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ABSTRACT OF THE DISSERTATION

Collaborative Concept Drift Detection for Formerly Independent Models and Features

By

Beverly Abadines Quon

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2023

Professor Jean-Luc Gaudiot, Chair

Unstationary data can cause a change or drift in the machine learning model’s context

(i.e. understanding of information) and/or concept (i.e. relationship between context and

target). Resultantly, the unaccounted effects of unstationary data is referred to as drift. Drift

can lead to model performance degradation, despite the lack of change from an optimally

performing model prior to drift’s occurrence. Many works have been proposed to detect and

recover from these moments of drift. Despite the curation of data from the data pipeline,

many of these detectors operate per model and per data stream, overlooking the shared

data pipeline between these models and their streams. In other words, although models

operate independently, they exist in an ecosystem consisting of models, features, and streams

integrated altogether. Arguably, there are resources that once considered holistically can help

improve our understanding of factors related to drift.

This work focuses mainly on concept drift. The contribution of this dissertation is the ad-

vancement made towards adaptive, global drift detection with respect to retraining costs.

This will go over: i) creating model associations based on shared features using a method tra-

ditionally used for recommendation systems, ii) relating the cost of recovery after retraining

from concept drift with respect to performance and iii) creating an adaptive and aggregated

approach to detecting drift.
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Chapter 1

Introduction

The era of Big Data, where both the volume of information and demand of data processing

has escalated to grand scale has necessitated the construction of data pipelines. These

pipelines must be capable of collecting, cleaning, and shepherding information in preparation

for stages of prediction and analysis. Machine learning (ML) models are imperative for these

stages of prediction and analysis. Naturally, the performance of ML models are only as good

as the data on which they are trained, where goodness is 1) the reflection of how similar

the distributions of the training data is with respect to streams of data on which they are

examining and 2) how well the context of data encompasses the knowledge for prediction

or analysis. Having said this there are moments where 1) or 2) are violated. This is due

from the nature of dynamic and unstationary data. The distribution of data can change

(violating premise 1)) or a confounding variable can be introduced that affects the concept

(i.e. relationship between the context developed and the purpose of the model), violating

premise 2).

Unstationary data can cause a change or drift in the model’s understanding of information

or its developed context. Resultantly, the unaccounted effects of unstationary data is referred

1



to drift of which there are several types as indicated in Chapter 2. Drift can lead to model

performance degradation, despite the lack of change from an optimally performing model

prior to drift’s occurrence.

Many works have been proposed to detect and recover from these moments of so called

drift. Despite the curation of data from the data pipeline, many of these detectors operate

per model and per data stream, overlooking the shared data pipeline between these models

and their streams. In other words, although models operate independently, they exist in an

ecosystem consisting of models, features, and streams integrated altogether. Arguably, there

are resources that once considered holistically can help improve our understanding of factors

related to drift.

This work focuses namely on concept drift which is a result from a violation of premise

2). The contribution of this dissertation is the advancement made towards adaptive, global

drift detection with respect to retraining costs. Chapter 4 proposes how to create model

associations based on shared features using a method traditionally used for recommendation

systems. Chapter 5 relates the cost of recovery after retraining from concept drift with

respect to performance and Chapter 6 combines both works to create an adaptive and

aggregated approach to detecting drift. Chapter 7 discusses future directions hence forth

from the contributions of this dissertation.

2



Chapter 2

Literature Review

2.1 Introduction

A major problem in the constantly changing big data environment is the ability to ensure

reliable data-driven decisions and predictions. The vast and rapid collection of information

under dynamic data streams, however, elicits unstationary behaviors that endanger said

reliability. Because many machine learning strategies have a model-centric view which prior-

itizes fitting models onto a static dataset with performance (e.g. accuracy, F1 score) as the

main objective, they mistakenly assume that the distribution of training data (i.e. context)

and the relationship learned between features and labels (i.e. concept) remains stationary.

In reality, both context and concept can drift. This chapter discusses the types of drift that

affect reliability and performance as well as the state of the art methods to address these

drifts.

3



2.2 Drift Definition

Drift can be seen as an unforeseen change from a previously established pattern. In the

machine learning setting, the factors that can change are 1) the distribution of features p(X ),

2) distribution of labels p(y), and 3) relationship between features and labels p(X , y). The

distribution of features and distribution of labels describe the context or patterns learned

from fitting a model on a dataset. The relationship between features and labels describe the

concept, which is used to predict the outcome of a label, y given a set of features, X .

Under the data streaming setting, a data window Dt at time t consists of data instances, d =

(X , y). Where X is an ordered list of qualitative (nominal, ordinal, or binary) and/or quan-

titative (discrete or continuous) features. The label, y, can be one of l classes such that y ⊂

{C1, C2, ...Cl}. Dt ofm number of d isDt = {dt1, dt2, ...dtm} = {(X t
1, y

t
1), (X

t
2, y

t
2), ...(X

t
m, y

t
m)}.

The joint probability of features and labels at time t is p(X , y)t.

The following definitions describe the different types of drift in relation to p(y), p(X ), and

p(X , y) with respect to t and t′ where t ̸= t′.

Types of Drift

• Virtual Drift: p(X ) or p(y) changes but p(X , y)t = p(X , y)t′ .

• Label Drift [37]: Class labels evolve such that a class disappears or contrarily new

classes emerge (i.e. p(y)t ̸= p(y)t′) which may or may not result in p(X , y)t ̸= p(X , y)t′

• Covariate Shift [36]: p(X )t ̸= p(X )t′ which may or may not result in p(X , y)t ̸=

p(X , y)t′

• Concept Drift [20]: p(X , y)t ̸= p(X , y)t′ and is caused by a change in relationship

between X and y that is not necessarily describable solely by label drift or covariate

4



shift. Concept drift is further describable in terms of speed, severity, distribution,

and recurrence.

Hu et al describe the trade-offs between cost of labeled data and performance in detection

[23]. Due to the sheer volume and indefinite size of data streams, labeled data becomes

explosively expensive and to a certain degree, impractical in terms of training and predicting

expectations. Streaming data must be able to operate with sparsely labeled data to have

practical use and detectors must adapt to that constraint [35].

There are two common types of detectors: performance based and data distribution

based. Performance based detectors monitor drops in performance thresholds (e.g. F1 score,

accuracy, error rate). Data distribution based detectors monitor divergences between current

and historical distributions. Performance based detectors have the advantage of detecting

different types of drifts while data distribution based detectors have the advantage of not

relying on labeled data. Under this generalization, performance based detectors are more

performance effective while data distribution detectors are more cost effective.

The reason that performance based detectors can outperform data distribution based detec-

tors are the fact that labels can elucidate a dimension undetectable through unlabeled data

in the event of virtual drift or concept drift.

2.3 Drift Detectors

The following sections describe a generalization or design pattern for state of the art detec-

tors. In this case, we highlight them as performance based detectors and data distribution

based detectors. Streams must be processed in the event that data arrives. Most detec-

tors process their data in windows, where the data they are predicting on is the current

stream and historical streams before it are seen as reference streams. They are processed

5



prequentially, meaning that they predict on the current stream, but update their model on

the reference stream. As they process across the streams, current streams become part of

the reference streams.

