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We have investigated the valley splitting of two-dimensional electrons in high quality Si/Si1−xGex

heterostructures under tilted magnetic fields. For all the samples in our study, the valley splitting
at filling factor ν = 3 (∆3) is significantly different before and after the coincidence angle, at which
energy levels cross at the Fermi level. On both sides of the coincidence, a linear density dependence
of ∆3 on the electron density was observed, while the slope of these two configurations differs by
more than a factor of two. We argue that screening of the Coulomb interaction from the low-lying
filled levels, which also explains the observed spin-dependent resistivity, is responsible for the large
difference of ∆3 before and after the coincidence.

PACS numbers: 73.43.Fg,73.21.-b

The study on the valley splitting of the two-
dimensional electron gas (2DEG) confined in (001) Si
surface has been highlighted by recent research effort on
Si-based quantum computation[1]. For a Si 2DEG, only
the two out-of-plane valleys are relevant since the other
four in-plane valleys are lifted from the conduction band
edge. To realize a functional Si quantum computer us-
ing spins as quantum bits, a large valley splitting that
lifts the remaining two-fold degeneracy is desirable since
the existence of two degenerate states associated with the
±kz valleys is believed to be a potential source of spin
decoherence [1]. In the single-particle picture, theories
[2, 3, 4] in the early period of the 2D physics proposed
that the surface electric field in the presence of 2D inter-
face breaks the symmetry of these two valleys, resulting
in an energy splitting proportional to the carrier density.
The understanding of the valley splitting in real Si sys-
tems, however, is not a trivial task and requires much
beyond such non-interacting band picture. In fact, the
many-body effect [2, 4] was speculated to account for the
enhancement over the bare valley splitting under strong
magnetic (B) fields, while a detailed calculation is not
yet available.

Experimental research on the valley splitting, on the
other hand, was conducted mainly on the Si metal-
oxide-semiconductor field-effect transistors (MOSFETs),
in which the disorder effect is strong and direct measure-
ment of the valley splitting proves to be difficult [5, 6].
More than a decade ago, the introduction of the graded
buffer scheme significantly improved the sample quality
of the Si/SiGe heterostructures [7]. To date, the val-
ley splitting has been studied by various experimental
techniques, including thermal activation [8], tilted field
magnetotransport [9, 10], magnetocapacitance [11], mi-
crowave photoconductivity [12] and magnetization [13].
However, as pointed out by Wilde et al. in Ref. [13],
results reported by different groups are ambiguous and

inconsistent with previous band calculations. The na-
ture of this valley splitting, especially its behavior under
strong B-fields, stays as an unsettled problem.

Of the various methods used to study the valley split-
ting, tilted field magnetotransport, also known as the
coincidence method [14], is frequently utilized. In a B-
field tilted by an angle θ with respect to the 2D plane,
the ratio of the cyclotron energy EC = h̄ωC = h̄eB⊥/m∗,
where B⊥ is the perpendicular field and m∗ the effective
mass, to the Zeeman energy EZ = g∗µBBtot, where g∗

is the effective g-factor, µB the Bohr magneton and Btot

the total field, can be continuously tuned by adjusting
θ = cos−1(B⊥/Btot). In particular, the so-called coin-
cidence happens when the energy levels from different
Landau levels (LLs) are aligned at the Fermi level. In
a recent experiment [15], the inter-valley energy gaps at
the odd-integer quantum Hall (QH) states were studied
and found to rise rapidly towards the coincidence. In this
work, we show that the anomalous rise was not observed
in the even-integer QH states, whose energy gaps close as
θ approaches the single-particle degenerate points. For
all the samples in our study, the ν = 3 valley splitting be-
fore the coincidence follows a linear density dependence
that extrapolates to about -0.4K at zero density, which
is probably due to level broadening. The ν = 3 gap after
the coincidence also depends linearly on density, while
the slope increases by more than a factor of two. We ar-
gue that screening of the Coulomb interaction from the
low-lying filled levels, which also explains the observed
spin-dependent resistivity, is responsible for the change
of the observed ν = 3 gaps on different sides of the coin-
cidence.

