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Gradient jet tomography in high-energy heavy-ion collisions utilizes the asymmetric transverse
momentum broadening of a propagating parton in an inhomogeneous medium. Such broadening is
studied within a path-integral description of the evolution of the Wigner distribution for a propagating
parton in medium. Going beyond the eikonal approximation of multiple scattering, the evolution operator
in the transverse direction can be expressed as the functional integration over all classical trajectories of a
massive particle with the light-cone momentum o as its mass. With a dipole approximation of the Wilson
line correlation function, evolution with the light-cone time ¢ is determined by the jet transport coefficient ¢
that can vary with space and time. In a uniform medium with a constant g, the analytical solution to the
Wigner distribution becomes a typical drifted Gaussian in both transverse momentum and coordinate with

the diffusion width \/Gof and /o1’ /3@?, respectively. In the case of a simple Gaussian-like transverse
inhomogeneity with a spatial width o on top of a uniform medium, the final asymmetrical momentum
distribution can be calculated semianalytically. The transverse asymmetry defined for jet gradient
tomography that characterizes the asymmetrical distribution is found to linearly correlate with the initial
transverse position of the propagating parton within the domain of the inhomogeneity. It decreases with the
parton energy , increases with the propagation time initially and saturates when the diffusion distance is
much larger than the size of the inhomogeneity or £ > 3w>6?/§,. The transverse momentum broadening
due to the inhomogeneity also saturates at late times in contrast to the continued increase with time if the

drifted diffusion in space is ignored.

DOI: 10.1103/PhysRevD.107.054038

I. INTRODUCTION

A jet is essentially a collection of collimated showers of
particles stemming from the fragmentation of energetic
partons in high-energy hadron and nuclear collisions. In
high-energy heavy-ion collisions, jets also interact with
quark-gluon plasma (QGP), a deconfined and strongly
coupled state of matter formed in the collisions [1-4], as
they travel through the hot and dense matter. The final jet
observables therefore should carry the information of jet-
medium interactions and are naturally a useful probe of the
fundamental properties of QGP.
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When jets propagate through the strongly coupled
QGP, the energetic partons undergo multiple scattering
with the constituents of the QGP and lose their energy,
giving rise to the strong attenuation of the high-transverse-
momentum tails of single inclusive hadron spectra as
well as the single inclusive jet spectra. These phenomena
are usually referred to as jet quenching [5,6], which
has been observed in experiments at the Relativistic
Heavy-ion Collider (RHIC) via suppression of large-
transverse-momentum (p7) hadrons [7,8] and later con-
firmed at the Large Hadron Collider (LHC) via the dijet
and y/Z-jet asymmetry [9,10] and the suppression of high-
pr particles [11] and jets [12,13]. These experimental data
have provided important information about the properties of
the QGP through jet tomographic studies.

Central to the jet tomography is the energy loss
and transverse momentum broadening of a propagating
parton inside QGP. Following the first attempt to calculate
the parton energy loss in QGP [14], several approaches
have been established, including BDMPS-Z [15-20],

Published by the American Physical Society
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GLV [21,22], ASW [23-27], AMY [28-30], and Higher-
twist [31,32]. In these approaches, the parton energy loss
is dictated by the jet transport coefficient ¢, which is
defined as the averaged transverse momentum broadening
squared per unit length [16]. It has been extracted from
comparisons between model calculations and experimental
data on single inclusive hadron spectra at both the RHIC
and LHC [33-35].

The initial jet production positions in high-energy
nucleus-nucleus collisions in these model calculations are
assumed to follow the number of binary nucleon-nucleon
collisions with the Woods-Saxon nuclear distribution [36].
The final hadron spectra are averaged over the initial jet
production positions and propagation direction. For non-
central nucleus-nucleus collisions, the parton propagation
length and energy loss will depend on the azimuthal angle of
the initial parton propagation direction relative to the reaction
plane. This will lead to the azimuthal anisotropy of the final
hadron and jet spectra [37-39] which in turn can provide
information about the path-length dependence of the
parton energy loss and the geometrical properties of the
QGP [40-46]. One can further use both longitudinal [47,48]
and transverse jet tomography [49] to localize the initial jet
production positions and study the space-time profile of the
jet transport coefficient in more detail.

The longitudinal jet tomography utilizes the path-length
dependence of the parton energy loss and suppression of
the final hadron and jet spectra, while the transverse jet
tomography relies on the asymmetrical transverse momen-
tum broadening of the propagating parton due to the
inhomogeneity of the jet transport coefficient in the trans-
verse plane. The latter is also referred to as the gradient jet
tomography. It has been applied to localize the initial
transverse production positions of Z/y jets to enhance the
effect of the diffusion wake induced by Z/y jets in the final
Z/y-hadron and jet-hadron correlations [50].

The principle of gradient jet tomography [49] is based on
the asymmetrical transverse momentum broadening for an
energetic parton propagating in a medium that is inhomo-
geneous in the transverse direction as characterized by the
finite transverse gradient in the jet transport coefficient g.
One can study the asymmetrical transverse momentum
broadening via solving a drift-diffusion Boltzmann equa-
tion which describes the diffusion of a jet parton in both
transverse momentum and coordinate. The finite transverse
gradient of the jet transport coefficient in a nonuniform
medium leads to a drift in both the final transverse
momentum and coordinate distribution of the jet parton
which depends on the propagation length and the initial
transverse position in the region of the medium with a finite
gradient of the jet transport coefficient [49]. One can
therefore use the transverse momentum asymmetry of
the final jet particles to localize the initial transverse
position of the jet production. This principle of gradient

tomography has been verified [49] by full event-by-event
simulations of y-jet propagation within the linear
Boltzmann transport model [51-54]. It has also been
applied to the study of diffusion wakes induced by y/Z
jets in high-energy heavy-ion collisions [50].