2.3.1 Performance Based

These detector operate on the assumption that as long as there is no drift, the error rate

should decrease as the number of samples increase. They monitor the error rate which can

be considered as its performance rather than the data stream directly.

Drift Detector Method (DDM) [19] is one of the first algorithm to specify the concept

drift detection alert level and drift level. DDM determines if there has been a significant

increase in the overall online error rate within the time span. If the observed error rate

confidence level surpasses the alert level, DDM begins building a new learner while continuing

to use the previous learner for predictions. The previous learner will be replaced by the new

learner for additional prediction problems if the change has reached the drift level. The

likelihood of an observer being false, pi, is used to calculate the error rate for each point i

in the series, and the standard deviation is given by si =
√

(pi(1− pi)/i).

If the probability distribution remains constant under a static environment, then the confi-

dence interval for p with n > 30 cases is about pi ± αsi, where α is a parameter set by the

confidence interval. During the learning algorithm’s training phase, two registers, pmin and

smin, are managed by the drift detection mechanism.

Early Drift Detector Method (EDDM) [7] was developed to extend DDM and its ability

to improve detection of gradual concept drift while maintaining its ability to detect abrupt

drift. Rather than monitoring the error rate up to a certain confidence level (as was the case

for DDM), EDDM monitors the distance between two error classifications. As the learning

6



model is trained with more samples, predictions are expected to improve while the distance

between errors (measured in error rates p′i and standard deviation s′i) increase. When at least

30 classification errors have occurred, the approach determines the max distance of p′max and

its respective s′max. Similarly, to DDM it determines its detections based on thresholds

Eq.(2.1), where α is an adjustable parameter, related to the confidence interval. Because

it is comparing the ratio of the current distance with the max distance, α represents 90% -

95% of the sample distribution.

(p′i + 2s′i)/(p
′
max + 2s′max) < α (2.1)

ADaptive WINdowing (ADWIN) [8, 10] monitors the average values and predicts the

expected value, µt at time ti under distribution streams, Dt within windows, W , of varying

sizes. W shrinks when the observed average µW differs from µt for t ∈ Wand grows when

it has not. Its only parameter is the confidence bound, δ and assumes that the values are

always within 0 and 1. Using exponential histograms [16], it utilizes W of length n samples

using only O(logn) memory and O(logn) processing time.

Because it does not require setting window sizes directly and recomputes itself online, AD-

WIN has been accompanied into ensemble algorithms for detection such as ADWIN Bagging,

DDM, or even other classifiers as simple as Naive Bayes. ADWIN serves as the change de-

tector and weight estimator for the boosting method, where the worst classifier is dropped

upon changes.

7



2.3.2 Data Distribution Based

Rather than comparing the performance of the a detector, data distribution methods detect

whether there are statistical differences in two distributions, the current stream and reference

stream. In a way these methods extend the windowing approach, where streams are divided

into windows with previously seen values serving as the historical reference window. The

following methods detect drift based on changes between windows, but they differ in the

type of information they monitor.

KS Test [17, 47] is non-parametric in form and compares the location and shape between

probability distributions, FA,n and FB,m across samples A with n observations and samples

B with m observations. Their empirical distribution functions are computed as:

Fn(t) =
1

n

n∑
i=1

1{xi ≤ t} (2.2)

where (x1, ...xn) are independent and identically distributed (i.i.d) random variables in the

real numbers domain.

Concept drift can be detected when the KS test rejects the null hypothesis at α if:

KSstat > c(α)

√
n+m

nm
, (2.3)

KSstat is the KS statistic (i.e. obtained p-value), c(α) is the confidence interval at α, and

the product on the right side of the inequality is the obtained target p-value. Lastly, KSstat

8



is defined as:

KSstat = max
x⊂A∪B

|FA(x)− FB(x)| (2.4)

Mann-Whitney U-rank (MW) or Wilcoxon Signed Rank was developed by Wilcoxon

[53] is a nonparametric test that monitors the difference between two windows of paired

values, such that H0 : WS+ = WS−. It computes the difference between paired values and

ranks them without regarding the sign and excluding tied values. Followed by summing the

ranks in terms of sign to createWS+ andWS−. Lastly, it identifies if the sums are are equal

or significantly different (rejecting H0). The test statitic is min(WS+,WS−). Overall, it

tests via rankings assigned to the data points rather than the actual observed values.

Cramer Von Mises (CMV) [29] is a refinement of KS test where instead of calculating

the test statistic as Eq.(2.4), it calculates it as a quadratic statistic as a weight function.

Specifically, one has the CMV statistic under Eq. (2.5). It is the measurement of the mean

squared difference in cumulative distribution functions.

CMVstat =

∫
[F (x)− Fn(x)]

2 dF (x) (2.5)

Energy Distance (ED) [41] compares the distance between random vector distributions.

Analogous as to how potential energy between objects should be zero iff the gravitational

centers of two objects coincide and increases as they diverge. Again, it compares the cumu-

lative distribution functions in terms of Euclidean norm.

Rizzo [41] considers two independent random vectors, X and Y ∈ Rd. A random variable X ′

is an i.i.d copy of X and Y ′ is an i.i.d of Y . The squared energy distance between random

9



variables and vectors is the following:

Estat(F,G) = 2E||X − Y || − E||X −X ′|| − E||Y − Y ′|| ≥ 0 (2.6)

where F and G are said cumulative distribution functions.

To elaborate on the analagy, distributions are equal if the distance is nearly 0 (indicating

that F = G) and are unequal otherwise. CMV is closely related to ED except that the CMV

is univarite while ED is multivariate. To test for multiple features, CMV, similar to KS,

must run multiple tests per feature, while ED can process them as a single test seen as a

vector of features.

Wasserstein Distance (WD) or Kantorovich-Rubinstein or Earth mover’s distance [45, 51]

measures the amount of ”work” (also analogous to physics) to transport one distribution

to another. WD is a joint probability distribution whose marginals are given by paired

measurements (x, y), where the resulting matrix, T forms the transport plan.

The 1-WD measures the minimum of all the transport plans multiplied by the cost of the

transport plan (i.e. the minimum expected cost of work).

WDp(f, g) = inf(E||X − Y ||p)1/p, p ≥ 1 (2.7)

10



2.4 Summary

Concept drift is the change in relationship between the independent variables used to train a

model and develop its context with respect to the target variable to be predicted. Detectors,

which indicate when drift occurs and when a model is subjected to degradation, can be

categorized into two groups: performance based or data distribution based. The detectors

mentioned focused on comparing difference either via error rates or via cumulative distribu-

tion functions. Upon detection, it was implied that an update or retraining on a model is

necessary.
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Chapter 3

Definition of the Problem

3.1 Introduction

The works mentioned in Chapter 2 highlight how they address detection with an implicit

means of updating, but little work has been done to relate the factors of drift as part of

a system. Although ensemble techniques such as bagging or boosting have been utilized

to extend the knowledge gained from single detectors, they still detect on a single stream.

