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Abstract

Crowdsourcing is the de-facto standard for gathering annotated data. While, in theory, data 

annotation tasks are assumed to be attempted by workers independently, in practice, data 

annotation tasks are often grouped into batches to be presented and annotated by workers together, 

in order to save on the time or cost overhead of providing instructions or necessary background. 

Thus, even though independence is usually assumed between annotations on data items within the 

same batch, in most cases, a worker's judgment on a data item can still be affected by other data 

items within the batch, leading to additional errors in collected labels. In this paper, we study the 

data annotation bias when data items are presented as batches to be judged by workers 

simultaneously. We propose a novel worker model to characterize the annotating behavior on data 

batches, and present how to train the worker model on annotation data sets. We also present a 

debiasing technique to remove the effect of such annotation bias from adversely affecting the 

accuracy of labels obtained. Our experimental results on both synthetic data and real-world data 

demonstrate the effectiveness of our proposed method.
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1. Introduction

Crowdsourcing provides an efficient method to annotate data on a large scale for various 

machine learning tasks by employing a massive workforce drawn from global Internet users. 

Popular online crowdsourcing platforms include Amazon Mechanical Turk1 and 

CrowdFlower2. However, while crowdsourcing is relatively cheap compared to employing 

experts, getting large quantities of labeled data annotated by crowds (say thousands, or 

millions of data items) can be rather expensive.
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A key mechanism, often employed in practice for reducing costs, is batching, i.e., grouping 

multiple data items (to be annotated together) into one single task as a batch. Batching can 

save significant monetary costs, since the necessary instructions and background for 

completing the task needs to be provided just once for the entire batch. Thus, the worker will 

spend less time on reviewing these instructions, and more time on annotating data items, and 

therefore will be able to annotate more data items within the same time. For instance, 

consider a scenario where a worker has to judge whether a comment is relevant to a 

document. Here, making a judgment for each comment requires reading through the entire 

document. Instead, with batching, the worker only needs to read the entire document once, 

and then make a judgment for all the comments in the batch. In fact, even from the workers' 

point of view, it is also more attractive to label batches of data items as they can save time 

on switching between different tasks.

However, even though batching is an attractive option in practice due to its cost and time 

savings, having workers annotate batches can lead to severe correlation between annotations 

within batches. For example, say we have a task of annotating whether a review of the 

movie “The Imitation Game” crawled from IMDb is positive. As illustrated in Figure 1(a), if 

we only show one review to be judged as part of each crowdsourcing unit task, workers will 

have to spend some time looking up the movie before they can make a single judgment on a 

review. Although judgments are likely to be independent, this way of assigning work is too 

costly to be practical. Instead, if we assemble multiple reviews of the same movie into a 

batch, as shown in Figure 1(b), workers can make multiple judgments after they look up a 

movie. Nevertheless, in this case, the annotation of different reviews might interfere with 

each other. For example, the review “Average In The Extreme” does not seem like a positive 

review per se (Cf. top right in Figure 1(a)), while grouped with the review “Stack of Lies”, it 

looks much more like a positive review (Cf. top in Figure 1(b)). Similarly, when the review 

“Good enough but historically sketchy” looks quite positive by itself (Cf. bottom left in 

Figure 1(a)), it does not look as positive as a strongly effusive review simply saying “Great 

movie”, as shown in the bottom of Figure 1(b). Thus, overall these effects might be 

undesirable and misleading as it is inconsistent with the case when workers make 

independent judgments. Therefore, it is challenging to ascertain true labels of data items in 

batches.

So far, there has been little to no work in exploring the the possible annotation error 

introduced by grouping data items into batches. Although batching data items has been 

adopted in many crowdsourced tasks such as sorting [17], object recognition [32] or 

clustering [10], and anecdotally very widely used in practice, the assumption is often that the 

annotations are collected independently, which is not the case. While there is limited work 

on judging data items in sequence [18, 26, 27], it is not directly applicable to our setting 

where a batch of data items are presented and annotated in parallel. Our previous research 

[36] also noticed this specific type of annotation bias, but instead of focusing on debiasing, 

we exploited the bias to develop an active learning algorithm aiming to improve a certain 

classifier performance. We defer the detailed discussion of the related work to Section 7.

There are several research challenges in solving this problem. First, how do we model 

workers' behavior when they make judgments in batches? Second, how do we leverage the 
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model to debias the crowdsourced annotation of data batches? We make the following 

contributions in answering these questions:

1. Proposing an interpretable worker annotation model on batches of data. We 

propose a novel worker model for binary annotation behavior with data items 

presented as batches. The model incorporates independent judgments and batch 

judgments based on ranking.

2. Debiasing annotation data obtained as batches. Based on our proposed worker 

model, we provide an algorithm to debias the inferred labels when they are 

collected from data items in batches.

3. Conducting experiments on a real-world crowdsourcing platform. We conduct 

experiments on both synthetic and real-world crowdsourcing data sets to verify the 

effectiveness of our proposed model and debiasing strategies. Experimental results 

show the effectiveness of our debiasing method over other baselines.

The rest of this paper is organized as follows: Section 2 introduces the basic concepts and 

formalizes the research problem; Section 3 proposes the worker model for annotating 

batches of data; Section 4 presents a strategy to debias batch annotations; Section 5 

describes experimental results; Section 6 discusses extensions of our proposed method; 

Section 7 presents related work and Section 8 concludes.

