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Protein-Protein Interaction Landscape of Autism Spectrum Disorder (ASD) 

Zun Zar Chi Naing 

Abstract 

Autism Spectrum Disorder (ASD) is a genetically complex and heterogenous neurodevelopmental 

disorder. As such, much effort has been put into uncovering the risk genes underlying ASD. A 

recent large-scale whole exome sequencing study focusing on de novo and case-control rare 

variants has identified 102 high-confidence ASD (hcASD) risk genes with a False Discovery Rate 

(FDR) £ 0.1(Satterstrom et al., 2020). Despite the advances in the discovery of ASD risk genes, 

we have yet to understand the molecular underpinnings of ASD pathobiology. To understand how 

hcASD risk genes contribute to ASD phenotypes, it is imperative to utilize integrative networks 

and systems biology approaches to unravel the molecular pathways connecting these hcASD risk 

genes. In this dissertation, I show how we used quantitative proteomics to systematically define 

the physical interaction landscape of proteins encoded by hcASD genes, and how these 

interactions are disrupted when we introduced de novo missense mutations as observed in the 

patients. The ASD protein-protein interaction network identifies 1024 unique proteins that interact 

with at least one of the 102 hcASD risk genes; of note, 82% of the interactions are novel. When 

we introduce patient-derived missense mutations in 35 out of 102 hcASD risk genes, we observed 

133 protein interactions that are more specific to the mutants and 152 proteins that are more 

specific to the wild-type (WT) proteins. These differential protein interactions can be used to 

generate hypothesis regarding the molecular underpinnings of ASD etiology. Additionally, I 

present how we can elucidate biological processes, molecular pathways, and protein complexes 

from the generated protein-protein interaction network using network biology approaches and 

functional enrichment analyses, highlighting the convergent pathways that these high confident 

ASD risk genes may be involved in.  
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CHAPTER 1: 

INTRODUCTION 

1.1. Introduction 

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects 1-2% of 

the world’s population, about 1 in 44 children, and accounts for the global burden of disease, 

particularly in developed countries (CDC, 2022). It is characterized by impairments in reciprocal 

social interactions as well as repetitive behaviors and/or restricted interests (American 

Psychological Association (APA), 2013). The symptoms of ASD may affect the patients’ abilities 

to perform and function in routine areas of life, school, and work. As the name suggests, ASD is 

a spectrum disorder, meaning that two people diagnosed with ASD may have different symptoms 

and symptom severity. ASD can affect people of all races and genders, although there is a strong 

male sex bias with reports of 4:1 male to female ratio (Dougherty et al., 2022; Werling & 

Geschwind, 2013). Currently, there are no reliable biomarkers based diagnostic tests for ASD, 

and the diagnosis is based on a behavior and developmental evaluation by health care providers. 

ASD can be reliably diagnosed as early as the age of two (Hyman et al., 2020), although it can 

also be diagnosed later in life. ASD is a life-long disorder and as of this writing, no cure exists for 

it yet.  

1.2. Uncovering the genetics underpinnings of ASD 

Twin studies and sibling studies have consistently shown ASD to be one of the most 

heritable complex disorders among the neuropsychiatric disorders, with the heritability (h2) 

between 70-90% (Sandin et al., 2017; Tick et al., 2016). This suggests that there is a strong 

genetic component contributing to the disorder and therefore, great efforts have been made to 

identify candidate genes for ASD. However, this has proven difficult due to complex genetic 

architecture exemplified by extreme locus and allelic heterogeneity (O’Roak & State, 2008), and 
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contribution from both common and rare variants (Gaugler et al., 2014; Klei et al., 2012). While 

common variants contribute the most risk for ASD, reproducible loci have not yet been identified, 

almost certainly due to insufficient sample sizes (Grove et al., 2017). Alternatively, identifying 

recurrent high-effect size rare structural and sequence variants—particularly de novo variants—

has proved a reliable path for gene discovery (Buxbaum et al., 2012). Recent efforts in gene 

discovery studies, specifically exome sequencing studies focusing on rare variants in family 

studies, have resulted in the identification of 102 highly confident ASD risk genes at a false 

discovery rate (FDR) ≤ 0.1(Satterstrom et al., 2020). Excitingly, these genes and the de novo 

variants found in these genes are clear molecular clues that can be used to unravel the underlying 

biology. However, it is extraordinarily difficult to transition from a list of genetic variants to 

molecular understanding of ASD pathobiology. This is in part due to our incomplete knowledge 

of human brain development coupled with the genetic and phenotypic heterogeneity of ASD. 

Additionally, ASD risk genes are complex and pleiotropic, carrying out various biological functions 

that are developmental timeline and cell type dependent. A convergent framework is needed to 

pinpoint the conserved and converging function among multiple ASD risk genes (A. J. Willsey et 

al., 2018). Therefore, a critical step to understanding core ASD neuropathology and paving ways 

for therapies, is to delineate the roles of all the high confident ASD risk genes in brain 

development in a systemic manner. 

1.3. Leveraging systems biology to delineate ASD etiology 

Proteins never function on their own; all proteins interact with other proteins or themselves 

to carry out cellular functions. Studying proteins with their interacting partners can inform us which 

proteins are acting in concert to carry out a function. Generally, we can assume that if two proteins 

interact, they are physically located in the same subcellular compartment and are likely involved 

in a shared biological process (Bouhaddou et al., 2019; Swaney et al., 2021). If a protein has 

unknown localization and/or function, we can make inferences based on the known localization 
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or function of proteins with which it interacts. In addition, characterizing how disease-associated 

mutations alter the protein interaction landscape can help elucidate what cellular functions 

underlie disease pathology (Perica et al., 2021; Swaney et al., 2021).  

In recent years, integrating systems biology approaches with protein-protein interaction 

data to understand complex diseases has proven fruitful in uncovering novel therapeutics. This 

was highlighted in the COVID pandemic when the situation called for urgent identification of 

druggable protein targets to ameliorate the effects of SARS-Cov2 infection; systems biology was 

leveraged to build host-pathogen interaction maps to systematically identify potential druggable 

sites at the host-pathogen interface (Gordon et al., 2020). Along the same ideology, we can use 

quantitative proteomics combined with systems biology to understand the functional roles of the 

high-confidence ASD (hcASD) risk genes.  

The identification of ASD risk genes lays the foundation for uncovering ASD etiology. 

Here, using 102 hcASD risk genes (Satterstrom et al., 2020) as a starting point, we identified 

over 1000 high confident interactors in HEK293T cells using affinity-purification mass 

spectrometry (AP-MS) (Chapter 2). Applying various network ontology analyses to this protein-

protein interaction (PPI) map, we identified functional relationships between the proteins of 

hcASD risk genes and transition from a list of risk genes to broader molecular mechanisms. 

Delineating the functional relationships among the proteins of hcASD risk genes allow us to 

generate testable hypotheses about functional convergence of these proteins. To this end, we 

pursued the function of two hcASD proteins that directly interact with each other in the ASD-PPI 

map, DYRK1A and KIAA0232. These two proteins also share multiple interaction partners as part 

of a protein complex. When knocking down KIAA0232, we also noted that it phenocopied the 

knock down of DYRK1A, resulting in the size reduction of telencephalon in Xenopus tropicalis. 

Lastly, we showed that we can quantitatively identify proteins that are gained or lost due to the 

introduction of de novo missense mutation. We focused on one of the ASD risk genes – FOXP1 

and its missense mutations. We found that missense mutations in FOXP1 leads to a loss in 
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interaction with FOXP4 and impaired neurite outgrowths. Collectively, this systematic molecular 

dissection of hcASD risk genes acts as a foundational resource to find target proteins that can 

potentially be targeted for biomarkers or therapies for ASD. 
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CHAPTER 2: 

Defining the protein-protein interaction landscape of high confidence ASD risk genes 

2.1. Introduction  

Autism Spectrum Disorder (ASD) is a highly heritable complex neurodevelopmental 

disorder. A recent large-scale whole exome sequencing study focusing on de novo and rare 

variants identified 102 high-confidence ASD (hcASD) risk genes (Satterstrom et al., 2020). To 

reconcile the genetic diversity of ASD into convergent biological pathways, we can systematically 

define the protein-protein interaction landscape of proteins encoded by hcASD genes using 

affinity-purification mass spectrometry (AP-MS). The reasoning is that physical interactions 

between proteins often indicate shared biological function, and protein-protein interaction (PPI) 

maps can reveal shared functions of proteins, including the protein complexes and cellular 

pathways in which they participate. Here, we use AP-MS in HEK293T cells to generate a PPI 

network map of the proteins encoded by the 102 hcASD risk genes identified in (Satterstrom et 

al., 2020) (Figure 2.1A). From this PPI map, we can generate hypotheses regarding the functions 

of these different proteins, the cellular pathways and processes they participate in and how they 

are physically and functionally connected, reconciling the genetic diversity of ASD.  

2.2. Materials and Methods 

2.2.1. Cloning hcASD risk genes 

The coding sequence of each hcASD risk gene was cloned into a pcDNA4 plasmid with 

either N- or C-terminal 2xStrep tags, which encode the bait proteins for the AP-MS study. The 

terminus position of the tags was determined so that the tag will not interfere with the protein 

function based on the prior reported plasmids that have been used in functional studies. The 

isoforms for the hcASD risk gene were chosen based on high brain expression levels as well as 
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the high frequency of mutations observed in ASD using Clonotator (http://ec2-52-91-98-

53.compute-1.amazonaws.com/login/). All constructs were sequence validated.  

2.2.2. Cell culture 

HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Corning) 

supplemented with 10% fetal bovine serum (FBS; Gibco, Life Technologies) and 1% penicillin–

streptomycin (Corning). All cells were maintained in a humidified incubator at 37 °C with 5% CO2.  

2.2.3. Transfection 

Each transfection (102 baits, one GFP control and one empty vector control) was carried 

out in a 15cm dish with 10 million HEK293T cells (70-80% confluency), with three biological 

replicates per bait. Transfections were split in 15 batches, with three biological replicates of GFP 

and empty vector controls included in each batch. For each transfection, 15 μg of Strep-tagged 

plasmids was combined with PolyJet Transfection Reagent (SignaGen Laboratories) at a 1:3 

μg:μL ratio of plasmid:transfection reagent, incubated at room temperature for 10 mins, and 

added dropwise to HEK293T cells. About 48h post transfection, cells were resuspended at room 

temperature using 10 ml Dulbecco’s phosphate-buffered saline without calcium and magnesium 

(DPBS) supplemented with 10 mM EDTA, followed by centrifugation at 200g, 4 °C for 5 min. Cell 

pellets were frozen on dry ice and stored at −80 °C. 

