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ABSTRACT: Single-step retrosynthesis in organic chemistry increas-
ingly benefits from deep learning (DL) techniques in computer-aided
synthesis design. While template-free DL models are flexible and
promising for retrosynthesis prediction, they often ignore vital 2D
molecular information and struggle with atom alignment for node
generation, resulting in lower performance compared to the template-
based and semi-template-based methods. To address these issues, we
introduce node-aligned graph-to-graph (NAG2G), a transformer-
based template-free DL model. NAG2G combines 2D molecular
graphs and 3D conformations to retain comprehensive molecular
details and incorporates product-reactant atom mapping through node
alignment, which determines the order of the node-by-node graph
outputs process in an autoregressive manner. Through rigorous
benchmarking and detailed case studies, we have demonstrated that NAG2G stands out with its remarkable predictive accuracy on
the expansive data sets of USPTO-50k and USPTO-FULL. Moreover, the model’s practical utility is underscored by its successful
prediction of synthesis pathways for multiple drug candidate molecules. This proves not only NAG2G’s robustness but also its
potential to revolutionize the prediction of complex chemical synthesis processes for future synthetic route design tasks.
KEYWORDS: Template-Free Retrosynthesis, Deep Learning, Chemical Reactions, Graph Generation, Single-Step Retrosynthesis Prediction

■ INTRODUCTION
The single-step retrosynthesis (SSR)1 is an essential operation in
organic chemistry involving the reversed synthesis of a target
product or intermediate in a single step. To achieve automatic
multistep synthesis route design, SSR plays a critical role in
building the blocks for each separated stage. Typically, the
design of retrosynthesis strategies demands a thorough under-
standing and knowledge of organic chemistry principles, such as
reaction mechanisms and reactive sites. With the emergence of
computer-aided synthetic planning tools, researchers are now
harnessing deep learning (DL) techniques to address this task
and recognize their immense potential.

Various DL architectures have been developed and refined to
suit the purpose of learning reactions for SSR tasks.2 Even
though there are notable variations in their network structures
and data representation formats, they mainly fall into two
primary groups: template-dependent and template-independ-
ent. In the following section, we will provide a concise overview
of recent DL-based methods, highlighting their model designs as
well as their strengths and weaknesses.
Template or Non-template?

The chemical intuition of organic synthetic chemists is
accumulated from knowledge of reaction rules. Naturally, a
dictionary or so-called template of existing reactions (such as an
organic synthesis textbook) will serve as a bible for SSR design.

Therefore, the initial generation of retrosynthesis tools was
trained to search for the most likely reaction templates in the
library that could be used for generating the desired product. For
instance, the program Synthia (previously named asChematica)3

employs over 80,000 rules crafted by synthetic experts to
determine the appropriate reaction step based on a huge
decision tree. DL strategies, like RetroSim4 and NeuralSym,5 use
traditional molecular similarity metrics, such as fingerprints and
Tanimoto similarity, to look for the templates that match well
with products. Other contemporary approaches include Local-
Retro,6 GLN,7 and RetroComposer.8 The limitations of template-
based methods are inherent in the library on which they rely on.
The library may not cover all potential reactions, and there is a
risk of incorrect associations between the intricate products and
template structures. To avoid being overly dependent on
dictionaries, semi-template approaches emerged. This method
breaks down the SSR prediction process into two stages�
synthons9 or intermediate detection followed by reactant
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generation. Both steps are critical, as the preprocessing and
identification of synthon are directly associated with the reactant
prediction. The advantage of the two-stage methodology
includes synthon understanding, searching capabilities expan-
sion, and reaction scheme exploration. Meantime, errors can be
easily passed from the first step to the second. As the technique
of semi-template approaches grows, several models include
G2G,10 RetroXpert,11 RetroPrime,12 GraphRetro,13 SemiRetro,14

G2Retro,15 and Graph2Edits16 have emerged, highlighting the
compatibility of graph-to-graph models with molecular topology
edits, which we will discuss later.

Can a DL model learn chemistry without any prerequisite
knowledge (including dictionaries, templates, synthons, inter-
mediates, and editing strategies) given by scientists? The answer
is YES. Template-free models, such as pioneering seq2seq,17

SCROP,18 Tied Transformer,19 Augmented Transformer,20 and
RetroDCVAE21 all consider retrosynthesis as a prediction
problem. The foundational idea posits that molecules can be
analyzed in a manner akin to that for natural language processing
(NLP) tasks. In this framework, product molecules are broken
down into tokens based on their one-dimensional (1D) string
representations, like the Simplified Molecular Input Line Entry
System (SMILES). This tokenization allows us to treat the
transformation of products into reactants, drawing parallels
between chemical reactions and language translation processes.
Recent studies have achieved marked improvements by applying
the advanced NLP Transformer22 model, which employs a
multihead attention mechanism. This mechanism enables the
model to assign varying degrees of importance to different
segments of input data, enhancing its ability to manage the
message-passing process between each pair of atoms within a
molecule and between pairs of product and reactant.
Choices of Molecular Representation