2. Preliminaries

In this section, we formally define the concepts and notations we use in this paper; we then 

formalize the problem of debiasing crowdsourced batches.

2.1 Basic Concepts and Terminology

First we need to formalize several basic concepts in a crowdsourcing platform. Suppose we 

are given a set of data items X = {xi}, where i = 1, …, n. Each data item is associated with a 

label yi ∈ , and we thereby define . In following discussion, we focus on a 

binary classification task, where  = {0, 1}, but our framework generalizes to multi-class or 

rating cases seamlessly (Cf. Section 6). According to a standard formalization in learning 

theory for binary classification, we suppose each (xi, yi) is generated from a joint probability 

distribution P  We define an inherent score ηxi to be the conditional probability P(yi = 1|

xi). For simplicity, we denote the inherent score as ηi.

In a job or task submitted to a crowdsourcing platform, we can assemble several data items 

into a batch. Each batch bj is represented by a set of indices of data items in the batch, 

denoted as {bj1, …, bjk}, where k is the size of a batch. To be strict, data items in the batch 

should be represented by xj = {xbj1, …, Xbjk}. However, for simplicity, we denote data items 

in the batch specified by bj as {xj1, …, Xjk}- Similarly, we define yj = {yj1, …, yjk} to be true 

labels associated with data items in xj, where yjl is the true label of xjl according to Y, ∀1 ≤ l 

≤ k. In CrowdFlower language, a batch corresponds to a single “unit”, where a worker has to 

judge the entire unit at the same time; in Mechanical Turk language, a batch corresponds to 

a single “HIT” (short for Human Intelligence Task). Usually, data items in the same batch 

might share the same context, background, or the same instruction, in order to reduce the 
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overhead. For example, if one is asked to judge whether a review about a restaurant is 

positive or negative, it might save time for workers by grouping reviews of the same 

restaurant into the same batch, as they only need to read the description of the restaurant 

once before they can make multiple judgments on different reviews.

As we assemble data items into batches, each worker has to judge the entire batch as a single 

judgment. Given a batch bj, the judgment provided by a worker can be represented as 

, where  is the annotation of data item corresponding to xjl, 

provided by the worker. Noting that the worker annotation  can be different from the true 

label yj. We refer to worker annotation as “annotation”, while the ground-truth label is 

referred to as simply the “label”.

In CrowdFlower, as a judgment can only be made based on a unit, workers are not allowed 

to submit partial results on a batch (as with Mechanical Turk). However, one can always add 

an “unknown” option for every data item, so that the workers can provide partial results on a 

batch. For simplicity, we consider no partial judgments in the rest of the paper.

Now, we are in a position to give a formal definition for a batch of data items:

Definition 1 (Batch): Given a data set (X, Y), a batch of data items with size k extracted 

from the given data set can be represented as (bj, xj, yj, ), where bj = (bj1, …, bjk) is a set 

of indices for X and Y; xj = {xj1, …, xjk} is a set of all the data items, indexed by bj; yj = 

{yj1, …, yjk} consists of the corresponding true labels of data items in xj; 

is the worker annotation on the set of the batch.

Additionally, a set of batches can be defined as:

Definition 2: Given a data set (X, Y), a set of batches extracted from the given data set is 

denoted as , where  consists of the indices of each batch; 

 is the set of data item batches, with their corresponding true labels 

 and worker annotations .

Remarks—1) Notice that a data item xi ∈ X may certainly appear in multiple batches in . 

That is, xjl and xj′l′ may refer to the same data item as long as bjl = bj′l′; 2) For the sake of 

fully utilizing the workforce of crowds, without loss of generality, we focus on the scenario 

when all batches have the identical size k. However, our model generalizes to the case when 

batches have different sizes; 3) In some real world crowdsourcing platforms, a batch can 

actually be judged by multiple workers, which means there could be multiple 's associated 

to a single (bj, xj, yj)— for instance, this is referred to as multiple assignments on 

Mechanical Turk. However, for the purposes of debiasing, it is equivalent to regard a single 

batch as multiple batches with identical (bj, xj, yj) but associated with judgments made by 

different workers .
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2.2 Problem Definition

Based on the concepts described thus far, we can formalize the problem of debiasing 

crowdsourced batches as the following:

Problem 1 (Debiasing Crowdsourced Batches): Suppose we have a labeled data set (XL, 

YL) with YL known, as well as its extracted batches and their crowdsourced annotation (BL, 

XBL, YBL, ). If we are then given another unlabeled data set XU, as well as its extracted 

batches and crowdsourced annotation (BU, XBU, ), the objective is to infer the true labels 

YU associated with XU from the crowdsourced annotation.

Notice that our problem formulation as described above requires as input labeled and 

annotated data items for training purposes. In practice, the labeled data for training can be 

collected from the “test questions” with ground-truth labels, inserted by the crowdsourcing 

platform for the purpose of quality control and monitoring of workers. The usage of test 

questions is standard practice: As an example, in CrowdFlower, all workers have to attempt 

a certain number of test questions with correct labels and need to achieve an accuracy over a 

certain threshold (e.g. 70%) before they can proceed to work on the regular task(s). Also, 

additional hidden data items with known labels can be inserted into the regular tasks to 

monitor the accuracy of workers. In our setting, worker behavior on these test questions or 

labeled data can additionally be used for training purposes.