2.2.4. Affinity purification 

The cell pellets were thawed on ice and then lysed with 1 ml ice-cold lysis buffer (IP buffer 

(50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.5% Nonidet P40 substitute (NP40; Fluka 

Analytical), cOmplete mini EDTA-free protease and PhosSTOP phosphatase inhibitor cocktails 

(Roche)). Samples were then flash-frozen on dry ice for about 10 min and partially thawed at 

37°C for 30-45s before incubation for 30 min at 4 °C on a tube rotator. Lysates were centrifuged 
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at 13,000g, 4 °C for 15 min to clarify lysate and pellet debris. A 50 μl lysate was reserved at this 

point for future experiments such as Western blot. The remaining lysates underwent automated 

affinity purification on the KingFisher Flex Purification System (Thermo Scientific), which was first 

equilibrated to 4°C in the cold room.  First, MagStrep ‘type3’ beads (30 μl; IBA Lifesciences) were 

equilibrated twice with 1 ml wash buffer (IP buffer supplemented with 0.05% NP40) and incubated 

with 0.95 ml lysate for 2 h. Beads were washed 3 times with 1 ml wash buffer and once with 1 ml 

IP buffer, then resuspended in 50 μl denaturation–reduction buffer (2 M urea, 50 mM Tris-HCl 

pH 8.0, 1 mM DTT) and 50 μl 1× buffer BXT (IBA Lifesciences) and dispensed into a single 96-

well KingFisher microtitre plate. Purified proteins were eluted at room temperature for 30 min with 

constant shaking at 1,100 rpm on a ThermoMixer C incubator.  

2.2.5. On-bead digestion 

Bead-bound proteins were denatured and reduced at 37 °C for 30 min, brought back to 

room temperature, alkylated in the dark with 3 mM iodoacetamide for 45 min and quenched with 

3 mM DTT for 10 min. To offset evaporation, 15 μl 50 mM Tris-HCl, pH 8.0 were added and 

proteins were digested with 1.5 μl trypsin (0.5 μg/μl; Promega) with constant shaking at 

1,100 rpm and incubation at 37 °C on a ThermoMixer C incubator for 4 h, and again for 1–2 h 

with 0.5 μl additional trypsin. Resulting peptides were combined with 50 μl 50 mM Tris-HCl, 

pH 8.0 to rinse beads and then, acidified with trifluoroacetic acid (0.5% final, pH < 2.0). Desalting 

was conducted in a BioPureSPE Mini 96-Well Plate (20 mg PROTO 300 C18; The Nest Group) 

according to standard protocols. 

2.2.6. Sequential Strep-FLAG purifications 

Sequential purifications initially followed single-step purifications as described above, but 

are scaled to improve protein enrichment. Alterations are as follows: for each purification, five 

14.5-cm dishes were co-transfected and subsequently combined for lysis with proportional 
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volumes of buffer > 40 hours post-transfection. Cell lysates were then divided between five 

separate Strep-tag purifications.  Following wash steps, MagStrep beads were combined and 

incubated on a tube rotator for 30 minutes with 0.3 ml Buffer BXT supplemented with 0.38% NP40 

to elute proteins.  After removing eluted protein, MagStrep beads were rinsed with an additional 

0.3 ml Buffer BXT supplemented with 0.38% NP40.  Buffer BXT elution and wash steps were 

combined and added to 30 μl equilibrated FLAG beads.  After incubating for 2 hours and washing 

beads as above, proteins were eluted in 50 μl 0.1 mg/ml 3xFLAG peptide in IP Buffer 

supplemented with 0.05% RapiGest by gentle shaking on a vortex mixer at room temperature 

for 30 minutes.  25 μl was submitted for mass spectrometry. 

2.2.7. MS data acquisition and analysis 

To prepare for mass spectrometry, samples were resuspended in 4% formic acid, 2% 

acetonitrile solution, and separated by a reversed-phase gradient over a Nanoflow C18 column 

(Dr Maisch). Each sample was directly injected via an Easy-nLC 1200 (Thermo Fisher Scientific) 

into a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific) and analyzed with a 75 min 

acquisition, with all MS1 and MS2 spectra collected in the orbitrap; data were acquired using the 

Thermo software Xcalibur (4.2.47) and Tune (2.11 QF1 Build 3006). For all acquisitions, QCloud 

was used to control instrument longitudinal performance. All proteomic data were searched 

against the human proteome (UP000005640_9606, downloaded in October 2021) using the 

default settings for MaxQuant software (version 1.6.12.0) (Cox & Mann, 2008) with match-

between-runs (MBR) feature turned on. Briefly, the MBR algorithm annotates unidentified peaks 

by assessing and comparing the retention times of the identified peaks in an MS1 spectrum.  

Detected peptides and proteins were filtered to 1% false-discovery rate in MaxQuant, and 

identified proteins were then subjected to protein–protein interaction scoring with both 

SAINTexpress (v.3.6.3)(Teo et al., 2014) and CompPASS (version 0.0.0.9000) (Huttlin et al., 

2015; Sowa et al., 2009).  
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2.2.8. Removal of carryover effect and identification of high-confidence interactors 

A crucial step in our AP-MS study is the probabilistic scoring of all quantified proteins in 

the dataset to identify high-confidence interaction proteins (HCIP) of the ASD risk genes. To do 

this, the scoring outputs from existing computational tools – CompPASS (Comparative Proteomic 

Analysis Software Suite) (Huttlin et al., 2015; Sowa et al., 2009) and SAINTexpress (Teo et al., 

2014) –  were systematically combined. These two scoring algorithms are widely used in the 

proteomics community to score the quality of protein-protein interactions as distinct from 

background.  

Input files – bait, prey and interaction files - for SAINTexpress were made using 

artmsEvidenceToSaintExpress function in an open-sourced R package, artMS (Jimenez-Morales 

et al., 2022). The interaction input file for SAINTexpress was reformatted to be used as a 

CompPASS input file. As CompPASS requires all baits to have the same number of preys, we 

defined spectral counts for the union of all identified proteins across all AP-MS experiments for 

each bait; if the bait-prey interaction was not detected, its spectral count was assigned to be zero. 

This bait-prey spectral count matrix was used to search for carryover effect, which was defined 

as proteins with a drastic and continuous decrease in spectral counts in replicates where such 

proteins were used as baits in the previous sample injections (Figure S2.3). The resulting bait-

prey spectral count data table after carryover removal was reformatted and used as the input file 

for SAINTexpress and CompPASS.  

To determine the scoring cutoffs that capture the highest number of true interactions, a 

gold standard set of protein-protein interactions was manually defined. Gold standard interactions 

were extracted from publicly available large-scale PPI databases, Hein et al (Hein et al., 2015).,  

InWeb (T. Li et al., 2017), CORUM (Core Corum Complexes, Corum 3.0) (Giurgiu et al., 2019a), 

BioPlex (Huttlin et al., 2015), and BioGrid (Oughtred et al., 2018), with some additional filtering 

steps for BioGrid and InWeb. As BioGrid contains interactions from various sources, including 
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both experimental and predicted, the dataset was filtered to only interactions that were attained 

using another experimental method in addition to the AP-MS method. Similarly, InWeb database 

were filtered for interactions that have high-confidence score of > 0.95 and are identified through 

an experimental method.   

SAINTexpress (version 3.6.3) was run batch-wise, each batch with its own empty-vector 

and GFP replicates as controls. The outputs were then concatenated to a single SAINTexpress 

output. CompPASS was run using the R package, cRomppass 

(https://github.com/dnusinow/cRomppass). The scoring outputs from SAINTexpress and 

CompPASS were merged for each interaction (Figure 2.1B). The SAINTexpress Bayesian False 

Discovery Rate (BFDR) and CompPASS WD score (rank_WD, ranked from 0 to 1 across the 

dataset) were used as prediction confidence scores. Using the ranked CompPASS WD score 

(rank_WD) as a predictive value and interactions found in the previously described manually 

curated gold standard PPI database as true positives, the optimal rank_WD score cutoff for each 

SAINTexpress BFDR increment was determined by calculating Youden’s index. The best 

performing composite score of SAINTexpress and CompPASS (out of 78 composite scores) was 

determined by calculating precision, recall and F1 scores (Figure 2.1C).  

2.2.9. Pathway and molecular complex overrepresentation analysis 

The ASD-PPI network was accessed for enrichment of GO biological process terms and 

CORUM core protein complexes at the bait (and associated prey proteins) level. CORUM 

complete complexes (CORUM 4.0 release) (Giurgiu et al., 2019b) were downloaded as text file 

and converted to GMT format. All the ontology terms for GO were obtained using the 

get_GO_data function from the R package, clusterProfiler (Yu et al., 2012) as GMT format. The 

two GMT files were then combined, and an enrichment test based on hypergeometric distribution 

was run via the enricher function in clusterProfiler. From the output of enricher function, gene 

sets for significant complex and GO terms were selected using a false discovery rate cutoff of 
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1%. To refine and select for non-redundant gene sets, a GO term tree was first built based on 

distances (1 − Jaccard similarity coefficients of shared genes) between the significant terms. The 

GO term tree was cut at h = 0.99 to identify clusters of non-redundant gene sets. The term with 

the largest gene set size was selected if a bait was enriched for multiple significant terms 

belonging to the same cluster. 

2.2.10. ASD-PPI protein expression in HEK293T cells 

We defined the HEK293T proteome to be the n=11,133 proteins with detected protein 

expression in a published global quantitative mass spectrometry dataset (Bekker-Jensen et al., 

2017). We defined the protein expression level to be the average intensity based absolute 

quantification (iBAQ) scores for the two HEK293T experimental replicates reported in 

Supplementary Table 7. We compared the relative expression levels of ASD-PPI bait, prey 

(excluding hcASD102 genes), and other HEK293T expressed proteins using t-test, correcting p-

values for multiple hypothesis testing (p.adj = p x 3 tests).  

2.2.11. Prey expression in adult brain tissue (GTEx) and enrichment analysis 

The Genotype-Tissue Expression (GTEx) project includes RNA-sequencing data from 54 

non-diseased tissue sites across nearly 1000 individuals (Lonsdale et al., 2013). We downloaded 

GTEx v8 data (dbGaP Accession phs000424.v8.p2) from GTEx website 

(https://www.gtexportal.org/home/datasets), which contains median gene-level TPM for samples 

from 54 tissue types, including 13 brain tissue sites.  

We assessed whether ASD-PPI genes are more highly expressed in GTEx brain tissues 

compared to other HEK293T expressed proteins. We defined HEK293T expressed proteins as 

the union of proteins detected by mass spectrometry dataset (Bekker-Jensen et al., 2017) and 

prey. We defined 3 gene sets of interest – bait, prey (excluding hcASD102), and HEK293T 

expressed proteins that are not bait or prey (Figure S2.9B). For each gene set, we found the 
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median gene set expression percentile within individual brain tissue samples and performed t-

tests to assess whether these were significantly different across gene sets. P-values were 

adjusted for multiple hypothesis testing (p.adj = p x 3 tests). 

We assessed whether prey genes are more highly expressed in GTEx brain samples 

compared to permuted gene sets from the HEK293T proteome. We created 100,000 permuted 

gene sets from a universe of n=10,984 genes that are in HEK293T proteome, measured in GTEx 

RNA-sequencing data, and not ASD-PPI bait. The probability of gene selection was weighed by 

HEK293T iBAQ scores (Lonsdale et al., 2013), and permuted gene sets were required to have a 

median HEK293T iBAQ rank within 1 quantile of that of ASD-prey genes. We calculated the 

median gene set expression percentile for prey genes and the 100,000 permuted gene sets in 

GTEx brain tissue samples, where higher rank reflects higher relative expression within a sample. 