To help computers think like chemists, it is crucial to translate
reaction information, specifically, molecular-level reactants and
products, into in silico “language” or so-called molecular
representation. One popular approach of DL-based SSR
models18−21 is to employ 1D sequences, such as SMILES.
Despite its simplicity, the 1D sequence-based model exhibits
several limitations: (1) The sequence disregards the extensive
molecular topological information;23−25 (2) Legal SMILES
follow intricate syntax rules, which magnify the difficulty of valid

SMILES generation; (3) Effectively utilizing atom mapping
information between products and reactants is challenging for
1D representation. Without alignment, model performance may
decline due to lost atom correlations between products and
reactants. (4) Due to the fact that a single molecule can have
multiple SMILES representations when generating multiple
candidate reactants for a product, it is possible to generate
multiple reactant SMILES representing the same reaction,
which may reduce the diversity of the candidates.20

To overcome the limitations of 1D sequences, models
involving 2D molecular graphs, which encompass atom
(node) and bond (edge) topology, have been proposed for
molecular representation in SSR tasks.10,15,16,26,27 2D graphs
encapsulate a wealth of information about the atomic environ-
ment, such as neighboring atoms and their connections. The
graph topology offers an optimal solution for two-step tasks
involving the modification of synthons and intermediates under
the context of semi-template models. In order to effectively
utilize the natural mapping information between atoms in
products and reactants, prior approaches have employed a
repeated graph edit strategy,26 wherein the input graph of the
product is iteratively modified by taking edit actions (such as
adding nodes, removing nodes, updating nodes or edges) until it
reaches an end�the reactant. Semi-template models such as
G2Retro,15 MARS,27 and Graph2Edits16 employ graph edit
strategies26 for graph generation. However, the 2D graph edition
requires a delicate arrangement of edit actions and editing types
forehead. Despite the advanced generation processes reducing
computational expenses, the iterative action−prediction cycles,
which require graph input and output at each editing step,
continue to add to the computational burden.
Boundaries and Pushing Boundaries

Models have improved by combining different methods with the
latest machine learning designs, as we have discussed before.
Even though there are still some challenges, we see great
potential in the new transformer-based models that can make
predictions without using templates.17,28 Despite template-
dependent models taking the upper hand, we have observed that
template-free methods not only demonstrate remarkable
performance with neat and concise structures but are also
capable of capturing the nuances of chemical reasoning
themselves. Molecular representation and attention mechanism

Figure 1. Overview of computer-aided SSR workflow based on template-based, semitemplate-based, and template-free design.
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(consideration of long-range dependencies between atoms)
adaption are required to introduce more imformation. For
example, GET24 merges both graphs and SMILES encoders.
GTA25 integrates topological data into attention bias. Specifi-
cally, Retroformer,29 using 1D sequence for the encoder,
incorporates product-reactant atom alignments for better
results.30 Graph-based template-free methods, including
G2GT,31 have advanced in exploiting graph topology. Never-
theless, they have yet to leverage node-alignment strategies for
enhanced performance.

To take the advantage of a template-free approach and
address the above limitations, we developed NAG2G that
utilizes both 2D graph and 3D coordinates, with improved
efficiency of graph generation and node alignment according to
proper atom mappings, as shown in Figure 1. Moreover, we
implement an autoregressive approach that generates graphs
node-by-node according to the aligned order, drawing
inspiration from language generation techniques. NAG2G is
trained using two widely recognized data sets, USPTO-50k32

and USPTO-Full7,20 with augmented data, showing great
capacity compared to existing models. Additionally, our model
demonstrates its proficiency in tackling real-world problems by
iteratively generating step-by-step synthesis pathways for drug

candidates. To gain deeper insights into the significance of each
component within our methodology, we conducted ablation
studies, systematically omitting certain parts of the model to
evaluate their impact on performance.

