J
c 10} | | { 8 °©
c i + - 2
® . 4DCT slice thicknesses: c
§ ! 4+ c -0.2F -
! pors Galligas-PET study E
5 I s x
o 04} J
i ! & -04
Xenon CT study
0 L L -0.6 1 1
0 15 20 25 0 15 20 25
Mean TRE Before DIR (mm) Mean TRE After DIR (mm)

FiG. 9. Investigating the impact of DIR spatial accuracy on the cross modality correlations between CTVIs and RefVIs. The plots compare: TREgefore—pir and
TREafier—pir for each of the 589 submitted motion fields (left panel), and the variation in rg with TREafe,—pir for all of the DIR-based CTVIs (right panel).
[Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)
1 T T T 1 T T T T T
x Galligas-PET study
o Xenon CT study r_ = 0.56 (p<0.0001)
+ DTPA-SPECT study P
0.8 Linear fit (all data) N - 0.8 | J

rp = 0.44 (p<0.0001)

Correlation between CTVI, . . .. and RefVI
Correlation between CTVI, o ..., and RefVI

xF
o £ Fx+
e

1 1 1 -0.4 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Correlation between paired CTVI, . \,,and CTVI . . Correlation between paired CTVIDIR_ Any and CTVIDIR- AVol

FiG. 10. Investigating self-consistency between standardized CTVIs. Here, the vertical axes show the Spearman correlation rg between each standardized
CTVIpr-ava (left panel) or CTVIpr_apu (right panel) with the corresponding RefVI. The horizontal axes show the rg values calculated between each corre-
sponding pair of CTVIpr_avor and CTVIpr_agy ventilation images derived from the same participant-submitted DIR motion field. The rp values refer to the
linear (Pearson) correlations computed from all the data points in each plot. [Color figure can be viewed at wileyonlinelibrary.com]

TasLE III. Summary of the overall best-performing CTVI algorithms for each of the Reference ventilation imaging modalities in VAMPIRE. Abbreviations.
“BM-DIR” = Biomechanical model-based DIR; “Max.” = Maximum; “Avg.” = Average; “N/A” = Not applicable.

Validation result (Mean + SD)

RefVI modality: Type of DIR: CT ventilation metric: rs - DSCiow : DSChigh :

Galligas-PET BM-DIR Max. principle stress (0.53 + 0.10) (0.53 + 0.08) 0.47 + 0.07)
Xenon CT N/A Time avg. tissue-air product 0.49 + 0.13) 0.49 + 0.08) (0.51 £ 0.08)
DTPA-SPECT BM-DIR Max. principle stress 0.49 + 0.16) 0.52 + 0.07) 0.45 + 0.11)
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results, which could arise if a given DIR method was
designed to provide motion fields that are appropriate only to
one type of ventilation metric. Additionally, our standardiza-
tion technique involved a B-spline interpolation of the partici-
pant-submitted motion fields which may have created some
undesirable, albeit marginal, effects when applied to motion
fields derived from a non-B-spline DIR. For example, biome-
chanical model-based DIR will present motion field disconti-
nuities at the sliding interface of the lung, and this may lead
to negative Jacobian values if the B-spline interpolation
assumes a smoothly motion field across the whole image. We
can extend the same caution when comparing the perfor-
mance of CTVIs derived from “in-house” DIR algorithms
(which are easily tweaked via various user-adjustable parame-
ters) versus commercial DIR algorithms (which tend to have
restricted access to the DIR parameters and are designed for
specific clinical applications). In particular, we point out that
the biomechanical model-based DIR methods are based on
human lung models, which may explain why the associated
CTVI algorithms performed better for humans than for
sheep.

