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Sharing Sensor Network Data∗†

Gong Chen Nathan Yau Mark H. Hansen Deborah Estrin

Center for Embedded Networked Sensing

University of California, Los Angeles

Los Angeles, CA 90095

Abstract

Sensor networks generate a variety of data streams in different tempo-
ral and spatial resolutions. The data come as numbers text, images, and
audio and are dynamically produced periodically and sporadically. How
can we organize hundreds of thousands of such data streams? How can
we make it easy for scientists and engineers to publish and share such
data streams? In this paper, we present our solution, SensorBase.org. It
is a web application that not only provides the user with the function-
ality of a traditional database management system, but also runs under
the notion of a Web 2.0 data experience with a responsive user interface
design and RSS data feed techniques. SensorBase.org also aims to be a
data search engine to promote exploration. Like a web search engine, the
user should be able to search for structures, or rather, “signals”, in the
data using simple language queries. We provide a solution to a specific
type of signal search problem and describe a search framework derived
from the solution. A visualization component is in development to help
people understand the data and to enhance the results provided by a data
search engine.

The development of SensorBase.org allows us, the statisticians, to in-
fluence “data practices”. People share data and add documentation within
the guidelines of SensorBase.org which supports good experimental design
and helps future modeling efforts. Last but not least, SensorBase.org pro-
vides a base for data integrity and data quality.

∗Gong Chen and Nathan Yau contributed equally to this work.
†The authors gratefully acknowledge support from NSF CCF-0120778, NSF CNS-0626702

and NSF CNS-0627084.
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1 Introduction

The Center for Embedded Networked Sensing (CENS) at UCLA develops var-
ious types of sensors to collect many types of data from natural and built en-
vironments. Networks of wireless sensors are set up to take high granularity
measurements which allow observers to evaluate surroundings in a different way
than they normally do. For example, temperature, humidity, and wind data
are collected by motes to monitor environmental changes while images, videos,
and audio are collected by mobile phones to monitor urban settings. With such
continuous data streams that demand a high level of analysis, a database is
absolutely necessary to keep things organized.

We can get a feel for embedded sensing with a few examples. At James
Reserve in the San Jacinto mountains, a collection of twenty-five wireless sensors,
known as the Cold Air Drainage (CAD) transect, records temperature data
every five minutes. In Figure 1 (left), we can see a map of the transect. At
the nearby Lake Fulmor, a line of buoys reside with dangling thermistors that
collect time series temperature data at different depths. A half meter below
each buoy a fluorometer measures chlorophyll concentrations.

Figure 1: CAD transect at James Reserve (left) and Chlorophyll concentrations
at Lake Fulmor (right)

Four times a year, a robotic sensing device is installed, which is a shuttle
suspended on a cable that hangs across the lake perpendicular to the buoy line.
The shuttle moves along the cable, dips down a sensor node at regular intervals,
and then takes measurements at several depths. Temperature and chlorophyll
measurements for one pass over the lake can be seen in the grid in Figure 1
(right).

In a completely different setting, where buildings replace trees and people
replace animals, sensors, in the form of mobile phones, collect media data. The
urban setting brings in different types of data in the sense that much of it is non-
numeric and it is much more sporadic, taking the form of periodically uploaded
digital recordings, images or video.

This large variety of data and locations highlights a great need for a database
in order to make data management easy. However, given the diverse population
of end-users for these data (a group which includes subject-area scientists as
well as engineers and computer scientists), it is not reasonable to expect every-
one to know SQL statements and database structures. Instead, to abstract the
database, and to push focus on the data being stored, we have created Sensor-
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Base.org (Figure 2). Not only have we made publishing data easy, but once the
data is available users can share, manage, and search continuous data streams.
In Section 2 we discuss some of the already existing applications to manage
generic data and how we improve on these models for embedded sensing ap-
plications. In Section 3, we go over SensorBase.org design and implementation
and then end with a recipe to search data in Section 4 and the future of our
application in Section 5.