■ METHOD

Model Construction

Encoders are the components of a neural network that process
and compress input product into a compact representation and
play the critical role of learning molecular representation in the
NAG2G transformer-based encoder−decoder architecture.
Competent models, such as Graphormer33 and Uni-Mol,34

have demonstrated the efficiency of encoder representation
learning strategies. Thus, we adopt the encoder from Uni-Mol
+,35 which incorporates both 2D graph and 3D conformation for
molecular representation as shown in Figure 2. The 1D
positional encoding is also taken into account, serving as the
node order encoder. Formally, we can denote the process of the
encoder as the following in eq 1

fO X P E R( , , , ; )enc
enc

enc enc= (1)

Figure 2. Network architecture of NAG2G.
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In the proposed formulation, X denotes the atom features; Penc

represents the 1D positional encoding, which is supplementary
to the atomic embeddings; E signifies the edge features inherent
to the 2D graph structure; R corresponds to the atomic
coordinates in the 3D conformation; θenc encapsulates the
encoder’s learnable parameters, and Oenc is the derived
molecular representation result from the encoder.

Decoders primarily operate to generate the reactant graph
node-by-node through an autoregressive approach. At the i-th
time step, which also corresponds to the i-th generated node
(atom), the decoder receives three distinct inputs:

(1) The encoder’s output, including keys and values that
help in the interaction between the encoder and decoder.
(2) The decoder outputs from prior steps (from 1 to i −
1), which is typical of autoregressive models in that the
prediction of a new value is based on its preceding values.
During the iterative process, 1D positional encoding is
added, which is essential for NAG2G to align atom order
between the encoder (product) inputs and decoder
(reactant) outputs.
(3) The graph-level features of the current output graph,
such as node degrees and shortest paths between nodes.
Incorporating these graph-level features directly into the
model presents an efficiency challenge, as the graph
features vary across time steps. To address this issue, we
propose an efficient method for integrating graph-level
features.

Given the above inputs, the decoder generates a new node at
the i-th time step autoregressively, starting from atomic type,
and then associated formal charge, the number of connected
hydrogen atoms, and finally its edges (types of bond) linked to

prior nodes (atoms). The information for each node is produced
sequentially given its above predictions. For instance, the formal
charge is predicted based on the prior atomic type prediction.
The process is denoted as

t f

c f t

h f c t

e f h c t

e f e e h c t

P N G O

P N G O
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(2)

where N1:i−1 represents the set of nodes generated from the
previous i − 1 time steps, P1:i

dec denotes the 1D positional
encoding of the current i nodes, G1:i−1 represents the graph
feature extracted from previous outputs, and θdec denotes the
parameters of the decoder. The atomic type, associated formal
charge, and number of connected hydrogen atoms for the i-th
node are represented by ti, ci, and hi, respectively. The d-th edge,
denoted by ei,d = (j, b), connects the i-th node and the j-th node
with the bond type b. To define an edge’s generative order, edges
linked to nodes with larger 1D positions are prioritized.
Generation of ci and hi is skipped if a node has zero charges or
no linked hydrogen atoms to reduce the number of generative

Figure 3. An example to illustrate the process of data augmentation and product-reactant alignment. The red numbers indicate the atoms present in
both the product and reactants, while the blue ones represent the atoms found only in the reactants.
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steps. The overview of NAG2G’s architecture is depicted in
Figure 2.
Node Alignment and Data Augmentation

Molecular graphs, unlike sentences, lack an inherent sequence as
atoms within a molecule do not have a natural order until
assigned. In order to circumvent the need to consider the order
of nodes in graph generation, several methods transform the
graph generation task into indirect approaches, such as graph
edit action prediction or SMILES prediction tasks, as discussed
earlier. Alternatively, some methods utilize a one-in-all scheme,
generating the entire graph output in a single step. Although this
scheme avoids considering generation order, it lacks flexibility
and is unsuitable for multisolution tasks such as retrosynthesis.
To adopt a more flexible and autoregressive method, the output
node order must be determined. A simple solution is using the
canonical SMILES atom order; however, this fixed order
restricts output data augmentation and limits the model’s
performance. Consequently, devising a robust and flexible
strategy to tackle the unordered nature of graph nodes remains a
formidable challenge in graph generation tasks. The unordered
nodes challenge not only the graph generation but also the
encoder input data augmentation. As input graphs inherently
lack sequence, graph data augmentation must rely on alternative
strategies such as omitting certain node or edge information.
These approaches may be unsuitable for retrosynthesis, as the
omission of critical information such as different reaction sites
could result in vastly different outputs. Utilizing a reactant from
the training set under these circumstances may introduce
inaccuracies. Therefore, we choose a more appropriate encoder
input data augmentation strategy based on node order, ensuring
a more accurate and reliable outcome.