The specimens in our study are modulation-doped
n-type Si/SiGe heterostructures grown by molecular-
beam epitaxy. Important sample parameters, such as
the electron density (n), mobility (µ) and width of the
quantum well (W ), are listed in Table. 1. For the
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samples labeled as LJxxx, relaxed Si0.8Ge0.2 buffers
provided by Advanced Micro Devices (AMD) were used
as substrates, followed by a 1 µm Si0.8Ge0.2 buffer layer
prior to the growth of the strained Si channel. On top
of the Si quantum well, a 20nm Si0.8Ge0.2 spacer, a
delta-doped Sb layer, a 25nm Si0.8Ge0.2 cap, and a 4nm
Si cap layer are subsequently grown. The carrier density
is controlled by the amount of Sb dopants. The high
mobility sample labeled as 1317 is the same specimen
as that used in Ref. [15] and its density and mobility
can be tuned by controlling the dose of low temperature
illumination by a light-emitting diode (LED).

Sample n(1011cm−2) µ(m2/Vs) W (nm) Illumination

LJ122 3.1 6.3 10 No

LJ126 2.3 9.8 10 Saturated

LJ127 2.1 8.7 10 Saturated

LJ139 1.7 12 20 Saturated

1317-I 1.4 19 15 No

1317-II 1.8 22 15 Unsaturated

1317-III 2.4 25 15 Saturated

Table 1. List of sample parameters. The density, mo-

bility and width of the quantum well are shown, together

with the dose of illumination.

Magnetotransport measurements were performed in
the 18/20T superconducting magnet in the National High
Magnetic Field Laboratory (NHMFL) in Tallahassee, FL.
Samples were sitting in a rotating stage at the dilution re-
frigerator with a base temperature Tbase = 20mK. Stan-
dard low frequency (5∼13Hz) lock-in techniques were
used to measure the diagonal resistivity ρxx and the Hall
resistivity ρxy.

In Fig. 1, we show the ρxx traces as a function of
the filling factor (ν) at several tilt angles for samples
(a) 1317-I and (b) 1317-III. The odd-integer QH states
ν = 3, 5... are associated with energy gaps opened by
the valley splitting. The three tilt angles were chosen
so that from the bottom to the top traces, 1/cosθ = 1
(before the 1st coincidence), ∼ 3.7 (between the 1st and
2nd coincidences) and ∼ 5.6 (after the 2nd coincidence),
respectively. We will return to the tilt-field data later in
the discussion.

Fig. 2a shows a schematic of the tilted-field energy dia-
gram of a Si 2DEG. The LL (N), spin (↑ or ↓) and valley
(+ or –) indices are indicated in the plot. Since ∆v is
shown to be independent of the parallel field [8, 15], the
two valley states originated from each spin level are par-
allel to each other in the diagram. In this independent-
electron picture, the levels are not affected as they cross
each other, and the energy gap of individual QH states
closes at certain tilt angles, or coincidence angles. Since
in a Si 2DEG, ∆v is usually much smaller than EZ and
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FIG. 1: Magnetoresistivity ρxx as a function of the filling
factor for samples (a) 1317-I and (b) 1317-III at selected tilt
angles at T = 55mK. From bottom to top, the system is
before the 1st coincidence (θ = 0o), between the 1st and 2nd
coincidences (θ ∼ 74o), and after the 2nd coincidence (θ ∼

80o). After the 1st coincidence, the overall amplitude of the
ρxx is generally higher when electrons in the Fermi level have
up-spins (solid blue curves) and lower for down-spins (dashed
red curves).