In this study we formulate the transverse diffusion of a pro-
pagating parton in the path-integral approach [19,20,24,25]
for the evolution of parton distributions which are defined via
a Wigner function [55,56]. We illustrate the principle of the
gradient tomography within the path-integral approach in a
static medium which is uniform in the direction of the parton
propagation but inhomogeneous in the transverse direction.
Within a picture of multiple soft scatterings off independent
scattering centers without color flow, the evolution of the
Wigner function can be described by the Green function in
QCD in a medium that is nonuniform in the transverse plane.
One can express the final parton transverse momentum
spectrum in terms of the Green function and calculate the
transverse momentum asymmetry and study its path length
and transverse gradient dependence. Both our approach with
path integrals and the drift-diffusion Boltzmann equation
assume the dominance of multiple soft scattering in the
medium. However, the path-integral approach takes into
account the quantum corrections due to fluctuations of
the propagation path as compared to the semiclassical
Boltzmann transport approach. Asymmetrical transverse
momentum broadening due to multiple scatterings with
the Gyulassy-Wang static potential model [14] in an inho-
mogeneous medium has also been studied recently in
Refs. [57,58], taking into account the first transverse gradient
correction. This first gradient correction is shown to satisfy a
Boltzmann diffusion equation with a spatially dependent jet
transport coefficient ¢ [59]. The second-order gradient
correction, however, gives rise to a novel term in the transport
equation due to nonlocal interactions. In our path-integral
approach here, we consider multiple scatterings with the
dipole (or harmonic) approximation of the interaction but
without gradient expansion in the formulation. We will
consider, however, the linear gradient correction for an
example of numerical calculations at the end.

The remainder of this paper is organized as follows. In
Sec. II, we briefly review the Wilson line and the Green
function or evolution operator for a parton traveling
through a background medium within the multiple soft
scattering picture. We introduce the Wigner function to
describe the phase-space distribution of the parton projec-
tile and employ the dipole approximation to relate the
Wilson line correlations to the jet transport coefficient. We
derive the final phase-space distribution of the propagating
parton within the path-integral approach. In Sec. III, we
derive the final phase-space distribution of a propagating
parton in a uniform medium which is shown to satisfy
the drift-diffusion Boltzmann equation. In Sec. IV, we cal-
culate the final transverse momentum spectrum, transverse
momentum broadening, and the transverse momentum
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asymmetry of a jet parton propagating in a medium with a
simple form of a transversely inhomogeneous jet transport
coefficient. We examine their dependence on the initial
transverse position, propagation length, and the energy. In
Sec. V, we summarize the result.

II. PROPAGATION OF PARTONS IN MEDIUM

We consider a quark, starting from x* = —oo, that
propagates through a slab of medium that extends from
x{{ to xjf and continues to x™ = oo, as illustrated in Fig. 1.
In the following, we denote the average transverse coor-
dinates of the parton as X and Y, while x and y are the
fluctuations of the transverse coordinates with the corre-
sponding conjugate transverse momenta p, and p.

To describe the propagation of an energetic parton in a
QGP medium within the path-integral approach, we con-
sider multiple soft interactions between a propagating
quark and the background field A(x,x") of the QGP
medium." Here we adopt the light-cone variables for
space-time coordinates,

= (14, (1)

V2

and similarly for other four-vectors. Here ¢ is the time
component and z is the longitudinal component (along
the initial parton propagation direction) of the space-time
four-vector. The transverse component is denoted by x.
Similarly, the light-cone momentum is p* and the trans-
verse momentum is p.

Assuming that the initial and final momentum of the
quark are p and p’, respectively, and p* is the large
component of the momentum, these multiple soft inter-
actions, as illustrated in Fig. 2, can be resummed under the
eikonal approximation to give the S matrix [24,25,60-62],

S(p', p) = 2z(p"" = p*)2p”*

« / dee= 0 PW (x x5 x1). (2)

where the Wilson line in a covariant gauge is defined as
|

transverse
plane

A1

x5 zf zt

FIG. 1. Propagation of a quark through a slab of dense medium
that extends from x;j to x; on the light cone with the corre-
sponding average transverse coordinate X, Y and the fluctuations
of the transverse coordinates x and y.

FIG. 2. Illustration of the eikonal propagation of a quark with
initial momentum p and final momentum p’ in the medium,
where the X’s donate the medium field.

W) (x, xar,x]f) = Pexp [ig /f dETA™ (x, 5*)}’ (3)

and P denotes the path ordering of the field A~ (x, x*).2

In the above eikonal approximation, the subleading term
p? in poles of the propagator is ignored. To relax the
eikonal approximation, we can keep the p? terms. This is
equivalent to considering the Brownian motion of the
propagating quark in the transverse plane. In this case,
assuming that the initial and final coordinates are (x7, )
and (x}“,x +), respectively, the S matrix can be expressed in
the path-integral form [24,25,60-62],

S(p', p) ~ 271’5(pl+ _ p+)2p+ / dxodxfeip.xoe—ip/.foH(xf,x}r;xo’xa“)’ (4)
where
r(XJT)ZXf .p+ x* dr 2
Uy (xf,x;;xo,xa“) = /( +; Dr(x*) exp [17/+f dxt <dx—+> ]W(r, xar,x;), (5)
r(x;)=xo x;

lHerein, a bold letter denotes that the vector lies in the transverse plane.
*We exclude the fluctuation of the gauge field in the vacuum and only consider the effect of the medium.
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is the Green function or evolution operator [24] that
replaces the Wilson line in Eq. (2) and describes the
quark’s propagation in the transverse plane of the medium. Px, xt) =y, xT)W(x, x5, xh), (7)
In the adjoint representation, a similar expression for the
propagation of a fast gluon with multiple soft scatterings
was also derived in Ref. [60].