Figure 2: SensorBase.org home page

2 Current Data Sharing Mechanisms

An informal survey of early embedded sensing deployments both at CENS and
at other institutions suggests that lots of data exist as very large, unorganized,
flat delimited text files. Excel spreadsheets rest a little bit higher on the or-
ganizational food chain, but when the number of observations gets higher in
the millions, data management can easily get out of hand; and more impor-
tantly, sharing data becomes very difficult. If a collaborator needed data, the
data owner would have to look for the appropriate log files and have to explain
the data’s who, what, when, and where to the collaborator. Once the data is
explained, the collaborator would still have to sift through millions of observa-
tions, and it is highly possible he would not even know where to begin. Suppose
the owner has long since left the research group. Unexplained data left behind
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is virtually useless. Outside the sensor networks community, we see excellent
examples of data sharing practices.

Dabble DB (dabbledb.com) is an application that helps users share data a
bit more easily. The application has an excellent dynamic user interface (UI) and
does a great job of abstracting the database. However, Dabble DB is still limited
in the type of data that can be stored and how data can be published. It can only
store text, numbers, and date and time, and data can only be published via a UI.
The nature of CENS data streams requires automatic publishing functionality
as well as an ability to store media data, such as images, in addition to text,
numbers, and time.

Google Spreadsheets (docs.google.com) is another application that makes
sharing data a bit easier. Users can share spreadsheets, and edit spreadsheet
data with others in real-time. However, like Dabble DB Google Spreadsheets is
limited by the types of data that can be stored and how data can be published.
Dabble and Spreadsheets functionality stops at the UI and the goal behind the
two is mostly to store user input such as names and addresses and less about
storing dynamic data coming from non-human sources.

Swivel (swivel.com) pushes data sharing in a different direction than the
two previous. Topics include politics to weather and sports to technology. There
are some pretty graphs sitting on a data exploration platform. Again though,
for CENS’s purpose, the scope is limited. Users can only upload text-delimited
files and data updates stop after the file upload is complete. Published data
also completely relies on user input.

While Dabble, Spreadsheets, and Swivel are beautiful applications in their
own right, SensorBase.org is our answer to bring media, dynamic data, and more
effective data exploration into the world of embedded sensing applications.

3 Design and Implementation

To make it easy for the user to publish and retrieve data we overcome several
difficulties to design a database and a closely-coupled UI. We take a bottom-up
approach informed by previous experiments [1], the input of engineering and
application science faculty, students, and staff, and a core advisory board to
take input from the different constituencies at CENS. The database schema is
developed to be robust enough to handle the different types of data while at
the same time guide the flow of data streams in a way that would make the
data most useful during analysis. In addition to storage of the actual data, our
schema allows us to manage metadata and documentation to provide context
and meaning.

Next, we design the SensorBase.org UI to abstract the database. From the
very beginning, our running analogy to aid us in UI design has been the UI for
blogs. One of the reasons blogs have become popular is because blog UIs make
publishing entries so effortless. With a few mouse clicks, a user can publish,
delete, categorize, or set permissions on any given entry. In short, the evolution
of blogs has made it easy for anyone to share their thoughts online. Additionally,
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urban applications that involve images and audio are similar to already popular
data sharing platforms like YouTube (youtube.com) and Flickr (flickr.com).
These metaphors guide SensorBase.org UI design and set standards that we
have to meet. We strive for a responsive UI implemented with PHP, MySQL,
and AJAX that makes it easy for anyone to share data online. We call this idea
sensor logging, or rather, slogging.

3.1 Slogging Data

Our UI for slogging (Figure 3) handles different types of data generated via var-
ious methods. The user can slog numeric and textual data such as temperatures
and sensor names, and just as easily, she can slog media data such as images,
videos, and audio. In addition to slogging via the UI, the user can also slog data
programmatically (i.e. automatically) via web services or an HTTP POST. The
slogging work flow is as follows: (1) create a project; (2) define how data will
be stored; and (3) slog data in the form of delimited text, XML, media files, or
live data streams.