EC, we adopt the conventional notation that the jth or-
der coincidence occurs when EZ / EC roughly equals an
integer number j. In Fig. 2b and 2c, the energy gaps,
obtained by fitting ρxx∝ exp(-∆3/2kBT) in the thermal
activation regime, at ν = 4 and 6 in sample 1317-I are
shown as a function of 1/cosθ or Btot/B⊥. When θ is
away from the coincidences, the gaps at ν = 4 and 6 vary
linearly with respect to 1/cosθ with a slope correspond-
ing to g∗ = 2, consistent with the independent-electron
model. On the other hand, the even-integer energy gaps
drop suddenly towards the coincidence angles at which
the single-particle gap closes, e.g., 1/cosθ ∼ 2.5 (1st co-
incidence) for ν = 4 and 1/cosθ ∼ 4.5 (2nd coincidence)
for ν = 6, as can be seen in Fig. 2b and 2c. This sud-
den drop of activation gap towards the degenerate points
was observed in a wide GaAs/AlGaAs quantum well and
explained within the framework of quantum Hall ferro-
magnetism [16].

In contrast to the well-behaved even-integer QH states,
the energy gap of the ν = 3 state (∆3) exhibits an anoma-
lous rise towards the coincidence, as shown in the inset
of Fig. 3, a phenomenon previously reported in Ref. [15].
We emphasize here that such an anomaly was observed
in all the samples investigated in this study, in spite of
the considerable difference in the sample structure and
mobility. Out of the coincidence region, the activation
energy is indeed independent of the parallel field com-
ponent, while it differs by about a factor of 3 (0.8K vs.
2.1K) on different sides of the coincidence. Referring to
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FIG. 2: (a) Schematic of the LL fan diagram in tilted B-
fields. The LL (N), spin (↑ or↓) and valley (+ or –) indices
are indicated for each level. The positions of the 1st and 2nd
coincidences are indicated. (b) Measured energy gaps at ν =
4 (B⊥ = 1.5T) and (c) ν = 6 (B⊥ = 1.0T) of sample 1317-I as
a function of 1/cosθ or Btot/B⊥. The solid lines correspond
to g∗ = 2.

the level diagram in Fig. 2a, we label the valley split-
ting as ∆3(N=0,↓) and ∆3(N=1,↑) before and after the
coincidence, respectively.

In Fig. 3, we plot the measured ∆3(N=0,↓) and
∆3(N=1,↑) gaps for all 7 samples as a function of the
carrier density. The band calculation of valley split-
ting in a Si 2DEG [2, 3, 4] based on the effective-mass
approximation, showing a linear dependence ∆v (K) ∼

0.17n (1011cm−2) at B = 0, is also plotted (solid line)
for comparison. Despite some scattering in the data, the
measured ∆3(N=0,↓) gaps essentially fall on a straight
line that extrapolates to -0.4±0.2K at zero density. We
note that this energy of -0.4K is within the order of
the sample-dependent disorder broadening (Γ ∼ h̄/τ =
h̄e/m∗µ , where τ is the transport scattering time), which
lies between 0.3K and 1.1K in our samples. Interestingly,
the detailed sample structure, e.g., the well width W ,
seems less important here. The ∆3(N=1,↑) gaps of the
same set of samples also fall onto a line extrapolating
to -0.7±0.3K at n = 0, again within the order of level
broadening. On the other hand, the slope of the linear
density dependence differs by more than a factor of 2
(0.5K vs. 1.4K per 1011cm−2) before and after the coin-
cidence. And both are significantly higher than that of
the band calculation at B=0.

The linear density dependence of the valley gaps and
strong enhancement over the bare valley splitting were
recently reported in a Si-MOSFET system using magne-
tocapacitance method [11]. The authors pointed out that
the electron-electron (e-e) interaction, especially the ex-
change interaction, is likely to account for the observed
large valley gaps. In order to shed some light to the
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FIG. 3: Density dependence of the valley splitting at ν =
3. The empty symbols (triangles for samples 1317 and circles
for LJxxx) stand for ∆3(N=0,↓) and the filled symbols for
∆3(N=1,↑). Dashed lines are linear fits to the data and ex-
trapolate to finite values at zero density. The solid line shows
the band calculation of valley splitting in Ref. [2]. The inset
shows the ∆3 gap of sample LJ127 as a function of Btot. The
coincidence occurs around Btot = 7T.