We then calculated the permuted significance of the observed ASD-prey GTEx expression 

percentile within each tissue type (Figure S2.9C).   

2.2.12. Prey expression in adult brain tissue (BrainSpan) and enrichment analysis  

The BrainSpan developmental RNAseq dataset (bsRNAseq) profiles human brain tissue 

RNA expression across the full course of human brain development, from early fetal stages 

through late adulthood (Kang et al., 2011). BsRNAseq data (n=524 samples) was downloaded 

from brainspan.org. The original 52,376 genes were trimmed to a final set of 18,552 protein-

coding genes associated with an HGNC symbol; if a HGNC symbol was associated with multiple 

Ensembl gene IDs, only one was kept. Expression values are reported in reads per kilobase 

million (RPKM). 

We assessed whether ASD-PPI genes are expressed at relatively higher levels in 

BrainSpan prenatal samples compared to HEK293T background genes. We defined 3 gene sets 

of interest – bait, prey (excluding hcASD102), and HEK293T expressed proteins that are not bait 

or prey (n= 10,046). We restricted our analysis to the n=237 prenatal brain samples as the 
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prenatal period has been implicated in ASD risk (Ben-David & Shifman, 2013; Parikshak et al., 

2013; A. J. Willsey et al., 2013). For each gene set, we calculated the median gene set expression 

percentile within individual brain tissue samples. We performed t-tests to assess whether the 

median genset expression percentiles are significantly different between different gene sets, 

adjusting p-values for multiple hypothesis testing (p.adj = p x 3 tests) (Figure 2.4A).  

We assessed whether prey genes are more highly expressed in BrainSpan prenatal 

samples compared to permuted gene sets from the HEK293T proteome. We created 100,000 

permuted gene sets from HEK293T proteome genes, matching the number of prey genes. To 

generate the permuted gene sets, we selected genes from a set of n=10,902 genes that are 1) in 

the HEK293T proteome (Bekker-Jensen et al., 2017), 2) measured in BrainSpan RNAseq, and 3) 

not an ASD-PPI bait.  The probability of gene selection was weighed by HEK293T protein 

expression level (median iBAQ rank), and only gene sets with a median iBAQ rank within 1 

quantile of the median iBAQ rank of ASD-prey were retained. We calculated the median gene set 

rank (‘medRank’) within each bsRNAseq brain tissue sample for prey and each of the 100,000 

permuted gene sets (higher medRank reflects higher gene set expression within a sample). For 

each brain tissue sample, we calculated the ‘normalized medRank’, defined as the observed 

medRank – median (100K permuted medRanks). The normalized medRank reflects the sample-

level expression enrichment of prey, with positive values reflecting higher than expected 

expression. As a comparator, we also calculated the sample-level expression enrichment of 

hcASD102 genes (Satterstrom et al., 2020) compared to permuted gene sets.  

To assess whether the relative expression of prey mirror that of hcASD102 genes across 

samples, we calculated the Spearman and Pearson correlations of the normalized medRanks for 

prey versus hcASD102 genes across n=524 brain samples. To compare relative prey (or 

hcASD102) expression in prenatal versus postnatal brain tissue, we grouped bsRNAseq brain 

samples by prenatal versus postnatal status (n=237 prenatal, n=287 postnatal), and assessed 

whether the normalized medRank of prey (or hcASD102) were significantly different between 
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prenatal versus postnatal samples using t-test. We also grouped bsRNAseq brain samples by 

developmental period (Kang et al., 2011) where periods 1-7 reflect prenatal stages of 

development and periods 8-15 reflect late infancy through late adulthood, resulting in 13 sample 

groups ranging from period 2-14.  For each period, we calculated the median (normalized 

medRank) across samples for prey and hcASD102; we subsequently calculated the Spearman 

and Pearson correlation of median (normalized medRank) for prey and hcASD102 across the 13 

period groups (Figure 2.4B, S2.9D, S2.9E).  

2.2.13. Prey enrichment for ASD genetic risk 

We used de novo genetic variants previously identified from simplex family studies as a 

measure of ASD genetic risk (Satterstrom et al., 2020) and conducted enrichment tests using 

Fisher’s exact test to assess whether prey are enriched for ASD genetic risk compared to other 

genes in the HEK293T proteome or other exome genes. We focused on de novo damaging 

variants identified from the Simon’s Simplex Collection (Satterstrom et al., 2020) Supplementary 

Table 1). We defined “damaging” variants to be variants that resulted in a damaging missense 

mutation (PolyPhen Mis3 (damaging); or MPC (MPC>=2)) or PTV (frameshift, stop gained, or 

canonical splice site disruption).  

We determined the association between having a damaging variant in different gene sets 

of interest with ASD status. We defined the following gene sets: 

1) Prey: ASD-PPI prey (n=1,074) 

2) HEK293T (-Prey, -hcASD102):  HEK293T proteome genes, excluding prey and hcASD102 (n 

= 10,045) 

3) Exome: all autosomal genes measured in Satterstrom 2020 (n= 17,332) 

4) Exome (-hcASD102): autosomal genes measured in Satterstrom 2020, excluding hcASD102 

(n= 17,230) 
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5) Exome (-Prey, hcASD102): autosomal genes measured in Satterstrom 2020, excluding 

hcASD102 and prey (n= 16,234).  

For each Fisher's enrichment test, the universe of genes was defined to be the gene set 

members, and the 2x2 contingency table was: X, the number of ASD probands with a damaging 

variant in at least one gene in the gene set; Y; the number of control siblings with a damaging 

variant in at least one gene in the gene set; Z, the number of ASD probands with no damaging 

variants in any gene in the gene set; W, the number of control siblings with no damaging variants 

in any gene in the gene set. We calculated the enrichment odds ratio with Fisher’s exact test (one 

sided, alternative = greater), and adjusted p-values for multiple hypothesis testing (p.adj = p x 

number gene sets assessed) (Figure 2.4C, S2.9F).  

2.2.14. Downsampling analyses 

To determine whether increasing the number of baits used to create ASD-PPI is 

associated with increased ability to identify prey associated with ASD genetic risk, we 

downsampled the ASD-PPI network. Specifically, we randomly selected sets of bait (ranging from 

n = 1-100 bait, 1000 iterations for each set size), and trimmed the ASD-PPI network to include 

only prey associated with the downsampled bait. For each downsampled network, we calculated 

the association between having a damaging variant in different gene sets of interest with ASD 

status as described above. We evaluated 2 gene sets: 1) Prey (-hcASD102), and 2) Exome (-

Prey, -hcASD102), which allows us to compare the amount of ASD-associated genetic risk in prey 

versus the remaining genes in the human exome. For each bait set size, we calculated the median 

and standard deviation of ORs across the 1000 iterations, as well as the median and standard 

error of p-values across the 1000 iterations (Figure 2.4E).  

We additionally assessed whether increasing the number of baits used to create ASD-PPI 

is associated with increased ability to identify prey that are novel hcASD genes. We defined novel 

hcASD genes as the n=255 genes with FDR £ 0.1 in the latest omnibus WES study (Fu et al., 
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2022). We downsampled the ASD-PPI network as described above. For each downsampled 

network, we 1) counted the number of hcASD255 genes in the prey and 2) conducted a Fisher's 

exact test (one sided, greater) to assess for enrichment of hcASD255 in prey. The counts of the 

2x2 contingency tables were: X, the number of hcASD255 that are prey; Y, the number of 

hcASD255 genes that are not prey; Z, the number of prey that are not in hcASD255; and W the 

number of genes that are not prey or hcASD255.  We defined the universe of possible genes to 

consist of those with 1) proteins that are detected in the HEK293T proteome (Bekker-Jensen et 

al., 2017); 2) measured in Satterstrom et al., 2020; and 3) measured in Fu et al., 2022. For each 

bait set size, we calculated the median and standard deviation of OR, -log10(p-value), and 

number of hcASD255 genes among prey across the 1000 iterations. We repeated this analysis 

after excluding hcASD102 genes (Satterstrom et al., 2020, FDR £ 0.1) from the gene universe to 

assess the ability of ASD-PPI to identify truly novel hcASD genes (Figure 2.4F).  

2.2.15. Prey enrichment for ASD, DD, or SCZ risk genes 

We evaluated whether prey genes are enriched for risk genes that have been implicated 

in ASD, DD, or schizophrenia (SCZ). We defined the following sets of risk genes,  

1) ASD, Fu 2022 (Fu et al., 2022): n=255 autosomal genes with TADA FDR £ 0.1 

2) ASD, Zhou 2022 (Zhou et al., 2022): n=72 genes with study-wide significance (based on 5,754 

constrained genes, p<8.69E-6) 

3) ASD, SFARI (Abrahams et al., 2013): SFARI genes are a database that endeavors to include 

all genes associated with ASD risk, regardless of the level or nature of evidence. SFARI genes 

are further divided into categories, including syndromic, category 1 (high confidence), 

category 2 (strong candidate), and category 3 (suggestive evidence). SFARI genes were 

downloaded from gene.sfari.org (09/02/2021 release), and included a total of n=1020 genes, 

of which there were n=230 syndromic genes, n = 92 syndromic and category 1 genes, n=206 

category 1 genes, n=219 category 2 genes, and n=514 category 3 genes.  
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4) DD, Kaplanis 2022 (Kaplanis et al., 2022): n=285 genes that are significantly associated with 

DD after one-sided Bonferroni correction 

5) SCZ, Singh 2022 (Singh et al., 2022): n=34 genes with TADA FDR £ 0.1. 

We defined the HEK293T expressed genes to be the union of prey and proteins that were 

detected by mass spectrometry (Bekker-Jensen et al., 2017). We conducted two sets of 

enrichment tests. For the first set of enrichment tests, we assessed only risk genes from WES 

studies that reported the set of genes that were evaluated as possible risk genes (Fu et al., 2022; 

Singh et al., 2022; Zhou et al., 2022). We defined the universe of possible genes to be those that 

were 1) HEK293T expressed genes, 2) measured in Satterstrom et al., 2020, and 3) measured in 

the WES that generated the risk gene set of interest (Fu et al., 2022; Singh et al., 2022; Zhou et 

al., 2022) (Figure 2.4D). For the second set of enrichment tests (Figure S2.9G), we simply 

defined the gene universe to be HEK293T expressed genes, as the exact gene universe 

considered is unavailable for the SFARI risk gene sets. For both sets of enrichment tests, we 

conducted Fisher’s exact tests (one sided, greater), in which the contingency tables were set up 

by prey status (yes/no) and disease gene set status (yes/no). We corrected p-values for multiple 

hypothesis testing (p.adj = p x number of gene sets assessed).  

2.2.16. Prey gene constraint 

We evaluated whether ASD-PPI genes are more constrained than expected by assessing 

several metrics, including the pLI (probability of being intolerant of a single loss-of-function 

variant), misZ (missense Z score, measures gene intolerance to missense variation), synZ 

(synonymous Z score, measures gene intolerance to synonymous variation, used as negative 

control), and s_het (selective effect for heterozygous PTVs) (Cassa et al., 2017; Lek et al., 2016). 

