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Abstract 

We use a random choice numerical method to analyze the instability of a 

front separating two fluids in a porous medium. We observe a linear instability 

and a catastrophic tnite amplitude instability. A qualitative analogy with prob-

lems involving a transition to turbulence is pointed out. 
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Introduction 

The goal of this paper is to present an analysis of the onset of instability in 

Pa 	 a front separating two fluids in a porous medium. The analysis will be based on 

Glimrn's (random choice) numerical method. The front is known to be unstable 

for sufficiently large values of a parameter A, the viscosity ratio. We shall show 

that there exist two kinds of instability: for 	= 3, small perturbations that 

are spatially smooth will grow slowly; for 	 perturbations of large 

enough amplitude grow catastrophically. The two types of instability can 

interact. 

The results and the numerical method are of practical significance in prob-

lems of oil flow and reservoir engineering. A random choice method [1.3], [3],[4] 

has been previously applied to such problems by Concus et al. [i],[iO], Glimm et 

al. [14],[15], and Lotstedt [19]. Our method differs from earlier work in several 

respects, the most important of which is the fact that we keep some two dimen-

sional information in order to reduce the possibility that one dimensional 

sweeps misinterpret the nature of waves moving diagonally across the grid. The 

possibility of large errors in this situation has been pointed out by Crandall and 

Majda [11],[12] and by Colella [9]. We do not track fronts. 

The results regarding the different kinds of instability resemble strongly 

other phenomena previously observed in hydrodynamics (see e.g. [5],[7],[22]). 

We have a continuum of unstable modes which can combine strongly to generate 

phenomena reminiscent of turbulence and intermittency. The present calcula-

tion may be helpful in explaining the gap between linearized stability theory and 

experiment in more difficult problems. These questions are discussed in the 
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concluding section of the paper. 

The equations of motion, the Riemann problem, and linearized stability theory 

The incompressible flow of two immiscible fluids in a porous medium can be 

described by the following equations (see [24],[16],[21]): 

sg +uVf(s)=O 	 (la) 

Vu0 	 (ib) 

u=—X(s)Vp, 	 (ic) 

where s is the saturation of one of the fluids (which we shall think of as being 

"water"), t is the time, x=(z,y) is the spatial coordinate, u(u,v) is the velo-

city, p is the pressure, A is the total mobility, and f is the fractional flow func-

tion (for explanations of those terms see [24]). Equation (la) is known as the 

Buckley-Leverett equation, (ib) expresses incompressibility, and (ic) is Darcy's 

law. We shall pick 

A(s) =s2 +(1—s) 2/ii, 	 (2a) 

f(s)=s 2/X(s) 	 (2b) 

where A is the viscosity ratio between the two fluids. (We shall think of the one 

which is not "water" as being "oil".) These choices correspond to immiscible flow. 

Note that f is not a convex function of s. 

We shall be solving these equations in the square 0!5x ~ 1, O:!5y!f-1, subject 

to the boundary conditions: 

0, 	0 onz0,l, 
ox 	Ox 

ony0, 	 (3) 

By 
0 ,p=O 	ony=i, 
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and a variety of initial conditions s 

The solutions of equations (1) develop discontinuities, and we assume that 

discontinuities in two space dimensions satisfy jump conditions identical to 

those which arise in the scalar problem 

s +uf. = 0 , f = f(s) 	 (4) 

where x denotes the variable normal to the discontinuity. We shall now summar-

ize some facts about equation (4): a detailed presentation is available in [10]. 

Let u 1 in equation (4). Let SL,Sr be the values of s to the left and to the 

right of a jump discontinuity. The solution of (4) is unique and depends continu-

ously on the data only if the jump ins satisfies Oleinik's condition (E): 

f(sT)—f(s) 
!9 
 f(st)—f(s) 	

(E) 

for all s betweens and s.. (For an elementary discussion, see [81.) 

Consider the Riemami problem for equation (4), u 1, i.e., equation (4) sub-

ject to the initial data 

S 
 = I

Sj for x < 0 

sr  for x > 0 . 

The states SZ,Sr will be connected by either a shock, or a raref action wave, or a 

combined shock and rarefaction. All shocks must obey condition (E), which 

determines uniquely the allowed connecting waves. 

