Lawrence Berkeley National Laboratory LBL Publications

Title

p - p Elastic Scattering in the Energy Range 300 to 700 MeV

Permalink

https://escholarship.org/uc/item/9wm328cp

Authors

Ogden, Philip M
Hagge, Donald E
Helland, Jerome A
et al.

Publication Date

1964-08-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0

University of California

Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Círculating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory
 Berkeley, California
 AEC Contract No. W-7405-eng-48

$\pi-p$ ELASTIC SCATTERING IN THE ENERGY RANGE 300 TO 700 MeV

Philip Mi. Ogden, Donald E. Hagge, Jerome A. Helland, Marcel Banner, Jean-François Detoeuf, and Jacques Teiger

August 12. 1964

Top ELASTIC SCATTERING IN THE ENERGY RANGE 300 TO $700 \mathrm{MeV}^{*}$

Fhilip M. Ogden, ${ }^{\dagger}$ Domald E. Hagze ${ }^{*}$ and Jerome A. Helland ${ }^{\text {*/ }}$
Lawreace Radiation Laboratory
University of Califormia Berkeloy, Calisozata
and
Marcel Banner, Jeam-Erançois Detoeuf, and Jacques Teigex ${ }^{\dagger \dagger}$
Cenire d'Evudes Nucléaires
Saclay, Framce
Auguse 22, 1964

Abstract

Differential cross soctions for ehablic $\pi-p$ scattering were measured et eight energics for positive pions and seven energies for megative pions. Energies ranged from 340 to 650 NivV . These measurementa were made at the 3 -GeV proton symchrotron at Saclay, Framce. A beam of pions from am internsi Boo target vas directed listo a liquid hydrogen target. Fifty-one zcinthlation counters and a matrix-coincidence system were used to measure simultaneously eiastic events at 21 angles and charged inelastic events at $78 \mathrm{~m}-\mathrm{p}$ angle pairs. Events were detected by coincleance of pulses indicaking the presence of an incident pion, scatsered pion, and recoil proton, and the resulte were stored in the memory of a pulse-height analyzer. Various correctons were applied to the data and a least-squares fit was made to the results at each exergy. The form of the fitting function was a power series in the cosine of the center-of-mass angle of the scattered pion. Integration uncer the fitted curves gave values for the total elastic cross sections (without charge exchange). The importance of certain angular-momeneum, brates is discussed. The $\pi^{-}-p$ data are comsistent with a D_{13} resonant atate at 600 MeV , but cio not necescarily require such a resonant state.

H. INTRODUCTION

This experiment conatitues a portion of an extensive study of tho phonomenclogy of the $\pi-N$ fineraction at energies above that of the welloknown (3/2,3/2) sesonanco occuring at a pion kinctic energy of 195 MeV ($\approx 1236 \mathrm{MeV}$ total c.m. eacrgy for tho $\pi-N$ system). Dliferenial and botal elastic cross sections were measured for the interactions $\pi^{+} p \rightarrow \pi^{+} p$ and $\pi^{-} p \rightarrow \pi^{-} p$. In Fig. ino eoc plote of tho tocal czoss sccions for $\pi^{+}-p$ and $\pi^{-1} p$ - ocatterimg as functions of the lab kinetic energy of the pion. The vertical hines represent the energies at which the meanurements of this experiment viere made; they are $310,370,410,450,490$, 550. 600 , and 650 MaV . The $\pi^{+}-\mathrm{p}$ interaction was studied at adi eight energies; for $\pi^{-1}-\mathrm{p} 310 \mathrm{NeV}$ was omitted.

Many experimenis have been performed at energies below 310 MeV . This low-energy region, Cominated by the ($3 / 2,3 / 2$) resonant state, is understood quite well. Recent extensive measurements at 310 MeV by Foote et al., Hill, Rugge, and Vik have given a faisly complete description Of the $\pi-\mathrm{N}$ inferaction at that energy. ${ }^{1}$ Alro, consicerable iniormation is quadable in the encrgy range from 550 to 1600 MeV from the experimense of Helland et al. , Wood ot al. . and Eandi. ${ }^{2}$

The purpose of this experiment was to give information in the 300- to $650-\mathrm{MeV}$ region in an attempt to bridge the gap in the exdating data. Several experimenis have been performed in this region. ${ }^{3}$ However, the statiatical accuracy of those measurements is quite poox in gemeral, and in several cases the gep in encrgy between measuremente is quite large.

In the 3 tudy of the $\pi-N$ interaction it is of interesf to know the role of the various angular-momenkum states. Such information can be obsained from a partial-wave analysis, fan which the scattering is deined by a set of phase shifes.

As che energy to tucreased, a parkial-wave analysia becomes more dificult because of the serge number of angulat momentum atates that become important. Fuskermore, when inclastic processes become possible. the phase shifts become compler quantives and thie reoults in a doubling of che mumber of necesamy parameters. For these reabons a partial-wave anabysis at a single energy produces many possible solutions. is is hoped that, by requixing that the phaee shific be continuous functions of energyo mozt solutions can bo oliminated.

In oxder co apply the restrictions of energy cominuity, it is necessary to bave a closely spaced network of accurate data. Thus, we reaize the importance of data in the $300-60-650-\mathrm{MeV}$ xange in connecting the low-energy date with tine high-energy data.

11. EXPERIMENTAL PROCEDURE AND EQUIPMENT

A. Procedure

A plan view of the experiment is shown in Fig. 2. Pobitive and negative pions were produced in a BeO target inside Samrne, the Saclay proton syachrotron. Dy means of a magnetic optical system, a beam of pions with the deskred charge was momentum-analyzod and focused on a liquid hydrogen target. Four octntilation counters were used to monitor the bemm. Because protons in the positive pion beam had a longer time of fight than pions. reaponse of the counting system to protons was eliminated electronically. Response to electroms and a portion of the muons in the beam was eliminated with a gea Cerenieor counter. Cazes in which two beam particles were too cloae together in time were eliminated electronically.

Scattered pions and ticir associated recoll protonc emerging from the Iiquid hydrogen target were detected with an array of 46 scintillation connters. Elastic-scattering events were detected by a coincidence of pulses indicating the pacsence of the incident pion, acattered plon, and recoll proton. Geometric restrictions requiring that the event be coplanar or nearly coplumax and at proper pion and proton angles minimized the zmelaskic contamantion. By measuming inelastic events in the region near sha elastic ovents, a correction was determined for the elastic channels. Elastic events 2t 21 scattering angles and charged inelastic events at 78 $\pi \mu p$ "oif-elaøtic angle" pairs were simultancously measured and stored in the memory of a puise-height anelyzer. At the end of each run the data sn the mernozy were dimultaneously punched on LBM cards and typed by an Qlectraic typawriter.