. . . . to describe the transverse phase-space distribution of a
We use the gauge-invariant Wigner function [55,56], p p

propagating quark at a given time x*. The quark wave

_ Y function W(x,x;,x") with the insertion of the Wilson
WX, p;x§, xT) = /dzxe"l""‘l’ (X+2,x§,x+> line W (x,xj,x") is gauge invariant.
Using the evolution operator we can express the evolu-
% P ( x_* X x+> : (6) tion of the gauge-invariant Wigner function at a later time
2 x}r from its initial distribution at x; with momentum pj as

d2 o
W(Y,p;xg’ x]f) = /dZXdZdex_p)oze—tp'y-&-zpoxw(x’po;xar’ xg)

(27
X X
(o (v+2 xS (v =2 x =2 ). (%)
y o+ X 4 T Yy 4. X .
<<UH(Y+§,Xf,X+§,XO>U“(Y—i,xf,X—E,xo>>>
Y ()Y LRS!
= 1y Drl 2y Drzexp lp— ! dt r12_r22 — diw r17x+’x+ WT r2’x+’x+ 7 9
I 0 )W) 0:Xf
r(xg)=X+5 ra(xg )=X—% 2 X N,

where (( - - - )) denotes the average over the proper ensemble of the medium field configurations and 7 = dr/dx". Note that
the trace and the 1/N, factor correspond to the average over the initial color indices in the fundamental representation.
In an arbitrary gauge (either covariant or light-cone gauge), the gauge-invariant quark wave function should be defined as

P(x,xg,xT) = wix, xF)W(x, xg, X)W (x,x), (10)

where the transverse Wilson line is defined as

Wi (x,xT)=Pexp [ig/ d§-AL(§,x+)]. (11)
The corresponding evolution operator for the quark propagation is
r(xp)=x; pT dr \?
Ulxp, xf3%0, X5 ) = /( . Dr(x™) exp [ZT/der e W(r, xg,x;), (12)
r(xy )=xg

where W (r,x§.x") = W(r.xg.x")W (r.x"). The evolution of the Wigner function should be the same as in the
covariant gauge by replacing W (r, xg,x") with W(r, x5, x") in the evolution operator.

Under the dipole approximation, the expectation value of the correlation of two Wilson lines can be related to the jet
transport coefficient g [61-63],

1 x; 1 1,
AW W e )y e - | 3 art e | = e - / aga®rh. (3)
where R = (r| +r,)/2 andr = r| — r,. In this expression we are implicitly assuming that the transverse separationr ~ 1/p
is much smaller than the scale of variations in g(R). For convenience, we have redefined the light-cone variables
t =x"/v/2 and @ = p*/+/2 which become the normal time and energy on the light cone. In a static and homogeneous
medium, the correlation will only depend on the relative position of the dipole and the jet transport coefficient will be a
constant. Such an approximation is often referred to as the “harmonic approximation.” In past studies, the time (x* or 1)
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dependence of ¢ was considered. In this study, however, we generalize the dipole approximation to the case in which the jet
transport coefficient also has a spatial dependence in the transverse plane. The Wigner distribution of the propagating parton
at time 7, is now

d2 .
W(Y.p;ty. tr) Z/dZXd d*x (25)02 e~ PYTPORIW (X, po; to, o)

R(I te 1
x/ " bR / Drexp{la)/ diR - r}exp{ /’dzq(R)rZ}. (14)
R(t9)=X r(ty)=x to fo 4

To evaluate the path integral, we discretize the time into N equal steps (N — oo) and denote € = (t; — 1y)/N, t; = ty,
and R(z;) = R,. The second line in Eq. (14) can be expressed as

= (H / d2Rk> exp{la)(RNrN ~ Roro) } Cﬁl / &, exp{—ecﬂfk) (r% + ;;wk)iékrk> }) (15)

where A = \/2nie/w. More details on the evaluation of the functional measure can be found in Appendix A. Completing
the squares and performing a Gaussian functional integral to integrate over the relative distance r, and switching back to the
continuous form, Eq. (14) can be rewritten as

d? o
W(Y,p;to,tf):/ded d’x (25)02 e~ PYTPONIW (X pos 1o, to)

R(lf):Y . . tr w2R2
«Z / DRexp{ia)(R(tf)y—R(to)x)}exp{— / th—}, (16)
R(t))=X fo q(R)
where E=wR or 1= A/D§5(§ — wR), (19)
23N N 1
zZ= 22_1 ~ (17) . .. N
4re det{g(R)} where A is a normalization constant and 5(€ — @R) is a

functional delta function. We note that € as so defined can
be interpreted as a random force acting on the hard particle
with effective mass w.

1 T 1 (18) Again, after discretizing the space-time, we can write
det{g(R)} 1% a(Ry) down the expression for € at 7, as

is a divergent normalization constant and

Note that in the above expression, the initial and final . R, ., -2R, +R,_,
. . g k= wR = W .
transverse momenta are given by the classical momenta of a €2
particle with mass @ which follows a trajectory R(7).
To proceed, we introduce a two-dimensional auxiliary — Replacing the variable R with € and using the Jacobian of

(20)

variable & = (£, £”) by defining the transformation,
|
1 -1 0 o
-1 =10
o -1 1 -1 .0
Y —20N\ N— 2 2
J= A 0gh) (532)" x det =NEML ()
(OR{---0RY_;) € : o .. : €
0 -1 -1
0 -3 1

we can rewrite Eq. (15) in terms of a functional integral with respect to &,
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:#Qf_t) /DéeXp{lw( (17)y = R(1o)x )}eXp{ /totf 2%} (22)

and the Wigner function in Eq. (16) as

e =

2
) /dedpoW(X,po; )

q(R)

. ; . i 2
<[ Dsa2<wR<r0,§>—po>62<wR<zf,§>—p)exp{— / a2 } (23)

where we have defined

A Nl €
e det{ ®)} H(E) & 2

such that

/@gexp{—/dzg((%} =1. (25)

See Appendix B for more details on this. With such a
normalization condition above, we can interpret the func-
tional integrand

s/ 2(&5} (26)

as a Gaussian probability distribution of the random force €,
driving the Brownian-motion-like transverse momentum
broadening of the propagating parton in the QGP medium.