If the chord connecting the points (sLf(sL)) and  (s,..f(s)) in the (s,f) 

plane nowhere intersects the graph of f, then if a(st ) > a(s), a the con- 

necting wave is a shock with speed 	= (I (s,.)—f (sj )),' (s—sj); if, on the other 
dt 

hand, a(sL ) < a(sr ), the connecting wave is a rarefaction. 
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If the chord connecting (s1 1 (s 1 )) and (s,. ,f (sr )) does intersect the graph of 

f which can happen since f is not convex, there are again two possibilities. If 

Sj >s7., we construct the convex hull off in [SL sr]'  i.e., the smallest convex func-

tion H(s)f (s). Our f has a single inflection point and thus H consists of a 

straight line of slope S and a portion of the graph of f, the two being tangent to 

each other at a point (s 0j (Se)). If S. = 0, s 0  = ( i+p) 3 . The wave connecting s 1  

and sr  is a shock moving with speed S followed by a suitable rarefaction wave 

(see rig. la). If, on the other hand, S1 <se , we construct the concave hull of / 

and determine the wave structure from its shape (fig. ib). For full details, see 

[10]. 

Consider a physical problem in which water and oil are coexisting in a 

porous medium without mixing (a description of the physics can be found in 

[24]). In the region occupied by oil s = 0, in the region occupied by waters >0. 

The discussion in the preceding paragraph indicates that if water is displacing 

oil the convex hull of / is used to determine the solution, which consists of a 

shock followed by rarefaction. If oil is displacing water, the concave hull is used, 

with analogous conclusions. This construction has been worked out in [24] by 

physical arguments with no explicit use of condition (E). 

Suppose uAi, u >0, in equation (4); the wave speeds are merely scaled by 

u. If u <0, the roles of s1 ,s,., are interchanged in the discussion above; i.e., if the 

driving velocity changes sign, the displaced fluid becomes the displacing fluid. 

Consider a water/oil front coinciding with the z axis, moving steadily in the 

direction of increasing y (fig. 2), with water below the x axis and oil above. We 

wish to consider the stability of the front to small perturbations. The suffix 

refers to quantities defined in the water and the suffix "+" to qualities defined in 

the oil. 
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In the oil phase s = s.d. = 0. At the front. s... = s0  = (1+) -3. The quantity 

X(s0)/X(0) M is called the mobility ratio. Write p = P+p', s_ = S_+s'_, 

Vi  = V+v', etc., where the capitals denote unperturbed quantities and the 

primes denote perturbations. Let V P±  = (0,G). From equations (lb),(lc), we 

find 

G+X(0) G_X(s 0) , G+,G> 0, 

P+ G+y , PG.y. 

Substitution into equation (la) yields, to first order in small quantities, 

(s'_) g  + Viiz(S_)(s'_) = A s'_ , a 	
ds 

where A is a function of S_. On the front itself s_s 0 , s'_=O, and thus s'_0 

everywhere. 

From this point on, the analysis follows Chuoke's argument, published by 

Saffman and Taylor [23]: From equations (ib),(ic), we find 

V X(S_)Vp0 

with p and v continuous across the front. 

Since the saturation s_ below the front forms a rarefaction, the values of s_ 

approach SC, and it is natural to look at the simpler problem with and 

thus 

We now perturb the front so that it coincides with the curve 

= exp(iaz +at) 

An appropriate choice of the forms of p'_.p'., yields 

= Ce' exp(iaz +t) , C.1 ,C_ constants. 

The boundary conditions yield, after some manipulation, 



M. 

X(s 0) + X(0) } = G
+(M-1) , Al = MobiLity ratio; 	(5) 

ForM> 1, a>O for all a and the front is unstable. M>1 if p.>3. Note that a is 

proportional to a, suggesting that the instability is very strong: (compare with 

the instability of a vortex sheet [18].) There is a continuum of unstable modes. 

The numerical method 

We shall be solving equations (1) by a generalization of the random choice 

method [13],[3],[4],[10],[15]. The time t is discretized into steps of length k. 