Also notice that in this version of our problem formulation, we assume identical worker 

behavior. This is a more standard setting in crowdsourcing practice as there is usually not 

enough work done by each worker to ascertain individual behavior. Also, it is 

straightforward to extend our model when different workers have different behavior when 

working on tasks.

3. Crowdsourcing Worker Annotation Model on Batches

In this section, we first describe our model for workers' annotation behavior on a batch of 

data items; then we introduce how to train the model based on a training data set.

Our key intuition is the follows: when a worker judges a batch of data items, she can either: 

1) choose to judge data items independently as if they are presented alone; or 2) to rank all 

the data items according to their relative inherent scores and annotate the top several items 

as positive, leaving the rest in the batch as negative.

Plackett-Luce model

Before we delve into our model, we first recap a probability model for generating rankings 

based on scores associated with items, namely the classical Plackett-Luce model [15, 21] 

introduced in the 70s. Without loss of generality, suppose we are given a set of items x1, …, 

xk. Each item xi is associated with a certain score s(xi) > 0. Here the score s(xi) models the 

tendency of ranking xi higher in a randomly generated ranking and can be viewed as a 

measure of the inherent “goodness” of the item. A ranking of these items can be represented 

Zhuang et al. Page 5

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as a bijection , that maps the i to the data item at the i-th position in the 

ranking. The corresponding ranking list can be represented as π(1) ≻ … ≻ π(k). In Plackett-

Luce model, the probability of generating a ranking π is:

(1)

The equation above can be interpreted as the following process: Initially, we have a pool A 

of all the data items. Each time one picks an item xi from a pool A of data items with a 

probability proportional to its score, namely:

This item is then removed from the pool A and placed at the next position in the ranking. 

Repeat this operation until A becomes empty. The probability of generating a ranking list 

according to this process is equivalent to the probability described in the Plackett-Luce 

model.

Worker model

We now introduce our worker model for annotating batches of data items. Again, without 

loss of generality, suppose we are given a batch xj where xjl = xl, namely the given data item 

batch can be denoted as xj = {x1, …, xk }. Also, recall that for each data item xi, we denote 

P(yi = 1|xi) as its inherent score ηi, which is not explicitly known.

When a worker starts to work on a certain batch of data items, they may choose to use one 

of two strategies:

• Independent judging. If the worker is making judgments based on the absolute 

value of ηi for each data item, we suppose the worker judges each data item xi ∈ xj 

independently by drawing the annotation  with probability ηi and  with 

probability (1 – ηi).

• Relative judging. If the worker is making judgments by comparing data items 

within the same batch, we suppose the worker chooses to first rank all the data 

items in the batch based on their inherent scores, then annotates several top-ranked 

items as positive, leaving the other items annotated as negative. To be precise, the 

worker generates a ranking π for k items in the batch according to the Plackett-

Luce model, with the scoring function defined as s(xi) = ηi. Then the worker draws 

an integer 0 ≤ τ ≤ k from a certain distribution, where pτ denotes the probability of 

drawing the integer τ. For data items ranked as top-τ in the ranking, denoted as xi ∈ 

{π(1), …, π(τ)} (could be empty if τ = 0), the worker annotates them as , 

while other data items not within the top-τ of the ranking π are annotated as .
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To combine these two different scenarios, we suppose the worker chooses to make 

independent judgments with a certain probability 0 < λ < 1, while with probability (1 – λ) 

the worker makes relative judgments.

The intuition of this model is to capture two behavior patterns of workers. In the 

independent judging scenario, workers can remain independent in judging different data 

items in the same batch, with each data item being judged based on its inherent score ηi. 

Nevertheless, sometimes workers might judge data items within a batch by comparison. In 

the relative judging scenario, workers simply judge the relative relationships between data 

items in the same batch, which is captured by the Plackett-Luce model for generating the 

ranking. In order to determine the labels of data items, they have an expectation of label 

distribution, which is reflected by the distribution of generating τ, as it characterizes the 

probability of having τ positives within k data items. For instance, if workers expect there to 

be few positive items, then the probability of τ being low is high, while if workers expect 

the batches to be balanced, then the probability of τ being close to k/2 is high comparing to 

other values of τ. However, this distribution does not necessarily reflect the correct label 

distribution. When they try to apply their expectation of the label distribution on the batch, 

bias might occur.

We summarize the process of generating annotation for a batch of data items in our 

proposed model as below:

1. Toss a coin Z ∼ Bernoulli(λ). If Z = 1, go to Step 2; otherwise go to Step 3.

2. For each xi, generate . Output the results and exit.

3. Generate a ranking π based on Plackett-Luce model for data items xi in the batch.4. 

Draw τ ∼ M ult(pτ).

4. For the top-τ items in ranking π, generate ; otherwise generate .

Output the results and exit.

Model learning

The parameters that need to be determined in this worker model include: the probability of 

making independent judgments λ, and the distribution of the number of positive annotation 

when making relative judgments, represented by p0, …, pk, where 0 ≤ pτ ≤ 1 and Σpτ = 1. 