We obtained pLI, misZ, and synZ scores from the Genome Aggegation Database (ExAC 

dataset (https://storage.googleapis.com/gcp-public-data--

gnomad/legacy/exac_browser/forweb_cleaned_exac_r03_march16_z_data_pLI_CNV-
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final.txt.gz) and s_het scores from Cassa et al., 2017 Supplementary Table 1. We assessed 

whether the pLI, misZ, s_het, and synZ scores of ASD-PPI bait genes, prey genes, and HEK293T 

proteome genes (Bekker-Jensen et al., 2017) were significantly different fpr ASD-PPI bait, prey 

(excluding hcASD102), and other HEK293T proteome genes using t-tests, adjusting p-values for 

multiple hypothesis testing (p.adj = p-value x number of t-tests). 

2.2.17. Xenopus tropicalis embryos and tadpoles 

Ovulation was induced by injection of human chorionic gonadotropin (Sigma) into the 

dorsal lymph sac according to standard procedure (Sive et al., 2000) and in accordance with 

approved UCSF IACUC protocols. Natural matings and in vitro fertilizations were performed. 

Embryos and tadpoles were staged by (Nieuwkoop et al., 1994). Clutch mates were used as 

matched controls. 

2.2.18. Xenopus tropicalis microinjections  

Xenopus tropicalis embryonic microinjections were performed as in (Sive et al., 2000). 

Microinjections were performed at the 2-cell stage using a Narishige micromanipulator, Parker 

Picospritzer, and Zeiss Stemi microscopes. Injection volume was calibrated with an eye-piece 

micrometer. Plasmids (DYRK1A-strep and KIAA0232-flag) were injected at 10 pg per embryo and 

mRNA (ɑ-tubulin-mCherry) at 400 pg per embryo. Embryos were grown between 22–25°C in 1/9 

Modified Ringer’s (MR) solution, which was refreshed daily. Male and female embryos were 

analyzed. 

2.2.19. Xenopus CRISPR/Cas9 genome editing  

High-efficiency sgRNAs were designed, synthesized, and validated as in (H. R. Willsey et 

al., 2021). For each embryo, 3 ng of purified Cas9-NLS protein (Macrolabs, UC Berkeley), 800 pg 

sgRNA, and a dextran dye conjugated with Alexa-555 (Invitrogen) were injected into 1 cell of a 2-
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cell stage embryo. The day following injection at stages 14–20, embryos were sorted left from 

right according to the dye. 

2.2.20. Xenopus whole mount immunofluorescence staining 

Xenopus immunostaining was carried out according to Willsey et al., 2018. The following 

primary antibodies were used: anti-Flag (1:100, Cell Signaling, 14793), anti-Strep (1:100, IBA, 2-

1507), and anti-acetylated ɑ-Tubulin (1:500, Abcam, ab179484). Secondary fluorescence-

conjugated antibodies were used at 1:250 (Life Technologies, A32732, A32723 and A32733). 

2.2.21. Xenopus microscopy and brain size measurements 

Xenopus colocalization images were acquired on a Zeiss LSM980 confocal with Aryscan 

and a 63X objective. Xenopus tadpole images were acquired on a Zeiss Axio Zoom.V16 

microscope with apotome and a 1X objective. Images were processed using Fiji (Schindelin et 

al., 2012). Telencephalon size was calculated from stereoscope images of brain immunostainings 

using the freehand select and measure functions in Fiji (Schindelin et al., 2012). The injected side 

was compared to the non-injected side (internal control). These measurements were from two-

dimensional images taken from a dorsal perspective and reflect relative size differences. 

GraphPad Prism software version 8.3 was used to graph data and determine statistical 

significance using a student’s paired t-test. p-values less than 0.05 were considered significant.  

2.3. Results 

2.3.1 Removing the carryover effect and combining two scoring algorithms leads to a 

robust PPI network  

Carryover effect is a type of sample contamination where analytes from the previous run 

remain in the LC-MS system and are detected in following runs (Vu et al., 2013; Yamagaki & 

Yamazaki, 2019). It can last for multiple sequential runs and can be identified by a half-life like 
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pattern in a sequence of consecutive runs. This effect can be more prominent in experiments 

where the baits are overexpressed (Figure S2.1, Figure S2.2). Removing this carryover 

contamination effect prior to the scoring analysis is critical in our analysis especially as carryover 

contamination may result in the false positive identification of an interactor. 

We use two scoring algorithms, CompPASS (Huttlin et al., 2015; Sowa et al., 2009) and 

SAINTexpress (Teo et al., 2014), to define HCIPs. CompPASS uses a non-parametric filtering 

approach which identifies HCIPs based on the uniqueness of a prey interaction across different 

baits by comparing the abundance, frequency, and reproducibility of the prey interactors in the 

data set. HCIPs are then identified using the normalized weighted D-Score and Z-score. Because 

of this frequentist approach, CompPASS works best when implemented on a large dataset such 

as ours, which includes 102 baits. However, shared interactors are expected among baits, and 

in this circumstance, CompPASS will penalize true interactors identified across multiple different 

baits, as frequently identified interactors are regarded as “background” in CompPASS analysis, 

which could lead to high false negatives. SAINTexpress uses a parametric filtering approach in 

which a background distribution is built based on negative control affinity purifications datasets, 

which are comprised of GFP and empty vector constructs in our case. This Bayesian approach 

increases sensitivity but assumes a robust distribution of the negative datasets, which could be 

biased towards false positives. Combining these two divergent scoring strategies leverages the 

strengths of both methods to increase the overall identification of true positives. In addition to 

combining the scores, benchmarking our ASD-PPI dataset against recovery of a gold standard 

set of known portein interactions is essential to select optimal scoring cutoffs to identify HCIPs. 

Indeed, using SAINTexpress score (1-BFDR) ≥ 0.95 and CompPASS score (rank_WD) ≥ 0.971, 

we recovered the highest density of known interactions (Figure 2.1D) while also discovering 

novel interactions (Figure 2.1F).  
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2.3.2 ASD-PPI data provides the most coverage of the ASD interactome 

Using SAINTexpress score (1-BFDR) ≥ 0.95 and CompPASS score (rank_WD) ≥ 0.971, 

we defined a high-confidence ASD-PPI network that involves 1074 unique prey interactors 

connecting 100 hcASD risk genes via 1881 interactions (Figure 2.3). Notably, 87% of the 1881 

interactions are novel, that is, not previously reported in any of these large-scale PPI databases, 

Hein et al (Hein et al., 2015).,  InWeb (T. Li et al., 2017), CORUM (Core Corum Complexes, 

Corum 3.0) (Giurgiu et al., 2019a), BioPlex (Huttlin et al., 2015), and BioGrid (Oughtred et al., 

2018) (Figure 2.1F). Additionally, compared to other large-scale PPI databases, our ASD-PPI 

network has the most comprehensive coverage of having hcASD risk gene related interactions, 

defined as the number of hcASD proteins reported as an interactor and the number of interactions 

involving a hcASD protein (Figure 2.1E).  

2.3.3 Proteins in ASD-PPI network are expressed in the human brain and enriched for 

ASD genetic risks  

We evaluated whether the proteins identified in the ASD-PPI network are ASD relevant 

by assessing 1) whether they are expressed in human brain tissue, 2) whether prey proteins are 

co-expressed with hcASD risk gene baits, 3) whether prey proteins are expressed in the 

spatiotemporal contexts that have been previously implicated in ASD, and 4) whether prey 

proteins are enriched for ASD genetic risk. 

As expected, we found prey proteins to be more highly expressed in HEK293T cells than 

the bait proteins or other HEK293T proteins (Figure S2.9A). To assess whether prey proteins are 

brain-relevant, we queried two large RNA-sequencing (RNAseq) datasets – the Genotype-Tissue 

Expression (GTEx) project (Aguet et al., 2017; Lonsdale et al., 2013) and the BrainSpan atlas of 

the developing human brain (M. Li et al., 2018). GTEx has RNAseq data from ~950 adult human 

donors from 54 tissues, including 13 brain regions. BrainSpan has RNAseq data from ~520 of 

samples from 16 brain regions of 42 neurotypical donors whose age span the prenatal and 



 
 

22 

postnatal periods (8 post-conceptual weeks to 40 years old). We found that in both prenatal brain 

tissue (from BrainSpan) and adult brain tissue (GTEx), bait and prey proteins are significantly 

more highly expressed than other HEK293T-expressed proteins (Figure 2.4A, S2.9B), 

suggesting that the ASD-PPI network genes are brain-relevant.  

We next assessed whether prey genes are co-expressed with the 102 hcASD risk genes 

(baits) in the brain. To do this, we assessed the relative expression of 102 hcASD risk genes and 

the prey genes in BrainSpan RNAseq samples by calculating the median expression percentile 

of each gene set compared to the median expression percentile of 100,000 permuted gene sets 

with similar HEK293T protein expression levels. We found that the relative expression level of 

102 hcASD risk genes and their prey genes are strongly correlated across the n=524 brain 

samples (Figure 2.4B, Pearson R2 = 0.81, p<1e-15). We concluded that the expression pattern 

of the prey genes in the ASD-PPI network mirror that of 102 hcASD risk genes across brain 

samples from various brain regions and developmental periods. 

We further evaluated whether prey genes are highly expressed in spatiotemporal contexts 

that have previously been implicated in ASD. A prior analysis of GTEx RNAseq data 

demonstrated that hcASD102 genes have enriched expression in the adult cortex and cerebellum 

(Satterstrom et al., 2020). We assessed the relative expression of 102 hcASD risk genes and the 

prey genes in GTEx brain samples by calculating the median expression percentile of prey 

compared to the median expression percentile of 100,000 permuted gene sets with similar 

HEK293T protein expression levels. We found that, like 102 hcASD risk genes, prey genes are 

significantly more highly expressed than expected in the adult cerebellum and cortex (Figure 

S2.9C).  Multiple studies have demonstrated that ASD risk genes are highly expressed in prenatal 

brain tissue (Ben-David & Shifman, 2013; Parikshak et al., 2013; A. J. Willsey et al., 2013). We 

assessed the relative expression of 102 hcASD risk genes and the prey genes in BrainSpan, and 

found that, similar to 102 hcASD risk genes, prey proteins are significantly more highly expressed 

in prenatal compared to postnatal samples (Figure S2.9D). We further sub-categorized 



 
 

23 

BrainSpan samples by developmental period as defined in Kang et al., 2011 where periods 1-7 

reflect prenatal stages of development and periods 8-15 reflect late infancy through late 

adulthood. We found that the relative expression levels of 102 hcASD risk genes and the prey 

genes have highly similar patterns of expression over development, with relatively high 

expression in prenatal periods and decreased expression in postnatal periods (Figure S2.9E).  

We posited that if prey genes are ASD-relevant, they should be enriched for ASD genetic 

risk. Using data from the Simons Simplex Collection (Fischbach & Lord, 2010; Kang et al., 2011; 

Satterstrom et al., 2020), we found that prey genes are significantly enriched for de novo 

damaging variants associated with ASD; in comparison, other HEK293T-expressed proteins 

(excluding the proteins in ASD-PPI network) are not (Figure 2.4C). We confirmed that ASD 

probands have higher odds of having a de novo damaging variant in the human exome compared 

to control siblings (De Rubeis et al., 2014; Iossifov et al., 2014; Sanders et al., 2015; Satterstrom 

et al., 2020),  but that these odds decrease significantly when we exclude hcASD102 and prey 

from the exome (Figure S2.9F), demonstrating that ASD-PPI network genes account for the 

majority of ASD genetic risk from de novo damaging variants.  