B. Beam Design and Hydrogen Taxget

The internal Saturne beam of $3-\mathrm{GeV}$ protons was caused to impinge upon a BeO target. As shown in Fig. 2, a symmetric optical system congioting of cwo triplet quadrupole magnete (Ω_{1} and Ω_{2}) and two bending magnets $\left(B_{1}\right.$ and $\left.B_{2}\right)$ conducted particles of the proper charge and momentum irom tho internal target to a position and momentum focus at tho hydrogen targoi. A lead (Fb) collimator was incorporated at the intermediate focus to destine a apread of 43% in the beam momentum.

The liquid hydrogen target was 10.3 cm long and was similat to the target described in reference $2 a$.

C. Scintiahtion and Cerenkov Countore

Four aciratidation counters and a Cerenicov counter were used to monitor tho beam (seo Fig. 2). Counters M_{2} and M_{3} were beam-defining counters, M_{1} being at the intermediate image and M_{3} betng 25 cm in front of the
hydrogentarget. Counters $M_{1 A}$ and M_{2} were large counters designed to decect all che beam parsicles. A coincidence of signals from M_{1}, M_{2}, and M_{3} formed the basis of the beam monitor system. The signal from $M_{1 A}$ end a second signal from M_{2} were used in the double-pulse-rejection sysum (discussed in reference 2a).

In order to reject electronically the electrons and a portion of che muona. a gemeous ethylene Cerenkov counter C was placed near the iniermediate image. Elaylene was chosen because at casily attainable pressures it has an index of refraction in the proper range to dietinguish between muons and piona at the energien of this experiment. At 310 MeV an absolute presoure of $42.5 \mathrm{~kg} / \mathrm{cm}^{2}$ wes requized. The Cerenkov counter is described in reference 4.

The array of 46 ecintillation counters used to detect scattered particles is Bhown schematically in Fig. 3. The 21 π counters were placed to the right of the beam et various lab anglea between 25 and 153 deg. Their purpose was to dotect scattered pions.

The solid-angle region available to protone conjugate to the pions decected by the π counters was covered by 25 overlapping counters called p counters. The p counters were combined in 21 groups, each group containing from three to seven counters. Such a group, called a P counter. detected all protons conjugate to the correaponding π counter. The ρ counter aigmals for given group were added electronically. The way in which the ρ counters were combined was different for each energy of the incident pion beam.

The counter S_{0}. shown partly around the hydrogen target in Fig. 3. Was arranged 80 as to be missed by the pions in the beam but to be sraversed by any pion ecattered from the target into 2π counter.

D. Electronic Apparetus

The electronic apparatus consisted of three systems: the beammonitor system, the matrix-coincidence system, and the core storage oystem. These systems were very timilas to those used in the experiment by Felland at 21. ${ }^{2 a}$ Two differences ahould be noted: (a) Changes were made in the beam-monitor system to improve its frequency response and reliability. (b) A 100 -channel core storage was used instead of the oxginal 64-channel core storage. The matrix-coincidence system was modified to adapt to the larger core storage. These changea made posible an increase in the number of inelastic channels from 42 to 78.

III. DATA ANALYSIS

Data were reduced and corrections applied in a manner similar to that of Helland ot al. 2a Two exceptions were: (a) The necessity of a correction Sor ciectron contamination in the beam was climinated by the uae of the Cereakov counter C. (b) Muon-coniamination corrections were smaller than in the experiment of Helland et 21., because of the use of the Cerenkov. counter. The muon correction in this experiment ranged from 2.25% at 650 MeV to 4.1% at 310 MeV .

IV. RESULTS

A. Differential Cross Sections

Tho reaults of the differential-crose-section measurements and the associated exrors in standaxd deviations are given in Tables I through VIII. The values given for $\cos \theta^{*}=1.0$ are theoretical values obtained from the opical theorem and dispersion relations. The disperaion-relations calculation is that of Cence, Cheng, and Chiu. ${ }^{5}$

B. Lease-Squares Fitted Curvos

The curve of the form

$$
\begin{equation*}
\frac{d \theta\left(\theta^{i}\right)}{d n}=\sum_{n=0}^{N} a_{n} \cos ^{n} \theta^{*} \tag{1}
\end{equation*}
$$

was leant-squares fitted to the data. ${ }^{6}$ The coeficients a_{n} were determined by the least-squares calculation. The error matrix of the least-squares fit wea used to detormine the errors in the coefricients.
|. The difierential croas-bection data and fitted curves are ploted in Figs. Athrough 7. The disperston-relations polnts were used in making the fiis. For $\pi^{+}-\mathrm{p}$, a fourth-order fit-i.c. $N=4--w a s$ used ath anergies. Fox $\pi^{-}-p$, fourth-order fir was wsed at 370 and 410 MeV , and a fixth-order qus arergies 450 MeV and above.

The coeficients and their errors are listed for each energy and chazge in Tables $E X$ and X. They are also ploted as a function of energy in Figs. 8 and 9.

Several criteria were considered in choosing the order of fit. One critexion was that if a given order were required at a certain energy, no Lower order was ever chosen at a higher energy. This corresponde co the principle that ae the encrgy increases. the number of partial waves taking 2atrt in the scattering should not decrease.

An interesting teat was made by compering the kits obtained with and without the dispersion-relations.point. In almost every case, the two fits Eor the chosen order ware neerly identical.

An mportant conaideration was the standard x^{2} iest. The goodness-of-iit pesameter, $\left(x^{2} / d\right)^{1 / 2}$, for which d is the number of degrees of freedorn, was calculated for each order. The chosen order was the lowest ore for which an increase in the order gave lictle change in the goodness-O8-Ete parameter. Except for a. Eew cases in which the other previouely
mentioned criteria incikeated strongly that a higher order was needed, the χ^{2} test determined the orden of fik. The goodness-of-itis parametor, the order of zif, and tho number of degrecs of freodom for oach energy are listed in Table XI for $\pi^{+}-p$ and Table XII for $\pi^{-}-p$.

C. Total Elastic Cross Sections

By integratige mader the fitted differental crose-section curvea. measumements of the total clastic cross section were obtained. These vaines and their ersora are listed in Table XIII and plotted as a function of energy in Fig. 10.