We assume these two parameters are fixed for each new application of our techniques. 

However, for different applications, these parameters might be different — for instance, 

these parameters for content moderation may be different from the same parameters for 

spam identification or sentiment analysis.

Suppose we are given a set of nL items XL with their true labels YL, or more ideally, their 

inherent scores {ηi}xi ∈ XL. If the inherent score of a data item ηi is not given, but only the 

binary label yi is known, we can estimate ηi by ηi = (yi + ε)/(1 + 2ε) where ε is a small 

constant, which is set to 10−3 in our experiments. Then, we form them into mL batches, 
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represented by BL, send them to the crowds, and obtain their annotation from workers, 

denoted as .

For each batch bj ∈ BL, we denote the set of items annotated by workers as positive as 

, and the set of items annotated as negative as .

We train the model by maximum likelihood estimation. The likelihood of the obtained 

annotation can be written as:

(2)

where  is the number of positive annotation in batch  denotes the 

probability of generating any rankings π that rank items in  higher than any items in , 

namely:

where R(X1, X0) = {π|π−1 (x0) > π−1 (x1), ∀x1 ∈ X1, x0 ∈ X0}; and P(π) is defined by the 

Plackett-Luce model, as presented in (1). Notice that the calculation of the exact value of 

) is hard when k is large. In our experiments, k is small enough to enumerate 

entire set . If k is large, we can apply Monte Carlo method to estimate the value 

of .

Applying an EM-algorithm, where at E-step, we can have

(3)

And at M-step, we update the parameters λ̂ and p̂τ by

(4)

where .
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4. Debiasing Annotation

In this section, we introduce our method that debiases annotations collected for batches of 

data given the trained worker model. More precisely, given a set of nU unlabeled data items 

XU, assembled into mU batches represented by BU, as well as their annotations obtained 

from the crowds , how do we infer their true labels YU?

The basic idea is, based on the given worker model, we infer ηi for each xi ∈ XU. Then, we 

simply apply the Bayes classifier to determine the inferred label, which yields ŷi = 1 if ηi > 

0.5, or ŷi = 0 if ηi ≤ 0.5.

We again adopt a maximum likelihood estimation techique. The log-likelihood of the 

obtained annotation is:

(5)

Notice that λ̂ and p̂τj. are parameters learned from Section 3, and  is also a 

function of ηi's. Similar to the previous section, we apply an EM-algorithm here by first 

calculating λ̂
j for each batch at the E-step according to (3) but replacing λ and pτ by the 

value we learned during the training step. Then we have:

(6)

where the second term includes , which is hard to optimize. We apply the idea 

of the EM-algorithm again here. We use notation Rj to represent . For each π ∈ 

Rj, we can calculate its conditional probability given , denoted as q̂π by:

(7)

which is the E-step. According to Jensen's inequality we have:

(8)

where the last inequality yields the objective function we want to optimize. The correctness 

of EM-algorithm guarantees the convergence of optimizing this function.
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Furthermore, according to the minorization-maximization (MM) algorithm used in [11], we 

obtain the lower bound for log P(π), which is defined by the Plackett-Luce model, by:

(9)

where η̂
i is the estimated parameter of last iteration.

By combining (6), (8) and (9), we obtain the objective function to optimize as:

(10)

Notice that Q(η) is actually a lower-bound of the original log-likelihood function (5). 

Moreover, for two EM-step and one MM-step we apply in deriving Q(η), it is proven that by 

improving Q(η) from this iteration Q(η̂), the improvement of the log-likelihood is no less 

than the improvement we achieve on the Q(η). Therefore optimizing Q(η) can also optimize 

the log-likelihood.

Take the derivative, we obtain

(11)

where M1(i) and M0(i) are defined as  for y ∈ {0, 1}. The updating rule 

can be obtained by solving ∂Q(η)/∂ηi = 0, namely

(12)

where
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By iteratively updating the scores to optimize the likelihood of the annotation on test data, 

we can obtain the inferred η̂
i of each item. Based on this, we can determine the inferred 

binary label for each data item by assigning  if ηî > 0.5, or  otherwise. Notice that 

we do not further tune the threshold in this step, as the scores we learned here are expected 

to be a reasonable estimate of the true ηi's. Therefore, if the inherent scores are known, 

learning theory guarantees us that by using Bayes classifier (namely to take 0.5 as threshold) 

is supposed to achieve the best expected performance in terms of square loss.

The entire process of training model and leveraging the model to debias the obtained 

annotations are summarized in Algorithm 1.

5. Experimental Results

Algorithm 1: Debiasing crowdsourced annotation on batches of data items.

In this section, we conduct experiments on a synthetic data set and a real data set to verify 

the effectiveness of our proposed worker model and debiasing technique.

5.1 Experimental Data Sets

We first introduce the data sets we used in this experiments. A summary of the data sets we 

use in our experiments is provided in Table 2.

Synthetic data set—We construct synthetic data sets following the worker annotation 

model we propose in Section 3. Suppose we have n items in X, we first generate their 

inherent scores ηi for each xi ∈ X from a Beta distribution Beta(α, β), then generate the true 

labels Y by drawing yi from a Bernoulli distribution parameterized by ηi for each i. In our 

synthetic data set, we set α = 2 and β = 4 to simulate the case when negative data items 

overwhelm positive data items.