To address the challenges in input and output data
augmentation and enable a flexible node-by-node autoregressive
generation, we propose a novel method based on product-
reactant node alignment. Our method begins with the random
generation of the product’s SMILES sequence by RDKit,36 as
shown in Figure 3. By following the new order in the SMILES
sequence, we obtain the data-augmented input graph’s node
sequence order. Subsequently, the graph node order is marked
by using position embedding. For the product graph with a
determined order, we establish a unique and unambiguous rule
that corresponds to the reactant node order for node-by-node

output, as demonstrated in Figures 3 and 4. In the reactant,
atoms can be classified into two types: those shared with the
product and those exclusive with the reactant. The assignment of
atomic order should consider both these aspects. First, in
generating the order, we stipulate that the shared atoms’ order in
the reactant should precede the order of nonshared atoms. For a
specific ordered product input, there should exist a unique
corresponding ordered reactant. This unique correlation refers
to the order of shared atoms in the reactant follow the order in
the product. Subsequently, the reactant SMILES is aligned with
the product SMILES using RDKit to obtain the most similar
SMILES. Finally, the order of nonshared atoms is extracted from
the aligned reactant SMILES, ensuring the uniqueness of the
nonshared atoms’ order. This approach utilizes the product-
reactant alignment information by ensuring that the node
generation order mirrors the input graph’s order in the training
process and allows for consistent and equivariant data
augmentation in both input and output. To conclude, we
provide a robust and adaptable autoregressive generation
procedure that can effectively handle the complexities of
molecular graphs and enhance the performance of graph-to-
graph generation models. NAG2G offers a concise, profound,
and persuasive solution for input−output data augmentation,
ensuring logical and efficient node-by-node autoregressive
generation.
Efficient Time-Varying Graph-Level Features

During the generation process through decoder, the implemen-
tation of teacher forcing during training allows for the true
output from a previous time step to be used as input for the
current step, rather than the model’s own prediction. This
technique not only aligns the model’s learning with the correct
sequence of outputs but also enables parallel processing of data
at various time steps. The interaction between the current and
previous time steps is addressed within the decoder’s attention
layer. To avoid the inadvertent incorporation of future
information, the attention matrix in a transformer model is
masked with an upper triangular matrix. This ensures that a
given output at a specific time step can only be influenced by
preceding elements in the sequence, preserving the autore-
gressive property, where the prediction for each step is
conditioned only on the known past information. Formally,
we denote this process as

Figure 4. Illustration of the NAG2G generation.
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where Q K V R, , n dh× represent the query, key, and value
matrices, respectively. dh is the dimension of one head. n is the
number of time steps. M is an additive mask matrix that ensures
that only the relevant information from the current and previous
time steps is considered during the attention computation. For
the sake of simplicity, we present the calculation for only one
head. The multihead attention process executes the above
single-head calculation in parallel. During the calculation of one
head, the computational complexity is n n d( )h× × , and the
peak memory consumption is n n( )× .

As previously mentioned, graph-level features vary across time
steps, and their direct utilization poses an efficiency challenge
during model training. Specifically, to maintain the time-varying
graph features, a matrix with shape n× n× dh is required.aThese
time-varying graph features are then employed as additive
positional encodings. As a result, the attention layer can be
represented as
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where D n n dh× × denotes the time-varying graph features and
the shape ofQ,K,V is reshaped to n× 1 × dh for broadcasting. In
this process, although the computational complexity remains
unchanged, the peak memory consumption increases to

n n d( )h× × . Considering that dh is typically 32 or even
larger, this significant increase in peak memory consumption is
considered impractical for real-world applications.

To reduce the cost, we first remove D from the V + D term.
Then, the cost is bottlenecked at QDT due to the Q(K + D)T =
QKT + QDT term. Furthermore, we can reduce the size of the
last dimension by substituting D. Thus, the attention can be
transformed to
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where U d dh h2× is employed to reduce the dimension of Q
and D n n d

2
h2× × represents the time-varying graph features

with a much smaller dimension dh2. With this configuration, the
peak memory is reduced to n n d( )h2× × . Figure 5 illustrates
the design of a self-aware layer for time-varying graph features.
Data Preparation
The NAG2G is trained and tested on two broadly acknowledged
data sets, USPTO-50k32 and USPTO-Full.7,20 USPTO-50k
comprises 50,016 atom-mapped reactions, categorized into 10
reaction classes. The USPTO-50K data set was split into 40,008,
5,001, and 5007 reactions for the training, validation, and test
sets, respectively. We also used the filtered USPTO-Full data set
with approximately 1 million atom-mapped reactions as
described by Tetko et al.20 instead of the original USPTO-Full
data set.7 After filtering out incorrect reactions, which leads to an
approximate 4% size reduction, training, validation, and test sets
contain approximately 769,000, 96,000, and 96,000 reactions.

The distribution of reaction classes in the training, valid, and test
sets of USPTO-50k are the same, displayed in Figure 6.
Consistent with previous works, we did not benchmark the
USPTO-Full results with the aid of reaction class information.