This chapter reviews how systems have developed into integrated subsystems with shared

resources and how we should adopt a data-centric approach. This chapter concludes with the

argument of why there needs to be a collective system approach to concept drift detection.
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3.2 Technical Debt in Machine Learning Systems

”Developing and deploying ML systems is relatively fast and cheap, but maintaining them

over time is difficult and expensive” [43]. There are long term costs for short term improve-

ments. The idea of paying the hidden technical debt is to ”enable future improvements, re-

duce errors, and improve maintainability” within an environment which requires vast growth

in terms of complexity and functionality. Machine learning systems not only have the prob-

lems of maintenance with respect to non-machine learning applications, but have specific

costs that are not only 1) more difficult to detect as these costs accrue at the system level

but 2) are also unable to be paid of by traditional means of making code level corrections.

By treating models as black boxes made of calibrated layers that are haphazardly reused or

chained together, we may unintentionally erode abstraction and assumptions imposed by the

model. Other challenges include data consistency scalability, robustness and minority-class

and multi-class issues for systems which have been known to have dozens or hundreds of

models running simultaneously [15, 44].

The short term improvements can be viewed as the immediate integration of models into a

machine learning system. More abstractly, I extend this example to our shortsightedness to

view models as stand alone components, disregarding their place as an integrated component

that is part of a larger system.

3.3 Data-centric approach to Machine Learning

Much of the shortsightedness and accruence of technical debt is from the convenient, yet

expensive model-centric perspective. The model-centric view prioritizes the tuning of model

parameters on the assumption that the data it is trained on will indefinitely represent the

streams that it predicts upon. The convenience from such a perspective allows one to explore
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and optimize not only parameters but also other competitive classifiers or algorithms that

can engender best performance. For many works, performance is the main objective, but

as indicated in the previous section, there are many more factors to consider. Additionally,

fixating on only model performance can create more costs.

One cost is the creation of siloed data. Developers like to pretend that only they have access

to their data. Again, models are only as good as their data. They end up creating closed

access to their data to be used specifically for a single model. Alternatively, they may also

create copies of data if they do not have privileges to limit access. The outcome is siloed

data, which are large quantities of isolated information or even redundancies. Both incur

the cost of higher memory usage at the expense training one model at a time.

Another weakness is the susceptibility to drift. By assuming that streams are stationary and

that training data will always represent live data, models will always face the consequences

of drift (Chapter 2). This emphasizes the importance of detectors.

Overall because many of these costs are related to data, it would only make sense to go

towards a data-centric approach. There have been progress towards data-centric mindsets

that have made strides in topics not limited to transfer learning, multi-task learning, crowd

sourced labeling, semi-supervised learning, weak supervision, active learning, and data as-

similation [46], but as expected many applications and users are unwilling to shift the entirety

of their system.
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3.4 Collaborative Approach to Concept Drift Detec-

tion

As long as systems fail to adopt a data-centric view, we must come up with a way to bring

about the advantages of data-centric design to a model-centric system. One method is to no

longer view models and the streams they act on as individual entities. By respecting the fact

that they operate with shared dependencies with entangled costs, we will not only be able to

develop a collective understanding of models within a system, but extend it beyond further

and propose a means to have formerly independent models work together collaboratively.

With machine learning models being susceptible to drift and continuing to prioritize the

model perspective, which results in the under utilization of resources, this dissertation advo-

cates for and introduces progress towards collaborative drift detection as shown in the figure

below.
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(a) Single detector for single model

(b) Multiple single detectors for multiple models

(c) Global detector for multiple models

Figure 3.1: Assortment of detectors per models in stream
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3.5 Summary

This chapter reviewed the technical debt of machine learning systems which are often tied to

the preference of a model-centric view over a data-centric view. There must be a means to

bring about the advantages of data-centric design to systems as they continue to uphold the

status quo of model-centric design. This work advocates for the creation of models, features,

and streams working together to form collaborative concept drift detection.
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Chapter 4

Our Approach: Global Drift

Detection with Collaborative Filtering

4.1 Introduction

Many works focus on optimizing machine learning (ML) models during their training phase,

but fail to account how these models adapt into their model-serving phase once they are

deployed into real world applications (e.g. online sentiment analysis, intrusion detection,

fraud detection, etc). In this phase models must process through streams of data that

can evolve over time and distort the relationship between incoming data, X, and target

variables (e.g. class labels for classification, regression, or unsupervised problems), y. If left

unaccounted, models that performed optimally prior to this change ceases to be optimal,

despite the fact that the model itself is unmodified, and results in the phenomena known

as concept drift. Concept drift is defined as an unexpected change in the context or joint

distribution of P (X,y), such that Pt(X,y) ̸= Pt+1(X,y) for time t.

Many forms of drift detection and recovery models have been proposed to mitigate con-
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cept drifts for online data streams and can be categorized as performance-based and data

distribution-based approaches. Designing such approaches is non-trivial as there is a trade-

off between performance and cost-efficiency [24]. Performance-based approaches monitor

a model’s performance measurements, such as accuracy, F -measure, precision, and recall.

They have the advantage of detecting all types of drift (e.g. gradual, incremental, abrupt,

fixed space, or non-fixed space), but can only process labeled data, which is cost inefficient.

Expecting most of the data to be labeled is impractical and expensive in terms of the scale of

ML applications. Rather than measuring classifier performance metrics, data distribution-

based approaches track changes in location, density, and range of the data itself. These

approaches have the advantage of being able to process both labeled and unlabeled data,

but are limited in the types of drift they can detect. For example, they cannot detect fixed

space drift for unlabeled data without combining multiple approaches together. Hence, the

trade off is that the ability to detect all types of drift is dependent on whether unlabeled

data or labeled data are used.

Interestingly, these drift detectors only demonstrate how to react to drift acting on a single

model and/or single pair of source and target stream. They do not take into account the

possibility of multiple live models acting on different streams. In the real world setting,

multiple models can run simultaneously across streams and share subsets of training data.

This idea of managing offline training data and online streams for multiple models and

creating logically centralized features based on physically distributed data has been gaining

popularity, so much so that it has given rise to several feature stores [2, 1, 3]. The purpose of

these feature stores are to create an abstraction layer between the offline and online data and

promote data reuse by removing data silos among models, reproducibility in training data,

and mitigate training-serving skews. Additionally, if feature stores are for maintaining and

deploying ML models in production, then SHAP values are a means to promote explainable

ML. SHAP values apply cooperative game theory to distinguish each feature’s contribution

to a model.
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This paper proposes leveraging the advantages of emerging features stores in order to improve

drift detection on unlabeled, dynamic data streams across multiple ML models. The purpose

of this work is two-fold.