Then, we generate m batches of size k by sampling without replacement for each batch. 

Notice that by the phrase “without replacement” we mean there are no identical data items 

within the same batch, while the same item can still appear in multiple batches as we do 
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replace the items back into the pool after a batch is generated. Thereby we obtain the set of 

batches B. For each bj in B, we generate the workers' annotation  from our proposed batch 

annotation model. The probability of making independent judgments λ is set as 0.5. The 

distribution of determining number of positive annotations pτ is also assigned to be:

where ρ is positive constant, set as 2 in our experiments.

Comments data set—We utilize a real world crowdsourcing data set for annotating 

comments, which is used in [36]. The original crowdsourcing task was to identify 

inappropriate comments on LinkedIn posts published by companies or LinkedIn influencers. 

Inappropriate comments are defined as comments containing promotional, profane, blatant 

soliciting, random greeting comments, as well as comments with only web links and contact 

information. In order to collect annotation of comments, for each post, k comments are 

sampled and sent to CrowdFlower as a batch (unit). Workers are also provided with a 

codebook (i.e., a sequence of instructions) explaining how to annotate the data items. Each 

comment is regarded as a data item and can be annotated as positive (inappropriate 

comment) or negative (acceptable comment). Each batch is annotated by 5 or more workers.

In order to provide test questions and track the performance of each worker, some of the 

batches are annotated by 9 trained LinkedIn employees (experts) with the same codebook 

and interface as used for crowd workers. The average Cohen's kappa for all expert pairs is 

0.7881. For this experiments, we only adopt the batches with all of their data items 

annotated by both crowds and experts as we can use the experts' annotation as ground truth 

(aggregated by majority voting). Out of these batches, the 1,099 batches that are annotated 

before a worker actually starts on the job are utilized as training data set BL. while the other 

5,267 batches are utilized as the test data set BU to infer the 651 data items the 5,267 batches 

covered.

5.2 Experimental Setup

Methods evaluated—We compare the performance of our proposed method with several 

baselines:

• Majority Voting (MV). For each data item in the test data set, simply determine its 

inferred label by its annotation given by the majority of workers. This aggregation 

strategy is often used in practice (e.g. [28]).

• Majority Voting with Tuned Threshold (MVT). Instead of simply applying majority 

voting, we calculate the ratio of positive annotation on each item as a score, and 

tune the threshold for determining the binary inferred label. Based on a given 

training set of annotation and true labels, we find the threshold yielding the best F1-

score on training data set, and apply the same threshold on the test data set.

• Plackett-Luce Model (PL). A strategy is to fit the Plackett-Luce model on the test 

data by inferring the scores s(xi) associated with each data items. We apply a 
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Bayesian regularization on the inferred scores to confine it to be 0 ≤ s(xi) ≤ 1. We 

then infer a positive label to each data item with an inferred score s(xi) > 0.5 and a 

negative label otherwise.

• Batch Annotation Model (BAM). The debiasing strategy proposed in Section 3 and 

4.

Evaluation methodology—For baselines without training, we directly apply them on the 

test data set; for our proposed method as well as MVT, we first train the worker model on 

the training data set, then apply the debiasing strategy based on the trained worker model on 

the test data set. We compare the inferred labels to the ground-truth and evaluate the 

performance in terms of accuracy, precision, recall and F1-score.

Trials and setup—For our proposed model, in training phase, we randomly initialize λ 

and pτ; in debiasing phase, we initialize the all the inferred scores as 0.1. For training the 

worker model, we set a fixed number of iteration as 100. Our experimental results presented 

later show the model converges within a number of iterations much fewer than 100. For 

debiasing, we calculate the log-likelihood of the model and stop when the relative change of 

log-likelihood is within 10−5.

5.3 Experimental Results

Now we present the experimental results. We first verify the learning algorithm of our 

model on the synthetic data set, then present the learned model parameters on a real data set; 

we also evaluate the effectiveness of our debiasing strategy on both synthetic data set and 

real data set, which demonstrates an improvement in terms of F1-score; finally we conduct a 

study on different configurations of experiments as a guideline for setting up a batched 

crowdsourcing task.

Worker model learning—We first verify the effectiveness of learning our proposed 

worker model. On our synthetic data set, the “true” value of probability of making 

independent judgments λ is set to 0.5. We learn the model from the synthetic training data 

and obtain the inferred λ̂ as 0.4998, which reasonably recovers the original value. We also 

compare the original model parameters pτ's to the inferred parameters in Figure 2(a). The 

black dashed line represents the original parameters used for generating synthetic annotation 

data, while the red solid line shows the inferred parameters of worker model, which seems 

as a precise fit of the original parameter. We also show the curve of log-likelihood of the 

training data set, which seems to converge within 20 iterations.