We next assessed whether prey genes are enriched for high-confidence ASD or 

schizophrenia (‘SCZ’) risk genes that were identified in recent whole exome sequencing (‘WES’) 

studies (Fu et al., 2022; Singh et al., 2022; Zhou et al., 2022). We found that the prey genes are 

significantly enriched for both sets of hcASD genes, but not for hcSCZ genes (Figure 2.4D).  We 

additionally found that the prey genes are significantly enriched for risk genes associated with 

developmental delay (DD) (Kaplanis et al., 2022), and ASD-associated risk genes curated by 

SFARI Gene (Banerjee-Basu & Packer, 2010) (Figure S2.9G). We concluded that the ASD-PPI 

network is significantly enriched for risk genes associated with ASD and DD, but not for SCZ. Of 

note, SFARI Gene is a comprehensive database that includes any gene associated with ASD 

risk, allowing for various lines of evidence. SFARI Gene implements a ranking system that reflects 

the strength of evidence that a given gene is associated with ASD, including 4 categories 
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(syndromic, category 1 - high confidence, category 2 - strong candidate, and category 3 -

suggestive evidence). We observe that prey are significantly enriched for the highest confidence 

sets of SFARI genes (Figure S2.9G).  

We further tested whether the ASD-PPI network can be leveraged to identify additional 

ASD risk genes. To determine whether increasing the number of bait genes used to create ASD-

PPI is associated with increased ability to identify prey genes associated with ASD genetic risk, 

we downsampled the ASD-PPI network by selecting random sets of bait (size 1-100 bait, 1000 

iterations per size) and trimming the ASD-PPI network to include only these bait genes and their 

associated prey genes. For each downsampled network, we benchmarked with 1) enrichment for 

de novo damaging variants associated with ASD probands compared to control siblings in the 

prey genes, and 2) enrichment in the prey genes for an updated set of 255 ASD genes at FDR £ 

0.1 (hcASD255) reported in the most recent ASD omnibus study (Fu et al., 2022). We found that 

increasing the number of bait genes used to construct ASD-PPI increases the amount of ASD-

associated genetic risk in the network. Specifically, we found that enlarging the ASD-PPI dataset 

increases the amount of ASD-associated genetic risk captured by prey (Figure 2.4E, teal line) 

and as expected, the amount of ASD-associated genetic risk from de novo damaging variants 

remaining in the exome (excluding the genes identified in ASD-PPI network) decreases (Figure 

2.4E, red line). We additionally found that enlarging the ASD-PPI dataset consistently increases 

the number of hcASD255 genes identified among prey (Figure 2.4F, red line), even if we restrict 

to hcASD255 genes that were not previously identified in hcASD102 (Figure 2.4F, teal line). We 

note that on average, downsampled ASD-PPI network prey genes are significantly enriched for 

hcASD255 genes with just n=4 bait and are significantly enriched for hcASD255 (-hcASD102) 

genes with only n=11 bait. We concluded that increasing the number of baits used to construct 

ASD-PPI increases the ability to identify novel hcASD genes. 

Finally, we evaluated whether, like ASD-associated risk genes, the prey genes tend to be 

highly constrained (De Rubeis et al., 2014; Fu et al., 2022; Iossifov et al., 2014; Samocha et al., 
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2017; Satterstrom et al., 2020; Zhou et al., 2022). We evaluated several metrics, including pLI 

(probability of being intolerant of a single loss-of-function variant), misZ (missense Z score, 

measures gene intolerance to missense variation), synZ (synonymous Z score, measures gene 

intolerance to synonymous variation, used as negative control), and s_het (selective effect for 

heterozygous PTVs)  (Cassa et al., 2017; Lek et al., 2016). We found that the pLI and misZ of 

prey genes (excluding hcASD102) are in between that of the baits and other HEK293T-expressed 

proteins, indicating that damaging mutations in prey genes would confer a smaller selective 

disadvantage than hcASD genes (Figure S2.9H). The median s_het score of prey genes suggest 

they may act in an autosomal recessive or polygenic mode compared to hASD genes that are 

more likely to act in a autosomal dominant mode (Cassa et al., 2017, Figure S2.9H).  

2.3.4 ASD-PPI shows functional convergence among hcASD risk genes 

ASD-PPI contains a median of 11 interactors per bait (Figure 2.1G) and many of the preys 

identified are a part of a protein complex (Figure 2.3). We can use network topology metrics to 

evaluate how tightly connected the network is and identify network ‘hubs’ which can be indicative 

of converging biological functions. Using the ASD-PPI, we calculated the geodesic distance 

between bait (length of the shortest path it would take to get from one hcASD risk gene to another 

hcASD risk gene). The median number of nodes it takes to get from one hcASD risk gene to the 

other is 3 (Figure S2.5), suggesting that ASD-PPI is tightly connected and have functional 

convergence. Indeed, when we performed enrichment analysis for GO terms and protein 

complexes at the level of bait and associated prey, we saw that many baits shared prey protein 

complexes and GO terms (Figure 2.3). Most notably, the highest shared enriched term was 

related to chromosomes, which was shared by 13 baits. As many of the ASD risk genes are 

annotated as transcription factors (Satterstrom et al., 2020), we expected that their interactors 

would localize to the nucleus. Indeed, when we assessed the subcellular localization of the baits 
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and their respective preys, we found that many of the baits and preys co-localize in the nucleus 

(Figure S2.4).  

2.3.5 The hcASD risk genes - DYRK1A and KIAA0232 directly interact in a protein 

complex 

In our ASD-PPI network, we are particularly interested in interactions that directly connect 

hcASD risk genes as such interactions imply shared functions among hcASD risk genes. One 

such interaction was found between DYRK1A and KIAA0232 (Figure 2.5). DYRK1A is a highly 

conserved dual-specificity tyrosine phosphorylation-regulated kinase that is located on 

chromosome 21 and has been implicated in many neurological disorders, including Down’s 

syndrome and intellectual disability (Dang et al., 2018; Roewenstrunk et al., 2019). KIAA0232 is 

an uncharacterized protein and not much is known about it. From our ASD-PPI network, we found 

DYRK1A and KIAA0232 directly interact and also shared many prey proteins, including DCAF7, 

which in turn interacts with additional hcASD risk proteins, CREBBP, DSCAM and SKI. To 

validate the interaction between DYRK1A and KIAA0232, we performed a co-

immunoprecipitation with flag-tagged KIAA0232 and strep-tagged DYRK1A (Figure 2.6). We 

additionally used co-immunoprecipitation mass spectrometry (co-IP-MS) to confirm the 

interactions between DYRK1A and KIAA0232, and their shared interactors, CCDC8, DCAF7 and 

ATAD3B. These findings suggest that DYRK1A and KIAA0232 form a complex with CCDC8, 

DCAF7 and ATAD3B. 

2.3.6 DYRK1A and KIAA0232 knockdown leads to defects in neurodevelopment 

It has been reported before that DYRK1A haploinsufficiency can interfere with proper brain 

development and result in a decrease in telencephalon size (Courcet et al., 2012; van Bon et al., 

1993; H. R. Willsey et al., 2020). Since we found that DYRK1A and KIAA0232 directly interact in 

the ASD-PPI, we tested whether knockdown of KIAA0232 would phenocopy DYRK1A knockdown 
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and disrupt brain development. Indeed, when we knocked down kiaa0232 in Xenopus tropicalis 

at the two-cell stage, we observed that tadpoles had a significant reduction in telencephalon size, 

phenocopying the knockdown of dyrk1a (Figure 2.7).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

28 

FIGURES AND LEGENDS 
 

 
Figure 2.1. Generation of protein-protein interaction (PPI) map in Autism Spectrum 
Disorder (ASD). (A) Schematic overview of the affinity-purification mass spectrometry (AP-MS) 
pipeline. (B) Workflow to determine SAINTexpress and CompPASS scoring cutoffs using public 
databases. (C) Precision (red) and recall (blue) analysis of known interactions using different 
combinations of SAINTexpress and CompPASS cutoffs. The dotted lines show the precision and 
recall values at determined scoring cutoffs combination. (D) The kernel density plot displaying the 
scoring distribution of known interactions observed in the unfiltered PPI dataset. The dotted lines 
show the determined scoring cutoffs and highlight the high density of known interactions at the 
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determined scoring cutoffs. (E) Comparison of the number of hcASD proteins reported as an 
interactor and the number of their associated protein-protein interactions in different large-scale 
PPI datasets. Different colored bubbles represent different public PPI databases. The size of the 
bubble shows the size of the unique interactors (preys) in each study. (F) Fraction of novel and 
known interactions in the ASD-PPI. (G) The distribution of the number of interactors per bait. The 
median number of interactors for the baits is 11. 
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Figure 2.2. Protein-Protein interaction map connecting the 100 hcASD risk genes. A 
stringent scoring cutoff results in a protein interaction map with 1074 unique prey interactors 
connecting 100 hcASD risk genes via 1881 interactions. The salmon-colored node denotes the 
bait, or one of the 100 hcASD risk genes. The blue nodes represent the preys, interactors of the 
baits. Interactions between the nodes or proteins are represented by an edge. Yellow edges 
represent interactions that have been previously reported and gray edges represent novel 
interactions from this study.  
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Figure 2.3. Protein complex and gene ontology enrichment analysis in ASD-PPI highlights 
functional convergence among hcASD risk genes. The red diamonds denote the baits, and 
the purple and blue circles represent significantly enriched CORUM complex and GO term 
respectively. The width of the edges corresponds to the number of preys that are found in the 
enriched CORUM complex or GO term.  
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Figure 2.4. ASD-PPI network genes are expressed in the human brain and enriched for ASD 
genetic risk.   
(A) The median gene set expression percentile across n=237 BrainSpan RNAseq prenatal brain 

samples (Kang et al., 2011) is displayed for 3 gene sets – bait, prey (excluding hcASD102, 
Prey – hcASD102)), and all other proteins expressed in HEK293T cells (‘Other’). Differences 
in median expression percentile between different gene sets was assessed by t-test; p-values 
were adjusted for 3 tests.  

(B) The relative expression levels of hcASD102 compared to prey (excluding hcASD102, Prey – 
hcASD102)) within each of n=524 BrainSpan RNAseq samples are strongly correlated 
(Pearson R2 = 0.81, p<1e-15). The relative expression within each brain sample was 
quantified by the difference between the median gene set rank of observed versus the median 
of 100,000 permuted gene sets.  

(C) Odd ratios (ORs) for de novo damaging variants in ASD probands compared with unaffected 
siblings from the Simons Simplex Collection (Satterstrom et al., 2020).  ORs were calculated 
using Fisher’s exact test (one sided, greater), and p-values were adjusted for 2 tests.  