The quantities p,s,u,v are defined on a staggered grid of mesh length h (fig. 3), 

following [17]: p  and s are defined at (ij,jh), i.j integers, u is defined at 

((i+h,jh), v is defined at (ih,(j+)h); we write s(th,jh) = s 1  etc. The boun-

dary conditions (3) are approximated in the obvious manner. 

At the beginning of the (+i)5t time step, it is assumed that the quantities 

p,s,u,v are known. Equation (la) is used to calculate s 1  = sjj  at the new time 

via the random choice method. Equation (lb)(lc) are then used to update p 

and ii. 

The one dimensional version of the random choice method can be described 

as follows: consider the equation 

St  + uf 	f = f(s) u given. 

At tim2 t the saturation s is assumed known at the points ih, i integer; s is 

extended to a function constant on the intervals [(i-3')h,(i+3')h]. The resulting 

initial value problem is solved exactly; the solutions consists of independent 

Riemann solutions if the CFL condition is satisfied: 

k -!5 h max(JuIa(s1,s1)) 
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where a(s,s +1) is the largest velocity which can occur in the solution of the 

Riemann problem separating s and s 1+1 . We shall assume that this condition is 

satisfied. The Riemann solutions are then sampled to obtain new values of s. 

The sampling strategy determines the accuracy of the calculation. Following 

ColeIla [9], we use a sampling based on van der Corput sequences. We modify 

the sequence when necessary to ensure that if 	are successive samples, 

then 	> 0. (The reasons are explained in [4].) Further- 

more, we also follow Colella's modification of the sampling which allows the 

values of s to be defined on a fixed spatial grid without staggering; when this is 

done, it is natural to define u in equation (4) at the points (i+})h, as will be 

done in our two dimensional grid. 

The natural way to generalize this scheme to two space dimensions is to 

solve successively the problems 

Sg+uf= 0  sg +vf,=O. 

The flaw in that procedure, pointed out by Colella [9] and Majda [1i],[12], lies in 

the fact that a front which lies diagonally across the grid can be interpreted in 

one of the directional sweeps as representing water displacing oil and in the 

other sweep as oil displacing water. Examples of errors which arise in such 

situations can be found in [11], and the construction which follows is designed to 

avoid them. Other authors [16],[19], have tried to avoid this difficulty by track-

ing the fronts. 

The general idea is to decide which kind of front is really occurring by using 

some local two-dimensional information in the one-dimensional sweeps. One can 

require, without loss of accuracy, that the sampling numbers used in the two 

directional sweeps be always either both positive or both negative. Assume this 

has been done. Consider the x-sweep, i.e., the sweep in which the equation 

being solved is s 4- uf = 0. For the full equation (la), if uVf < 0, water is 



displacing oil and the convex hull of the function / determines the Riemann 

solution. The opposite is true if if u Vf > 0. Consider the point (ij), assume 

> 0, v> 0, and evaluate the quantities 

Pi = 

P2 = vJ(f(s)f(stJ_1)). 

If PIP2  0, the wave is interpreted in the same way in both the sweep we are per-

forming and in a. hypothetical y-sweep, and the x-sweep does not have to be 

modified. The level lines of s are likely to look as in fig. 4a or fig. 4b. 

Suppose PIP2 < 0. The likely level lines look as in fig. 4c. Evaluate 

P'2 = 	(s_11) -f (s_1...1)) 

Let p = Pz P'2 If p!90 water is displacing oil, and if p> 0, oil is displacing water. 

If ptgIJ and s% _ 1 J  sij  or p>O and !_c sij the one dimensional sweep is 

interpreting the wave correctly. In the other cases the sweep is misinterpreting 

the nature of the wave and the roles of convex and concave hulls have to be 

interchanged. This is easily done: one exchanges the roles of s l ,s, in the 

Riemann solver and replaces by if 15 is negative, by —i5 if 13 is positive. 

Note that the one-dimensional sweep may now violate condition (E). 

There are three analogous cases to be considered: Uj > 0, 	< 0, then 

<0, v> 0 and finally uhi j  <0. v. < 0.. Similarly, there are four 

cases to consider in the y-sweep. Note that the decision process we have just 

described is not unambiguous: it may well happen that v> 0 but v +  < 0. 

Such cases are presumably rare, the corresponding values of v small, and in 

practice the ambiguity presents no problem. 