One of the most interesting findings is represented by the
data in Fig. 10. The data suggest that for paired

CTVIpr_anu and CTVIpr_ave derived from the same

DIR motion field, the correlation of either CTVI with the
RefVI tends to be higher when both CTVIs correlate more
strongly with each other. This is also evident in the visual
comparisons in Figs. 1-3, where the Galligas PET and
Xenon-CT subjects have CTVIs which appear quite similar
across many different algorithms, whereas the DTPA-SPECT
subject shows CTVIs with relatively poor agreement with
each other. It seems intuitive that given a patient with a gross
ventilation defect, a high-quality 4DCT scan, and spatially
accurate DIR, then the DIR-AHU and DIR-AVol ventilation
images should show similar localization of that defect and
that their relative ventilation distributions should be reason-
ably well correlated. By comparison, a poor correlation
between paired DIR-AHU and DIR-A Vol ventilation maps
could indicate an issue somewhere along the image acquisi-
tion/processing chain. The possibility of using multiple
CTVIs as a form of secondary check is an interesting avenue
for future CTVI research. At any rate, the use of multiple
self-consistency metrics for the DIR and CT ventilation is
recommended.

We would like to point out some limitations of this study.
First, we have not specifically focused on the impact of differ-
ent image filtering/ smoothing levels on the CTVIs. While
we have made efforts to avoid additional image filtering/
smoothing by the participants, it was not possible to control
this aspect completely and readers should be aware that mea-
sured rg or DSC values will tend to increase or decrease
where the CTVI smoothing filter is increased or decreased,
respectively.'® Second, this study did not focus on the impact
of the 4DCT or RefVI image quality (e.g., as measured using
SNR). We argue that this is a reasonable omission since, from
Table I, the mean SNR values are not observed to vary drasti-
cally across the various 4DCT or RefVI scan sets. For nuclear
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medicine ventilation scans, an important type of image arti-
fact is radioaerosol clumping which has been recognized in
numerous CTVI validation studies. As explained in the excel-
lent review by Schembri et al.? , nuclear medicine ventilation
imaging may still be considered "robust” despite the presence
of clumping. This is because clumping artifacts do not reflect
an uncertainty in the technology itself, but rather have a clini-
cal reading which is grounded in physiology and flow
dynamics. The clinical interpretation of radioaerosol clump-
ing will depend on the physical properties of the radioaerosol
itself, the presence of lung disease, as well as the respiratory
effort of the patient. In VAMPIRE, we applied an algorithmic
approach to segmenting and excluding clumping hotspots
from our correlation analyses. On average, the hotspot vol-
ume was less than 1% of the lung volumes, and as such the
impact of the hotspot segmentation was only detectable in the
second decimal place of the rg and DSC values. The authors
of this work agree that a greater focus on image quality met-
rics may be of interest for future CTVI validation studies, in
particular where multiple 4DCT and/or multiple RefVI scans
are available for the same subject.

Finally, we can consider that one further limitation of
this work — and to an extent all CTVI studies — 1is that
none of the studied ventilation modalities in this study
(CTVI, SPECT, PET, or Xenon CT) purport to distin-
guish between gas transport within the air spaces of the
lung, as opposed to gas exchange with the circulation.
According to Simon et al.!, it is this latter quantity of
blood-gas exchange that more correctly represents the
true, physiologic lung function. The potential significance
of this distinction is shown in a recent study by Rankine
et al.”’, who found poor spatial correlation between inter-
leaved images of airspace ventilation versus blood-gas
transfer acquired using dissolved phase '*° Xe with MRL
If CTVI is to successfully enable avoidance of functional
lung (rather than merely aerated or deforming lung), then
it would be ideal if future CTVI validation studies can
incorporate additional types of imaging modalities —
such as '”Xe MRI — that can test for the true physio-
logic meaning of CTVIL. One could argue that observing
blood-gas exchange is not the function of ventilation
imaging; for example, it is a critical and clinically ubig-
uitous method of diagnosing pulmonary embolism, which
is essentially ventilation/perfusion mismatch. In either
case, it may be that CTVI only gives part of the picture.
Ultimately, it will remain up to the clinician to decide
which type of functional image is important to the treat-
ment plan.