Firstly, we introduce Drift Detection on Distributed Datasets (QuaD), which combines clas-

sical drift detectors to make use of labeled and unlabeled data, and create local context (i.e.

per live model) and global context (i.e. across multiple models). Secondly, we propose using

feature store entities, SHAP values, and Collaborative Filtering (CF) to augment unlabeled

data across multiple models.
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4.2 Related Work

4.2.1 Concept Drift

The goal of ML models is that given a set of input features X ∈ R, predict a target variable

y ∈ R for regression tasks (or classes for classification tasks) [21]. The prediction of y is

dependent on the prior probability of p(y) and of P (X|y). Using Bayesian Decision Theory,

the prediction of y given X can be represented as

p(y |X) =
p(y)p(X|y)

p(X)
, (4.1)

p(X ) =
c∑

i=1

p(y)P (X|y), (4.2)

Concept drift occurs when there is a statistically significant difference in Eq.(4.1) as the model

consumes streams of online data in its model serving phase, such that Pt(X,y) ̸= Pt+1(X,y)

for time t. [31, 32, 40, 24]. Note that for our definition, p(X ) may have changed or the class

label has changed as shown in Fig. 4.1a. Other factors can contribute to the type of drift

such as the rate of drift (gradual, incremental, sudden) and change in distribution (fixed

space or non-fixed space).
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(a) Original distribution

(b) Class distribution changed

(c) Input sample distribution
changed

Figure 4.1: Examples of concept drift compared to (4.1a) either due to (4.1b) changes in
class distribution (i.e. fixed space) or (4.1c) changes in P (X), (i.e. non-fixed space). Shapes
indicate different classes of data.
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4.2.2 Drift detection methods

The most common forms of drift detection for single concept drift can be broken down into

performance-based and data distribution-based detectors [24]. Performance-based detectors

are supervised approaches that require labeled data to monitor performance metrics, such as

accuracy, precision, and recall. Performance-based techniques such as DDM [19] and STEPD

[39] use error rate as their performance metric. These methods utilize thresholds to indicate

when drift has occurred and which samples should be used to update the model. They act

on the premise that the model’s error rate will decrease as samples increase so long as the

stream is stationary and therefore capturing instances when data is non-stationary as is the

case for concept drift.

Data distribution techniques on the other hand can operate in a semi-supervised or unsuper-

vised approach, but their disadvantage is that they are unable to capture all forms of drift

and cannot identify for concept drifts due to class distribution changes in unlabeled data as

is the case in Fig (4.1b). Rather than monitoring model metrics, these techniques monitor

the distribution of the data itself. They rely on clustering and density estimations to detect

whether distributions are significantly statistically different [48, 17, 47, 18].

4.2.3 Feature store

There is a distinction between a model’s offline training phase and online serving phase.

Offline training ensures the availability of a finite training set during the process. The data

is often retrieved in batches and possibly used by different models or analyzed by multiple

parties of data scientists and engineers. The online serving phase must work along windows

of non-finite, real time data that are processed in streams. Many problems can arise between

the two phases while the data layers are disconnected. Problems such as silos of redundant

data and susceptibility to training-serving skews can occur. Feature stores serve as an
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Figure 4.2: Performance based detector such as Drift Detector Method (DDM) measures the
error rate which is the sum of p and s. Tm is the error rate at time m and Tn is the error
rate at time n. Drift is suspected when the error rate is greater than the warning level and
confirmed once it reaches the drift level.

abstraction layer between the model training data from offline store and the model serving

data from online store. They can provide the benefits of removing siloed data, promoting

feature resuse over rebuild, and decreasing occurrences of training-serving skews using point

in time consistency.

Feature stores provide a logically centralized registry physically distributed data by creating

a catalog of feature data and their metadata [1]. It is made of a hierarchy of project, feature

view and the triplet (feature, entity, and data source). Data source is the raw underlying

data that can be located anywhere. The entity is a collection of semantically related features.

For example, a ride sharing service can have entities of values customer or driver, while both

entities have a shared feature of trips taken. Feature views are made of the triplet and

represents a logical grouping or context. Finally, updates of features can be done easily using

the registry.
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4.2.4 SHAP

Shapley values employ a coalition game theory to fairly distribute the contribution of features

for a prediction. It takes the average marginal contribution of a feature across all coalitions

aka all possible permutations. SHAP uses this notion of Shapley values to get a fair, order

agnostic payout of the features. The disadvantage to SHAP is that they are appropriate for

linear models, but are costly for models with many features because of the complexity of

SHAP is on the order O(2feature size) [50, 4].

4.2.5 Collaborative Filtering

Collaborative Filtering (CF) is often used for recommender systems. Given a set of relation-

ship scores between users to items, it builds an association between any the relationships

among user-to-items, user-to-user, or item-to-items. It works on a labeled set and is depen-

Figure 4.3: Distribution based detectors such as KS tests measures the cumulative dis-
tributive function between the reference and current feature distributions. If the CDF are
significantly then it indicates covariate drift and either virtual drift or concept drift.
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dent on the sparsity of data. CF makes prediction on the empty user to item values based

on the similarity scores it generates from performing matrix factorization or support vector

machine. Modeling based on the interactions of user-to-user and user-to-items is tricky, since

users themselves can change their mind. Hence, these models are susceptible to concept drift

and performance-based methods have been used to track whether drift occurs.

Matrix Factorization (MF) which can help us discover latent features underlying the in-

teractions between models and feature views. These latent features give a more compact

representation of model drift susceptivity and feature association. MF is useful for sparse

data and can enhance the quality of recommendations or in this case associative drift suscep-

tivity. The algorithm works by factorizing the original model-feature matrix into two factor

matrices We are reducing the dimensions of our original matrix into ”drift susceptivity”

dimensions. We cannot interpret what each latent feature k represents (k is the number of

latent features per feature views). However, we could imagine that one latent feature may

represent models who are tracking time dependent factors, while another latent feature may

represent features which are independent.

4.2.6 Local Detectors

Drift Detection Method (DDM)

DDM is a performance-based method for drift detection and tests for the statistical distribu-

tion of its model’s performance. It is measured by its error rate, p and standard deviation,

s (4.3) and detects drift using thresholds, such as the warning level (4.4) and the drift level

(4.5). The values, smin and pmin are defined in the training phase and are updated if the

sample, i at time t achieves (4.6).
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st =
√

pt(1− pt)/i (4.3)

pt + st ≥ pmin + 2smin (4.4)

pt + st ≥ pmin + 3smin (4.5)

pt + st < pmin + smin (4.6)

For example, if the warning level is triggered at instance tm and reaches the drift level at tn,

then the model should be retrained on the samples stored between tm and tn.

4.3 Proposed Concept Drift Detector with

Collaborative Filtering for multiple models

Given a system where streams of data are fed into multiple models that share intersections

of features, we aim to develop a method to accomplish the following:

1. Detect drift for each model (local context)
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2. Augment the labels based on shared features

3. Make the holistic features of the system more resistant to drift (improve global context)

4.3.1 Detect Drift for each model

Drift Detection on Distributed Datasets (QuaD) is comprised of two classical drift detection

methods, DDM and KS test. It combines both methods in order to detect varying types of

concept drifts and switch between labeled and unlabeled data streams.

4.3.2 Augment the labels based on shared features

For this scenario, we assume that the models running have shared feature dependencies.