With this probability distribution, averaging for any
function f(€) over the random variable & can now be
computed as a functional integral,

- / DEf(€) exp{— / dtg((gj}- (27)

For parton propagation in a uniform medium with a
constant jet transport coefficient §(R) = g, the two-point
correlation function is (see Appendix C for details)

(1)) = / @g{ffu)f’(f’)}exp{‘/ dtfz_z}

- %5050 —7). (28)

As we noted before, € can be considered as a random
force acting on a particle with an effective mass @ on a

classical trajectory. The boundary conditions for the tra-
jectory are
R(1y,€) =X R(1;.6) =Y (29)

at the initial time #, and the final time 7, respectively, during
which the random force € gives rise to a displacement

» iy / ! //g(t//)
Y-X=(t;—1o)R(t.8) + [ df' [ d">=—. (30
to to [0
The initial velocity of the particle is therefore

k(t()’ §) -

Po
w
1 t 7 /"
= (Y—X—/’dﬂ/ dz"@). (31)
tf_to tO tO w

The velocity of the particle at any given time ¢ should be

1
k1.8 = kg + [(arf )
f @
and the position of this particle is given by
I’O Lfe Ng(4
R(t.E) =X+ (t—1ty)— oo dr'(t—1)E(r). (33)
Ty

In arriving at the last equation for the position R(z, &), the
following identity is used for an arbitrary smooth function

f(@):
/fotdﬂ [Ol/ de"f(¢") = /totdt/(t— OF().  (34)

Substituting the particle velocities in Egs. (31) and (32) into
the delta function in the Wigner function in Eq. (23), we
arrive at
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d’x  d% Y-X
> /ded2 OW(XpO,to,to)/ ad B exp{ia)( )-(y—x)—l—ipo-x—ip-y}

277.' tf_tO

/Dgexp{ / g((t))}exp{ i(x —y) /dt/ dt”f_OJrly /totfdtf(t)}. (35)

Performing the integration over p or Y, we can get the transverse position or transverse momentum distribution of the
propagating parton at time ;, respectively,

d*N ( 1) >2 / d’x —ix- (2N E(1") i E(1)?
—— = d2xd2 W X,po: to, t ‘/ = P0 /'D exps Ix - / dr / dl‘” / dr= s
dZY tf — to Po (2 ) ( »Pos 1o 0 § P tO o q(R)

(36)
d*N d’x e ~ . 7 o E(1)?

. ix-(p—po) . —
o /d2Xd (2ﬂ>2W(X,p0,t0,t0)e P /D&exp{zx /to de&(r) /to ?](R)}' (37)

III. SPECTRA IN UNIFORM MEDIUM

e

The general expression for the final phase-space distribution of a propagating parton in terms of path integrals is valid for
a dynamic and inhomogeneous medium in the transverse plane. In the special case of a static and uniform QGP medium in
which the jet transport coefficient is a constant §(R) = §,, one can complete the path integral in Egs. (35)—(37). The
distributions can be greatly simplified as (more details on the derivation are given in Appendix D)

120?
Wo(Y.pity, t;) = —55——g | XI2poW(X,po;to, t
o(Y.p:ty f) ”zqg(f,f—f ) / PoWV(X, po: ty. 1)
—120? 2 -po)?
x eXp{— ((Y -X) - Po)) - u} (38)
go(ty — 1) Go(tr —to)
d*N, 1 / (p —po)?
= d>Xd’poW(X, po; to. to) €X {—A; , 39
d’p  7wgo(t; —19) oW(X.poi fo. fo) exp Go(ty — 1o) (39)
& 2 3(wX=X —p,)?
2N0 = sl 3/d2Xd PoV(X, POafo,fo)eXP{ Atjr—o} (40)
Y  wgo(ty— 1) Go(tr —to)

for any given initial Wigner distribution W(X, py; o, 19)-
For an initial point-like classical particle with specific initial momentum and position W(X,py;ty, ty) =
(27)*6%(X)8%(po). the final Wigner function at a later time 7, becomes

(4w)? —120? tr—1y \? P’
Wo(Y,p; to, tr) =3~ exps = Y - P| —w7—
0 0 a5(ty — 10)* Qolty = 10)° 20 Go(ty — 19)

4o)? 2 4 2
:37A2( @) 4exp{—< _ e Y) _ _y 3@ 3}. (41)
Go(tr —to) 2(ty —19) Go(tr —to) Go(ty —to)

|

One can verify that the final Wigner distribution functions  an initial classical point-like particle in a uniform medium as

in Egs. (38) and (41) satisfy the drift-diffusion equation, shown in Eq. (41) was first obtained in Ref. [49]. Indeed, as
shown in Fig. 3, apart from the usual diffusion in both

<§ +p VY) Wo(Y.pity.t) = 4o V2W0(Y pito.1), (42) transverse momentum and coordinate, the Wigner distribu-
! w

tion develops a drift % p in the transverse coordinate for a
which is just the Boltzmann equation under the special given value of the transverse momentum p and a drift

approximation of small-angle scattering whose solution for W Y in the transverse momentum for a given value of
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Wo(Y, p;to, ts — to)
3[dw/do(ty —to)? o,

FIG. 3. Scaled Wigner distribution for an initial classical parton
in a uniform medium with a constant jet transport coefficient g,
given by Eq. (41) as a function of the transverse momentum and
coordinate, both scaled by their respective widths /g (ty — 1)

and \/qo(t; — 19)*/w.

the transverse coordinate Y. The Gaussian diffusion width in
the transverse momentum /go(t; —ty) is the typical
momentum broadening during the given time interval. The
diffusion width in the transverse position is given by the

average transverse velocity /g (ty — ty)/@ times the time

Go(ty — 1)}/ .

Integrating over the transverse coordinate Y or the
transverse momentum p, the Wigner distribution in
Eq. (41) gives the diffusion distributions in the transverse
momentum and transverse coordinate, respectively,

cod — 3(wY)?
p{ 210(tf_t0)3}’ (44)

which satisfy the usual Fokker-Planck diffusion equation.
We note that the diffusion distribution in the transverse
momentum has been obtained within the framework of the
higher-twist formalism under the maximal two-gluon
correlation approximation [63] and by a direct summation
of multiple scatterings [64].

interval or

N Cnp
d’p  7qo(t; —to)

&N (27)*30? .
dZY - EQO(tf - l0)3

IV. TRANSVERSE MOMENTUM ASYMMETRY
IN NONUNIFORM MEDIUM

To investigate the momentum diffusion in a nonuniform
medium within the path-integral approach, we consider a

simple transverse distribution of the jet transport coefficient,

A 90

AR) = (45)
with f(R) <1 for all values of R. This corresponds to a
static medium that is uniform in the direction of the parton
propagation but varies in the transverse direction. We should
emphasize that this simple setup allows us to complete the
path integral analytically but it is far from the realistic case in
high-energy heavy-ion collisions where the medium is
nonuniform in both the transverse and longitudinal direc-
tions of parton propagation.