5. CONCLUSIONS

CT ventilation imaging (CTVI) research has focused
extensively on clinical validation, but until now there has
been little in the way of common validation tools for
CTVI researchers. We have built VAMPIRE to address the
need for a common validation dataset, and report the
results of the first multi-institutional VAMPIRE Challenge
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to evaluate relative ventilation distributions between CTVI
and other clinically accepted ventilation imaging modali-
ties. The Challenge results demonstrate that the cross-mod-
ality correlations vary not only with the choice of CTVI
algorithm but also with the imaging subject and the type
of ventilation imaging modality used as a reference. These
findings highlight the ongoing importance of validation
studies before CTVI technology can be widely translated
from academic centers to the clinic.
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APPENDIX

CLASSIFICATION OF CT VENTILATION METRICS
USED IN THE VAMPIRE CHALLENGE

DIR-based ventilation metrics

The DIR-based ventilation metrics in the VAMPIRE
Challenge calculate breathing-induced air volume changes
in terms of regional intensity changes (DIR-AHU), regio-
nal lung volume changes (DIR-AVol), or other related
quantities based on hybrids of these two approaches. The
DIR-AHU metric is based on an expression introduced
by Guerrero et al.” For each voxel x and for a DIR
motion field v(x), the specific ventilation is calculated
using,

—1000

CTVIpr- = .
DIR—-AHU HUox (x)

[HUex(x) — HU}, (x + V)]
[HU;, (x + v) + 1000]

where HU,(x) represents the voxels of the 4DCT exhale
phase image, and where a global intensity correction is
applied to lung voxels of the deformed moving image
(HU;)) to account for changes in blood distribution dur-
ing inspiration. The DIR-A Vol metric was introduced by
Reinhardt et al.?> and is calculated as CTVIpRr_Avel =
J(x,v) — 1, where J(x,v) is the Jacobian determinant of v
(x). Positive (or negative) values of CTVIpr_ave indi-
cate regional lung volume expansion (or contraction). It
should be noted that the voxel values of CTVIpr_avol
do not necessarily represent the air-volume change
directly, rather they express the change in regional lung
volume which is taken to be proportional to the specific
ventilation.

Two types of hybrid CTVI algorithm were also used in the
VAMPIRE Challenge. The Hybrid-A calculation is a modifi-
cation of the original DIR—AHU equation and performs a
density correction for each voxel of HUg (x) to account for
tissue compression using J(x,v). The Hybrid-A CTVI is cal-
culated using,
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—1000 [HUg(x)" — HUjy(x + V)]
CTVIiyoria- (%) = HU,(x)  [HUjp (X + v) + 1000]
where HUgy (x)" = HUg(x)/Jac(x, v).

Meanwhile, the Hybrid-B method incorporates a custom
version of the MORFEUS DIR algorithm®® where each tetra-
hedral element in the model is assigned a Young’s modulus
following a linear function of HU in the lung inhale CT scan.
The ventilation is modeled as the maximum principal stress
computed for each tetrahedral element.

Non DIR-based ventilation metric

The “Attenuation” metric was developed in Ref. [17] and
is based on the assumption that physiological ventilation (i.e.,
blood-gas exchange) should relate to the regional product of
tissue and air densities. The CTVI is calculated directly from
4DCT HU values which are time averaged over the phase
bins ¢ = 1,...,N,
C“fWIAu v XN: [HU(,) (x)  HUy(x) + 1000 /
enuation ¢:1 _ 1000 1000

Here, the ( H_LII(;’;)((’)‘ )

the (W) term gives the fractional tissue content.

Any voxels with HU values HU > 0 or HU < —1000 are set
to zero. Since the CTVIattenuation method does not account for
the 4D motion of each lung tissue element, it can be expected
to exhibit generally poor spatial accuracy. In effect, the spatial
resolution of this CTVI method is as coarse as the 4D lung
motion itself.

) term gives the fractional air content and

Scaling factors

There are a few possible ventilation scaling factors to be
aware of. The DIR-AHU, DIR-AVol and Hybrid-A methods
as described all calculate the specific (fractional) ventilation
at each voxel. This may be converted to an absolute ventila-

tion in units proportional to mL/voxel by multiplying each

voxel by its volume of air at exhale, HHSESQ x Voly, where

Vol is the volume of the voxel at x. By comparison, the ven-
tilation distributions produced by the Hybrid-B and Attenua-
tion metrics do not represent air volume directly and so we
avoid the use of the “specific” or “absolute” ventilation
descriptors.

