
UC Berkeley
UC Berkeley Previously Published Works

Title
Debiasing Crowdsourced Batches

Permalink
https://escholarship.org/uc/item/9wn2r8nm

ISBN
9781450336642

Authors
Zhuang, Honglei
Parameswaran, Aditya
Roth, Dan
et al.

Publication Date
2015-08-10

DOI
10.1145/2783258.2783316

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9wn2r8nm
https://escholarship.org/uc/item/9wn2r8nm#author
https://escholarship.org
http://www.cdlib.org/

Debiasing Crowdsourced Batches

Honglei Zhuang, Aditya Parameswaran, Dan Roth, and Jiawei Han
Department of Computer Science, University of Illinois at Urbana-Champaign

Honglei Zhuang: hzhuang3@illinois.edu; Aditya Parameswaran: adityagp@illinois.edu; Dan Roth: danr@illinois.edu;
Jiawei Han: hanj@illinois.edu

Abstract

Crowdsourcing is the de-facto standard for gathering annotated data. While, in theory, data

annotation tasks are assumed to be attempted by workers independently, in practice, data

annotation tasks are often grouped into batches to be presented and annotated by workers together,

in order to save on the time or cost overhead of providing instructions or necessary background.

Thus, even though independence is usually assumed between annotations on data items within the

same batch, in most cases, a worker's judgment on a data item can still be affected by other data

items within the batch, leading to additional errors in collected labels. In this paper, we study the

data annotation bias when data items are presented as batches to be judged by workers

simultaneously. We propose a novel worker model to characterize the annotating behavior on data

batches, and present how to train the worker model on annotation data sets. We also present a

debiasing technique to remove the effect of such annotation bias from adversely affecting the

accuracy of labels obtained. Our experimental results on both synthetic data and real-world data

demonstrate the effectiveness of our proposed method.

Keywords

Crowdsourcing; annotation bias; worker model

1. Introduction

Crowdsourcing provides an efficient method to annotate data on a large scale for various

machine learning tasks by employing a massive workforce drawn from global Internet users.

Popular online crowdsourcing platforms include Amazon Mechanical Turk1 and

CrowdFlower2. However, while crowdsourcing is relatively cheap compared to employing

experts, getting large quantities of labeled data annotated by crowds (say thousands, or

millions of data items) can be rather expensive.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
1https://www.mturk.com/
2http://www.crowdflower.com/

HHS Public Access
Author manuscript
KDD. Author manuscript; available in PMC 2015 December 26.

Published in final edited form as:
KDD. 2015 August ; 2015: 1593–1602. doi:10.1145/2783258.2783316.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://https://www.mturk.com/
http://www.crowdflower.com/

A key mechanism, often employed in practice for reducing costs, is batching, i.e., grouping

multiple data items (to be annotated together) into one single task as a batch. Batching can

save significant monetary costs, since the necessary instructions and background for

completing the task needs to be provided just once for the entire batch. Thus, the worker will

spend less time on reviewing these instructions, and more time on annotating data items, and

therefore will be able to annotate more data items within the same time. For instance,

consider a scenario where a worker has to judge whether a comment is relevant to a

document. Here, making a judgment for each comment requires reading through the entire

document. Instead, with batching, the worker only needs to read the entire document once,

and then make a judgment for all the comments in the batch. In fact, even from the workers'

point of view, it is also more attractive to label batches of data items as they can save time

on switching between different tasks.

However, even though batching is an attractive option in practice due to its cost and time

savings, having workers annotate batches can lead to severe correlation between annotations

within batches. For example, say we have a task of annotating whether a review of the

movie “The Imitation Game” crawled from IMDb is positive. As illustrated in Figure 1(a), if

we only show one review to be judged as part of each crowdsourcing unit task, workers will

have to spend some time looking up the movie before they can make a single judgment on a

review. Although judgments are likely to be independent, this way of assigning work is too

costly to be practical. Instead, if we assemble multiple reviews of the same movie into a

batch, as shown in Figure 1(b), workers can make multiple judgments after they look up a

movie. Nevertheless, in this case, the annotation of different reviews might interfere with

each other. For example, the review “Average In The Extreme” does not seem like a positive

review per se (Cf. top right in Figure 1(a)), while grouped with the review “Stack of Lies”, it

looks much more like a positive review (Cf. top in Figure 1(b)). Similarly, when the review

“Good enough but historically sketchy” looks quite positive by itself (Cf. bottom left in

Figure 1(a)), it does not look as positive as a strongly effusive review simply saying “Great

movie”, as shown in the bottom of Figure 1(b). Thus, overall these effects might be

undesirable and misleading as it is inconsistent with the case when workers make

independent judgments. Therefore, it is challenging to ascertain true labels of data items in

batches.