For convenience we denote the functional integral part in

Eq. (37) for the final momentum spectrum as

Fx,X,py) = / @gexp{ / " di [ixf(t) —%} } (46)

With the variable transformation & = & — i %Ox and to the

leading order in f, it can be approximately rewritten as (see
Appendix E for more details)

ty {
F(x,X.po) zexp{—/j dt@xz}
w 4
b Iy EIO ,
< L=x® [ dt = (f(R(1.8(1)))o . (47)
To
where the average (- - ), is defined as

to= [ D8 gewf- [aEEL

The classical trajectory of the particle presented in
Eq. (33) can be rewritten as

R(1.&) =Ry(1) + AR(1,§), (49)

with

Po . 4
Ry(1) EX‘F(I—IO)EO‘Hxﬁ(f—fo)Z’

AR(1,E) = é / "= E (). (50)

Iy

Since only AR(z, ') contains the effect of the noise &, we
can treat it as a perturbation and expand f(R) perturba-
tively,

o) 2
FROEN =D > ARMLE) AR 1.E)

x (Vi Vi, -V, f(R(t,&)))reg)=rors (51)
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where V; = %. Using the correlators (ARVAR™ - - AR (1,E)),

(AR(1.8))y =0, 52) = (ARVARE(LE), - (AR ARE(1E)),
+ all other permutations, (55)

: ; 1 g o (1= 1)
AR'(1,E)AR/(1,E))y = — =6V ——, (53
(AR(L E)ARI(1.8))o @? 2 3 (53) where the total number of permutations is (2n — 1)!!, we
i ) can substitute the expansion of f(R) in Eq. (51) into
(AR (1.8)AR(1.8)) - AR™(1.8))g = 0. (54)  Eq. (47) and obtain

|
koo [ Yo [ ST (Y

{/dt H xz/totfdt%GJ(Ro(t))], (56)

where
0 _ 3v2\n
o) =3 LU TR gy
n=0 :
[ er J® (R() ~ k)
= Rt [ 7
O(R(1)) = ©(R(1))|r(r)=Ry(1)* (58)

and D = §,/ 120>
With the above approximation of the path integral, we can obtain the transverse momentum distribution,

d’N _d’N,  d*N,

PO TR 59
#p” Pp P )
with d>N,/d?p given by the solution for a parton propagating in a uniform medium in Eq. (39), and
d*N, / d’x : q g
=— [ &®xd?%p W(X.po; to, to) e~ > P=P0) ex —/ dr 20 x2 x2/ dr 2 D (Ry(t 60
&p 0 (2”)2 ( 03 t0s 1o) p ; ; 4 (Ro(2)) (60)

is the correction linear in f(R) due to the inhomogeneity of the medium. This linear correction can be rewritten as

JZNI

/ dtqo/ded OWV(X,po; to, 10)G(p.po; X, 17,1, 10), (61)

where the evolution function is defined as

d*x —ix-(p—po) v 4o o2
Glp.poXotpotity) = [ 5 5sem ot expf— [ Lo, (62)
(27) f 4
For a Gaussian form of f(R),
—R?
f(R) = 56XP{7}, (63)

the jet transport coefficient in Eq. (45) describes a medium that has an increased density within a radius of ¢ in a uniform
medium. One can complete the integration in Eq. (57) and obtain
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OR(1) = ¢ (f)exp{_g((tt; } (64)
where
I(t)=06>+4D(t - 1)) = 6% + 810(;7;;0)3. (65)

The evolution function in Eq. (62) becomes

G(p.po:X. 1y, 1,10) = / (;1:;2 o-ix-(p-po) exp{ fJo(tf4— to)xQ} [ 5 G(I) exp{ X+ (t- to)’;’(—:) ix 2o (1 — 1)) H

1 —16na2aex{ (X + (1= 19)2 } { [P —po + 4( )(X+(t—to)%)]2}
OO0 (1) o Ar)

x{[p—p0+/1(t)<X+(t—t0 )] } (66)

where

3t—ty4D(t — t0)3>

( 4tf—to (1)
(-

R 3 1—1y §olr—19)°
pu— _— 7
Golty = o 41— 19 30°2(1) (67)
N PRY)
At) = M_ (68)

2wZ(1)
For a parton with initial transverse momentum p, produced at x = (x, y), the corresponding initial Wigner function is
W(X.pito. 1) = (27)*6*(p — Po)&* (X — x). (69)

The final transverse momentum distribution at time 7, in Eq. (59) is now

d*N 4 - po)?
o____ exp{— fp Po) }, (70)
d’p 610(tf ) 6Io(lf )
d*N, _ /rf Argoo®s [ (X (1= 10) ) [P —po+ AN)(x + (1= 10) )
I A OTNO =) A(1)
X ! P —po+ A1) x+(t—t0)p° —A(r) . (71)
A%(1) w
|
For a parton with initial transverse momentum py =0,  Since d’N,/d’p is the solution to the diffusion equation
the above final distributions become in a uniform medium, it is symmetric in the transverse
plane independent of the initial position x. The first-order
d’N, 4 expd p’ (72) correction d°N,/d?p due to the inhomogeneity of the jet
d’p  Go(t 7= 1) ao(t; — to) ’ transport coefficient §(x) as given by Egs. (45) and (63) is

asymmetric in the transverse plane for finite values of the

&N, i Argyc®s X2 [p+A(0)x]? parton’.s initial position X. .
W = [ ! mexl){—% - T} To illustrate the asymmetrical transverse momentum
0 broadening, we show in Fig. 4(a) the first-order correction
x {[p +A(0)x]* = A(n)}. (73)  &®N,/d*p and in Fig. 4(b) the final transverse momentum
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-0.02

(GeV2)

dzp

-0.04 |

d2 Ny

-0.06

-5 0 5
p (GeV)

FIG. 4. (a) First-order correction and (b) final transverse
momentum distribution for the initial positions x = —4.0 fm
(red dashed), 0.0 fm (black solid), and 4.0 fm (blue dot-dashed),
@=35GeV, ty—t,=10 fm/c, g, = 2 GeV?/fm, 6 = 0.1, and
o = 5 fm in the simple model for an inhomogeneous jet transport
coefficient. The dotted line is the distribution in a uniform
medium with a constant jet transport coefficient g.

distribution as a function of p - X for p- (Z x X) =0 and
different values of the initial position |x|, where Z is a unit
vector along the initial parton propagation direction. We set
tp—ty =10 fm/c, 6 =5 fm, § = 0.1, §o = 2 GeV?*/fm,
w =5 GeV, and p, = 0.