Finally, given s' 1 , the new values of p and u are found by approximating 

(lb) by 

= 



with a similar expression for v, and approidmating V u by Du given by 

hDu = uj+1  - U.j 

The resulting elliptic equation for p is self-consistent in the sense of [2], and 

thus there are no fictitious sources of s in the domain of integration. Also, the 

flux of s is conserved, and the natural discrete form of VxVp = 0 is satisfied. 

This guarantees that we are finding the correct weak solutions of our elliptic 

equation (see the analysis in [14]). There is no need to worry about the legi-

timacy of differencing across the front. 

The algebraic equations which arise from equations (lb),(ic) can be solved 

in a variety of ways (see e.g. [11],[16]). We have obtained satisfactory results by 

an overrelaxation method with a position dependent relaxation factor. 

The method has been successfully tested on several test problems whose 

solution is known. The calculations presented in the next section also act as a 

check. 

Numerical results 

(a) Growth of srr1.aLl perturbations 

The linearized stability theory we have presented predicts that for .t>3 

small perturbations will grow exponentially. The rate of growth is however rela-

tively small. If we assume a = it then a 1 , the e -folding time as prethcted by 

equation (5), will be -i60 for /3.i. Even if we consider the smallest a which 

can be represented on an economical grid, the corresponding rate of growth is 

hard to observe in view of the stronger instability we shall discuss in the next 

section. Note that during the time it takes for a perturbation of small amplitude 

to grow the front is likely to leave our computational domain. This can be 

remedied by performing a translation of the form s'(z,yt) = s(z,y + Yt), 
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Y= constant, whenever needed. 

As a way of exhibiting the linearly unstable modes, consider the initial con-

ditions: s(x,y,0) =s 0  for 0!5 z :5.1/3 and 0!;y:!r- 1/2, S =so for 1/3 ~ z:92/3 and 

0:!9 y !!5 1/2+1/ 12, s =s o  for 2/3!!gxic 1 and 0:!9 y :!9 1/2, s =0 otherwise (this is a 

front with an extrusion in its middle third). In Table I we display the values of 

the vertical velocityv on the line y = 1/2for j2.9 andt3.1. Foru=2.9 v is 

smaller in the region of the extrusion, thus reducing its size; the opposite is true 

for =3.1. =3.0 is then seen to be the dividing point between stable and 

unstable behavior. Note that the differences in v are in the fourth significant 

digit. 

We have rim some initial value problems with s in the water close to s 0  and 

j.4 close to 3, t>3, and observed a growth of perturbations on a time scale corn-

patible with linear theory. We omit the pictures which are singularly 

undramatic. 

(b) Growth of fln'ite azrLpWud2 perturbations 

In figs. 5 and 6 we display the flow that arises from the front perturbed as 

depicted for various values of A. In each point occupied by water we print the 

integer [lOs], where the square bracket denotes the integer part. When s = 1, 

we print 9. This device is sirn.ilar to the one used by Glimm [15] and is necessary 

because it has not proved possible to design a contour plotter which gives a good 

account of the complexity of the flow. 

In fig. 5 the initial perturbation has a very small physical extent. For<2.8 

the flow is stable in the simplest way: the perturbation simply disappears. For 

between 2.8 and 3.5 we observe a paradoxical effect. An initial extrusion of 

water becomes an intrusion of oil with a little foam in front. The particular 

structure of the foam is quite likely to be a numerical artifact. The reason for 

this phenomenon is quite obvious: since z is not convex (see fig. 1), and S is 
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larger behind the extrusion, the velocity of water is smaller there. If the values 

of v are not large enough to make up for this effect, oil will intrude. After that 

intrusion the flow changes very slowly: presumably, if j.>3, the perturbation will 

grow on a time scale consistent with the linearized theory. When the 

paradoxical effect disappears, and for ,a ~ 3.6 we see the rapid growth of a thin 

finger. The eventual complexity of the flow can be seen in fig. 5i. 

In fig. 6 the initial perturbation has a larger lateral extent and thus more 

energy for overcoming the paradoxical effect. Note that the perturbation is 

growing rapidly even for A = 2.8, below the critical value of the linearized theory. 