apparent large difference between the ∆3(N=0,↓) and
∆3(N=1,↑) gaps, we scrutinize the many-body effect for
the two configurations of ν = 3, shown in Fig. 4. For the
relevant perpendicular B-fields in this work, the e-e inter-
action energy Ee−e ∼ e2/4πǫlB (lB = (h̄/eB⊥)−1/2 is the
magnetic length) is larger than the LL spacing so mix-
ing between different LLs has to be taken into account.
Consequently, we explicitly include the lower two filled
levels (N=0, ↑, ±), which are kept intact for all tilt an-
gles, into the analysis. Before the coincidence, electrons
in these two low-lying levels have the same LL but op-
posite spin indices comparing to the ones near the Fermi
level (EF). Since the Pauli exclusion principle does not
prevent the opposite spins from approaching each other,
these low-lying electrons can come close to the electrons
at EF and strongly screen the Coulomb interaction. The
enhancement of the ν = 3 gap due to the electron-electron
interaction is thus much reduced and the gap is close
to the bare value at this LL. On the other side of the
coincidence, however, such screening is much less effec-
tive. First, the electrons near EF are from the N=1 LL
and their wave function is different from the N=0 lev-
els. The off-diagonal matrix element of this Coulomb
energy between the two different LLs should be consid-
erably smaller than that from the same LL. Second, even
in the presence of LL mixing effect, the exclusion princi-
ple limits the screening between the same up-spin levels.
As a result, the ∆3(N=1,↑) gap is greatly enhanced over
the bare valley splitting. We nevertheless emphasize here
that in the last few LLs, the shape of the wave function
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FIG. 4: Level diagram at ν = 3 before (left) and after (right)
the coincidence. EF resides in the gap between the lowest
empty levels and the top filled levels. The level occupation,
as well as the spin orientation, is indicated in the plot. Before
the coincidence, the low-lying (N=0,↑,±) electrons, separated
by EZ = g∗µBBtot from the Fermi level, strongly screen the
Coulomb interaction for electrons near EF, resulting in a less
enhanced ∆3(N=0,↓) over the bare valley splitting. The same
screening, on the other hand, is less effective from the like-spin
charges in a different LL, giving a large ∆3(N=1,↑).

is completely different from the plane wave at B = 0.
So even the bare valley splitting here could be different
from the results obtained by Ohkawa and Uemura [2],
who only consider high LLs by using simple average over
the in-plane k-vector.

Finally, we note that the spin-dependent resistivity,
first reported by Vakili et al. [17] and successfully ex-
plained by screening from the filled LLs, is also observed
in our samples. In Fig. 1, after the 1st coincidence, the
overall ρxx amplitude is lower (dashed red curves) when
the spins at the Fermi level orient opposite to the ma-
jority up-spins in the system and higher when the two
are aligned (solid blue curves), which was attributed to
screening from the low-lying filled LLs. Due to the ex-
clusion principle, electrons with same spins cannot ap-
proach each other to effectively screen the disorder po-
tential, resulting in a higher ρxx comparing to the oppo-
site case. Interestingly, the same alternating pattern is
also observed in the strengths of the odd-integer valley
states.

In summary, we have carried out a titled field study
of the Si/SiGe heterostructures and measured the energy
gaps of integer QH states as a function of the tilt angle.
The gaps at the even-integer fillings follow qualitatively
the independent-electron picture, while the odd-integer
states show rapid rise towards the coincidence angles. For
all the samples we studied, the ν = 3 valley splitting on
both sides of the coincidence shows linear density depen-
dence with significantly different slopes. The difference

of the ∆3(N=0,↓) and ∆3(N=1,↑) gaps, as well as the
observed spin-dependent resistivity, can be qualitatively
explained by screening of the Coulomb interaction from
the low-lying filled levels.
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