(D) Enrichment of ASD- and SCZ- assocated risk genes in prey calculated using Fisher’s exact 
test (one sided, greater), with p-values adjusted for 3 tests. Two sets of ASD-associated risk 
genes and one set of SCZ-associated risk genes were obtained from recent WES studies (Fu 
et al., 2022): n=255 ASD risk genes with FDR £ 0.1; (Zhou et al., 2022): n=72 ASD risk genes 
with study-wide significance; (Singh et al., 2022): n=34 SCZ risk genes with TADA FDR £ 0.1.  

(E) We assessed the effect of increasing the number of baits used to construct the ASD-PPI 
network on the ability to capture prey associated with ASD genetic risk (de novo damaging 
variants from the Simons Simplex Collection). We downsampled the ASD-PPI network by 
selecting random sets of n=1 to 100 bait and trimming the ASD-PPI network to include only 
the selected bait and associated prey. For each downsampled network, we calculated the 
ORs for de novo damaging variants in ASD probands compared with unaffected siblings for 
prey (teal) and for all other genes in the exome (red), excluding hcASD102 from the analysis. 
Solid lines depict the median p-values across 1000 iterations; shaded regions indicate the 
median p-value +/- 1 standard error; the threshold for significance (p=0.05) is labelled with a 
dashed black line. The median ORs for the gene sets are labelled for ASD-PPI networks 
constructed using one bait (left) or 100 bait (right). ORs were calculated using Fisher’s exact 
test (one sided, greater), and p-values were not corrected for multiple hypothesis testing. Gray 
dashed lines indicate the ASD-PPI size at which the prey capture a significant amount of ASD 
genetic risk (n=16 bait) and when the prey capture more ASD genetic risk than the remaining 
genes in the human exome (n=52 bait).  

(F) We evaluated the effect of increasing the number of baits on the ability to identify prey that 
are high-confidence ASD risk genes (‘hcASD’) as defined by the latest ASD WES omnibus 
study (Fu et al., 2022). We define ‘hcASD255’, teal, to be the n=255 ASD risk genes with FDR 
£ 0.1 and ‘hcASD255 (-hcASD102)’, red, to be the n=174 hcASD255 genes that are not 
among the previously identified set of hcASD102 genes (Satterstrom et al., 2020). We 
downsample the ASD-PPI network as described above. For each downsampled network, we 
calculate the median number of hcASD genes among the prey, with shaded regions reflecting 
median (number of hcASD genes) +/- 1 standard error. We additionally calculated the the OR 
of prey being enriched for hcASD genes (Fisher’s eact test, one sided, greater), and indicate 
the threshold for significance (median p<0.05) with a dashed line (n=4 bait for hcASD255, 
n=11 bait for hcASD255 (-hcASD102)).  
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Figure 2.5. The hcASD risk genes, DYRK1A and KIAA0232 from a protein complex. The 
sub-network of DYRK1A and KIAA0232 was visualized using Cytoscape (Shannon et al., 2003). 
CORUM protein complexes among the prey proteins are highlighted in yellow. Direct and shared 
interactions between DYRK1A and KIAA0232 are bolded. ASD risk genes are denoted in pink 
diamonds and their interactors or preys are in gray circles.  
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A 
 

 
 
Figure 2.6. Co-IP-MS confirms the direct physical interaction between ASD risk genes, 
DYRK1A and KIAA0232. (A) Schematic overview of the sequential immunoprecipitation 
workflow. (B) Co-IP-MS assay confirms DYRK1A and KIAA0232 to be interacting and shows that 
they may be in a protein complex with their shared interactors, CCDC8, DCAF7 and ATAD3B.   
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Figure 2.7. dyrk1a and kiaa0232 knockout leads to reduced telencephalon size in Xenopus 
model.  (A) Loss of kiaa0232 phenocopies loss of dyrk1a in vivo. Scale bar: 50µm. The 
telencephalon region for each half is outlined by a dotted line (white, non-injected control; red, 
CRISPR targeted gene). Non-targeting scrambled CRISPR has a symmetric brain, while mutating 
dyrk1a or kiaa0232 decreased telencephalon size. (B) Quantification of telencephalon size by 
targeted gene. Measurements normalized by within-animal control side. p-values from student’s 
paired t-test compared to non-injected contralateral control. “n.s.”, not significant, indicates p > 
0.05. (*) p < 0.05, (**) p < 0.01, (***) p < 0.001, and (****) p < 0.0001. 
  

A B 
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Figure S2.1. An example of the correction for carryover contamination effect. On the left 
panel, carryover contamination can be observed in the decreasing spectral count presence of the 
CTNNB1 sample peaks in sequential runs. On the right panel, the carryover contamination has 
been removed.  
 

Correction for Carryover Contamination Effect 

Sample 
peak 

contamination 
peak 
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Figure S2.2. Sample peaks before correcting for carryover contamination. Each panel 
shows the spectral count of the bait observed in the order in which the MS experiment was run. 
Carryover contamination can be identified by the decreasing presence of bait spectral counts in 
sequential runs after the injection of the bait samples.  
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Figure S2.3. Sample peaks after correcting for carryover contamination. Each panel shows 
the spectral count of the bait observed in the order in which the MS experiment was run, after the 
removal of carryover contamination.  
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Figure S2.4. Co-localization of baits and preys. The barplot on the top panel indicates the 
number of preys associated with each hcASD risk gene or bait (x-axis). The heatmap indicates 
the organelle localization of the preys from each bait. The blue scale denotes the number of preys, 
the darker the blue, the higher the number of preys. Blue box indicates the localization of the bait. 
Red box is drawn when the organelle localization for the bait and most of its preys is the same. 
The protein localization information were first gathered from HEK293T cell data: OpenCell (Cho 
et al., 2022) and Human Cell Map (Go et al., 2021), which were then supplemented with data 
from the Human Protein Atlas (Uhlén et al., 2015). 
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Figure S2.5. Connectivity between hcASD risk genes. Using the ASD-PPI, we calculated the 
length of the shortest path it would take to get from one ASD risk gene to another hcASD risk 
gene. The minimum number of nodes connecting 2 hcASD risk genes was 0, i.e., there are no 
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connection between those 2 ASD risk genes. The median number of nodes it takes to get from 
one ASD risk gene to the other is 3, and the maximum number is 8.  
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Figure S2.9. ASD-PPI preys are ASD relevant. 
(A) The HEK293T protein expression level is shown for 3 gene sets – bait, prey (excluding 

hcASD102, Prey – hcASD102)), and all other proteins expressed in HEK293T cells (‘Other’). 
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HEK293T protein expression was defined using data from (Bekker-Jensen et al., 2017) which 
profiled HEK293T protein expression by quantitative mass spectrometry (intensity based 
absolute quantification, iBAQ). Differences in the distribution of protein expression levels 
between gene sets was assessed by t-test; p-values were adjusted for 3 tests  

(B) The median gene set expression percentile for adult brain tissue samples from n=13 brain 
regions in GTEx (Lonsdale et al., 2013) is displayed for 3 gene sets – bait, prey (excluding 
hcASD102, Prey – hcASD102)), and all other proteins expressed in HEK293T cells (‘Other’). 
Differences in the median expression percentile between different gene sets was assessed 
by t-test; p-values were adjusted for 3 tests.  

(C) The relative expression levels of prey (excluding hcASD102) in GTEx brain samples across 
13 brain regions  (Lonsdale et al., 2013) compared to that of permuted gene sets selected 
from the HEK293T proteome. The relative expression within each brain region was quantified 
by the difference between the median gene set rank of observed versus median of 100,000 
permuted gene sets. Red dashed line shows nominally significant p value of 0.05, and orange 
dashed line shows significance adjusted for 13 tests. 

(D) The relative expression levels of hcASD102 compared to prey (excluding hcASD102, Prey – 
hcASD102)) in prenatal versus postnatal brain samples from BrainSpan RNAseq (Kang et al., 
2011). The relative expression within each brain sample was quantified by difference between 
the median gene set rank of observed versus median of 100,000 permuted gene sets. 
Differences in relative expression between prenatal and postnatal samples were assessed by 
t-test. 

(E) We can further categorize BrainSpan RNAseq samples by developmental period as defined 
in (Kang et al., 2011) where periods 1-7 reflect prenatal stages of development and periods 
8-15 reflect late infancy through late adulthood. The relative expression levels of hcASD102 
compared t to prey (excluding hcASD102, Prey – hcASD102)) across different periods of 
development are shown with an overlying Loess regression line, where gray shading reflects 
1 standard error. The Spearman’s rho of the median rank difference of hcASD102 versus 
Prey-hcASD102 across periods is 0.946.  

(F) ORs for de novo damaging variants in ASD probands compared with unaffected siblings from 
the Simons Simplex Collection in any gene in the human exome (‘Exome’), the exome 
excluding hcASD102 genes (‘Exome (-hcASD102)’, or the exome excluding prey and 
hcASD102 (‘Exome (-Prey, hcASD102)’).  ORs were calculated using Fisher’s exact test (one 
sided, greater), and p-values were adjusted for 3 tests. 

(G) Enrichment of various sets of ASD, DD, or SCZ asssociated risk genes in prey. Enrichment 
was calculated using Fisher’s exact test (one sided, greater), with p-values adjusted for 10 
tests. The 8 sets of ASD-associated risk genes were obtained from two recent WES studies 
(Fu et al., 2022) : n=255 genes;  (Zhou et al., 2022): n=72 genes; and SFARI(Abrahams et 
al., 2013): n=230 syndromic genes, n=92 syndromic & category 1 genes, n=206 category 1, 
n=219 category 2, n=514 category 3, and n=1020 SFARI genes (‘SFARI all’)).  SCZ-
associated risk genes were obtained from(Singh et al., 2022):  n=34 genes. Risk genes 
associated with developmental disorders (DD) were obtained from (Kaplanis et al., 2020): 
n=285 genes. 

(H) The distribution of mutation constraint metrics (pLI, mis_z,  s_het, and syn_z) for bait, prey 
(excluding hcASD102, ‘Prey (-hcASD102)’), and all other proteins expressed in HEK293T 
cells (‘Other’). The difference in score distribution between different gene sets was assessed 
by t-test, with p-values corrected for 3 tests. ***p.adj <= 1e-7; ns = not significant (p.adj>0.05).  
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CHAPTER 3: 

Delineating the differential protein interaction networks of de novo ASD missense 

variants 

3.1. Introduction 

ASD is a highly genetically heterogeneous neurodevelopmental disorder. High confidence 

risk genes for ASD were identified based on focusing on the de novo and case-control rare 

variants in the exome (Satterstrom et al., 2020). Protein-coding missense mutations can affect 

protein function in a wide variety of ways, including the induction of loss- as well as gain-of-

function phenotypes. It has been estimated that missense mutations contribute to at least 10% of 

ASD cases and are found at higher frequencies in probands than in their siblings (Petryshen et 

al., 2018; Ronemus et al., 2014). Given this burden of missense mutations in ASD cases, 

understanding how these missense mutations affect protein function, specifically protein-protein 

interactions, has the potential to reveal much insight into ASD pathobiology. In this chapter, I will 

be focusing on understanding the protein interaction changes introduced by patient-derived de 

novo missense mutations in ASD risk genes as found in the patients. The overall objective in this 

chapter is to determine how key interactors of hcASD genes are affected by missense mutations 

with the goal of deducing molecular pathways and cellular processes dysregulated by ASD 

variants. We achieved this goal by carrying out affinity purification coupled to mass spectrometry 

(AP-MS) of proteins encoded by ASD genes in the presence and absence of patient derived de 

novo missense mutations.  