■ RESULTS

NAG2G Setup
The setup of NAG2G contains a 6-layer encoder and a 6-layer
decoder. The input embedding dimension was set to 768, and
the number of attention heads was set to 24. We employed the
Adam optimizer37 with (β1, β2) = (0.9, 0.999), and linear
warmup and decay with a peak learning rate of 2.5 × 10−4. The
training process took a total of 12,000 steps with a batch size of
16, requiring 6 h to finish on a single NVIDIA A100 GPU. For
the training on the USPTO-Full data set, NAG2G ran 48,000
training steps with a batch size of 64, taking approximately 30 h
to complete on eight NVIDIA A100 GPUs.
Results on the USPTO Data Set
To evaluate the performance of NAG2G during inference, we
utilized the commonly adopted beam search method for top
candidate predictions. We configure the beam size at 10, using a
length penalty of 0 and a temperature of 1. Notably, data
augmentation is not applied during the inference phase.
Additionally, NAG2G relies on RDChiral38 to assign the atomic
chirality of reactants, drawing from the product’s stereo-
chemistry.

The definition of prediction accuracy follows the approach
proposed by Liu et al.,17 which considers a prediction to be
accurate only if it completely identifies all reactants for a specific

Figure 5. Illustration of decoder attention mechanism.
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chemical reaction. We measure the top-k accuracy of the

predictions, defined as the proportion of test cases in which the

correct answer appears among the top k candidates of the beam

search results.

USTPO-50k

In Table 1, NAG2G demonstrates superior performance on the
USPTO-50k data set compared to recent baseline approaches,
including template-based, semi-template-based, and template-
free models. (1) No supplementary techniques were imple-

Figure 6. Distribution of 10 types pf reactions in the USPTO-50k data set. The reaction’s legends are ranked based on their fraction from largest to
smallest.

Table 1. Top-k Accuracy for Retrosynthesis Prediction on USPTO-50ka

Top-k accuracy (%)

USPTO-50k

reaction class known reaction class unknown

model 1 3 5 10 1 3 5 10

Template-Based
RetroSim4 52.9 73.8 81.2 88.1 37.3 54.7 63.3 74.1
NeuralSym5 55.3 76.0 81.4 85.1 44.4 65.3 72.4 78.9
GLN7 64.2 79.1 85.2 90.0 52.5 69.0 75.6 83.7
MHNreact39 - - - - 50.5 73.9 81.0 87.9
RetroComposer8 65.9 85.8 89.5 91.5 54.5 77.2 83.2 87.7

Semi-Template-Based
G2G10 61.0 81.3 86.0 88.7 48.9 67.6 72.5 75.5
RetroXpert11 62.1 75.8 78.5 80.9 50.4 61.1 62.3 63.4
RetroPrime12 64.8 81.6 85.0 86.9 51.4 70.8 74.0 76.1
GraphRetro13 63.9 81.5 85.2 88.1 53.7 68.3 72.2 75.5
SemiRetro14 65.8 85.7 89.8 92.8 54.9 75.3 80.4 84.1
G2Retro15 63.6 83.6 88.4 91.5 54.1 74.1 81.2 86.7
MARS27 66.2 85.8 90.2 92.9 54.6 76.4 83.3 88.5

Template-Free
LV-transformer40 - - - - 40.5 65.1 72.8 79.4
SCROP18 59.0 74.8 78.1 81.1 43.7 60.0 65.2 68.7
GET24 57.4 71.3 74.8 77.4 44.9 58.8 62.4 65.9
tied transformer19 - - - - 47.1 67.1 73.1 76.3
MEGAN26 60.7 82.0 87.5 91.6 48.1 70.7 78.4 86.1
aug. transformer20 - - - - 48.3 - 73.4 77.4
aug. transformer*20 - - - - 53.5 69.4 81 85.7
GTA25 - - - - 51.1 67.6 74.8 81.6
Graph2SMILES23 - - - - 52.9 66.5 70.0 72.9
RetroDCVAE21 - - - - 53.1 68.1 71.6 74.3
DualTF41 65.7 81.9 84.7 85.9 53.6 70.7 74.6 77.0
Retroformer? 64.0 82.5 86.7 90.2 53.2 71.1 76.6 82.1
G2GT31 - - - - 48.0 57.0 64.0 64.5
G2GT*31 - - - - 54.1 69.9 74.5 77.7
NAG2G (ours) 67.2 86.4 90.5 93.8 55.1 76.9 83.4 89.9