The perturbation has a better chance of growing if: (i) its amplitude is 

increased, (ii) its physical extent is increased, (iii) ju is increased, and (iv) the 

gradients of s below the front are increased. We have not been able to charac- - 

terize the successful perturbations in a mathematical reasonable way, nor to 

relate the finite amplitude catastrophic instability to the linear theory. Clearly, 

when finite amplitude perturbations are allowed, the larger values of s below the 

front can affect the front and create a large "eddy' mobility ratio. Note that the 

main new feature of our numerical method, i.e., the modification of the splitting, 

has little bearing on the analysis of the early stages of finite amplitude instabil-

ity in our geometry. The important balance is between the solution of the ellip-

tic equations (ib).(lc) and the properties of the one dimensional Riemann solu-

tion. The fingers we are seeing are of the same kind as the ones previously 

observed by Concus, Glinim, and Lotstedt. For experimental results, see e.g. 

[14]. 

The results regarding stability are compatible with those in [13] and [191: 

the front is stable for ju=2 (M .845) and dramatically unstable for a4 

(M = . 105). A finite amplitude perturbation is needed to generate an instability 

that can be discerned in a reasonable time. It remains to see whether our 
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amplitudes are comparable with those in [15],[16], since previous authors pro-

vide few data around .4=3. Above p= 4, the amplitude needed may well be corn-

parable with truncation and round-off error. 

One can also display interestiri.g runs in which a small perturbation grows 

for a while as per the linearized theory and, once some threshold is crossed, 

begins to grow at a much faster rate. Finally, even when s=s0  below the front, 

large enough perturbations grow much faster than the linear theory predicts. 

Note that the range of rnobi].ity ratios in which these phenomena occur is 

very small: below M = .97 all perturbations decay both in the linearized mode 

and in the short run for large perturbations; above M = 1.06 our calculation show 

a catastrophic growth of perturbations whose physical extent is a single mesh 

cell in a 20x20 grid. As far as we know, ours is the first calculation in which the 

onset of instability is computed reliably. 

(c) Fnzctalization. 

It is natural to wonder what happens to the front beyond the onset of insta-

bility. A look at fig. 51 and the much more complex figures which are obtained 

with a finer grid, as well as the fact that equations (1) are invariant under 

changes of time and length scales, suggest that the front eventually approxi-

mates a fractal set (i.e., a set of non-integer Hausdorif dimension; see e.g. [20]). 

To test this conjecture we proceed as follows: At t = 0 assume the front is 

flat, represent it on an n 1 xn 1  grid, and give it a random perturbation. This is 

easily done by adding to the i9's in the random choice method a small random 

component which is a function of x and t (such a device was already used in 

[16]). Turn off the perturbation when the front has changed its length and the 

instability has set in, and compute up to a time T 1 . Suppose that at time T 1  the 

number of cells which lie on the boundary between water and oil is Z. 
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Suppose we were to restart the calculation on an n2xn 2  grid, and run up to 

the same time T 1 , with n2 >m 1 . We would get more detail, and if the number 12 

of boundary points is larger than 1 I  x (n 2/n 1) we have grounds for the belief that 

the boundary is a fractal set. 

Once we reach the time T 1  with the second calculation, we can take the 

subsquare 0!!f-zic-, O:gy!!g, ft =n 1/n2, expand it.to  fill the whole square and 

increase the time scale by the factor 1/a.  Since the equations are invariant 

under simultaneous changes of scale in time and space, the resulting 

configuration could have been obtained by running the initial calculation up to a 

time T 1/. (There are some minor differences at the boundaries of the domain 

which are presumably insignificant; a similar device was used in [ 6]). Thus we 

can obtain estimate of the Hausdorif dimension D of the boundary between oil 

and water by comparing the results of a single calculation at different times. If 

L is the number of boundary points at time T, and is the number of boun-

dary points at time T 1 , the analysis in [ 20] shows that the dimension D is 

approximated by 

D [log 	L)/log(T.,. 1 / T)]+ I 

We pick T%  = i 20k 0 , where k 0  is a typical time step; in Table II we list some com-

puted values of D. The calculations have to be stopped whenever the boundary 

set fails to fit into our computational domain. The validity of the calculation is 

not obvious, in particular because it is far from obvious that it is legitimate to 

compute when the fingers are one mesh width thick, and because it is unclear 

that the neglected detail at any stage of the computation should not have an 

effect on what is actually seen. One could speculate that the results in Table II 

suggest a value D 1.5 for A large enough. 