V. DISCUSSION

A. Pastial-Wave Equations

In the study of the plon-nucleon interaction, it is of interest to know how the various angulax-momonfum states participate in the scattering. Particularly, one would like to know what states, if any, "are dominant. One approach to this problem is to examine the behavior, me a function of emergy, of the coefficients of a cosine-power-series expansion of the diferential cross section.

The parial-weve expansion of the differential croed section for a spinless particle (pion) and a spin- $4 / 2$ particle (proton) is

$$
\begin{align*}
& \frac{d \sigma\left(\theta^{*}\right)}{d \Omega^{*}}=\left|\sum_{\ell=0}^{\infty}\left[(\ell+1) A_{L}^{+}+\ell A_{L}^{-}\right] P_{L}\left(\cos \theta^{*}\right)\right|^{2} \tag{2}\\
& \quad+\left|\sum_{L=1}^{\infty}\left(A_{L}^{+}-A_{L}^{-}\right) P_{L}^{1}\left(\cos \theta^{*}\right)\right|^{2}
\end{align*}
$$

The index 1 representa the oxbital arigulas-momentum state, and che + and superccripss indicate that the total angular momenîum J is $2+3 / 2$ or $2-1 / 2$. reapectively. The functions $p_{l}\left(\operatorname{con} \theta^{(\pi)}\right.$ and $p_{l}^{1}\left(\cos \theta^{*}\right)$ are
respectively the Legendre polynomial and the first asoociated Legencire polymomial of ozder 2. The partial-wave scattering mplitude A^{*} can be writton es a function of the real part of the phase ehift fif the absorption paramêer η_{l}^{*}, and the c.m. wave number k :

$$
\begin{equation*}
A_{B}^{ \pm}=\left[\eta_{2}^{ \pm} \exp \left(2 i \delta_{R}^{ \pm}\right)-1\right] / 2 \mathrm{ik} . \tag{3}
\end{equation*}
$$

If the summations in Eq. (2) are cut off at a value $f_{\text {max' }}$ that exprescion car be expended and the terms recombined in the form

$$
\begin{equation*}
\frac{d \sigma\left(\theta^{2}\right)}{d \Omega^{*}}=\sum_{n=0}^{22} a_{n} \cos ^{n} \theta^{*} \tag{4}
\end{equation*}
$$

This expansion relaten the cocficients a_{n} to the partial-wave amplitudes. (See Eq. 16 of reference 2a.)

B. Interpretation of $\pi^{+}-\mathrm{p}^{-}$Results

The $\pi^{\dagger}-p$ coefincients are ploteed vs energy in fig. 8. The smooth behavior of the coofficients indicates that litcle of interest is occurring in the $\mathrm{T}=3 / 2$ state in this encrgy range. Below 300 MeV we know that the scatesting is dominated by the P_{33} state, resonant at about 200 MeV . The moncor decrease in $a_{0} A_{1}$, and a_{2} in going from 300 to 700 MeV can eashy be recognized as a result of the decreasing importance of the P_{33} state.

One observation regarding the D-wave phases can be made from a consideration of the cocfficiont 2_{4}. Since a fifth-or higher-order fit was not needed, we are fairly conflent that F waves can be neglected. With this essumption, we have

$$
\begin{equation*}
D_{4}=45 \operatorname{Re}\left(D_{33}^{*} D_{35}\right)+(45 / 4)\left|D_{35}\right|^{2} \tag{5}
\end{equation*}
$$

From Fig. 8 we see that a_{g} is negative. Since the second term in Eq.
is positive definite, the first term must be negative. This implies that the D_{33} and D_{35} phases have opposite signs.

C. Intexpretation of $\pi^{-}-p$ Results

Next, let us consider the more complicated $\pi^{-1}-p$ situation. The presence of both isotopic spin states makes the interpretation of the coefficients difficult. However, we have seen that the $T=3 / 2$ states are in general of small amplitude and slowly varying in this energy range.

The π^{-m} p coefficients are plotted vs energy in Fig. 20. Coneiderable structure is apparent in the region around 600 MeV . This structure appears to be associated with peaks in both the total cross section (Fig. 1) and the total elastic cross section (Fig. 10).

Several explanations have been given for the $600-\mathrm{MeV}$ enhancement. Peierls, on the basis of photoproduction measurements, ascribed the enhancement to a resonance in the D_{13} state. ${ }^{7}$ Bareyre et al. have recently reported evidence that a D_{13} resonance is not sufficient, and that a resonance in either the S_{11} or P_{11} state may occur at about 430 MeV in addition to a D_{13} resonance at $600 \mathrm{MeV} .{ }^{8}$ Further suggestion of two resonant states is given by the recent partial-wave analysis by Roper. ${ }^{9}$

Neither a P_{11} nor a D_{13} resonance fits in the scheme of the Regge-pole hypothesis. ${ }^{10}$ Furthermore, the nucleon itself can be considered as a P_{11} $\pi-\mathbb{N}$ state, and one would not expect two distinct resonances with identical quantum numbers. Such theoretical difficulties and various other considerations have led many to believe that the $600-\mathrm{MeV}$ enhancement is a result of inelastic processes. Ball and Frazer have pointed out that a rapidly increasing inelastic cross section may give rise to a peak in the elastic cross section: ${ }^{11}$ Such a behavior could aleo be associated with certain prominent angular momentum states.

A few general remarks about reeonances are in order: The BreifWhaner resonance theory predicts for an elastic resonant amplitude the Sosm ${ }^{22}$

$$
\begin{equation*}
k A=\Gamma_{e l} /\left[2\left(E_{R}-E\right)-I \Gamma\right] \tag{6}
\end{equation*}
$$

Here, $\Gamma_{\text {es }}$ and Γ are tho clastic and rotal widing of the resonance. The cotel c.m. energy is E and che resonant energy is E_{R}. It is convenient to introduce the notation of Watson et al., ${ }^{43}$

$$
\begin{equation*}
x=\Gamma_{e l} / \Gamma \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon=(2 / \Gamma)\left(E_{R^{-}}-E\right) . \tag{8}
\end{equation*}
$$

In cerma of these symbole.

$$
\begin{equation*}
k A=x /(c-i) \tag{9}
\end{equation*}
$$

If the polar form of kA is uged, that is,

$$
\begin{equation*}
k A=|k A| \exp (i \theta) \tag{10}
\end{equation*}
$$

one can show

$$
\begin{equation*}
\epsilon=\cos \theta \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
|k A|=x \sin \theta . \tag{12}
\end{equation*}
$$

Thus, if the clasticity x is constant, the amplitude kA liow on a ciscle Of radus $x / 2$. as shown in Fig. 11 .