The idea is that every project has a home page where the user can stay
updated on the type of data, from a specified sensor network, getting slogged.
On the project page, the user can and will be able to find dynamic plots and
maps as well as documentation that explains the data. In addition to the project
home page, the user can also subscribe to RSS data feeds to stay updated on
what is most recent. If the user wants to be notified, for example, every time
a one-hour gap contains no data, she can subscribe to the appropriate feed and
stay updated with her favorite RSS reader. It is also possible to subscribe to
feeds that update the user whenever values have exceeded or dropped below a
specified threshold as well as boolean combinations of threshold crossings. In
the future, combining computation (with connections to R and other science-
specific computing platforms) to RSS, we will allow users to generate numeric
RSS feeds based on generic filters [4].

3.2 Annotating Data

Before SensorBase.org, CENS data rested in the form of flat text files on personal
computers and data loggers. Aside from the difficulties of making such data
highly available, the data was often difficult to understand not only for outsiders
but also for the data owners. The only documentation that existed, if any existed
at all, was in a “README” file that often was not updated regularly.

Sensorbase.org provides an easy way to annotate incoming data streams
from the project-level down to a single observation. The user can highlight and
annotate chunks of data to remind herself and let others know why data might
appear strange or to explain anomalies in the data. For instance, a sensor’s
battery might have died, a sensor might not have been deployed correctly, or
connectivity might have been spotty. This is annotation at the data-level. The
user can also describe her projects as well as individual sensors. In a collabora-
tive effort, there might be multiple users who participate in a project. In this
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Figure 3: Data slogging UI

case, users can interact with each other with “project notes” which are similar
to comments in blogs and can provide a deeper understanding of slogged data.

3.3 Setting Permissions and Access Levels on Data

It is likely that the user may not always want to share her data with anyone, and
so the user can set access levels for who can read and slog data to her projects.
The user can set her project either to “public”, if she wants to let anyone who
has a SensorBase.org account see her data, or to “private”, if she wants to set
access levels on an individual basis. The user can give permission to other users
and give them one of the three levels of access — read only, read and write, or
read, write, and build. Read access allows the user to retrieve data; write access
allows the user to slog data; and build access allows the user to define how to
store incoming data.

3.4 Retrieving Data

Once data comes in to SensorBase.org it is critical that it is easy to retrieve
the data. However, in our case, data flow into SensorBase.org continuously, and
the number of observations can grow into the millions in less than a month.
For example, data from the CAD transect feed into SensorBase.org every five
minutes, and a month’s worth of data is over six million observations. Most of
the time the user will retrieve a subset of a giant data set. Either via the UI
or web services, the user can retrieve data within a certain time range, limit
the number of returned observations, and set sorting by any specified variable
(Figure 5). It is particularly important that we provide data via web services
because it allows the user to create applications on top of SensorBase.org and
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Figure 4: SensorBase RSS feed as seen in Google Reader

opens the opportunity for the user to create her own exploration tools or to feed
data into existing software. Moving forward to more advanced data retrieval,
we are working on so-called signal search functionality where the user can search
for data based on features.

4 Searching Sensor Data

4.1 Variation Search Problem

To use a search engine such as Google, the user issues a query in the form of
a keyword or phrase and receives a list of results related to the query. Simi-
larly, the user should be able to identify structures in the data, in the “signal”,
using queries expressed in simple language. To clarify the problem, we start
by answering a question posed by a CENS biologist and then describe a search
framework derived from the solution.

A sensor network, designed to capture so-called Cold Air Drainage (CAD)
events, collects temperature data. The biologist wants to study the tempera-
ture characteristics when potential CAD events occur. A sharp temperature
drop between 4:00am and 8:00am indicates the occurrence of a CAD event, so
he wants to find the data from when temperature drops more than 3 degrees
Celsius over 1 hour during that time range. The nature of this question is fuzzy.
Temperature might drop 10 degrees over half an hour. It might drop 2 degrees
over 1 hour and continue to drop another 2 degrees for the next 10 minutes (on
average, 3.4 degrees over 1 hour). Both are correct answers to the biologist’s
question. We must be able to detect both situations while searching the data.
We will describe a simple framework for answering these boolean combinations
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Figure 5: Data retrieval UI.

of these easily specified queries efficiently with any database backend.