Unlike other models, we plan to employ feature views from feature stores to retrieve and

update shared features between models with the combination of SHAP and CF. Analagous to

the user-item relationship, we translate models as our users and feature views as our items.

This will generate connections between models and features within the feature view. To

generate the weight of the connection, which is expected from CF, we propose to use SHAP.

SHAP will fairly distribute the weight of a feature for a prediction. From here we apply

CF onto a recommender system and build predictions of whether certain models should be

augmented with other features outside of their original parameters, where the new features

may or may not be labeled.
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4.3.3 Make the holistic features of the system more resistant to

drift

We continue with our CF relationships. From here we not only analyze the model-to-feature

relationship, but also the model-to-model relationship and try to discern whether some

models are more susceptible to concept drift. If drift is detected on one model, the system

can either 1) activate local drift detector(s) on associated models or 2) update models without

measuring for drift. There is a trade-off between false alarms and delay in detection between

the two actions. Updating will rely on the materialization process of feature stores.

Figure 4.4: Overview of QuaD in a single-stream, multiple model system.
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4.4 Evaluation

4.4.1 Metrics

The following are characteristics to evaluate the quality of our concept drift detector.

Probability of true change detection

This requires synthetic data or ground truth and characterizes the capacity to detect drift

occurrences.

Probability of false alarms

This characterizes resiliency and is equivalent to the inverse of the time to detection, which

is the expected time between false-positive detections. This can be used on real data without

drifts and the resulting detections are considered as false alarms.

Delay of detection

This estimates the number of instances required to detect a change after the actual occurence

of drift. Average time to detection is used on synthetic data.

4.4.2 Analysis

Both DDM and KS test are reactive methods towards concept drift, meaning that updates

are made upon detection of drift. They do not employ forecasting to prevent concept drift

from occurring in the first place. QuaD creates an ensemble of these methods and tests
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across multiple models that share a significant portion of their training data. The novelty

of our method is the consideration of multiple models and features to form a global context

and better explain concept drift. Upon detection of drift, QuaD calls for an update on that

specific model and for models whose intersection with its training sets is significant. Thereby

calling for an update before concept drift occurs on these susceptible models.

Additionally, it uses the strength of DDM to detect drifts on non-fixed space and KS to

function over unlabeled data.

The constraints, however, is that multiple models must have a significant portion of their

training set be shared. Moreover the rate of false positives may be high, since our method

calls for an update based on association of similarly trained models. There is an assumption

that updates are computationally inexpensive due to the resources (e.g. data parallelism)

available in the system. This is especially true for SHAP, which generates the weight for our

novel way of using CF. There are methods for model and data parallelism in ML that can

be explored.

4.5 Discussion

To the best of our knowledge, QuaD is the first work that examines the collective behavior

of concept drift across multiple models and discerns associations between models that may

share a susceptibility in a dynamic setting. QuaD uses a combination of performance-based

and data distribution-based drift detectors and CF to capture varying types of concept drifts

for labeled and unlabeled data streams and is modeled around the data abstraction provided

by emerging feature stores.

Developing QuaD will require frameworks, such as River [5] to enable models to run con-

currently and to process data as streams. Metrics mentioned in Section 4 should be used to
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evaluate QuaD’s performance and reliability.

Future work can explore if association of models based on feature store values can benefit

from other drift detectors. For example, DDG-DA [30] forecasts drift by generating datasets

based on a sampling of historical data instead of the most recent data. The notion of

generating synthetic data may relax the constraint of relying on shared datasets between

models.

4.6 Summary

Many works focus on optimizing machine learning models during their training phase, but

fail to account how these models adapt into their model-serving phase once they are deployed

into real world applications. In this phase models must process through streams of data that

can evolve over time and distort the relationship between incoming data, causing concept

drift. This paper proposes leveraging the advantages of emerging features stores in order to

improve concept drift detection on unlabeled, dynamic data streams across multiple models.

Firstly, we introduce QuaD, which combines classical drift detectors to make use of labeled

and unlabeled data, and create local context (i.e. per live model) and global context (i.e.

across multiple models). Secondly, we propose using feature store entities, SHAP values,

and Collaborative Filtering (CF) to augment unlabeled data across multiple models. To

the best of our knowledge, QuaD is the first work that examines the collective behavior

of concept drift across multiple models and discerns associations between models that may

share a susceptibility in a dynamic setting. QuaD uses a combination of performance-based

and data distribution-based drift detectors and CF to capture varying types of concept drifts

for labeled and unlabeled data streams and is modeled around the data abstraction provided

by emerging feature stores.
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Chapter 5

Our Approach: Collaborative Concept

Drift Detection with Fast Correlation

Based Filtering

5.1 Introduction

Machine learning models train on data with the expectation that the concept or relationship

discerned between the predictors and target variable are consistent with post training data

(e.g. online data streams). Data streams, however, are unstationary and can result in

concept drifts, where said relationship no longer holds [52, 25]. Consequently, concept

drifts can result in model performance degradation despite the fact that the model itself is

unchanged [34]. Additionally, models incur an update cost when they are retrained upon

detection of drift. Although there are many types of drift detectors, data distribution or

divergence tests can provide more explainability than performance based detectors. [33].

This paper extends a method originally used for feature selection in order to detect concept
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drift. We compare our findings to divergence tests and formulate a metric that relates the

F1 obtained with the cost of retraining.
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5.2 Proposed Collaborative Concept Drift Detection

with Fast Correlation Based Filtering

Collaborative Concept Drift Detection (C2D2) applies a window based Fast Cor-

related Based Filtering (FCBF) [54, 38], a multivariate feature selection method that

considers both the class relevance and the dependency between each feature pair through

the Symmetrical Uncertainty (SU) eq.(6.6) computed from entropy. SU calculates the

mutual dependencies of random variables X and Y such that values closer to 0 indicate

independence while values closer to 1 indicate dependence, where knowledge of one can pre-

dict the outcome of its pair. IG is the information gain of X given Y and H(X), H(Y ) are

entropies of X, Y.

Rather than remove the redundant features directly, the calculated SU are fed as a matrix,

A for Singular Value Decomposition (SVD) eq.(5.2) where V T relates to batches and U

corresponds to the features. Taking only the top four V T and U components noted by S,

we calculate sum of the stepwise difference of V T for every batch. The resulting argmax and

values within 1 standard deviation of the max are signalled as batches with drift.

SU(X, Y ) =
2× IG(X|Y )

H(X) +H(Y )
(5.1)

A = USV T (5.2)

Each row i dictates a feature space to predict a respective yj. Solid or dashed lines within
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Figure 5.1: C2D2 Architecture

the feature space indicate shared predictors while gaps indicate the absence of features. The

feature and target spaces are mapped m : n and their correlations are calculated via FCBF.

SVD is used to break down its invariant representations and post-hoc tests are applied to

test significance and indicate the occurrence of drift.