In general, the first-order correction in the case we con-
sider here makes the final momentum distribution broader,
leading to the increased transverse momentum broadening
as compared to that in a uniform medium without a region
of inhomogeneity. The distribution is asymmetric for finite
values of the initial transverse position of the propagating
parton.

One can show that the first-order correction in Eq. (73)
does not contribute to the zeroth and first moments of the
final transverse momentum distribution, [ d*pd’N,/d’p =
[ d*ppd®N,/d’p = 0. However, it increases the total
transverse momentum broadening,

exp [— X—z] , (74)

due to the extra density of the medium with inhomogeneity
in the region |x| < o on top of a uniform medium. The extra
momentum broadening (Ap*(x,7;)) due to this region
of inhomogeneity grows linearly with time initially when
1y — 1y < (30%6%/qy)"® and saturates at a finite value
asymptotically. At x =0, this finite extra broadening
is (Ap*(0.7/)) ~ 1.2406(3w*6*/4y)"/® when 1; — 1y >
(3w*6?/§,)'"/3. Compared to the extra momentum broad-
ening in this region of transverse inhomogeneity in a
scenario of eikonal propagation without the spatial drifted
diffusion in the transverse direction,

(P2(X.17))o = (t; — 10)q0 + (AP*(X. 17))0.

X2
(BB 1o (= aodexp | -5 09)

the drifted diffusion in the transverse coordinate due to the
transverse gradient reduces the extra momentum broad-
ening in the region of inhomogeneity. In Fig. 5 we show the
reduction of the scaled momentum broadening ({p*), —
(P%)/(t; = 10)408 = ((AP*)o — (AP?))/ (17 = 19) 400 as a
function of the scaled transverse position x/c and the
scaled propagation time (7, — ty)/(3w*c*/§,)'/3. One can
see that the reduction becomes significant for a propagation
time when the transverse drift distance becomes compa-
rable to the size of the inhomogeneity. Since the inhomo-
geneity-induced broadening in both scenarios dies out
exponentially at large |x| > o [see Egs. (74) and (75)],
their difference in Fig. 5 also goes to zero exponentially at
large |x|.

The first nonvanishing odd moment of the distribution
due to the gradient-induced asymmetrical transverse
momentum distribution is

(Ap?)o — (Ap?)
(ty — to)God

FIG. 5. Reduction of scaled momentum broadening ({(Ap?), —
(Ap?))/(t; —19)308 as a function of the scaled transverse
position X /o and propagation time (7, — 1y)/ (3w?0?/§o)"/.
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2

- §o0°S x2
3 :—ZX//dth A(t) ex {——}
(p°) ) (1) exp 0
G0we25— |e x*
= —§ywo’S— |exp —
o X2 P 02 + EIO(tf - t0)3/3a)2

_ p{_o_}] (76)

which grows initially with the cube of time and saturates
at a finite value asymptotically when (r;—10)% >
3w?6?/§, because of the finite size of the spatial
inhomogeneity.

We can define the transverse asymmetry as proposed in
Ref. [49],

_ [ EYEpW(Y.p. 1. 17)sign(p - %)
N JEYEpW(Y . p. 1. 1)

&p &N ..
- / (2752%51gn(p-x), (77)

to characterize the asymmetrical momentum broadening
due to the transverse gradient of the medium. Note that the
Wigner function is normalized as [ d*Yd>pW(Y,p. 1,.;)/
(27)? = 1. Since the asymmetry is only caused by the first-
order correction in Eq. (73), one can complete the inte-
gration over the transverse momentum and obtain the

transverse asymmetry as
x> A1)*x?
X - —_ .
PUT=0) ™ a0

[t qoo*s  AM)x
AN‘/m a0
(78)

e
wA(t)

The integration over time can be done numerically. In
Fig. 6(a) we show the transverse asymmetry Ay as a function
of the initial transverse position x for different values of the
parton’s energy . We note that within the size of the
transverse inhomogeneity |x| < o, the transverse asymmetry
is approximately linear in x driven by the transverse gradient.
Conversely, one therefore can use the transverse asymmetry
to infer the initial transverse position of the propagating
parton. This is the principle underpinning the gradient jet
tomography as proposed in Ref. [49]. Combined with the
longitudinal jet tomography, which uses the longitudinal
momentum of the final jet or parton energy loss to constrain
the propagation length, the two-dimensional jet tomography
can be used to localize the initial jet production position.
Outside the range of the medium inhomogeneity |x| > o, the
transverse asymmetry decreases and vanishes when the
transverse gradient decreases.