Some CTVI implementations additionally apply a tissue
density scaling factor,

[ HUk(x) + 1000]
Pex (X) - 1000 )

which takes a value in the range [0,1] and has been shown to
improve the modelling of radioaerosol deposition when
applied to the standard DIR-AHU and DIR-AVol metrics.'®
The p.(x) term appears in the calculation of the
CTVlagenuation images and is also implicit in the calculation
of the Young’s modulus for the Hybrid-B metric.




1217

Kipritidis et al.: The VAMPIRE challenge: CT ventilation

Y Author to whom correspondence should be addressed. Electronic mail:
john kipritidis @health.nsw.gov.au.

REFERENCES

L.

12.

14.

15.

17.

18.

Simon BA, Kaczka DW, Bankier AA, Parraga G. What can computed
tomography and magnetic resonance imaging tell us about ventilation? J
Appl Physiol. 2012;113:647-657.

. Yamamoto T, Kabus S, Lorenz C, et al. Pulmonary ventilation imaging

based on 4- dimensional computed tomography: comparison with pul-
monary function tests and SPECT ventilation images. Int J Radiat Oncol
Biol Phys. 2014;90:414—422.

. Brennan D, Schubert L, Diot Q, et al. Clinical validation of 4-dimen-

sional computed tomography ventilation with pulmonary function test
data. Int J Radiat Oncol Biol Phys. 2015;92:423-429.

. Vinogradskiy Y, Koo PJ, Castillo R, et al. Comparison of 4-dimensional

computed tomography ventilation with nuclear medicine ventilation-per-
fusion imaging: a clinical validation study. Int J Radiat Oncol Biol Phys.
2014;89:199-205.

. Guerrero T, Sanders K, Castillo E, et al. Dynamic ventilation imaging

from four-dimensional Med Biol.

2006;51:777-791.

computed tomography. Phys

. Eslick EM, Bailey DL, Harris B, et al. Measurement of preoperative

lobar lung function with computed tomography ventilation imaging:
progress towards rapid stratification of lung cancer lobectomy patients
with abnormal lung function. Eur J Card-Thor Surg. 2015;49:1075—
1082.

. Woodruff HC, Shieh C, Hegi-Johnson F, Keall PJ, Kipritidis J. Quanti-

fying the reproducibility of lung ventilation images between 4-dimen-
sional cone beam CT and 4-dimensional CT. Med Phys. 2017;44:1771—
1781.

. Yamamoto T, Kabus S, Klinder T, et al. Four-dimensional computed

tomography pulmonary ventilation images vary with deformable image
registration algorithms and metrics. Med Phys. 2011;38:1348-1358.

. Yamamoto T, Kabus S, Bal M, Keall P, Benedict S, Daly M. The first

patient treatment of computed tomography ventilation functional image-
guided radiotherapy for lung cancer. Radiother Oncol. 2015;118:227—
231.

. Kida S, Bal M, Kabus S, et al. CT ventilation functional image-based

IMRT treatment plans are comparable to SPECT ventilation functional
image-based plans. Radiother Oncol. 2016;118:521-527.

. Faught AM, Yamamoto T, Castillo R, et al. Evaluating which dose-func-

tion metrics are most critical for functional-guided radiation therapy. Int
J Radiat Oncol Biol Phys. 2017;99:202-2009.

Ding K, Cao K, Fuld MK, et al. Comparison of image registration based
measures of regional lung ventilation from dynamic spiral CT with Xe-
CT. Med Phys. 2012;39:5084-5098.

. Jacob RE, Lamm W], Einstein DR, Krueger MA, Glenny RW, Corley

RA. Comparison of CT-derived ventilation maps with deposition pat-
terns of inhaled microspheres in rats. Exp Lung Res. 2014;41:135-145.
Yamamoto T, Kabus S, von Berg J, et al. Evaluation of four-dimensional
(4D) computed tomography (CT) pulmonary ventilation imaging by
comparison with single photon emission computed tomography
(SPECT) scans for a lung cancer patient. In: Proceedings of the Third
International Workshop on Pulmonary Image Analysis MICCAI, Bei-
jing, China: Springer; 2010:117—128.