In order to assess the compatibility of the data of this experiment with 2. D_{13} resonance, we shall asoume that a D_{13} reaonance with a Breit-Wigner Sorm is present and attempt to fit the energy variation of the $\pi^{-}-p$ coefficiente. Certain reasonable assumptions will be made about the other atanes involyed. The accuracy of the fice will cetermine the compatibility Of the data wifte the aswumptiong.

In this rough analysis we shall neglect the effecte of the statew whose amplitudes we would expect to be small-namely, the P_{13}, D_{33}, D_{35}, and F_{35} atates, and all states with total angular momentum $J>5 / 2$. Experiments at higher energies have indicated that the F_{15} btate is revonant and the D_{15} amplitude barge (or vice versa) at about $900 \mathrm{MeV} .{ }^{2}$ We shall assume an F^{45} resonance at 900 MeV with a Brelt-Wigner form. A Breit-Wigner form for the P_{33} resonance will also be used, the width being such as to agree at 310 MeV with the partial-wave analysis by Foote et al. ${ }^{\text {ib }}$ The parameters x, F and E_{R}, which we shall use for the P_{33}, D_{13}, and F_{45} resonances, are given in Table XIV. Thase for the D_{13} and F_{15} states were either taken directly from or estimated from the work of Ommes and Valladas. ${ }^{14}$ These parameters were chosen somewhat arbitrarily and chould not be taken too seriously.

The real and imaginary parts of the resonant amplitudes are ploted vs energy in Fig. 12. On the low-energy side of the D_{13} and F_{15} resonances, multiplicative factors were put in to hring the amplitudes to zero. This was necessary because of the simplifying assumption that the $\Gamma^{\prime} s$ were constans.

The behavior assumed for the $S_{1 / 2}, P_{1 / 2}$, and D_{15} states is shown in Fig. 13. Motivation for the assumptions made is given in the ensuing paragrephs.

Let us now consider the coefficient a_{0}. The $\left|D_{3 / 2}\right|^{2}$ term gives a positive peak at 600 MeV , as shown in Fig. 14. From Fig. 9 we see that no such peak appears in a_{0}. However, if we assume that the real part of the $S_{i / 2}$ amplitude is negligibly small and that the imaginary part is constant at 2. value 0.27 , the $S_{1 / 2} D_{3 / 2}$ interference term cancels che effect of the $\left|D_{3 / 2}\right|^{2}$ term. The $S_{1 / 2} D_{3 / 2}$ term is shown with the $\left|D_{3 / 2}\right|^{2}$ term in Fig. 14. The assumption of a pure imaginary S-wave amplitude is not unreasonable in View of tho fact that one would expect inclastic ecattering to bo most important in the low-angular-momentum states: Furthermore, since the $\pi^{-0}-p$
amplitude is a combination of two amplitudes, it could be pure imaginary even though the phase shifts for the individual isotopic spin states may be pure real. If $2 \operatorname{Re} S_{11}=-\operatorname{Re} S_{31}$, the resultant $S_{1 / 2}$ amplitude for π ip pure imaglnary.

The same two terms, $\left|D_{3 / 2}\right|^{2}$ and $S_{1 / 2} D_{3 / 2}$, which have opposite gigns in a_{0} : have the same sign in a_{2} and combine to produce a large peak, a. shown in Fig. 45. This is consistent with the large positive peak in a a_{2} shown in Fig. 9.

The general trend in the cocfficient a_{4} appears to be consistent with a $\mathrm{D}_{3 / 2} \mathrm{D}_{5 / 2}$ inferference for which the $\mathrm{D}_{5 / 2}$ amplitude has the form shown in Fig. 13. The contribution to ${ }_{4}$ from this torm is plotied in Fig. 16.

The contribution to a_{3} from $P_{3 / 2} D_{3 / 2}$ interforence is shown in Fig. 17 together with that from $D_{5 / 2}{ }^{5} 5 / 2$ interference. Thece two terms give the proper irend in a_{3}.

The states discussed so far do not give a good prediction for the coefficient. a 1_{1}. Both the $P_{3 / 2} D_{3 / 2}$ and $D_{5 / 2} F_{5 / 2}$ terms give littie contribution to a_{1} $2 \hat{6} 600 \mathrm{MeV}$, 2 s ahown in Fig. 18. However, a 2 mb peak in a_{1} is indicated by the data in Fig. 9. The only other state that could interfere with the $D_{3 / 2}$ state and contribute to a_{1} is the $P_{1 / 2}$ state. If we assume, as we did for the $S_{i / 2}$, that the $P_{1 / 2}$ amplitude is pure imaginary and constant, the $P_{1 / 2} D_{3 / 2}$ contribution to a_{1} is $2 s$ shown in Fig. 18. Furthermore, the $P_{1 / 2} D_{3 / 2}$ interference term does not contribute to any other coefficient.

Thus one can see the motivation for choosing the forms of the amplitudes given in Figs. 12 and 13. Using these amplitudes and considering thll the terms that contribute to each cocfficient, we obtain the behavior of the coefficients shewn in Fig. 19. The data of this experimemt and the $698-\mathrm{MeV}$ ciata of Helland et al. ${ }^{2 a}$ are also plotted in Fig. 19.

One can see that the agreement between the data and the predictions io fairly good in view of the many simplifying assumptions made. This does not prove the existence of a resonance in the D_{13} state, but shows that the cata appear to be consiatent with a D_{13} resonance.

The amplitudes chosen to fit the coefficients of the angular distributions can also be uaed to predict the polarization of the recoil proton. In Fig. 20 the predicted polarizations for $523 ; 572$, and 689 MeV are plotted with the data of Eandi. ${ }^{2 d}$ Altiough the agreement at 523 MeV is not very good, the predictions for 572 and 589 MeV fit the data very well.

In regard to the evidence for two resonances in the $400-10-700-\mathrm{MeV}$ region, it can only be said that in this rough analysie the necessity of a second resonance was not apparent.

In summary, we can say that the D_{13} state rises to prominence in the energy region from 400 to 700 MoV . Furthermore, it appears that the $\pi^{-}-p$ differential cross section data are consistent with a D_{13} phase shift that passes through 90 deg. However, an alternative explanetion cannot be ruled out. Becquse of the importance of inelastic processes, the D_{13} resonance, if indeed it may be called a resonance, may be of a nature fundementally different from that of a bound-state type of resonance, associated with 2 Regge pole. Further investigation will be necessary to resolve these uncestainties. Accurate polarization and charge-exchange measurements should aid in a better underetanding of this problem.