Similar to the second and third moments of the momen-
tum distribution, the transverse asymmetry Ay also
increases with the propagation time during the diffu-
sion across the domain of the inhomogeneity. Since

w=5 GeV

0.004 | ]
----- - w=10GeV =
0, \0
0.002 f===== w=20 GeV J R ]
'I r"\\ .
0’ N .
2 0.000 _— R
< "::\\ /i
\.\ \\\ //,'I
-0.002 | ) .
= /
‘S.o
-0.004 [ (@) 1
-15 -10 -5 0 5 10 15
x (fm)
w=5 GeV
10f . y
----- - w=10GeV RN
’ AR
05f====- w=20 GeV T TGN ]
'S NN
% ,/ SN
~ \.
€ oo S RECRY
o RGN /
S SN /
I o5l S s ]
) Ny
“« /
XN _.
“10[ (b) ]
-15 -10 -5 0 5 10 15
x (fm)
FIG. 6. (a) Transverse momentum asymmetry and (b) third

moment of the transverse momentum distribution as a function of
the initial transverse position x for ¢, —1#, =10 fm/c,
Go =2 GeV?/fm, § = 0.1, and 6 = 5 fm in the simple model.

go(ty —t9)/w is the average diffusion velocity,

\/@o(ty — 1) /w is the diffusion distance during the

propagation time. When this distance is much larger than
the size of the inhomogeneity o or (1, — 1y)* > w?c?/qy,
the transverse asymmetry as well as the increased momen-
tum broadening (Ap?) and the third moment (p?) will
saturate to the asymptotic values. Since the average
diffusion distance is inversely proportional to the parton’s
energy w, the transverse asymmetry Ay, as well as the third
moment and the extra momentum broadening, decrease
with .

In Fig. 6(b), we also plot the third moment (p?) as a
function of the initial transverse position x. It has the same
behavior as the transverse asymmetry. As seen in Fig. 4(a),
the first-order correction to the distribution changes sign
at large transverse momentum. The third moment has a
much larger weight at large transverse momentum and is
therefore dominated by the first-order correction in this
large-momentum region. Therefore, the asymmetry as
characterized by the third moment has the opposite sign
as the transverse asymmetry Ay, which is dominated by the
distribution at small momentum. However, their depend-
ence on the initial transverse position x, the propagation
time 7y — 7, and energy o is the same.
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V. SUMMARY

To demonstrate the principle of the gradient tomography in
jet quenching, we have derived the evolution of the Wigner
distribution function in transverse momentum and coordi-
nate for a fast parton traveling inside a strong interaction
medium within the path-integral approach. Within the dipole
approximation for soft multiple scatterings in the medium
encoded in the correlation of Wilson operators, the evolution
can be expressed generally in terms of a Green function or the
evolution operator, which is determined by the space-time
profile of the jet transport coefficient g.

In a uniform medium with a constant jet transport coef-
ficient g, one can complete the path integral and obtain the
evolution operator and the corresponding Wigner distribution
analytically which is also a solution to a drift-diffusion
Boltzmann transport equation. We also considered a special
case of an inhomogeneous medium by assuming a form of a
spatially dependent jet transport coefficient that adds a
Gaussian-like region of enhanced medium density with a
finite size. The path integral can also be completed in this case,
and we obtained the evolution operator analytically. We have
considered an initial condition for a classical point-like particle
and calculated the final transverse momentum distribution and
its dependence on the initial transverse coordinate. The
distribution is asymmetric when the initial position of the
parton is not at the center of the Gaussian-like region because
of the transverse gradient. The Gaussian-like inhomogeneity
was found to increase the momentum broadening (p?) and
lead to anonvanishing value of the odd moment (p*) due to the
asymmetrical distribution. We also calculated the transverse
asymmetry Ay as proposed in the study of the gradient
tomography [49]. We found that both A and (p*) are linearly
correlated with the initial transverse position within the region
of the inhomogeneity, validating the principle of the gradient
jet tomography. This analytical solution also allowed us to
understand both the propagation time (length) and energy
dependence of the transverse asymmetry.

We would like to point out that the two setups—a static and
uniform medium and a static medium with only transverse
inhomogeneity—were considered in our study because they
enabled us to complete the path integral analytically. A
similar setup for the medium was also considered in recent
analytical work on the jet broadening in an inhomogeneous
medium in Refs. [57,58]. In addition, we should also note
that the inhomogeneity of the jet transport coefficient in
Eq. (64) is assumed to be small, which enables us to use the
perturbative expansion and complete the path integral in the
calculation of the Wigner function. This leads to small
numerical values of the transverse momentum asymmetry.
In real heavy-ion collisions, the QGP medium is inhomo-
geneous in both the transverse and longitudinal directions of
the parton propagation with large gradients. It also evolves
with time. The asymmetry from the semiclassical Boltzmann
transport is very large and can be used for the purpose of
gradient tomography, as shown in Ref. [49]. The recent study
using deep-learning-assisted jet tomography to select events

with specified regions of the initial jet production in Ref. [65]
explicitly showed that the asymmetrical momentum (or
azimuthal angle) distribution is closely related to the inho-
mogeneity as well as the radial flow of the medium.

Although the study of asymmetrical transverse momen-
tum broadening in a more realistic scenario within the path-
integral approach is our final goal, it is beyond the scope of
this paper. Going beyond the simple form of the spatially
dependent jet transport coefficient and considering the
realistic case of parton propagation in heavy-ion collisions,
numerical evaluation of the path integral for more realistic
cases of the medium is needed. However, our study in this
paper using simplified geometries of the QGP medium
demonstrates the principle of gradient jet tomography
within the path-integral formulation.

Since the path-integral approach differs from the classical
transport approach in which one can also introduce space and
time dependences of the jet transport coefficient in the drift-
diffusion Boltzmann equation (as was done in Ref. [49]), it
will also be interesting to examine the difference between the
two approaches. These studies will help to establish the
gradient jet tomography as a powerful tool to explore
properties of QGP using jet quenching.
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APPENDIX A: FUNCTIONAL MEASURE

Let us consider the calculation of the propagator in one-
dimensional space. We divide the computation into many
steps; inserting the closure relation many times, we write
the propagator as the products of the propagators with a
small time interval,

<xf|e—iH(tf—t0) |x0> _ g%<xf|e—iﬂee—iHe_ ) _e—iHe|x0>

N-1 )

“11 / dx; (x| ey_)
i=1
X (xy_1|e” e xy_s)

e (xplem e xy ) (xyleT e xg).  (AL)
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We also insert the identity operator which runs over all
momentum states in the propagator,

(sale ) = [ dpitaslpid (il
d eiPi%is i
Di NG Di

If we suppose that H takes the form H(x, p) = % + V(x),

. . . tr—1,
in the limit e = <5~

oo i(Z 1 v00)] o1 2] g, a9

), (A2)

or

(pilH|x;) = (pilx:)H(x;, p;). (A4)

The propagator in Eq. (A2) can be written as

<xi+l|e_iH€|xi> = /%eipi<xi+l_xi>_iH(xivpi)€
T

:/(;‘I:;exp{w( ,-x,-—%—ﬂ&))}
= fome{ie(2s v}
=\/f explieL.(x,, i)}

Using the above equation for each time interval in Eq. (A1),
one can get the path integral in the form | Dxe’S, with the
functional measure defined as

Dx = |z , [——d
T 2m€ 2me Aie

e jn Eq. (15).