Hegi-Johnson F, Keall P, Barber J, Bui C, Kipritidis J. Evaluating the
accuracy of 4D-CT ventilation imaging: first comparison with technegas
SPECT ventilation. Med Phys. 2017;44:4045-4055.

. Kipritidis J, Siva S, Hofman MS, Callahan J, Hicks RJ, Keall PJ. Vali-

dating and improving CT ventilation imaging by correlating with ventila-
tion 4D-PET/CT using 68Ga-labeled nanoparticles. Med Phys.
2014;41:011910.

Kipritidis J, Hofman MS, Siva S, et al. Estimating lung ventilation
directly from 4D CT Hounsfield unit values. Med Phys. 2016;43:33-43.
Mathew L, Wheatley A, Castillo R, et al. Hyperpolarized (3)He mag-
netic resonance imaging: comparison with four-dimensional x-ray

Medical Physics, 46 (3), March 2019

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

1217

computed tomography Acad  Radiol.
2012;19:1546-1553.

Tahir BA, Hughes PJC, Robinson SD, et al. Spatial comparison of CT-
based surrogates of lung ventilation with hyperpolarized helium-3 and
xenon-129 gas MRI in patients undergoing radiation therapy. Int J
Radiat Oncol Biol Phys. 2018;102:1276—1286.

Eslick EM, Kipritidis J, Gradinscak D, et al. CT ventilation imaging
derived from breath hold CT exhibits good regional accuracy with Galli-
gas PET. Radiother Oncol. 2017;127:267-273.

Siva S, Callahan J, Kron T, et al. A prospective observational study of
Gallium-68 ventilation and perfusion PET/CT during and after radiother-
apy in patients with non-small cell lung cancer. BMC Cancer.
2014;14:740.

Reinhardt JM, Ding K, Cao K, Christensen GE, Hoffman EA, Bodas
SV. Registration-based estimates of local lung tissue expansion com-
pared to xenon CT measures of specific ventilation. Med Image Anal.
2008;12:752-763.

Murphy K, van Ginneken B, Reinhardt JM, et al. Evaluation of registra-
tion methods on thoracic CT: the EMPIREIO challenge. IEEE Trans
Med Imaging. 2011;30:1901-1920.

Brock KK. Results of a multi-institution deformable registration accu-
racy study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010;76:583-596.
Schembri GP, Roach PJ, Bailey DL, Freeman L. Artifacts and anatomi-
cal variants affecting ventilation and perfusion lung imaging. Sem Nucl
Med. 2015;45:373-391.

Castillo E, Castillo R, Vinogradskiy Y, Guerrero T. The numerical stabil-
ity of transformation-based CT ventilation. Int J Comput Assist Radiol
Surg. 2017;12:569-580.

Du K, Bayouth JE, Ding K, Christensen GE, Cao K, Reinhardt JM.
Reproducibility of intensity-based estimates of lung ventilation. Med
Phys. 2013;40:063504.

Du K, Reinhardt JM, Christensen GE, Ding K, Bayouth JE. Respiratory
effort correction strategies to improve the reproducibility of lung expan-
sion measurements. Med Phys. 2013;40:123504.

Rankine LJ, Wang Z, Driehuys B, Marks LB, Kelsey CR, Das SK. Cor-
relation of regional lung ventilation and gas transfer to red blood cells:
implications for functional-avoidance radiation therapy planning. Int J
Radiat Oncol Biol Phys. 2018;101:1113-1122.

Treland RH, Tahir BA, Wild JM, Lee CE, Hatton MQ. Functional
image-guided radiotherapy planning for normal lung avoidance. Clin
Oncol. 2016;28:695-707.

Hofman MS, Beauregard JM, Barber TW, Neels OC, Eu P, Hicks RJ.
68Ga PET/CT ventilation-perfusion imaging for pulmonary embolism: a
pilot study with comparison to conventional scintigraphy. J Nucl Med.
2011;52:1513-1519.

Callahan J, Hofman MS, Siva S, et al. High-resolution imaging of pul-
monary ventilation and perfusion with Ga-VQ respiratory gated (4-D)
PET/CTT. Eur J Nucl Med Mol Imaging. 2013;41:343-349.