To further confirm the robustness of our learning method, we modify the configuration of 

synthetic data generation, and train the worker model on different data sets to check if they 

can recover the original parameters. We still take the same configuration of nL = 1, 000 and 

mL = 10, 000. The estimation error analysis is shown in Figure 3. Figure 3(a) shows the 

difference between the inferred parameter λ̂ and the “true” parameter λ, given the annotation 

data generated by λ varying from 0.1 to 0.9. It can be observed that the error is reasonable 

small, basically within 0.1. Figure 3(b) shows the ℓ2 norm of the difference between the 

estimated distribution p̂τ and the “true” distribution pτ, when pτ is generated with respect to 
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different ρ varying from 1 to 3. In most of the settings, the error is below 2 × 10−3, which is 

fairly low. Although we only instantiate pτ's using a power-law distribution, as the learning 

method does not confine the learned distribution to be parametric, it can be directly applied 

to any other type of distributions.

Learned model on real data set—Given the effectiveness of our learning method 

verified, we apply the worker model trying to fit the data set of annotating inappropriate 

comments. The learned probability of a worker making independent judgments λ̂ on 

comments data set is 0.7877. The learned distribution for determining the number of positive 

annotations in a batch is presented in Figure 4(a). It shows that a worker tends to annotate 

the entire batch as negative (i.e. acceptable comment) with a probability over 0.6, while 

picking only 1 of them as positive (i.e. inappropriate comment) also occurs with a relative 

high probability around 0.25. The workers seem to be reluctant to annotate more than 1 

comments in a size-5 batch. This is coherent with most people's intuition that inappropriate 

comments are rare comparing to the entire set of comments.

The convergence analysis is shown in Figure 4(b). The model converges within 50 

iterations.

Performance comparison—We proceed to evaluate the performance of different 

aggregation strategies on both data sets. The overall performance results are shown in Table 

3. In both data sets, our proposed debiasing strategy is a clear winner in terms of F1-score, 

and also achieves the best accuracies.

In synthetic data set, majority voting, without tuning the threshold (default set to 0.5), fails 

to identify most of the positive data items, and therefore achieves an extremely low recall. 

Only after the threshold is tuned on a training data set can it achieve a reasonable F1-score 

of 71%. PL-model, in contrast, achieves a relatively low precision of 52%. Our proposed 

method is able to achieve the best overall performance in terms of F1-score and accuracy, 

and the precision and recall achieved by our method are also relatively balanced. Notice that 

we do not directly apply any threshold tuning for our method and simply takes the threshold 

as 0.5.

In comments data set, the naïve majority voting strategy again obtains a poor recall below 

80%. After tuning the threshold, its recall rises to around 85%, but still lower than our 

proposed method. The scores learned by PL-model yield a comparable recall to majority 

voting with tuned threshold, but fail to achieve a high precision. Our proposed method 

achieves a comparable precision of 93% and a higher recall of 87%, and therefore beat all 

the other baselines in terms of F1-score (90%).

Batch number m vs. item number n—An interesting question to study is, for a certain 

number of items, how many (random) batches of data items does one need to label to obtain 

an aggregated result accurate enough. We study this question by generating synthetic data 

sets with different settings of number of batches mL and mU while number of data items nL 

and nU are fixed. In this experiments, we set nL = 1, 000 and nU = 5, 000, and generate 

synthetic data sets with mL/nL = mU/nU = 2, 5, 10, and 20. We then apply all the strategies 
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on these data sets. To minimize randomness, for each setting we repeat the data generation 

and application of debiasing strategies for 10 times, then report the average performance.

Results are shown in Figure 5. As we can observe, under all the different settings, the 

proposed method consistently outperforms other baselines, in terms of both accuracy and 

F1-score. Majority voting with tuned threshold (MVT) is able to achieve comparable results 

to our proposed method when m/n are large enough (e.g. m/n = 20). However, when m/n is 

relatively small, our proposed method can achieve much better results than most of other 

baselines. When m/n = 2, it achieves an accuracy approximately 9% higher than MVT, and 

an F1-score around 5% more than MVT. An exception is the naïve majority voting strategy 

that achieves the best accuracy when m/n = 2. This is due to the skewed distribution of data 

labels, and by simply labeling all the data items as negative can get an accuracy of 

approximately 80%. In comparison, the F1-score of MV is only around 30%.

Another observation that we can make about Figure 5(b) is that the performance of majority 

voting drops as m/n increases. This result indicates when workers are biased and no 

debiasing techniques are applied, increasing the quantity of annotations collected does not 

help.

Size of training data set—As our method requires a small set of training data, there 

might be some concerns about how large a training data set is sufficient. We test the 

performance of two methods that rely on training data sets — MVT and our proposed 

method — on synthetic data sets and the comments data set. For the synthetic data set, we 

keep the size of test data set as nU = 5, 000 and mU = 50,000, and vary the size of training 

data set by setting nL as 10, 20, 50, 100, 200, 500, and 1,000, while setting mL as 10nL. For 

each configuration, we generate synthetic data sets 10 times and utilize the average 

performance on these 10 data sets to evaluate the debiasing performance. For the comments 

data set, we randomly sample mL batches from the training data set, where mL is set to 100, 

200,…, 1000. Again, for each configuration of training data size, we repeat the random 

sampling for 10 times and report the average performance.

The results of synthetic data set are shown in Figure 6. As observed, when training data set 

is extremely small (e.g. nL = 10), the performance of MVT drops in terms of both accuracy 

and F1-score (73% and 56% respectively). As the size of training data set increases, the 

performance of MVT becomes comparable to our proposed method. However, the 

performance of our proposed method is surprisingly stable, even when there are only 10 

items and 100 batches as training data, which is as 1/500 large as the data set used for 

testing. The results imply our proposed method can obtain very high performance with a 

small cost of labeling ground-truth data for collecting training data.