ACKNOWLEDGMENTS

Tho authors would like to acknowledge the assistance of Mr. Jean Hamel and Mr. Larry Scott in the performance of the experiment. Thanke are also due Professor Burton J. Moyer and Profernor A. C. Helmholz for their many helphil suggestions and their continued interest in the experiment.

FOOTNOTES AND REFERENCES

*This work wat done under the auspices of the U. S. Atomic Energy Comminaion and the French Commissariat a l'Energie Atomique.
*Preaent address: Seattle Pacific College. Seattle, Washingion.
Preaeri addrebs: Goddard Space Flight Center, Greonbelt, Maryland.
Present adress: University of California, Los Angeles, California.

+ Assigmed to Cantro d'Euces Nucleairee by the University of Caen, Caon, Frence.

1. (a) J. Fi. Foots, O. Chamberlain, E. H. Rogers, H. M. Steiner, C. E. Wiegand, and T. Ypsilantis, Phys. Rev. 122, 948 (1961); (b) J. H. Foote, O. Chamberlain, E. H. Rogera, and H. M. Steiner, Phyo. Rev. 122, 959 (1961);
(c) H. R. Rugge and O. T. Vik, Phya. Rev. 129, 2300 (1963);
(d) O. T. Vik and H. R. Rugge, Phys. Rev. 129, 2311 (1963);
(e) Roger Hill, Pion-Nucleon Scattering at 310 MeV : Neutron Polarization in $\pi^{-}+p \rightarrow \pi^{0}+n$ and Phase Shift Analysis (Ph. D. Thesis), Lawrence Radiation Laboratory Report UCRL-11140, Dec. 1963 (unpublished).
2. (a) J. A. Helland, T. J. Devlin, D. E. Hagge, M. J. Longo, B. J. Moyor, and C. D. Wood, Phys. Rev. 134, B1062; 134; B1079 (1964);
(b) C. D. Wood, T. J. Devilin, J. A. Holland, M. J. Longo, B. J. Moyer and V. Perez-Mendez; Phys. Rev. Letters 6, 481 (1961);
(c) Richard D. Eandi, Polarization of Recoll Protons in Pion-Proton Elastic Scattering at 523, 572, and 689 MeV (Ph. D. Thesis), Lawrence Radiation Laboratory Report UCRL-10629, March 1963 (unpublished).
3. (a) M. E. Blevina, M. M. Block, and J. Leitner, Phyo. Rov. 112, 1287 (1958);
(o) R. R. Crittenden, J. H. Scandrett, W. D. Shephard, W. D. Walker, and J. Eallam, Phys. Rev. Lotters 2, 121 (1959);
(c) L. K. Goocwin, R. W. Kennoy, and V. Perei-Mendez, Phys. Rev. 122. $655(1961):$
(d) F. Grasd, G. MacLsod, L. Montanet, M. Cresti, R. Barloutaud, C. Choquet, J. Gailard, J. Heughobaert, A. Leveque, P. Lehman, J. Meyer, and D. Revel, Nuovo Cimento 22, 193 (1961);
(e) E. L. Grigoryev and N. A. Mitin, Soviet Phys. JETP 10,1123 (1960);
(f) M. Kozodaev, R. Suliaev, A. Fillipov, and Iu. Shcherbakov, Soviet Phyw. Doklady 1, 17 (1956);
(g) R. S. Margulies, Phys. Rev. 100, 1255 (1955);
(h) N. A. Mitin and E. L. Grigoryev, Soviet Phys. JETP 5, 378 (1957);
(i) John 1. Shonle, Phys. Rev. Letters 5, 156 (1960);
(j) Wiliam J. Wilis. Plys. Rev. 116, 753 (1959);
(k) V. G. Zinov and S. M. Korenchenko, Soviet Phys. JETP 11, 794 (1960);
(1) Peter C. A. Newcomb, Phys, Rev. 132, 1283 (1963).
4. J. Duboc, J. Banaigs, and J. F. Detoeuf, J. Phys. Radium 22, 64A (1961).
5. Robert J. Conce, David A. Cheng, and Charles B. Chiu (Lawrence Radiation Laboratory, Berkeley, Callfornia), private communication.
6. P. Cziffra and M. J. Moravcsik, A Practical Guide to the Method of Least Squares, Lawrence Radiation Laboratory Report UCRL-8523 Rev., June 1959 (unpublished).
7. Romald F. Peierla, Phys. Rev. 118, 325 (1960).
8. P. Bareyre, C. Bricman, G. Valladas, G. Villet, J. Biaerd, and J. Seguinot, Phys. Lotters 8. 137 (1964).
9. L. David Roper, Rhye. Rev. Lettera 12, 340 (1964).
10. P. Carruchers, Phys. Rev. Lettere 10, 540 (1963).
11. J. S. Ball and W. R. Frazer. Phys. Rev. Letters 7, 204 (1961).
12. J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (John Wliey and Sons, Inc. New York, 1952), p. 400.
13. M. B. Watson, M. Ferro-Lumzi, and R. D. Tripp, Phys. Rev. 131, 2248 (1963).
14. R. Omnes and G. Valladaa, in Proceedinge of the International Conference on Elementary Particles, Aiz-en-Provence, September 1961, Vol. I, p. 467.

Table I. Differential cross-section data for $T_{\pi}=310 \mathrm{MeV}$.

Table II. Differential cross-section data for $T_{\pi}=370 \mathrm{MeV}$.

$\operatorname{Cos} \theta^{*}$	$\mathrm{d} \sigma\left(\theta^{*}\right) / \mathrm{d} \Omega^{*}(\mathrm{mb} / \mathrm{sr})$		
	$\ldots \pi^{+}-p$	$\pi^{-}-\mathrm{p}$	\ldots
1.000	10.040 ± 1.000	1.240 ± 0.120	
0.584	5.524 ± 0.160	-1.305 ± 0.044	
0.510	4.845 ± 0.157	1.182 ± 0.052	
0.425	4.045 ± 0.212	1.117 ± 0.075	
0.328	2.933 ± 0.291	0.899 ± 0.093	
0.228	1.918 ± 0.404	0.563 ± 0.114	
0.130	1.744 ± 0.585	0.582 ± 0.142	
0.014	1.349 ± 0.070	0.581 ± 0.026	
-0.098	0.869 ± 0.056	0.447 ± 0.024	
-0,204	0.653 ± 0.050	0.448 ± 0.024	
-0.336	0.596 ± 0.036	0.389 ± 0.016	
-0.496	0.629 ± 0.038	0.429 ± 0.018	
-0.632	0.910 ± 0.050	0.506 ± 0.022	
-0.735	1.219 ± 0.065	0.650 ± 0.027	
-0.811	1.448 ± 0.081	0.740 ± 0.034	
-0.868	1.848 ± 0.098	0.823 ± 0.041	
-0.908	$1.995=0.113$	0.933 ± 0.050	
-0.949	2.199 ± 0.108	1.000 ± 0.043	

Table III. Differential cross-section data for $T_{\pi}=410 \mathrm{MeV}$.