Kipritidis J, Woodruff HC, Eslick EM, Hegi-Johnson F, Keall PJ. New
pathways for end-to-end validation of CT ventilation imaging (CTVI)
using deformable image registration. In: 2016 IEEE 13th International
Symposium on Biomedical Imaging (ISBI);2016:939-942.

Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image regis-
tration and fusion algorithms and techniques in radiotherapy: report of
the AAPM Radiation Therapy Committee Task Group No. 132. Med
Phys. 2017;44:e43—76.

Paganelli C, Peroni M, Riboldi M, et al. Scale invariant feature trans-
form in adaptive radiation therapy: a tool for de-formable image registra-
tion assessment and re-planning indication. Phys Med Biol.
2013;58:287-299.

Brock KK, Sharpe MB, Dawson LA, Kim SM, Jaffray DA. Accuracy of
finite element model-based multi-organ deformable image registration.
Med Phys. 2005;32:1647-1659.

Weistrand O, Svensson S. The ANACONDA algorithm for deformable
image registration in radiotherapy. Med Phys. 2014;42:40-53.

Cazoulat G, Owen D, Matuszak MM, Balter JM, Brock KK. Biome-
chanical deformable image registration of longitudinal lung CT images
using vessel information. Phys Med Biol. 2016;61:4826—4839.

imaging in lung cancer.


mailto:

	1.  Intro�duc�tion
	2.  Mate�ri�als and meth�ods
	2.A.  The VAMPIRE dataset
	2.A.1.  Study 1 - Galligas 4DPET/CT (hu�man study)
	2.A.2.  Study 2 - Xenon CT (an�i�mal study)
	2.A.3.  Study 3 - DTPA-SPECT/CT (hu�man study)
	2.A.4.  Lung seg�men�ta�tion

	tbl1
	2.A.5.  Pack�ag�ing of the VAMPIRE dataset

	2.B.  The VAMPIRE chal�lenge
	2.B.1.  Par�tic�i�pant selec�tion
	2.B.2.  Divi�sion of the VAMPIRE dataset into train�ing and val�i�da�tion com�po�nents
	2.B.3.  Instruc�tions for par�tic�i�pants
	2.B.4.  Char�ac�ter�i�za�tion of CTVI algo�rithms
	2.B.5.  Post�pro�cess�ing of par�tic�i�pant-submitted CTVIs
	2.B.6.  Gen�er�a�tion of stan�dard�ized CTVIs from par�tic�i�pant-submitted DIR motion fields
	2.B.7.  Sta�tis�ti�cal anal�y�ses

	tbl2

	3.  Results
	3.A.  Sum�mary of the CTVI and DIR motion field sub�mis�sions
	3.B.  Visual com�par�isons of CTVIs with RefVI scans
	fig1
	3.C.  Eval�u�at�ing the rel�a�tive ven�ti�la�tion dis�tri�bu�tions between CTVIs and RefVIs
	3.C.1.  Spear�man r_{\rm S} val�ues

	fig2
	fig3
	3.C.2  DSC val�ues for high and low func�tion lung

	fig4
	3.C.3.  Con�sid�er�ing the impact of sub�ject selec�tion

	3.D.  Eval�u�at�ing the impact of DIR spa�tial accu�racy.
	fig5
	fig6
	3.E.  Eval�u�at�ing the impact of CTVI self-consistency mea�sures.
	fig7
	fig8

	4.  Dis�cus�sion
	fig9
	fig10
	tbl3

	5.  Con�clu�sions
	 Acknowl�edg�ment
	 DIR-based ven�ti�la�tion met�rics
	 Non DIR-based ven�ti�la�tion met�ric
	 Scal�ing fac�tors
	$^var_corr1
	bib1
	bib2
	bib3
	bib4
	bib5
	bib6
	bib7
	bib8
	bib9
	bib10
	bib11
	bib12
	bib13
	bib14
	bib15
	bib16
	bib17
	bib18
	bib19
	bib20
	bib21
	bib22
	bib23
	bib24
	bib25
	bib26
	bib27
	bib28
	bib29
	bib30
	bib31
	bib32
	bib33
	bib34
	bib35
	bib36
	bib37
	bib38