3.2. Mutations in hcASD risk genes 

Mutations in hcASD genes can be categorized into 3 types – protein-truncating variants 

(PTVs), missense mutations and synonymous mutations. PTVs encompass different types of 

mutations such as nonsense, frameshift, and essential splice site variants. Missense mutations 
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are point mutations in which a single nucleotide change results in a different amino acid. 

Synonymous mutations are a type of mutation in which a single nucleotide change leads to a 

codon change but results in the same amino acid. Each type of mutation can be assigned a 

probability score of how deleterious it is likely to be for gene function. For PTVs, this probability 

score is called Probability of Loss-of-function Intolerance (pLI) (Kosmicki et al., 2017; Lek et al., 

2016; Satterstrom et al., 2020) and for missense mutations, it is an integrated score of Missense 

badness, PolyPhen-2, and Constraint (MPC) (Samocha et al., 2017).  

3.3. Materials and Methods 

3.3.1. Selection and cloning of damaging missense mutations in hcASD risk genes  

We selected patient-derived de novo missense mutations with MPC ≥ 2 in 102 hcASD 

risk genes that were identified in (Satterstrom et al., 2020). This resulted in 87 de novo missense 

mutations in 43 hcASD risk genes. The missense mutations were introduced in the wild-type 

version of the 2x-Strep-tagged pcDNA4 hcASD gene construct (as described in Chapter 2) using 

Q5 site-directed mutagenesis. All constructs were sequence validated.  

3.3.2. Affinity-purification and mass spectrometry (AP-MS)  

We used the same methods of cell culture, transfection, affinity purification, on-bead 

digestion, MS acquisition and analysis as described in Chapter 2 to perform AP-MS using mutant 

constructs.  

3.3.3. PPI scoring 

Following the identification and quantification of proteins using MaxQuant, high confidence 

interacting proteins (HCIP) were identified by running both SAINTexpress and CompPASS after 

carryover effects were removed (See Chapter 2: Materials and Methods for carryover effect 

removal). SAINTexpress was run batch-wise, using empty vector and GFP constructs as controls. 
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The SAINTexpress output for the ASD-PPI was then concatenated with the output for the 

ASD_mut-PPI. To have better specificity in identifying HCIPs using CompPASS, a larger input 

dataset was created by combining the ASD-PPI CompPASS input with ASD_mut-PPI input. 

CompPASS was then run using the CompPASS input for ASD-PPI WT network as the stats table. 

The two scoring outputs from SAINTexpress and CompPASS were then merged and HCIPs were 

identified using the scoring cutoffs previously optimized from the wild-type ASD-PPI network - 

SAINTexpress score (1-BFDR) ≥ 0.95 and CompPASS score (rank_WD) ≥ 0.971 (See Chapter 2 

for the details on how the scoring cutoffs were determined). We removed new HCIPs identified 

for ASD-PPI and retained only HCIPs from the mutant AP-MS experiments to build the ASD_mut-

PPI interactome.  

3.3.4. Differential interaction scoring 

To account for the variabilities in the intensities of interacting proteins due to the variability 

in bait expression, intensity values were first normalized to the bait intensity level within each bait 

AP-MS run using the Tukish Median Polish normalization method. To quantify the changes in 

interactions between wild-type and mutant baits, we used an R package for statistical analysis, 

MSstats (Choi et al., 2014). Using the default parameters in the dataProcess function, the 

normalized intensity values were used as an input to run differential analysis between wild-type 

and mutant groups. Using Python, the fold-change values along with the p-values for the HCIPs 

in ASD_mut-PPI were used to plot hierarchically clustered heatmaps so that differential prey 

proteins are easily visualized (Figure S3.2, S3.3).    

3.3.5. Differentiation of neural progenitor cells into neurons 

Neural progenitor cells (NPCs) were maintained in DMEM/F12 medium containing 

Glutamax (1X), non-essential amino acids (NEAA, 1X), N2 supplement (1X), B27 supplement 

(1X), FGF2 (10ng/ml), EGF (10ng/ml). NPCs were differentiated into neurons as reported 
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previously (Qi et al., 2017). Briefly, NPCs were cultured in 1:1 DMEM/F12 and Neurobasal Media 

containing N2 (1X), B27 -Vitamin A (1X), GlutaMAX (1X), 0.5 mM dibutyryl cAMP, 0.2 mM 

ascorbic acid, BDNF (20 ng/mL) along with small molecules PD0325901 (1µM), SU5402 (5 μM), 

DAPT (10 μM) and grown on PDL/Laminin coated tissue culture plates.  Media was refreshed 

every other day.  

3.3.6. Electroporation in NPCs 

About 16 million NPCs were grown per biological replicate (about 1.5-2 confluent 10 cm 

dishes). The dishes were coated with 2.5 mL of Matrigel before transfection. After the media was 

aspirated and the plates were washed with PBS, NPCs were dissociated with 2 mL of Accutase 

per dish with periodic agitation and incubation for 10 mins. Cells were then pipetted up and down 

a few times to fully break up the cell clumps. One plate was transferred to a 15 cm conical tube 

which was then used for cell counting and the rest of the plates were transferred into a second 

conical tube. The volume of Accutase was doubled with DMEM and centrifuged at 300 g for 5 

mins. The first pellet was then resuspended in 1 mL of MaxCyte buffer; from which, 100 µL was 

mixed with 100 µL of Accumax in a tube and incubated at room temperature for 5 mins. 10 µL of 

the MaxCyte buffer and Accumax mixture was then put on the cell counter to count the number 

of cells per 10 cm dish.  The second pellet was resuspended in 5 mL of MaxCyte buffer. Both 

conical tubes were then combined into one tube and centrifuged at 300 g for 5 mins. The pellet 

was resuspended in 6 mL of MaxCyte buffer and centrifuged again at 300 g for 5 mins. The pellet 

was resuspended in 1 mL of MaxCyte buffer, and 16 million cells were aliquoted into an Eppendorf 

tube for each replicate, which were centrifuged at 300 g for 5 mins. The supernatant was aspirated 

and 70 µL of MaxCyte buffer was added to the pellet. The cell pellet was then fully resuspended 

by pipetting up and down using a wide bore 200 µL pipette tip gently so as not to generate 

bubbles. Plasmids were then added to result in a concentration of 150 ng/µL. The cells were 
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resuspended using a wide bore tip and transferred carefully into a well of OC-100x2 processing 

assembly. The processing assembly was then inserted into MaxCyte instrument for 

electroporation. After the electroporation process was completed, the processing assembly was 

then placed in the incubator for 20 mins. The cells were then replated in NPC media.   

3.3.7. Neurite outgrowth assay 

NPCs were dissociated with Accutase and 50,000 cells were plated on PDL/Laminin 

coated plates in the differentiation medium. On day 3, the cells were washed with 1X PBS and 

fixed with 4% formaldehyde in PBS for 10 mins at room temperature. Cells were permeabilized 

with 1X PBS with 0.2% triton X-100 and treated with antibodies against neuronal marker TUBB3 

(Invitrogen, cat#MA-1 19187). Cell nuclei were stained with DAPI. The cells were imaged on 

Nikon Ti2-E microscope and images were processed in Fiji (Image J) software. Neurite length 

was analyzed using NeuronJ while percentage of cells with neurite outgrowth and branching was 

calculated using Cell Counter. Analysis shown is for three independent experiments with 100 cells 

analyzed per experiment. ANOVA with post hoc Bonferroni test was used to calculate significance 

between different groups. 

3.4. Results 

3.4.1. De novo missense mutations alters hcASD risk genes interactions 

There are three tiers for MPC score (≥2, 1-2, 0-1) which are in the order of decreasing 

functional impact. De novo missense variants with high MPC scores (MPC ≥2) are significantly 

enriched in ASD cases compared to controls (Fu et al., 2022; Satterstrom et al., 2020; Zhou et 

al., 2022). To study the effect of de novo missense mutations in the protein-protein interaction 

network, we focused on hcASD risk genes with missense mutations that have MPC ≥ 2 (87 
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missense mutations in 43 hcASD risk genes) as they are significantly enriched in the ASD 

individuals and predicted to have the most deleteriousness effect.  

We successfully generated AP-MS data for 64 missense mutations in 35 hcASD risk 

genes. Stringent scoring analysis of these AP-MS data resulted in 929 high-confident interactors. 

Depending on the bait, the number of interactors varied among wild-type and mutant AP-MS 

across different baits (Figure S3.1). To quantify the abundance of the interactors between wild-

type and mutant proteins, we focused on high-confidence interactors that were identified for both 

wild-type and mutant proteins per hcASD risk gene. While many of the interactors show no change 

in affinity between wild-type and mutant proteins, we found that 133 proteins have more affinity 

for mutant proteins and 152 proteins for wild-type proteins (Figure 3.1C, 3.1D).  

Hierarchically clustering the interactors based on their log2 fold-change levels in each bait, 

we observe that different mutants of the same gene tend to result in a similar pattern of decrease 

or increase in interaction affinity, suggesting that the mutant proteins may have convergent 

molecular and functional consequences (Figure S3.2, S3.3). Indeed, when we superimposed 

CORUM protein complex, we see a common loss or gain of the interactors from the same protein 

complexes among the mutants in the same hcASD protein and sometimes shared across mutants 

from different hcASD proteins. This is evident by the gain of interactors involved in chromosome 

organization in both missense mutants of MKX, and loss of interactors involved in spliceosome in 

both missense mutants of STXBP1 and the missense mutant of NSD1 (Figure 3.2).      