$\operatorname{Cos} \theta^{*}$	$\mathrm{d} \sigma / \mathrm{d} \Omega^{*}(\mathrm{mb} / \mathrm{sr})$	
	$\pi^{+}-p$	$\pi^{-}-\mathrm{p}$
1.000	8.150 ± 0.810	1.710 ± 0.170
0.639	5.423 ± 0.116	1.542 ± 0.039
0.571	4.375 ± 0.119	1.383 ± 0.044
0.495	3.841 ± 0.142	1.264 ± 0.065
0.408	3.199 ± 0.218	1.192 ± 0.089
0.310	2.065 ± 0.254	0.928 ± 0.094
0.209	1.342 ± 0.370	0.651 ± 0.125
0.110	1.361 ± 0.363	0.661 ± 0.117
-0.006	0.923 ± 0.052	0.531 ± 0.026
-0.118	0.551 ± 0.038	0.406 ± 0.023
-0.223	0.364 ± 0.036	$0.372=0.021$
-0.353	0.279 ± 0.025	0.358 ± 0.015
-0.511	0.284 ± 0.029	0.389 ± 0.017
-0.644	0.507 ± 0.036	0.528 ± 0.022
-0.744	0.773 ± 0.044	0.680 ± 0.028
-0.818	0.912 ± 0.055	0.765 ± 0.034
-0.873	1.034 ± 0.066	0.856 ± 0.044
-0.912	1.156 ± 0.077	1.050 ± 0.051
-0.951	1.137 ± 0.070	1.149 ± 0.047

Table IV. Differential cross-section data for $T_{\pi}=450 \mathrm{MeV}$.

$\operatorname{Cos} \theta^{*}$	$\mathrm{d} \sigma / \mathrm{d} \Omega^{*}(\mathrm{mb} / \mathrm{sr})$	
	$\pi^{+}-\mathrm{p}$	$\pi^{-}-\mathrm{p}$
1.000	6.520 ± 0.650	2.540 ± 0.250
0.628	4.386 ± 0.092	1.594 ± 0.041
0.558	3.552 ± 0.094	1.494 ± 0.046
0.480	3.090 ± 0.126	1.412 ± 0.078
0.392	2.483 ± 0.150	1.190 ± 0.088
0.292	1.844 ± 0.201	0.980 ± 0.107
0.191	1.070 ± 0.306	0.566 ± 0.139
0.091	1.116 ± 0.243	0.670 ± 0.102
-0.025	0.634 ± 0.040	0.426 ± 0.026
-0.136	0.351 ± 0.032	0.380 ± 0.022
-0.241	0.201 ± 0.027	0.276 ± 0.021
-0.370	0.104 ± 0.019	0.255 ± 0.015
-0.525	0.186 ± 0.019	0.355 ± 0.018
-0.655	0.268 ± 0.025	0.496 ± 0.023
-0.752	0.357 ± 0.032	0.717 ± 0.030
-0.824	$0.534=0.040$	0.917 ± 0.039
-0.877	0.602 ± 0.046	1.077 ± 0.047
-0.915	0.599 ± 0.059	1.197 ± 0.059
-0.953	0.689 ± 0.051	1.161 ± 0.053

Table V_{a} Differential cross-section data for $T_{\pi}=490 \mathrm{MeV}$.

$\cos \theta^{*}$	$\mathrm{d} \sigma / \mathrm{d} \Omega^{*}(\mathrm{mb} / \mathrm{sr})$		
	$\pi^{+}-p$	$\pi^{-}-\mathrm{p}$	\square
1.000	5.170 ± 0.520	3.570 ± 0.360	
0.685	3.701 ± 0.091	1.866 ± 0.057	
0.617	3.751 ± 0.079	1.879 ± 0.046	
0.545	2.960 ± 0.080	1.558 ± 0.051	
0.466	2.471 ± 0.112	1.433 ± 0.089	
0.376	2.140 ± 0.131	1.286 ± 0.097	
0.276	1.279 ± 0.179	0.941 ± 0.118	
0.173	0.819 ± 0.220	0.620 ± 0.127	
0.073	0.645 ± 0.310	0.494 ± 0.165	
-0.043	0.419 ± 0.042	0.498 ± 0.030	
-0.154	0.243 ± 0.028	0.288 ± 0.023	
-0.258	0.093 ± 0.024.	0.255 ± 0.020	
-0.386	0.061 ± 0.016	0.235 ± 0.015	
-0.538	0.100 ± 0.019	0.321 ± 0.018	
-0.665	0.169 ± 0.021	0.589 ± 0.026	
-0.760	0.241 ± 0.028	0.781 ± 0.034	
-0.830	0.342 ± 0.031	1.009 ± 0.043	
-0.881	0.402 ± 0.038	1.101 ± 0.057	
-0.918	0.378 ± 0.047	1.292 ± 0.064	
-0.954	0.353 ± 0.041	1.513 ± 0.058	

Table VI. Differential cross-section data for $\mathrm{T}_{\pi}=550 \mathrm{MeV}$.

Cos^{*}
1.000
0.728
0.671
0.600
0.526
0.445
0.354
0.251
0.148
0.047
-0.070
-0.180
-0.283
-0.408
-0.556
-0.679
-0.771
-0.838
-0.887
-0.922
-0.957

$\mathrm{d} \sigma / \mathrm{d} \Omega^{*}(\mathrm{mb} / \mathrm{sr})$	
$\pi^{+}-\mathrm{p}$	$\frac{\pi^{-}-\mathrm{p}}{3.850} \pm 0.380$
3.046 ± 0.068	2.410 ± 0.540
2.792 ± 0.065	2.751 ± 0.075
2.661 ± 0.055	2.422 ± 0.057
2.192 ± 0.060	2.061 ± 0.063
1.771 ± 0.078	$1.63 \pm \pm 0.082$
1.403 ± 0.085	1.419 ± 0.095
0.923 ± 0.121	1.014 ± 0.124
0.523 ± 0.184	0.567 ± 0.175
0.418 ± 0.194	0.413 ± 0.183
0.299 ± 0.026	0.189 ± 0.031
0.154 ± 0.020	0.161 ± 0.023
0.067 ± 0.018	0.133 ± 0.022
0.053 ± 0.014	0.190 ± 0.016
0.104 ± 0.014	0.406 ± 0.022
0.138 ± 0.016	0.724 ± 0.031
0.152 ± 0.020	1.031 ± 0.040
0.155 ± 0.023	1.219 ± 0.056
0.146 ± 0.027	1.394 ± 0.065
0.125 ± 0.032	1.832 ± 0.084
0.133 ± 0.026	1.696 ± 0.075

Table VII. Differential cross-section data for $T_{\pi}=600 \mathrm{MeV}$.