4.2 Search Framework

We design a three-tier framework to extract features from data so that they can
be stored in a database allowing us to transform searches into queries on the
features.

1. There is a lot of noise in data collected by sensors because sensors can
malfunction and generate anomalies. Data quality problems plague sensor
deployments [5]. Local polynomial regression is a robust method that can
be used to find the mean curve from noisy data.

2. Using a user-defined error tolerance for approximation and an online-
algorithm [3], the curve is represented by piecewise linear segments. This
approximation significantly reduces the number of extracted features search
has to use, which speeds up feature extraction at the third tier. At this
tier, segment, we record its starting time st, duration ∆t and slope k for
each segment.

3. At the third tier, we impose a sliding window over a certain period of time
∆tw on segments from the second tier as shown in Figure 6. Suppose a
sliding window moves to the current time t and i = 0 is the index of the
first segment in the sliding window from t. The accumulative variation
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vi =
∑i

j=0 kj∆tj and the time span spi =
∑i

j=0 ∆tj from t for segment i
is recorded and stored in database.

i=2

past current future

moving direction

i=0

i=1

Figure 6: A sliding window at the third tier

We construct variation space to explore the search supported by extracted
features. Figure 7 shows part of variation space where any point there is corre-
sponding to some variation over a certain time period. Two features spi and vi

for each segment are mapped to this space. The point (1,−3) at the cross of the
vertical line sp = 1 and the horizontal line v = −3 denotes the event of the ex-
act 3 degrees drop over 1 hour. The correct answers for the biologist’s question
should be in the region where sp < 1 and v < −3 or in the region where sp ≥ 1
and v < −3sp. The former region is the situation that temperature drops more
than 3 degrees over a time period less than 1 hour while the later one is the
situation that the accumulative drop over longer time achieves the effect. The
line v = −3sp is plotted for reference in Figure 7.

However, we miss some variation by just returning cases with v < −3 and
v < −3sp, the combination of the two regions mentioned above. Since variation
that occurs inside a segment is not mapped to the space, it is overlooked due
to compression. Nevertheless, two features spi−1 and vi−1 from the other end
of segment i can be used to find the missing case. For segment i, the point
(spi−1, vi−1) and the point (spi, vi) is connected by a line in Figure 7. The part
of that line falls into the answer region even if its two end points do not. To
capture such kind of line, we want to form the query conditions as follows: (1)
−3 < ki < 0; (2) spi−1 < 1 and vi−1 > −3; (3) vi + ki(1 − spi) < −3 and (4)
vi > −3spi. ki is the slope of that line. The third condition is on the position of
the point (1, vi + ki(1− spi)) in the middle part of that line. The case with the
features satisfying above four conditions has variation in the answer region and
should be returned. Condition (1) and (3) can be used to derive an indexable
condition vi−kispi < 0. Multidimentional-index structures like K-D-B trees [6]
can be built on this condition together with condition (1) and (2) to provide fast
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Figure 7: Variation space

access in database. Finally, we can generalize the above example as search for
data when more than b units increase/decrease over a time units where a > 0
and b > 0.

In summary, the three-tier framework takes into account important perfor-
mance factors such as feature reduction, fast processing, and query efficiency.
Furthermore, compared with similarity search in time series databases [2] that
requires a query series, human word-able search is suitable for most users who
do not have exact ideas about the shape of series they are looking for. In the
case of variation search, language description is more appropriate than a query
series since there are numerous series that satisfy the description but have very
different shapes.