3.4.2. Functional characterization of de novo missense mutations in FOXP1  

FOXP1 and FOXP2 are both hcASD risk genes that are transcriptional repressors of the 

forkhead-box (FOX) family. They play an important role in the development of the brain, heart, 

lung, esophagus, immune system, and spinal motor neurons. To regulate transcription, FOXP1 

forms either homo- and hetero-dimers with itself or other FOXP proteins (Co et al., 2020; S. Li et 

al., 2004; Sollis et al., 2017). In addition to being ASD risk genes, both FOXP1 and FOXP2 have 
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been implicated in different neurodevelopmental disorders (Bacon & Rappold, 2012; Johnson et 

al., 2018; Sin et al., 2015). There were 3 missense mutations in FOXP1 and 1 missense mutation 

in FOXP2 with MPC ³ 2 identified from the ASD cohort in Satterstrom et al., 2020. The two 

missense mutations in FOXP1 and one missense mutation in FOXP2 lie in the same conserved 

forkhead domain (Figure 3.3). From our ASD_mut-PPI data, we observed that the de novo 

FOXP1 and FOXP2 missense mutants lose interaction with FOXP4 (Figure 3.4). This loss of 

FOXP4 interaction was confirmed by Western blot (Figure 3.5). We hypothesized that this loss 

of FOXP4 interaction in FOXP1 mutant that we observed in HEK293T can be translated to neural 

progenitor cells (NPCs) and neurons. Indeed, we found that overexpression of FOXP1R513C in 

NPCs resulted in nuclear aggregates (Figure 3.6), which is consistent with previous literature 

(Sollis et al., 2017). We also observed aggregates of FOXP2 and FOXP4, co-localizing with 

FOXP1R513C (Figure 3.6). Interestingly, when we differentiated NPCs overexpressing FOXP1R513C 

into neurons, we saw a significant decrease in neurite length compared to the neurons with wild-

type FOXP1 proteins (Figure 3.7), suggesting that FOXP1 plays a role in normal neurite growth.   
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FIGURES AND LEGENDS 
 
 

 
 
Figure 3.1. Differential Interaction analysis of patient-derived de novo missense mutations 
in hcASD risk genes. (A) Distribution of the types of mutations observed in the ASD cohort 
analyzed in (Satterstrom et al., 2020), highlighting de novo missense mutations with MPC ≥ 2, 
that are used to construct the ASD mutant interactome. (B) A schematic overview to study the 
differential protein interactions in the ASD mutant interactome. (C) Quantification of the differential 
protein interactors identified 133 interactors (in red) to have higher affinity for the mutant proteins 
and 152 interactors (in blue) for the wild-type proteins. (D) Dot-plot visualization of the loss and 
gain of interactors in hcASD risk genes with de novo missense mutations, grouped by hcASD risk 
genes (baits). Each dot is a high-confident interactor in either the wild-type or the mutant of the 
risk gene.  
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Figure 3.2. ASD mutant interactome (ASD_mut-PPI). Differential scoring analysis of the 
interactome of missense mutant vs wild-type hcASD risk genes, highlighting the loss and/or gain 
of CORUM protein complexes shared by different mutants. Diamond shapes denote the mutant 
baits and circles denote their respective interactors, or preys. The color scale of the edges 
corresponds to the specificity of the interactions,  where blue edges have stronger affinity for the 
wild-type protein and red edges have higher affinity to the mutant protein. The prey proteins 
connected by the blue and red dotted lines are detected only in wild-type or mutant proteins 
respectively. CORUM protein complexes among the prey proteins are shaded in yellow.    
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Figure 3.3. Patient-derived de novo missense mutations in FOXP1 and FOXP2. Lollipop plot 
visualizing the de novo missense mutations from ASD patients in FOXP1 and FOXP2.  
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Figure 3.4. Differential interaction analysis of patient-derived missense mutations in 
FOXP1 and FOXP2. Heatmap visualizing changes in prey abundance in the interactome of 
mutant versus wild-type FOXP1 and FOXP2.  
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Figure 3.5. Immunoblot analysis of missense mutations in FOXP1 and FOXP2. (A) Western 
blot evaluating expression of FOXP4 and FOXP2 in HEK239T cells overexpressing WT or mutant 
FOXP1. (B) Western blot evaluating expression of FOXP4 and FOXP1 in HEK239T cells 
overexpressing WT or mutant FOXP2.   

FOXP2 lose interaction with FOXP4; form nuclear condensates

C
on

tro
l

FO
XP

2-
W

T

FO
XP

2-
R

57
0C

C
on

tro
l

FO
XP

2-
W

T

FO
XP

2-
R

57
0C

FOXP4

FOXP1

StrepTag II (FOXP2)

**

** P<0.01, *** P< 0.001

FOXP2-R570C

FOXP2-WT

Silvano Gonzales, 
Willsey Lab

A 

B 



 
 

57 

 
 
Figure 3.6. Mutant FOXP1 forms nuclear condensates in neural progenitor cells (NPCs). 
Fluorescence imaging of NPCs expressing Strep-tagged wild-type FOXP1 protein (top panels) 
and FOXP1R513C (bottom panels). Nuclei were stained with DAPI (blue). FOXP2 and FOXP4 are 
depicted in magenta. Scale bar, 10µm.  
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Figure 3.7. Mutant FOXP1 impairs dendrite formation in neurons. (A) Fluorescence imaging 
of cortical glutaminergic neurons overexpressing Strep-tagged wild-type FOXP1 and FOXP1R513C. 
Nuclei were stained with DAPI (blue). Tubulin (TUBB3) were depicted in magenta. Scale bar, 
10µm. (B) Quantification of the neurite length. P-values from student’s paired t-test compared to 
the non-targeting control. (*) p < 0.05, (**) p < 0.01, (***) p < 0.001, and (****) p < 0.0001. 
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Figure S3.1. Number of interactors vary among WT and mutant hcASD proteins. Bar 
charts depict the number of interactors per bait, grouped by ASD risk gene.  
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Figure S3.2. Heatmap visualizing the differential interactors in mutant hcASD proteins 
(Part 1). Quantification of the high-confidence PPIs for the subset of ASD missense mutants. 
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Protein interactors are ordered by hierarchical clustering of the log2 fold-change values. The 
dendrograms are hidden for simplicity. 
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Figure S3.2. Heatmap visualizing the differential interactors in mutant hcASD proteins 
(Part 2). Quantification of the high confident PPIs for the subset of ASD missense mutants. 
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Protein interactors are ordered by hierarchical clustering of the log2 fold-change values. The 
dendrograms are hidden for simplicity. 
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CHAPTER 4: 

DISCUSSION 

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with a complex and 

highly heterogeneous genetic architecture that affects 1 in 44 children in the United States 

(Maenner, 2021). There have been tremendous advances in the understanding of the ASD 

genetic architecture and the identification of large-effect ASD risk genes in the past decade and 

yet, the translation of this knowledge into molecular mechanisms underlying ASD is still lagging. 

To understand how these risk genes play a role in ASD neurobiology, it is imperative to first 

comprehend how the proteins of these genes are interacting with other proteins to carry out 

molecular functions. A protein-protein interaction map can highlight shared functional 

relationships between different proteins and pinpoint the pathways which are disrupted with the 

introduction of mutations. In this study, we mapped the protein-protein interaction landscape of 

ASD in HEK293T cells using the 102 hcASD risk genes identified in Satterstrom et al., 2020 as a 

starting point. Our ASD-PPI network identified 1074 unique proteins that are connected to 100 

hcASD risk genes by 1881 interactions, 87% of which are novel (Figure 2.1). We also 

demonstrated that our hcASD protein interactome generated in HEK293T cells are ASD-relevant 

by showing that the interacting proteins (preys) identified are 1) expressed in the human brain 

and enriched in the prenatal period, consistent with the expression pattern of the hcASD risk 

genes and are 2) enriched for ASD genetic risk (Figure 2.4). Through a protein complex and gene 

ontology enrichment analysis, we showed that hcASD risk genes shared protein interactors that 

are either of the same protein complexes or involved in similar biological fuctions (Figure 2.3). 

This systematic mapping of protein interactome in ASD can be used to uncovering new biological 

processes and molecular mechanisms underlying ASD etiology. 

In addition to uncovering many new proteins that are enriched in ASD genetic risk, our 

ASD-PPI also highlighted many direct interactions between hcASD risk genes. One such 

interaction that we focused on was DYRK1A and KIAA0232. DYRK1A is a conserved kinase that 



 
 

65 

plays an important role in brain development and its haploinsufficiency has been implicated in 

microcephaly in patients with intellectual disabilities and reduced brain size in model organisms 

(Courcet et al., 2012; van Bon et al., 1993; H. R. Willsey et al., 2020). Contrary to the well-studied 

DYRK1A, little is known about the uncharacterized protein - KIAA0232, which interacts with 

DYRK1A in our ASD-PPI (Figure 2.5). We confirmed this direct interaction via a co-

immunoprecipitation followed by mass spectrometry (Figure 2.6). Since interacting proteins are 

likely to share the same function, we hypothesized that, like DYRK1A, KIAA0232 is involved in 

brain development and that the haploinsufficiency of KIAA0232 will lead to reduced brain size. 

We found that in the model organism Xenopus tropicalis, knock-down of both dyrk1a and 

kiaa0232 resulted in reduced telencephalon size, which recapitulates prior findings for DYRK1A 

and unveils a novel function for KIAA0232 (Figure 2.7). In addition to the direct interaction with 

KIAA0232, we showed that DYRK1A forms a protein complex with DCAF7, CCDC8 and ATAD3B 

(Figure 2.5, Figure 2.6). Further studies should investigate the role of this protein complex in 

neurodevelopment, including whether haploinsufficiency of the complex members phenocopy 

haploinsufficiency of DYRK1A or KIAA0232 in reduced brain size.  

ASD is generally considered to be caused by impaired brain development, which is tightly 

regulated by a series of events such as cellular proliferation, migration, and differentiation 

(Hardwick et al., n.d.). The missense mutations found in high confidence ASD risk genes are 

predicted to have deleterious effects (Satterstrom et al., 2020). However, the phenotype of these 

mutants in the neuronal differentiation process, and the mechanisms that lead to these 

phenotypes remain elusive. In this study, we systematically assessed the impact of ASD patient-

derived de novo damaging missense mutations in disrupting the protein-protein interaction 

landscape of ASD. We generated PPI data for 64 missense mutations in 35 hcASD risk genes 

and found that of the 929 high-confident interactors in the mutant ASD protein-protein interaction 

network (ASD_mut-PPI), 133 interacting proteins showed higher affinity for the mutant proteins 

and 152 for the wild-type proteins (Figure 3.1). Our hierarchical clustering analysis of the high-
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confident interactors based on their log2 fold-change levels of intensities show that there is a 

common pattern of changes in interactors among the ASD mutants of the same gene (Figure 

S3.2, S3.3). Because of this, we posit that there is a convergent molecular function among the 

different mutants of the same gene and that the protein interactors commonly lost or gained in 

mutant proteins can be exploited to provide insights into the functional pathways that are disrupted 

in ASD.  

One such interaction loss that we studied was the loss of interaction with FOXP4 for the 

patient-derived mutations in FOXP1 and FOXP2. We confirmed the loss of FOXP4 interaction by 

Western blot assay (Figure 3.5). We postulated that this loss of interaction that was observed in 

HEK293T would be recapitulated in neurons and would likely impact neuronal differentiation. 

Indeed, our data showed that when mutant FOXP1 was overexpressed in neural progenitor cells 

(NPCs), it formed nuclear condensates (Figure 3.6), and when NPCs overexpressing mutant 

FOXP1 were differentiated into cortical glutaminergic neurons, they demonstrated decreased 

neurite length (Figure 3.7). We posit that mutant FOXP1 loses its ability to interact with FOXP4, 

which impairs its ability to bind to DNA; the resulting transcriptional dysregulation proper dendritic 

development.  

In summary, our study provides the most comprehensive protein interactome for ASD which 

enable us to identify convergent functional pathways through which ASD risk genes may 

participate in brain development, a connection necessary to bridge gene discovery and 

translational research. Importantly, we showed that building a protein-protein interaction map in 

HEK293T cells to study ASD is both scalable and ASD-relevant. This systematic approach of 

building a hypothesis-free protein-protein interaction network can reveal interactors that are 

critical for the molecular pathways and cellular processes dysregulated by ASD variants and can 

be used as a resource for the identification of biomarkers and therapeutic targets. Furthermore, 

this framework can be adapted and expanded to study other genetically heterogeneous disorders.  
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