$\operatorname{Cos} \theta^{*}$	$\mathrm{d} \sigma / \mathrm{d} \Omega^{*}(\mathrm{mb} / \mathrm{sr})$	
	$\pi^{+}-\mathrm{p}$	$\pi{ }^{-3}-\mathrm{p}$
1.000	2.890 ± 0.290	6.930 ± 0.690
0.718	2.340 ± 0.055	3.778 ± 0.088
0.659	2.118 ± 0.052	3.289 ± 0.082
0.586	1.994 ± 0.044	2.995 ± 0.069
0.511	1.576 ± 0.050	2.462 ± 0.075
0.428	1.406 ± 0.068	1.888 ± 0.087
0.335	1.041 ± 0.071	1.449 ± 0.097
0.231	0.669 ± 0.097	1.037 ± 0.133
0.127	0.419 ± 0.167	0.569 ± 0.238
0.026	0.384 ± 0.105	0.356 ± 0.156
-0.090	0.200 ± 0.022	0.207 ± 0.029
-0.200	0.108 ± 0.019	0.081 ± 0.023
-0.302	0.068 ± 0.019	0.103 ± 0.024
-0.425	0.043 ± 0.016	0.185 ± 0.022
-0.570	0.091 ± 0.016	0.449 ± 0.026
-0.691	0.182 ± 0.018	0.640 ± 0.034
-0.779	$0.151 \pm 0.020^{\circ}$	0.950 ± 0.045
-0.844	0.135 ± 0.022	1.028 ± 0.053
-0.891	0.107 ± 0.024	1.155 ± 0.064
-0.925	0.126 ± 0.027	1.216 ± 0.079
-0.958	0.082 ± 0.027	1.340 ± 0.072

Table VIII. Differential cross-section data for $T_{\pi}=650 \mathrm{MeV}$.

$\cos \theta^{*}$
1.000
0.708
0.648
0.573
0.496
0.412
0.317
0.212
0.107
0.006
-0.110
-0.219
-0.320
-0.441
-0.584
-0.701
-0.787
-0.850
-0.895
-0.928
-0.960

$\frac{d \sigma / d S}{\pi^{+}-p}$
2.340 ± 0.230
6.430 ± 0.640
1.786 ± 0.046
3.170 ± 0.085
1.599 ± 0.047
2.756 ± 0.081
1.590 ± 0.039
2.379 ± 0.064
1.301 ± 0.048
1.951 ± 0.077
1.048 ± 0.058
1.444 ± 0.086
0.795 ± 0.064
1.228 ± 0.096
0.496 ± 0.087
0.833 ± 0.125
0.240 ± 0.104
0.252 ± 0.155
0.168 ± 0.143
0.155 ± 0.226
0.111 ± 0.023
0.171 ± 0.033
0.009 ± 0.019
0.153 ± 0.025
$0.072=0.018$
0.204 ± 0.027
0.128 ± 0.016
0.343 ± 0.024
0.158 ± 0.018
0.618 ± 0.032
0.171 ± 0.020
0.676 ± 0.039
$0.233=0.021$
0.820 ± 0.045
0.207 ± 0.023
0.797 ± 0.050
0.151 ± 0.028
0.650 ± 0.059
0.121 ± 0.029.
0.763 ± 0.064
-0.960
0.125 ± 0.027
0.755 ± 0.058

Table IX. Coefficients of powers of $\cos \theta^{*}\left(\pi^{+}-p\right)$.

| \therefore | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a_{0} | 310 | 370 | 410 | 450 | 490 | 550 | 600 | 650 |
| a_{0} | 1.958 ± 0.051 | 1.256 ± 0.031 | 0.905 ± 0.036 | 0.691 ± 0.026 | 0.554 ± 0.034 | 0.412 ± 0.017 | 0.312 ± 0.015 | 0.207 ± 0.022 |
| a_{1} | 4.697 ± 0.253 | 3.968 ± 0.140 | 3.558 ± 0.167 | 3.038 ± 0.118 | 2.692 ± 0.138 | 1.988 ± 0.068 | 1.546 ± 0.060 | 1.192 ± 0.070 |
| a_{2} | 8.925 ± 0.472 | 5.670 ± 0.209 | 5.112 ± 0.218 | 4.260 ± 0.147 | 3.771 ± 0.171 | 2.960 ± 0.088 | 2.446 ± 0.087 | 2.348 ± 0.118 |
| a_{3} | 0.297 ± 0.644 | 0.193 ± 0.416 | 0.249 ± 0.458 | 0.305 ± 0.329 | -0.022 ± 0.353 | 0.053 ± 0.162 | 0.044 ± 0.144 | -0.102 ± 0.168 |
| a_{4} | -0.719 ± 0.754 | -0.314 ± 0.440 | 0.871 ± 0.485 | -0.880 ± 0.334 | -1.280 ± 0.362 | -1.272 ± 0.171 | -1.234 ± 0.158 | -1.440 ± 0.194 |

a. Coefficients

Table X. Coefficients of powers of $\cos \theta^{*}\left(\pi^{-}-p\right)$.

Coefficients	Pion kinetic energy in lab system (MeV)						
	370	410	450	490	550	600	650
${ }^{a_{0}}$	0.561 ± 0.014	0.537 ± 0.013	0.497 ± 0.021	0.518 ± 0.029	0.347 ± 0.029	0.343 ± 0.024	0.274 ± 0.034
a_{1}	0.964 ± 0.045	1.092 ± 0.045	1.316 ± 0.092	1.501 ± 0.115	1.718 ± 0.112	2.039 ± 0.094	1.371 ± 0.121
a_{2}	1.076 ± 0.098	1.285 ± 0.085	1.371 ± 0.139	1.347 ± 0.194	3.095 ± 0.218	4.081 ± 0.193	3.914 ± 0.263
a_{3}	-0.858 ± 0.089	-0.786 50.104	-1.220 ± 0.377	-1.425 ± 0.469	-0.501 ± 0.485	-0.041 ± 0.405	0.332 ± 0.523
${ }^{a_{4}}$	-0.449 ± 0.126	-0.290 ± 0.134	0.080 ± 0.233	0.621 ± 0.352	0.138 ± 0.390	-0.608 ± 0.360	-1.057 ± 0.469
a_{5}	--	--	0.460 ± 0.361	0.773 ± 0.495	0.117 ± 0.558	0.439 ± 0.482	0.847 ± 0.609

Table XI. Order of fit 2 V), $19 \mathrm{q}^{g r e e s}$ of freedom (d), and goodness-of-fit $\left(X^{2} / d\right)^{1 / 2}$ parameter at each energy $\left(\pi^{+}-p\right)$.