aThe best performance is in bold, and the best results for each method type are underlined. Models denoted by an asterisk (*) employed
supplementary datasets for training or incorporated techniques to enhance the accuracy during inference. In order to maintain a fair comparison,
we also present their results without implementation of these additional techniques.
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mented to aid the inference procedure in NAG2G to ensure a
fair comparison. Within the template-free domain, NAG2G
markedly surpasses all benchmarks across every metric. Even
though certain baselines leverage extra data or methods to
bolster their results (indicated by *), NAG2G continues to excel
without any such enhancements. Despite the additional use of
predefined rules in template-based and semitemplate-based
methods, NAG2G outperforms them without prerequisite
information. This marks NAG2G achieves competent results
among both template-based and semi-template-based ap-
proaches, which earlier template-free benchmarks never
achieved. Besides, NAG2G gives SOTA results based on
MaxFrag metric proposed by Augmented Transformer,20 see
the Supporting Information for details. Detailed results include
testing of each reaction class on the USPTO-50k data set when
trained with the class known are summarized in the Supporting
Information as well.
USTPO-FULL

Table 2 presents the performance metrics of various models
evaluated on the USPTO-Full data set. As the data set size
increases, the performance of all models declines due to the
heightened complexity of the task. Notably, while template-
based methods have shown impressive results on the USPTO-
50k data set, their performance falters considerably on the larger
USPTO-Full data set. This trend indicates that the reliance on
template-based methods from pre-established rules becomes a
limitation when confronting larger and more complex data sets.
In contrast, though weakened as well, template-free methods
demonstrate a more versatile and adaptive capability, partic-
ularly more suited for expansive data sets. Still, it is evident that
NAG2G consistently outperforms preceding baselines across all
evaluative criteria.
Result Interpretation (Ablation Study)

To identify the importance of each component that has been
designed for NAG2G, we performed ablation studies by
studying the impact of its removal. This aids in understanding
the NAG2G structure and how node alignment, data
augmentation, and the incorporation of time-varying graph
features can benefit the model.

Table 3 presents a comprehensive quantitative breakdown of
the impact of each strategy on the model’s performance on the
USPTO-50k data set, focusing specifically on Top-k accuracy
percentages. When all three techniques�node alignment, data

augmentation, and graph features�are utilized, the model hits a
peak Top-1 accuracy of 55.1% and maintains high performance
across Top-3 (76.9%), Top-5 (83.4%), and Top-10 (89.9%),
emphasizing the synergistic effect of this combination.
Eliminating graph features results in a marginal decrease in the
accuracy of each Top-k accuracy metric. However, incorporating
these graph features contributes to an approximately 1%
improvement in the metrics under challenging scenarios where
further progress is difficult to achieve. Omitting data
augmentation leads to a more pronounced decline, with the
top-1 accuracy decreasing by 5.9% and the top-10 accuracy
experiencing a reduction of 9.5%, underscoring its role in
enhancing model robustness and generalizability to unseen data.
The performance deteriorates dramatically without node
alignment, with the accuracy dropping by 50% for Top-10.
This highlights the importance of node alignment in capturing
the structural information of the graphs and enabling the model
to make more accurate predictions. It is evident that the
difference between top-1 and top-10 accuracy significantly
reduces from 34.8% (when both data augmentation and node
alignment are employed) to merely 3.8% (when data
augmentation is used without node alignment). This illustrates
that using data augmentation without node alignment leads to a
lower diversity of candidate predictions compared to when both
techniques are employed. However, it is worth noting that the
gap remains at 22.3% when neither node alignment nor data
augmentation is utilized, which is not particularly high.
Consequently, this highlights that node alignment and data
augmentation are complementary techniques that, when jointly
employed, can enhance the performance metrics. In conclusion,
our ablation study shows that node alignment, data
augmentation, and graph features are all crucial components

Table 2. Top-k Accuracy for Retrosynthesis Prediction on the USPTO-Full Data Seta

model Top-k accuracy (%)

model type methods 1 3 5 10

template-based RetroSim4 32.8 - - 56.1
NeuralSym5 35.8 - - 60.8
GLN7 39.3 - - 63.7

semi-template-based RetroPrime12 44.1 59.1 62.8 68.5
template-free MEGAN26 33.6 - - 63.9

aug. transformer* 44.4 - - 70.4
NAG2G (ours) 47.7 62.0 66.6 71.0
aug. transformer*◦20 46.2 - - 73.3
G2GT*◦25 49.3 - 68.9 72.7
NAG2G (ours)◦ 49.7 64.6 69.3 74.0

aModels denoted by an asterisk (*) used supplementary data sets for training or incorporated techniques to improve accuracy during inference. For
models denoted by a circle (◦), the invalid reactions are excluded from the test set, following the setting of the augmented transformer.20 To align
our methods with the previous baselines, we adopted the approach from the augmented transformer,20 assuming that the methods failed on the
removed test data, as evidenced by the results of our methods without a circle (◦).