5.2.1 Reasoning behind detecting invariants

To fit a model is to take a function f onto a feature vector, such that it provides a systematic

estimate of the target variable, y ([28]). ϵ is independent of x and represents random error,

a combination of irreducible error and reducible error ( 5.3).

y = f(x ) + ϵ (5.3)

We speculate that ϵ of f(x ) can serve as a predictor for another model, f ′(x ). In other

words, ϵ is independent of x , but is related to x ′ or y. The underlying assumption is that as

a concept evolves, predictors that turn into confounding variables (i.e. predictors that affect

both the target and other predictor(s)) are related to the source of drift. Additionally, there

is the assumption that such confounding variables will be invariant across an ensemble of

classifiers with heterogeneous training and prediction subspaces and can be used to indicate
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the occurrence of drift.

∑
y

p(x , y) =
∑
y′

p(x , y ′) (5.4)

The exploration of our subspaces has basis on the transfer learning and ensembling

techniques. Under transfer learning, models share the same predictor or feature space, but

varying targets. This method engenders the context of x on or a set consisting of y . For

homogeneous ensembles, models are trained on different subspaces of x to predict the same

y . This provides the context of , which consists of set of x on a specific target y .

5.3 Experimental Setup

C2D2 was tested on 4 artificial data sets generated by the MOA framework (Massive On-

line Analysis) ([9, 12]). Concept drift was modeled on MOA by joining data streams as a

weighted combination of distributions whose probability of an instance stemming from the

new concept is defined by a sigmoid function. Each dataset contained 10K instances and

were injected with concept drifts of widths from 0.5K to 4K instances. The midpoints of

drift ranged from 1.5k to 7.5K. 10 tests were generated from each dataset by modifying the

instantiation of streams via a random seed.

C2D2 was evaluated against 6 divergence tests: Cramer Von Mises (CMV), Energy Dis-

tance test (ED), Kolmogorov-Smirnov test (KS), Mann-Whitney U-test (MW), T test, and

Wasserstein Distance (WD). The 6 tests were implemented in a fixed sliding window fashion,

which split the data into 10 batches and compared the ith batch with the ith−1 batch as its

respective current and reference windows. Batches that were deemed significantly different
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were signalled for retraining. Hoeffding tree (HFT) was used as the base classifier and was

prompted to retrain on the most recent batch according to the signals generated by the

detectors. In addition to these test was an ablation test, where the HFT made predictions

without any retraining.

5.3.1 Performance Gain to Update Cost Ratio

An overly cautious and ineffective method would arbitrarily signal for an update at every

batch. To take in consideration the computational and temporal debt of retraining with

respect to the performance gained, we introduce the Performance Gain to Update Cost

Ratio (PGUCR) 5.5. Ratios of 0 are ineffective detectors and 1 are effective detectors.

F1new is the F1 score of the base classifier that was retrained according to the signals, while

F1ablation is the score without any retraining. Nupdate is the number of batches signalled (i.e.

max is 9 as the first batch is used for training). Costupdate which can be seen as a penalty for

updating is an adjustable parameter whose value is related to the importance of improving

the F1 score. Our experiments set Costupdate to 0.1.

PGUCR =
1

2

(
1 +

F1new − F1ablation
F1ablation

)
/ (1 +Nupdate × Costupdate) (5.5)

Table 5.1: Parameters for C2D2

Datasets: Agrawal, LED, RandTree 55, RandTree 105, SEA
Drift Widths: 0.5k - 4k instances
Midpoint locations: 1.5k - 7.5k instances
Divergence Tests: Cramer Von Mises (CMV), Energy Distance test (ED),
Kolmogorov-Smirnov test (KS), Mann-Whitney U-test (MW), T test,
Wassertein Distance (WD)
Batch Size: 10
Base Classifier: Hoeffding Tree
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Figure 5.2: SU scores per feature per batch on one of the Agrawal dataset. Drift occurs from
instances 2K to 3K (i.e. batch 2). Feat 2 decreases while Feat 3 increases at a crossover
point between batch 2 and 3.

5.4 Discussion

ANOVA indicated that there is a difference in mean values of PGUCR amongst the tests.

Post-hoc Tukey HSD test confirmed that C2D2 provided significant improvement. Much

of C2D2’s improvement is based on the fact that it signalled for updates conservatively in

Table 5.2: Average number of signals for updates on synthetic datasets. Ablation excluded
as the count will always be zero. Counts can range from 0 to 9.

Test Agrawal LED RandTree 55 RandTree 105 Sea

CVM 4.3 ± 0.9 8.1 ± 0.9 9.0 ± 0.9 9.0 ± 0.0 2.2 ± 0.8
ED 9.0 ± 0.0 2.0 ± 0.7 2.4 ± 0.5 2.0 ± 1.1 4.3 ± 1.1
C2D2 3.1 ± 1.4 3.6 ± 1.3 2.6 ± 1.1 1.8 ± 0.6 1.7 ± 0.5
KS 3.5 ± 1.8 3.6 ± 1.7 9.0 ± 0.0 9.0 ± 0.0 2.0 ± 1.0
MW 5.4 ± 0.5 7.7 ± 2.1 9.0 ± 0.0 9.0 ± 0.0 2.2 ± 1.0
T 6.0 ± 0.7 8.3 ± 0.7 9.0 ± 0.0 9.0 ± 0.0 2.2 ± 1.0
WD 3.0 ± 0.7 4.7 ± 0.9 8.5 ± 0.7 8.0 ± 0.8 0.2 ± 0.4
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Table 5.3: Average F1 score on the datasets with 10 samples. The F1 scores of the tests,
ablation (ABL), and number of signals are used to calculate PGUCR.

Test Agrawal LED RandTree 55 RandTree 105 Sea

CVM 0.76 ± 0.08 0.66 ± 0.04 0.76 ± 0.01 0.67 ± 0.03 0.84 ± 0.02
ED 0.77 ± 0.05 0.64 ± 0.05 0.65 ± 0.03 0.63 ± 0.05 0.84 ± 0.01
C2D2 0.74 ± 0.10 0.65 ± 0.05 0.64 ± 0.04 0.63 ± 0.03 0.84 ± 0.01
KS 0.68 ± 0.11 0.65 ± 0.04 0.76 ± 0.01 0.67 ± 0.03 0.84 ± 0.02
MW 0.78 ± 0.08 0.66 ± 0.04 0.76 ± 0.01 0.67 ± 0.03 0.83 ± 0.02
T 0.78 ± 0.08 0.66 ± 0.04 0.76 ± 0.01 0.67 ± 0.03 0.83 ± 0.02
WD 0.71 ± 0.09 0.66 ± 0.04 0.76 ± 0.01 0.66 ± 0.04 0.83 ± 0.02
ABL 0.66 ± 0.12 0.58 ± 0.10 0.58 ± 0.07 0.61 ± 0.05 0.83 ± 0.02

comparison to the other tests[5.3], thereby decreasing its false positive rate. In contrast to the

other tests, which monitored whether a feature’s distribution had changed in comparison to

itself, C2D2 was able to hint at the relationship of how the features have drifted collectively

as shown in Fig. 5.2, Fig.5.3. Future work should identify whether the collective nature of

C2D2 can be applied to bringing explainability towards formerly independent models with

overlapping feature spaces.