(AS)

(A6)
Replacing m — w, we have A =

APPENDIX B: NORMALIZATION OF GAUSSIAN
DISTRIBUTION

The discrete version of the classical trajectory of the hard
parton R in Eq. (33) can be cast as

2Jl

R, —X+]€—+ Z]—l (B1)

In this expression, R; depends only on &; with i < j so that

/d2§j (g) ﬁexp{—e%} =1. (B2)

Since g(R;) is a function of & with i < j and does not
depend on §;, the integrand is just a trivial Gaussian form.
Then, we get

o[ +£5)
i Qi

J=1

APPENDIX C: CORRELATION FUNCTIONS

We define the generating function

1)) = [ e gz e { / i(%}

Xexp{/dl](l) -§(I)}, (C1)
and the corresponding discretization version is
N-1 1 §2
il
I1/o5(;) smyeei <z
x exp{—eJ; - €}, (C2)

which encodes all correlation functions.

In the case of a constant ¢(R) = g, in a uniform
medium, differentiating Z[J(¢)] with respect to J(¢) evalu-
ated at some time ¢t = ¢; leads to

2
i 0yl [0
= (&*(11))o- (C3)

In the same spirit, taking n derivatives gives us
8"z
8T (11)0J% (ty) - - 8T (1) |y

- [rogalgen]- [o8 e
= (E(1)E™ (1) -+ &% (1)) (C4)

The generating function above is just a functional Gaussian
integral, which can be performed exactly. This leads us to

R R S R CORT
xexp{ / dt%ﬁ} :eXp{ / dt—ﬁ} (C5)

Taking derivatives with respect to J¢, we have

§Z g,
5Ja(ll> :?0‘] (ZI)Z[J]

57 B 40
STl ) 20 ot~ n)Z

B gy )z, (co
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Setting J = 0, we get functions. Since Ry_; is &y_, dependent, we can not
5z perform the above path integral in the generating function
&a(t = =0, (C1) exactly.
< ( l)>0 57 (tl) o
a b 522 210 ab
(&4(1)&(12))o = ST 07 )y~ 5 078(1 = 1). APPENDIX D: SPECTRA IN A UNIFORM
1 2)1y=0 MEDIUM
(C7)

For a uniform medium, one can complete the following
Note that when § = g(R) but is not a constant (§,),  path integral by taking advantage of the two-point corre-
we do not have such simple expressions for two-point lation function in Eq. (28):
|

<exp{ix-/t0 dré(t }> /Dgexp{zx / dt§(t)—/t0tf dtggjz}
= /T)&exp{—/ dt@i [g(t) - i%x]z —/tf dt%xZ} = exp{—/lf dt%ﬂ}, (D1)
to 0 ) Ty

According to Eq. (37), we have

&N a2
E2 = | @xdipy——
d’p (27)

which leads to Eq. (39) after integrating over x. Similarly, one can get

<exp{1x / dt/ dt” }> exp{—/rfdt@xz} (D3)
o tf—to w127 )7
I ty p tr Qg
<exp{ i(x—y) / dt/ dt” +zy /fdt’!,‘(t’)}> :exp{—</fdt@(x—y)z—k/fdt@x-y)}, (D4)
fy f_ lo to 0 I 12 to 4

and then arrive at Eqs. (40) and (38) as well.

. 4 q
W(X, po; to, tg) e~ PPo) exp{—/f dt%xz}, (D2)
To

APPENDIX E: LEADING-ORDER (IN f) APPROXIMATION OF THE FUNCTIONAL INTEGRAL F

With the variable transformation & = € — i %x,

F(x.X.po)

~enl- [ afpe} [oe S enl [ a5 i g0 -Gt [ afY
:exp{ / dtqo 2}1‘[/( )ngk A( )exp{ B‘Z—Hx £, — ‘f z}f(Rk)}exp{—e%}, (E1)
where ¢ — 0 and N — co. It can be approximately rewritten, to the leading order in f, as
F(x,x,po)zexp{—[fdt%ﬁ}]ﬁ/(§>d2§;éio{1+e[;:+zx £ — qo X - ] }exp{ }
cew{- [Tufe} [oe g {e [ oy im0 rmen{- [TatE)
Eexp{—/tofdt%xz}{l—l-/to <[ /;(3 +ix-E(1) - ;Oxz—é]f(R(t,é’(t))>0}. (B2)
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Using the expansion of f(R) [see Eq. (51)] and the correlators

EwPo= [ @s/exp{— /

(€ (OPAR (1.8)),

Jref [

([E'(OPAR(1.E)ARI(1.8))y =
([ ()P AR (1, ) AR (1. ) AR (1. &) AR (1.&) - -

([€(1)]2)o(AR (1,€) AR (1,E) - - -

([E(1)]PAR (1,€)AR>(1,€) - - -

we arrive at

PN
F(x,X.p) —eXp{—/fdt%xz} /
Ty
Is 2]0 2} /
= exp —/ dr—x
{ ty 4
s 210 2} /
= expy — dr=—x
ST

where we have used [ dxg(x)5(x —x') = g(x' = x;)

AR (1.8), =

O
] )
LB o
f]o }0)/,0 dll(l—ll)g() & (11)—0, (E4)
E(0)F)o{AR'(1.£)ARI(1.8) (55)

AR™=-1(1.€))o =0, (E6)

AR™(1.8))o. (E7)

[(]05 LN
N-1 N-logq
(f(R(1,€(1)))o +25kk—26ﬂ
k=1 k=1
e (s ) (E8)

= >Vl g(x;)8;; for a smooth function g(x).
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