Table 3. Ablation Study on USPTO-50k with Reaction Class
Unknown

strategies Top-k accuracy (%)

node
alignment

data
augmentation

graph
features 1 3 5 10

√ √ √ 55.1 76.9 83.4 89.9
√ √ × 54.1 75.9 82.6 88.8
√ × √ 49.2 69.2 75.3 80.4
× √ √ 46.1 47.6 48.5 49.9
× × √ 40.3 54.9 58.9 62.6
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of our model, with each strategy playing a vital role in enhancing
prediction accuracy. The combination of these strategies yields
the best overall performance, emphasizing the importance of
incorporating them in future work on graph-based reaction
prediction models.

Table 4 illustrates the Top-k validity of various models on the
USPTO-50k data set, focusing on the autoregressive node

generation approach adopted by the NAG2G model. When all
atomic features (type, formal charge, and number of hydrogens)
are utilized, NAG2G delivers a Top-1 validity of 99.7%, with
strong performances also observed in Top-3 (98.6%), Top-5
(97.1%), and Top-10 (92.9%) predictions. The exclusion of
certain molecular properties during node generation reveals the
importance of each feature in generating SMILES. Omitting just
the formal charge results in a Top-1 validity of 89.9%, while the
disregard of the hydrogens brings it to 89.6%. The most
pronounced decrease is observed when both of these features are
excluded, dropping the Top-1 validity to 80.8%. The results with
respect to the accuracy are also studied, see the Supporting
Information for details. When juxtaposed with other models
such as GET, Graph2SMILES, and RetroPrime, NAG2G
consistently outperforms.

Furthermore, our ablation studies of the encoder reveal that
the performance of our model is robust and not overly
dependent on its encoder configuration. For detailed findings,
please refer to the Supporting Information provided.
Case Studies
To assess the capability of designing synthetic routes for organic
molecules, we picked four drug candidates as the target product
and performed sequentially SSR using NAG2G trained with the
USPTO-50k data set. The performance of template-free
NAG2G successfully outperforms the previous model16

according to its inference results as shown in Figure 7a. All six
synthetic steps documented in the original literature for
Nirmatrelvir42 are accurately predicted by NAG2G, achieving
all predictions within the top three ranks. The initial step
involving the dehydration of the amide to form the cyano group
was ranked first, while the rank-2 result predicted condensation
reaction aligns with a recent advanced one-pot synthesis strategy
for Nirmatrelvir.43 The exact step-2 and step-6 condensations
are pulled out by NAG2G with both answers standing out
among the other candidates. In the third step, the
trifluoroacetylation of the amine in 6 was predicted as the
third-ranked reaction by our model, an improvement over its
sixth-ranked prediction in Graph2Edits. For step-4 and step-5,
our model’s first- and second-ranked predictions effectively
serve the protective function using different, yet common,
reagents.44 The second test case, osimertinib, known by its

research name AZD9291, gained approval in 2014 as a clinical
treatment for patients with nonsmall cell lung cancer.45 As
shown in Figure 7b, NAG2G successfully delineates a five-step
synthesis, as described in the literature, tracing the synthetic
pathway from commercially available pyrimidines to the final
product AZD9291. The initial step of the reverse synthesis is an
acylation reaction, ranking the first in order of likelihood,
followed by another rank-1 reduction of the nitro group.
Subsequently, it correctly identified two consecutive nucleo-
philic aromatic substitution steps as the top choices. In the final
step, the model’s highest probability prediction was a Suzuki
coupling, which was also the rank-2 reaction inferred by the
Graph2Edits model.16 Although the original strategy involving a
Grignard reaction was not predicted, the rank-6 result suggests
the alternative pathway. For the third case, we selected
salmeterol, a long-acting bronchodilator, which has been tested
in the former template-based model by Coley,4 LocalRetro,6 and
root-aligned strategy by Zhong.30 With the presence of amine
and phenol functional groups in compound 21, NAG2G
recommends protecting the reactive sites, ranking these steps
as first and second.46,47 The subsequent reaction is the
production of compound 22 through a Williamson ether-type
reaction, identified as the rank-5 choice. Moreover, rank-6 for
the fourth step successfully predicts the transformation of 26
into 25 via an asymmetric Henry reaction, as described in Guo’s
synthesis.47 It is noteworthy that while the original synthesis
protects two hydroxyl groups in compound 27 simultaneously
using 2,2-dimethoxypropane, NAG2G opts to protect only the
more reactive phenol group, which aligns with the requirements
of the complete synthetic scheme.