5.5 Summary

C2D2 combines FCBF and SVD to detect concept drifts in 5 synthetic datasets. We compare

our results against 6 diveregence tests and introduce PGUCR. Post-hoc Tukey HSD test

confirmed that C2D2 outperformed the other tests in terms of PGUCR. Much of C2D2’s

improvement is based on its conservative signals for updates.
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Figure 5.3: SU scores per feature per batch on one of the LED dataset. Drift occurs from
instances 2K to 3K (i.e. batch 2). Feat 0, 1, and 2 decrease while Feat 7, 8 and 9 increase
at a crossover point at batch 2.

Figure 5.4: SU scores per feature per batch on one of the RandTree 55 dataset. Drift occurs
from instances 1.5 K to 2.5K (i.e. batches 1 and 2)
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Figure 5.5: SU scores per feature per batch on one of the RandTree 100 dataset. Drift
injected from instances 1 K to 2K (i.e. batch 1

Figure 5.6: SU scores per feature per batch on one of the Sea dataset. Drift injected from
instances 2 K to 3K (i.e. batches 2)
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Figure 5.7: Mean PGUCR values with penalty of
0.1. Each dataset contained the following number of
features: Agrawal (9), LED (24), RandTree 55 (55),
RandTree 105 (105), Sea (4).

Figure 5.8: Post-hoc Tukey HSD
test at 99% confidence inter-
val indicates that C2D2 is sig-
nificantly better than T, MW,
CVM, KS, ED, and WD. C2D2
has a mean of 0.43.
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Chapter 6

Our Approach: Adaptive Aggregated

Drift Detector

6.1 Introduction

This chapter introduces Adaptive Aggregated Drift Detector (A2D2). It takes in

a suite of detectors consisting of a mixture of performance based detectors and data dis-

tribution based (e.g. divergence) detectors. Its goal is to adaptively select the detector

that optimizes Nupdate and Gainperf to achieve minimal costs. It applies exploitation and

exploration strategies through the use of its Adaptive and Aggregative Phases.

Section 6.2 describes the utilization of a metric accounting for costs in terms of performance.

Section 6.3 describes A2D2 and its metrics for evaluation under Section 6.4. Potential

contributions under Section 7.

44



6.2 Preliminary Work

We proposed Performance Gained Update Cost Ratio (PGUCR) Eq.(6.1) in order

to relate a model’s gain in performance with its cost of retraining updates in response to

the detection of drift. PGUCR is normalized with values from 0 (ineffective) to 1 (effective).

F1new represents the F1 score of a base classifier equipped with a detector. F1ablation is

the score without any detectors and thereby without any updates to the model. Nupdate

is the number of times a batch was triggered to retrain within a set number of batches.

Costupdate is an adjustable parameter representing the importance of updates in comparison

to performance.

PGUCR =
1

2

(
1 +

F1new − F1ablation
F1ablation

)
÷ (1 +Nupdate × Costupdate) (6.1)

We manipulate the PGUCR to be in terms of Costupdate and describe its upper and lower

bounds. For clarity performance gain is:

Gainperf =
F1new − F1ablation

F1ablation
(6.2)

The lower bound of Costupdate when PGUCR equals 1 simplifies to:

Costupdate =
1

2Nupdate

(Gainperf −
1

2
) (6.3)

The upper bound when PGUCR equals 0 signifies that regardless of any updates, the base

classifier Gainperf is -1.

Our work applies the lower bound Eq.(6.3) which attempts to achieve max efficiency by
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minimizing costs improvements and PGUCR as metrics.

6.3 Methodology

A2D2 architecture has Adaptive and Aggregative Phases as shown in Fig(6.1). The Adaptive

Phase applies exploitation and exploration strategies in order to select the most cost effective

detector out of the suite of detectors. Simultaneously it creates an ensemble of detectors

composed of the selected detector and its most complimentary detector (i.e. detector with

the least similarity in terms of batches triggered). The Aggregative Phase updates its Aggre-

gated Embeddings (AgE) via the SU matrix and the updated rankings from the Cost Based

Ordinality (CBO). To generate complimentary ensembles, batches triggered per detector are

inputted to the Collaborative Filtering Recommender System (CFRS),which scores detectors

of their similarities. If the newly created ensemble detector is more cost effective than the

selected detector, then the ensemble grouping is added to the suite of detectors.

6.3.1 Adaptive Phase

The Adaptive Phase dynamically selects the detector that has the best fit of achieving the

highest PGUCR on top of generating new ensembles of detectors to add to the suite. It

consists of the Terminal FCBF, Prequential Training and Testing, and Select & Explore

units.

Terminal Fast Correlated Based Filtering (FCBF)

Fast Correlated Based Filtering (FCBF) [54, 38] is a multivariate feature selection method

that takes into account the dependencies between features and the class relevance. It uses
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information gain via entropy Eq.(6.4) to generate values under Symmetrical Uncertainty

(SU) [26]. SU Eq.(6.6) calculates the dependencies between random variables X and Y

such that it measures the effect of having knowledge on one has on the information learned

from the other. SU is normalized between 0 (i.e. complete independence) to 1 (i.e. mutual

dependence). IG(X|Y ) Eq.(6.5) denotes the information gain of X given Y .

H(X) = −
∑
x

P (xi) log2(P (xi)) (6.4)

IG(X|Y ) = H(X)−H(X|Y ) (6.5)

SU(X, Y ) =
2× IG(X|Y )

H(X) +H(Y )
(6.6)

FCBF sorts features from highest to lowest SU ordering them from most to least relevance to

the class. Yu & Lie [54] iteratively removed redundant features by using the most predom-

inant feature to heuristically compare and filter against lower valued features. Our method

does not remove redundancies (hence the name Terminal FCBF) and keeps the SU values

per features as a matrix. The generated SU matrix is then used as a blueprint for the data

set in hand.

Prequential Training and Testing

The role of the base classifier is to predict the class, y based on the incoming features, X.

Data is processed prequentially as windows, W with instances first used for testing followed

by training. Every W is split into 10 batches, b. A selected detector processes through W
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and indicates if it suspects drift under any of b, serving as a list of triggers that the base

classifier must retrain under. Each W is processed at least twice under the Adaptive Phase.

Once for predicting under the triggered retrainings and another under ablation without any

triggers. The F1 scores and triggers are sent to the Aggregative Phase.

Select & Explore units

Select takes the SU matrix and the Aggregated Embeddings (AgE) as inputs in order to pre-

dict which existing detector is the best for current W . The Explore unit takes in the selected

detector, DD and references the Collaborative Filtering Recommender System (CFRS) in

order to identify which detector has the least similarity with (if any). If there exists a pair,

the union of triggers between DD and the complementary detector, DD′ are used. If an

ensemble is created, then the classifier must run for a third time and subsequently compares

if PGUCRDD ≤ PGUCRDD′ noting that DD′ is worth adding to the suite.