The results for the comments data set are shown in Figure 7. Again, when training data size 

is extremely small (e.g. mL = 100), the performance of MVT drops substantially (89% in 

accuracy and 75% in F1-score), while its performance gets more and more comparable to 

our method as the training data size increases. In contrast, our proposed method maintains a 

fairly stable performance (96% in accuracy and 90% in F1-score) for different sizes of the 
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training data set. This verifies again the ability of our proposed method to yield high-quality 

results with a sufficiently small training data set.

6. Extensions

In this section, we discuss two straightforward extensions of our proposed worker model and 

debiasing strategies, with respect to two useful applications other than binary classification: 

rating estimation and multi-class classification.

Rating estimation

In rating estimation, each data item xi is no longer associated with a discrete label from a 

finite set of labels, but instead, a real value yi ∈ ℝ. Although we do not explicitly formalize 

our problem for a rating task, with some straightforward modifications, our techniques can 

still be applied if the workers are asked to rate data items in batches.

Without loss of generality, we can assume 0 < yi < ∞. If the actual rating can be negative, 

we can always apply a certain sigmoid function to normalize the scores to be positive 

values. For independent judging, we can design a well-regularized distribution with 

expectation of yi for a worker to draw a rating, e.g. Gaussian distribution centered at yi. For 

relative judging, we can still assume the worker to generate a ranking from Plackett-Luce 

model with parameters yi's, and introduce distributions for generating rating for each data 

item from a distribution only depending on their ranking, which can be learned from the 

training data. For example, workers may tend to generate a rating from Gaussian distribution 

centered at μ1 = 5.0 for a top-ranked data item π(1), but generate a rating from another 

Gaussian distribution centered at μ5 = 1.0 for a data item ranked as the fifth π(5). Once the 

design of model is accomplished, it is straightforward to apply the same technique described 

in this paper to derive the debiasing strategy by maximizing the likelihood of observed 

annotations to estimate the underlying ratings for unrated data items.

Multi-class classification

In a multi-class classification problem, the label set  may contain more than 2 possible 

labels. Workers are usually requested to assign data items with different labels. This is a 

natural extension from binary classification problem.

If the labels in  are ordinal, for example, judging whether a review is “very helpful”, 

“helpful” or “not helpful”, the problem reduces to a rating estimation problem, where the 

possible value of rating are discrete values. We can simply apply the extended strategy 

described above. If the labels in  do not have an order, the problem can be reduces to 

several binary classification problems, which is straightforward to apply our strategy for 

debiasing workers' annotations.

7. Related Work

In this section, we first introduce existing studies on annotation bias of crowds, when data 

items are presented either independently, or in a sequence or batches; we then introduce rank 

aggregation techniques and their application on crowdsourced ranking or rating.
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Annotation bias in independent judgments

A number of studies have been conducted on verifying and quantifying annotation bias of 

crowd workers. Snow et al. [29] explore the performance of annotations by non-expert 

workers for several NLP tasks. Demeester et al. [8] discuss the disagreement between 

different users on assessment of web search results.

There are also extensive studies on modeling worker behaviors. Raykar et al. [23, 24, 25] 

study how to learn a model with noisy labeling. Specifically, they employ a logistic 

regression classifier, and insert hidden variables indicating whether a worker tells the truth. 

Karger et al. [12] propose an iterative algorithm to infer workers' reliability and aggregating 

their answers. Whitehill et al. [35] model the annotator ability, data item difficulty, and infer 

the true label from the crowds in a unified model. Most of these work also proposes various 

generative model to capture worker behavior. However, they assume judgments on different 

data items are independent, which is not necessarily true when data items are grouped into 

batches.

Venanzi et al. [33] propose a community-based label aggregation model to identify different 

types of workers, and correct their labels correspondingly. Das et al. [7] address the 

interactions of opinions between people connected by networks. They focus on another 

aspect of dependencies, which is the dependencies between workers, while in our studies, 

we are more concerned about dependencies between data items and their judgments.

Annotation bias in sequential and batch judgments

A few researchers also notice the correlation between judgments on different data items, but 

their work are mainly developed in the setting when data items are reviewed in a sequence. 

Scholer et al. [26, 27] study the annotation disagreements in a relevance assessment data set. 

They discover correlations between annotations of similar data items. They also explore 

“threshold priming” in annotation, where the annotators tend to make similar judgments or 

apply similar standard on consecutive data items they review. However, their work focuses 

on the scenario when data items are organized in a long sequence. It confines the 

dependencies to exist only between consecutive data items. Also, they focus more on 

qualitative conclusions, without a quantitative model to characterize and measure the 

discovered factors. Carterette et al. [4] provide several assessor models for the TREC data 

set. Mozer et al. [18] study the similar “relativity of judgments” phenomenon on sequential 

tasks instead of batches. Again, their focus is more on data items presented as a long 

sequence, while we focus more on data items presented in batches simultaneously.