If indeed a process of fractalization does occur, it is obvious that the 

numerical results obtained from equations (1) in the unstable regime are wholly 
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unreliable and other effects, such as capillary pressure, must be taken into 

account in practical problems. Finally, in fig. 7 we show a typical detail of the 

flow with y = 28. This should be compared with the photographs in [25]. 

Conclusions 

The application of our method to flow problems of direct interest in 

petroleum reservoir engineering will be presented elsewhere. We would like to 

emphasize here the broader significance of the resu1ts 

We have seen that linearized stability theory for the fronts described by 

equations (1) predicts a continuum of linearly unstable modes. These modes 

can be detected if a calculation is done carefully enough, but the important 

feature of the real instability is the catastrophic growth of localized finite ampli-

tude perturbations which is accompanied by "chaos" in physical space. This 

situation parallels the transition to turbulence in a boundary layer (see e.g. [5] 

and the references therein, in particular [22]). In the case of a boundary layer, 

the unstable modes of the linearized theory are the Tollrnien-Schlichting waves, 

and the analogues of the fingers are the "bursts" connected with the cátas-

trophic stretching of horseshoe vortices. Similar scenarios arise also in the 

analysis of three dimensional vortex motion [7]. Equations (1) may thus provide 

a simple model of transition to turbulence in problems where the number of 

active modes is not restricted by the effects of buoyancy or imposed rotation. 

Note: The programs used in the calculations above are available from the 

author. 

Acknowledgment: I would like to thank Professor A. Majda for many illuminating 

discussions. 
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Table I 

Vertical Velocity in Slightly Perturbed Flows 

x =2.9 =3.1 

1/2 .3427 .3245 

2/12 .3427 .3245 

3/12 .3427 .3245 

4/12 .3426 .3249 

5/12 .3422 .3250 

6/12 .3421 .3249 

7/12 .3422 .3246 

8/12 .3426 .3245 

9/12 .3427 .3245 

10/12 .3427 .3245 

11112 .3427 .3245 
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Tb1e II 

Estimates of D 

p= 23, 30x30 grid 
1.33 
1.79 
1.71 
1.01 
0.68 
1.24 

average: 1.30 

p= 10, 30x30 grid 
1.26 
1.36 
1.52 
1.31 
2.27 
1.51 
1.33 
2.35 
1.46 

average: 1.59 

/L5, 30x30grid: 
1.28 
1.44 
1.33 
1.66 
.L1. .1 

1.38 
0.91 
1.10 
1.33 
1.54 
1.00 
2.08 
1.06 
1.30 
1.46 
1.64 
1.81 
1 .49  . 

average: 1.38 

=2C, 40x40 grid; 
1.35 
1.35 
1.83 
0.91 
1.54 
1.99 
1.48 
1.79 
1.00 

average: 1.44 

p10 40x40 grid: 
1.32 
1.60 
1.36 

.0.31 
0.88 
1.45 
1.07 
1.35 
1.33 
1.85 
1.21 

average: 1.25 

/L5, 4Ox4Ogrid: 
1.25 
0.97 
1.16 
1.89 
1.46 
1.28 
1.45 
1.44 
1.57 
1.22 
1.23 
2.66 
2.86 
1.61 
0.88 
2.03 
2.26 
1.00 
2.75 

average: 1.60 
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list of Yigure Captions 

Figures lab, Convex and concave hulls of f. 

Figure 2: The perturbation analysis. 

Figure 3: The computational grid. 

Figures 4a,bc: The front relative to the two-dimensional grid. 

Figures 5a,bc,d,efgh,i: Effects of a small perturbation. 

Figures 6abc,de: Effects of a larger perturbation. 

Figure 7: Partial view of a computed front, A= 28. 

-N 
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f(s) 	 1.1=4 

Figure lb 
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Figure 3 
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Figure 4a 
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Figure 4b 
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Figure 4c 
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