The last example, lenalidomide, which is also involved in the
work of LocalRetro6 and Graph2Edit16 turns out to be a more
challenging task.48 NAG2G accurately predicted the first and
last steps involving nitro reduction and NBS (N-bromosucci-
nimide) substitution as the top-1 reactions. For the cyclization
step involving the formation of two C−N bonds, NAG2G
proposed a precursor, compound 31, with a chlorine substituent
instead of bromine. Nonetheless, NAG2G is capable of
suggesting a stepwise ring closure mechanism, mirroring the
results reported by LocalRetro.
Error Analysis

In the sequence-to-sequence (seq2seq) model17 context, the
generation of reactants in the SMILES format can result in three
outcomes: (1) Generated SMILES strings generated are invalid,
corresponding to a nonchemically feasible structure. (2) The
SMILES strings are chemically valid but do not represent
suitable reactants capable of producing the desired product
under given reaction conditions. (3) The SMILES strings
represent reactive compounds that can lead to the products as
common reactions, even though they may not match the ground
truth reactants exactly. In evaluating the first type of error for our
model on the USPTO-50k data set, we focused on validity,
which gauges the percentage of valid SMILES strings generated
among the top-k predictions. Our model boasts a top-1 validity
of 99.7%, outperforming other advanced models.12,23,24 This
superior validity is due to the autoregressive generation process,
as we have discussed in the ablation study section. If the model
randomly omits predictions for charge and hydrogen attach-
ments, then the top-1 validity significantly decreases to 80.8%.
The identification of the second and third types of errors
involves expert evaluation by organic chemists. To impartially
review the inference results without preassigned reaction classes,

Table 4. Top-k Validity of the Generated Molecules on
USPTO-50k with the Reaction Class Unknown

model Top-k validity (%)

1 3 5 10

NAG2G (ours) 99.7 98.6 97.1 92.9
NAG2G w/o charge 89.9 90.2 86.1 75.9
NAG2G w/o hydrogen 89.6 88.4 87.6 83.4
NAG2G w/o charge or hydrogen 80.8 82.5 81.5 77.6
GET24 97.8 86.6 80.5 70.7
Graph2SMILES23 99.4 90.9 84.9 74.9
RetroPrime12 98.9 98.2 97.1 92.5
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Figure 7. Synthesis route of four drug molecules and the predicted ranks given by NAG2G.
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we selected three representatives to examine the variety of
reactants that can be predicted by our model, referred to here as
NAG2G. In all cases, the ground truth falls within the top 10
predictions, alongside a variety of other reaction types,
showcasing the model’s extensive predictive range. The rich
diversity of suggested synthetic solutions enhances the
retrosynthetic route design by providing a wide array of
chemical reactions to consider, thus offering alternatives for
subsequent route selection and evaluation. For a detailed
summary table and analysis, please refer to the Supporting
Information.

Another limitation stemming from the origins of the USPTO
data set is the lack of detailed reaction information, such as
conditions, yields, and selectivity. With this information, the
NAG2G model could provide more accurate and reliable
rankings for its predictions. Additionally, single-step prediction
models, including ours, might overlook interactions between
consecutive steps. For example, in case 3, the selective phenolic
benzylation, while an efficient protecting step, could significantly
impact the subsequent asymmetric Henry reaction. This
scenario illustrates that effective single-step predictions require
not just accuracy but also a thorough evaluation of route
complexity and yield trade-offs. In response to these challenges,
we are actively developing advanced scoring methods to
facilitate multistep process decisions based on the results
provided by NAG2G.

■ CONCLUSIONS
In this study, we present the NAG2G model�a graph-based
SSR method free from templates. This model employs the
transformer encoder−decoder framework, generating reactant
molecule graphs in an autoregressive fashion. Testing on well-
established data sets, USPTO-50k and USPTO-Full, indicates
that NAG2G offers competent performance against prevailing
SOTA models. Ablation studies shed light on the contributions
of various components, underlining the potential of our
approach. The replication of case studies and error analysis
highlight the promising performance of NAG2G in specific SSR
tasks, suggesting that further advancements could enhance its
capabilities even more.

While many SSR models, detailed in our introduction, show
promise, NAG2G marks a notable stride in applying DL to
single-step retrosynthesis�especially when considering a
template-independent approach. Our methodology opens the
door that intricate neural networks are not the sole route to
achieve high quality results; careful and detailed model design,
combined with precise task definitions, can yield competitive
results. Our current design is tailored for single-step retrosyn-
thesis predictions, where input and output graphs bear close
resemblance. For broader graph-to-graph generation tasks,
especially with considerable input−output disparities, refine-
ments may be needed. Moving forward, our ultimate goal is to
develop this method, delving into multistep synthesis planning
for more intricate chemical synthesis scenarios.
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