Our recent work [36] also considers a similar setting when data items are organized in 

batches; we verify the existence of annotation bias caused by batching data items. Our focus 

in that paper was to design an active learning algorithm to smartly assemble batches, aiming 

to improve the performance of the classifier trained on this annotation batches. Our focus 

was not on improving the quality of labels collected, and we still used majority voting to 

obtain labels for data items. In this paper, we focus on debiasing the obtained labels, which 

can trigger a broader range of application including both training and evaluating classifiers.
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Crowdsourced ranking and rating

In our model, we employ the Plackett-Luce model to capture worker behavior, and 

aggregate worker annotations on batches as rankings in order to infer true labels. There is a 

related thread of work on rank aggregation; however, to the best of our knowledge, we are 

the first to model crowds' annotating behavior on batches by ranking, and propose a 

debiasing strategy.

Studies on aggregating multiple rankings into a consistent ranking can be dated back to the 

seminal work of Arrow [2]. Negahban et al. [19] study how to aggregate pairwise 

comparisons into a ranking by utilizing the Bradley-Terry model [3], which is a simplified 

version of Plackett-Luce model utilized in this paper. Hunter et al. [11] propose the 

minorization-maximization (MM) algorithm to infer Plackett-Luce model from multiple 

partial orderings. Soufani et al. [30] generalize Negahban et al.'s work and proposed a class 

of generalized method-of-moments (GMM) algorithm to infer parameters of Plackett-Luce 

model from multiple orderings, and compare the performance against MM-algorithm. They 

then further extend their algorithm to be applied to a more general class of ranking models 

called random utility models (RUMs) [31]. In addition, the technique for rank aggregation 

has also been studied in context of information retrieval [9, 13, 14, 22, 34]. These studies do 

not explicitly address the crowdsourcing settings to actually model the worker behavior. 

Directly applying their techniques (e.g. [11]) may not lead to better performance, as shown 

in our experiments.

There is related research on aggregating multiple rankings or leveraging crowds' power to 

obtain ranking of data items. Chen et al. [6] study aggregating crowdsourced annotation on 

pairwise comparison to obtain a ranking on data items. Mao et al. [16] show how aggregated 

results of noisy voting obtained from crowdsourcng platform may differ by using different 

aggregating strategies. However, their objective is just to obtain a ranking, while our model 

incorporates a ranking model but the ultimate goal is still to collect labels for data items.

Several papers also consider crowdsourced rating. Parameswaran et al. [20] focused on 

crowdsourced rating on items, and applied their system on a peer evaluation data set of a 

MOOC course. Crowdsourcing has also been utilized for rating multimedia content quality 

[5] and relevance assessment [1]. However, they do not explicitly study the scenario when 

data items are grouped into batches.

8. Conclusion

In this work we study a specific type of annotation bias in crowdsourcing, which occurs 

when data items are grouped into batches and submitted to workers to be judged 

simultaneously. We propose a novel worker model designed to capture this type of bias, and 

show how to train the worker model on annotation data. We also present how to debias the 

label obtained from crowds given a trained worker model. We conduct experiments on both 

synthetic data and real world data to verify the effectiveness of our methods.

The observation of batch annotation bias might exist in many scenarios other than 

crowdsourcing, and therefore the debiasing strategy can trigger a broad range of 
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applications. For example, the conference paper review system where each reviewer is 

assigned a batch of papers can also be regarded as a batch annotation.

There are several interesting directions to extend this work. For example, one can extend the 

model to further incorporate the different behavior of each individual worker and adjust the 

debiasing strategy accordingly. Also, it would be interesting to see if it is possible to 

improve the efficiency of debiasing by actively assemble a batch of data items to collect the 

desired labels, instead of sending randomly formed batches to the crowds.
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Figure 1. 
Example of correlation between annotations on data items in the same batch. Workers are 

asked to label whether a review on the movie “The Imitation Game” crawled from IMDb is 

positive. Assign each review-movie pair to different workers separately can be costly, while 

assigning a batch of reviews together with a movie to workers might affect workers' 

judgments.
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Figure 2. 
Learning worker model from the synthetic training data set.
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Figure 3. 
Analysis of estimation error of parameters in the worker model under different 

configurations.
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Figure 4. 
Learning worker model from the comments training data set.
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Figure 5. 
Performance of debiasing strategies on synthetic data sets generated by setting both mL/nL 

and mU/nU as 2, 5, 10, 20 respectively.
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Figure 6. 
Performance of debiasing strategies on synthetic data sets generated by different size of 

training data set nL (mL = 10nL), while the size of testing data set remains nU = 5,000 and 

mU = 50, 000.
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Figure 7. 
Performance of debiasing strategies on comments data set where the training data set is 

randomly sampled from the original training set with different size of mL, while the testing 

data set remains the same.
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Table 1

Notation description.

Notation Description

X
Set of all the data items 

Y Set of all true labels associated with data items in X

bj
A set of data item indices 

xj
A data item batch where  where xjl is extracted from the data item in X with index specified by bjl

yj
A label batch consists of true labels  associated with data items in xj

Worker annotation collected from a crowdsourcing platform for data items in xj

B
Set of all the batches 

XB Set of all the data item batches

YB Set of all the true labels associated with data item batches in XB

Set of all the worker annotation from crowds on data item batches in XB
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