6.3.2 Aggregative Phase

The Aggregative Phase develops a collective knowledge of each detector with respect to the

W processed. If the Adaptive Phase is considered as online testing, then the Aggregative

Phase would be considered the offline training. Hence W , which was the current data from

the Adaptive Phase is viewed as the reference data under the Aggregative Phase. Under this

phase, all the detectors take turns detecting drift and measuring their performance under

the Detector Test Suite. The Detector Test Suite works similarly as the Adaptive Phase,

where classifier with detector is compared with the ablation test. The Detector Test Suite

outputs the F1 score and triggers to the Cost Based Ordinality (CBO) and only the triggers

to CFRS.
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Collaborative Filtering Recommender System

CFRS takes the key value pairs of detectors and triggers and represents them into a matrix,

where rows indicate detectors and columns indicate whether a drift was detected at b.It

applies the Jaccard similarity coefficient [27] to calculate the pairwise similarities amongst

detectors and outputs their similarity scores. Unorthodoxically, CFRS is used for finding

the least similar detector for the DD under the Adaptive Phase.

Cost Based Ordinality

The CBO ranks the detectors according to Eq.(6.3). Heuristically, the detectors are ranked

from largest to smallest cost, but an alternative method not implemented is to have the

detectors fall under rankings based on where their Costupdate falls under the intervals of

1/NDetectors, where NDetectors is the current number of detectors in the suite. The key value

pairs of detector to ranking are processed to AgE.

Aggregated Embeddings

AgE saves the SU matrix from the Adaptive Phase and connects it with the rankings after

the Detector Test Suite and CBO are complete. AgE appends the table of SU with the

detector-rankings, where SU can be interpreted as the features that predict the classification

defined by the detector-rankings. In other words, AgE is used to predict which detectors

would have the smallest Costupdate under a specific SU.
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6.4 Evaluation

This work will use the MOA framework [9, 12] to evaluate A2D2 on 3 artificial datasets

and 2 real-world datasets that were injected with concept drift. Our method will include 6

divergence tests capable of detecting changes in distribution specifically, Cramer Von Mises

test (CMV), Energy Distance test (EDT), Kolmogorov-Smirnov test (KS), Mann-Whitney

U-rank test (MWT), T test, and Wasserstein Distance test (WD). It will also include 6 per-

formance based detectors DDM, EDDM, KSWIN, PH, ADWIN, HDDM A, and HDDM W

as part of the Detector Test Suite.

6.4.1 Artifical Dataset Configuration

MOA can inject concept drift by connecting data streams as a weighted combination of

distributions whose likelihood of an instance originating from the new concept is defined

by a sigmoid function. Each dataset will contain 10K instances with widths ranging from

0.5K to 4K instances. The drift’s midpoints will fall in between 1.5 and 7.5 kilometers. By

altering the instantiation of streams using a random seed, 10 tests will be created from each

dataset.

6.4.2 Artificial Datasets

Agrawal [6] describes 6 numerical and 3 categorical features mapped to 10 different pre-

defined loan functions

LED [11, 42, 13] comprises of 24 binary attributes, but only 7 are relevant for predicting

the next digit on a seven-segment LED display (i.e. 10 classes).

Sea [11, 42, 49] uses 3 attributes, but 1 is irrelevant. All attributes have values between
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0 and 10, and comparing the sum of the relevant attributes with a threshold parameter

determines which of the 4 classes it is mapped to.

6.4.3 Real World Datasets

The following datasets are nomalized by MOA, so that the numerical values are between 0

and 1.

Electricity [22] contains 8 attributes to predict whether the Australian New South Wales

Electricity Market from May 1996 to December 1998 rises or falls (i.e. 2 classes). The dataset

contains 45,312 instances.

Poker is a modified version of [14] without duplicates and is sorted by rank and suit. Each

instance is a hand of 5 cards drawn from a 52 card deck. It is made up of 10 attributes (rank

and suit of cards in hand) to predict 10 poker hands or classes. The dataset has 1,000,000

instances.

The potential advantages of A2D2 will be its ability to 1) embed W as training data to

predict rankings of detectors and adaptively select the one with least cost and 2) develop a

collective understanding of detectors that continues to grow. The notable contribution may

be 2) as it enables an ecosytem to not only adaptively combat drift, but to also expand the

information learned across a suite of detectors.

6.5 Summary

There needs to be an adaptive approach that combines both performance and distribution

based concept drift detectors in order to harness the benefits of unlabeled data and the ability

to detect varying types of drifts. This paper proposes Adaptive Aggregated Drift Detector
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(A2D2), which consists of a suite of performance and data distribution based detectors that

can adaptively select detectors based on rankings of least cost. The notable contribution

is that it enables an ecosytem to not only adaptively combat drift, but to also expand the

information learned across a suite of detectors.

52



Figure 6.1: A2D2 with its adaptive (exploit) and aggregative (explore) phases.
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Figure 6.2: Post-hoc Nemenyi test at confidence level of 99% of the PGUCR from
RandTree100 dataset. Critical distance is 7.144. With respect to FCBF there is a sig-
nificant difference between it and T, MW, KS, and CVM.
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Chapter 7

Conclusion

7.1 Summary

Concept drift can affect any model in its serving phase, where it is subjected to the unstation-

ary behaviors of data streams. The outcome is an unpredicted degradation in performance

despite performing optimally before the occurrence of drift. Existing detectors detect per

model per stream but fail to consider shared resources between models in practice, which are

utilized under a shared data pipeline. This dissertation emphasizes viewing models as inte-

grated systems. We attempt to improve our understanding of factors related to concept drift

by detecting drift across multiple models and/or streams, thereby transforming the problem

of drift detection for formerly independent models as a collaborative effort in detecting drift

as a whole.

Chapter 4 formed model to model associations based on feature to model associations

in order to save costs of detecting on every model. The premise is that like models will

share susceptibilities. This also introduced a means to combine many types of detectors and

incorporate flexbility in the types of data used. Chapter 5 introduced the Performance
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Gain Update Cost ratio which related the gain in performance with the cost of retraining.

This acted as the orthogonal of QuaD. Rather than focus on similarities it operated under

the assumption that drift can be pervasive and be the result of latent features. Chapter 6

designed a way to expand a suite of detectors while predicting which detector to select to

garner the most cost-effective approach.

7.2 Future Directions

The strength of incorporating collaborative filtering for concept drift detection is that the

weaknesses of collaborative filtering are known. In other words, to improve our implemen-

tation of QuaD, one can include ways to improve known problems of collaborative filtering

such as cold start and generating implicit feedback. The cold start problem is where many of

the scores are unknown beforehand. Another way to extend QuaD is to incorporate implicit

feedback on top of the explicit feedback. The explicit feedback are the scores given from

the features. Implicit feedback may be calling features from same feature view from feature

store (feature feedback) or detecting drift at the same moment as another model - tallied by

global drift detector.

The idea of viewing independent models as intertwined components of a systems can benefit

beyond concept drift detection. Without a doubt systems will continue to grow and expand.

Not only will we want to execute multiple models at once, but memory management and

feature engineering involved will play a bigger factor. As long we pull against a data-centric

view and push towards the current model-centric mentality, the greater importance it will

be to design ways to turn formerly independent models into passively collaborative entities.
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