The framework of variation search can be generalized to develop a data
search component for SensorBase.org. Statistical computing extracts features
from data streams, online algorithms make real-time feature extraction possible,
databases store features along with the data, and indexing techniques provide
fast access to these features so that search results can be quickly returned. In
this way, the data become searchable. By specifying a few words as search
criteria, the user can easily find the data she is interested in.
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5 Future Work

Future developments for SensorBase.org include visualization of search results,
improved searching functionality based on metadata, greater computing power
with our existing data search framework, and standardized output based on
existing and highly comprehensive data dictionaries.

Similar to a Google search, we see data search as an iterative process where
a user will search, and if she does not find what she is looking for the first time,
she goes back and changes her query and sees what new results are returned. It
is at this stage that we feel it is absolutely essential to have useful visualization
of the results. We have the benefit of knowing that most SensorBase.org data
streams are time series and linked to location, so we imagine a combination of
Sparklines [7] and maps to help users decide what data to explore. Sparklines,
small “word-like” time series plots, allow us to display a lot of information in
a small amount of space while maps offer a very intuitive interface and context
to the data.

In Figure 8 we see four days of data from six sensors represented by six
Sparklines. At the beginning of this time frame the sensors appear to be running
as expected. After the first hump, is an anomaly followed by a wiggly signal
and an occurrence of a CAD event. Around the last third of each Sparkline
is a fair amount of noise relative to the rest of the data. At this point, there
was a malfunction in the sensor network. The local minimum and maximum
(in degrees Celsius), which can be thought of as metadata, are also marked for
each frame.

Figure 8: Four days of CAD temperature observations in degrees Celsius from
6 sensors.

As hundreds of thousands of data streams flow into SensorBase.org, it would
be desirable to make their metadata searchable. The user may want to find data
with the same calibration equation or may want to find out which part of data
are collected when sensors malfunction. All such results come from annota-
tions, one type of metadata. Furthermore, the examples from Section 1 indicate
many data streams from different projects come from the same geographic area.
Through metadata search, the user can find different data resources that moni-
tor the same location. Sharing becomes more powerful when data are linked to
provide different temporal-spatial resolutions of the world.

Our search framework sheds light on an architecture component we will
need to build for SensorBase.org. Statistical computing processes can happen
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as data stream into the database. Computed results are stored along with data
and made ready for search. Different types of data ask for different computing
procedures to achieve different goals. We will set up a cluster of computing
servers around SensorBase.org to make different computations happen smoothly.
This component will couple with notification services from SensorBase.org to
provide the user real-time alerts. As soon as data containing a predefined event
stream into the database, the user subscribing to the RSS feed on that event will
get a notification with computing results from her RSS reader. For example, a
signature-based fault detection scheme is being implemented that will make use
of the computational RSS idea to generate alerts for bad data.

As more and more users share their data with SensorBase.org, an open
standard for data format is needed for transferring data in and out. This will
facilitate the exchange of information. When the user slogs her data, she might
want to slog metadata such as annotation for calibration equations and units
of measurement. When a set of data is pulled out, all of its related metadata
will be shipped out with the data package to make the set meaningful. To this
end, we will design an XML schema serving as a data format standard. It will
borrow descriptive power from complex schemas such as EML and SensorML
but aim to own a light-weight specification to make it easy for common users
to adopt.

6 Conclusions

Sensor networks are generating a variety of data streams in different tempo-
ral and spatial resolutions. We have built an application, SensorBase.org, to
manage such streaming data, and more critically, to make data publishing and
sharing easy for engineers, scientists and even citizens in urban settings. Sensor-
Base.org not only provides the user with the same functionality of a traditional
database management system, but also runs under the notion of a Web 2.0 data
experience with a responsive user interface design and RSS data feed techniques.
Our data search framework coupled with RSS provides a steady foundation to
make seemingly endless data informative and useful. Enhanced with visual-
ization to help people understand the data, SensorBase.org stands as a robust
application to slog, edit, search, and retrieve data with ease. Creating such a
platform lets us, the statisticians, influence “data practices”. People share data
and add documentation within the guidelines of SensorBase.org which supports
good experimental design and helps future modeling efforts. Last but not least,
it provides a base for data integrity and data quality.
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