$\frac{\text { Energy }}{310}$	$\frac{N}{4}$	$\frac{d}{12}$	$\frac{\left(x^{2} / \mathrm{d}\right)^{1 / 2}}{0.788}$
370	4	13	0.793
410	4	14	1.174
450	4	14	1.051
490	4	15	1.442
550	4	16	1.032
600	4	16	1.077
650	4	16	1.438

Table XII. Order of fit (N), degrees of freedom (d), and goodness-of-fit $\left(X^{2} / d\right)^{1 / 2}$ parameter at each energy ($\pi^{-}-p$).

Energy	$\frac{N}{4}$	$\frac{\partial}{d}$	$\frac{\left(x^{2} / \mathrm{d}\right)^{1 / 2}}{0.991}$
370	4		13
410	5		13
450	5	14	0.911
490	5	15	1.124
550	5	15	1.301
600	5	15	1.158
650			0.878
			1.123

Table XIII. Total elastic cross sections from integration of differential cross sections.

Energy	$\sigma_{\text {tot el }}(\mathrm{mb})$	
	$\pi^{+}-p$	$\pi^{-}-\mathrm{p}$
310	60.19 ± 1.41	--
370	38.74 ± 0.73	$10.42=0.17$
410	30.59 ± 0.66	11.40 ± 0.16
450	24.31 ± 0.49	12.19 ± 0.26
490	19.55 ± 0.46	$13.71 \pm 0.35^{\prime}$
550	14.38 ± 0.19	16.98 ± 0.37
600	$11.06=0.18$	19.87 ± 0.34
650	8.82 ± 0.22	17.19 ± 0.45

Table XIV. Breit-Wigner paramoters assumed for P_{33}, D_{13}, and F_{15} resonances.

	E_{R}	$x=\Gamma_{e l} / \Gamma$	Γ
State	1238	1.0	165
P_{33}	1542	0.8	110
D_{13}	1688	0.9	100
F_{15}			

EIGURE CAPTIONS

Fig. 4. Total cross bections sox $\pi^{2}-p$, with linon indeating the energies at which the measuremento of this oxperiment wexe made.

Fig. 2. Flem view of the experimental arrangement. Symbols Q_{1}, B_{1}. B_{2}, and Q_{2} represent magnets. The beam counters are labeled $M_{1}, M_{1 A}, M_{2}, M_{3}$, and C. The counters, BeO target, and LH H_{2} target are not drawn to scale.

Fig. 3. Plan view of array of acintillation countera.
Fig. 4. Differentiel crocb-section data and fitted curve for $\pi^{+}-\mathrm{p}$; $T_{\pi}=310,370$, and 420 MeV.

Fig. 5. Differential crossasection data and fitted curve for $\pi^{+}-p$; $T_{\pi}=450,490,550,600$, and 650 MeV.

Fig. 6. Differential crosa-section data and fitted curve for $\pi^{-}-p$; $T T_{T}=370,410,450,490$, and 550 MeV.

Fig. 7. Differential cross-bection data and fitted curve for π^{-m}; $T_{T}=600$ and 650 MeV.

Fig. 8. Coefficients of powers of $\cos \theta_{\pi}^{*}$ plotted ve pion energy ($\left.\pi^{+}-\mathrm{p}\right)$.
Fig. 9. Coefficients of powers of $\cos \theta_{\pi}^{*}$ plotted vs pion energy ($\left.\pi^{-}-\mathrm{p}\right)$. The dashed lines show the higher-enexgy behavior as indiceted by the resulte of Helland et al. (reference 2a).

Fig: 10. Tobal clastic cross sectione plotted vo pion energy.
Fig. 11. Circles showing the locus of Breit-Wigner scattering emplitudes for chree values of the parameter x (where $x=\Gamma_{\mathrm{el}} / \Gamma$).

Fig. 12. Assumed resonent behavior of the P_{33}, D_{13}, and F_{15} amplitudes.

Fig. 13. Ascumed behevier of the $S_{1 / 2}, P_{1 / 2}$, and D_{15} amplitudes.
Fig. 44. Conexibution to $\operatorname{lom}_{0}\left|D_{3 / 2}\right|^{2}$ and $S_{4 / 2} D_{3 / 2}$ terms.
Fig. 25. Contribution to a_{2} from $\left|D_{3 / 2}\right|^{2}$ and $S_{1 / 2} D_{3 / 2}$ terma.
Fig. 16. Contribution to 2_{4} from $D_{3 / 2} D_{5 / 2}$ temm.
Fig. 17. Contribution to 2_{3} from $P_{3 / 2} D_{3 / 2}$ and $D_{5 / 2} F_{5 / 2}$ terms.
Fig. 48. Contribution to a_{1} from $P_{1 / 2} D_{3 / 2}, \quad P_{3 / 2} D_{3 / 2}$ and $D_{5 / 2} F_{5 / 2}$ terms.
Fig. 29. Energy depencence of \quad "- p coefficienss a_{0}, a_{1}, and and a_{3}, a_{4}, end 5_{5}, using the scetsering ampiliudes in Fige. 12 and 43. The data are piotsed again for comparigom. A. thimexperiment; 0 , Helland ot al. (reference Za).

Fig. 20. Predicted recoil-proton polarization at 523, 572, and 689 MaV . The data are thooe of Eandi (reference 2d).

UCRL-11180 Rev.

Fig. 2

Fig. 3

MUB-3956

Fig. 4

Fig. 5

MUB-3958
Fig. 6

Fig. 7

MU. 33456
Fig. 8

MU. 33457
Fig. 9

UCRL-11180 Rev.

MU-33526
Fig. 11

MU. 33528
Fig. 13
ss/qu

ss/qu

1s/qu

\ldots

MUB-3960
Fig. 19

MUB-3961
Fig. 20

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