So far, there has been little to no work in exploring the the possible annotation error

introduced by grouping data items into batches. Although batching data items has been

adopted in many crowdsourced tasks such as sorting [17], object recognition [32] or

clustering [10], and anecdotally very widely used in practice, the assumption is often that the

annotations are collected independently, which is not the case. While there is limited work

on judging data items in sequence [18, 26, 27], it is not directly applicable to our setting

where a batch of data items are presented and annotated in parallel. Our previous research

[36] also noticed this specific type of annotation bias, but instead of focusing on debiasing,

we exploited the bias to develop an active learning algorithm aiming to improve a certain

classifier performance. We defer the detailed discussion of the related work to Section 7.

There are several research challenges in solving this problem. First, how do we model

workers' behavior when they make judgments in batches? Second, how do we leverage the

Zhuang et al. Page 2

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

model to debias the crowdsourced annotation of data batches? We make the following

contributions in answering these questions:

1. Proposing an interpretable worker annotation model on batches of data. We

propose a novel worker model for binary annotation behavior with data items

presented as batches. The model incorporates independent judgments and batch

judgments based on ranking.

2. Debiasing annotation data obtained as batches. Based on our proposed worker

model, we provide an algorithm to debias the inferred labels when they are

collected from data items in batches.

3. Conducting experiments on a real-world crowdsourcing platform. We conduct

experiments on both synthetic and real-world crowdsourcing data sets to verify the

effectiveness of our proposed model and debiasing strategies. Experimental results

show the effectiveness of our debiasing method over other baselines.

The rest of this paper is organized as follows: Section 2 introduces the basic concepts and

formalizes the research problem; Section 3 proposes the worker model for annotating

batches of data; Section 4 presents a strategy to debias batch annotations; Section 5

describes experimental results; Section 6 discusses extensions of our proposed method;

Section 7 presents related work and Section 8 concludes.

2. Preliminaries

In this section, we formally define the concepts and notations we use in this paper; we then

formalize the problem of debiasing crowdsourced batches.

2.1 Basic Concepts and Terminology

First we need to formalize several basic concepts in a crowdsourcing platform. Suppose we

are given a set of data items X = {xi}, where i = 1, …, n. Each data item is associated with a

label yi ∈ , and we thereby define . In following discussion, we focus on a

binary classification task, where = {0, 1}, but our framework generalizes to multi-class or

rating cases seamlessly (Cf. Section 6). According to a standard formalization in learning

theory for binary classification, we suppose each (xi, yi) is generated from a joint probability

distribution P We define an inherent score ηxi to be the conditional probability P(yi = 1|

xi). For simplicity, we denote the inherent score as ηi.

In a job or task submitted to a crowdsourcing platform, we can assemble several data items

into a batch. Each batch bj is represented by a set of indices of data items in the batch,

denoted as {bj1, …, bjk}, where k is the size of a batch. To be strict, data items in the batch

should be represented by xj = {xbj1, …, Xbjk}. However, for simplicity, we denote data items

in the batch specified by bj as {xj1, …, Xjk}- Similarly, we define yj = {yj1, …, yjk} to be true

labels associated with data items in xj, where yjl is the true label of xjl according to Y, ∀1 ≤ l

≤ k. In CrowdFlower language, a batch corresponds to a single “unit”, where a worker has to

judge the entire unit at the same time; in Mechanical Turk language, a batch corresponds to

a single “HIT” (short for Human Intelligence Task). Usually, data items in the same batch

might share the same context, background, or the same instruction, in order to reduce the

Zhuang et al. Page 3

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

overhead. For example, if one is asked to judge whether a review about a restaurant is

positive or negative, it might save time for workers by grouping reviews of the same

restaurant into the same batch, as they only need to read the description of the restaurant

once before they can make multiple judgments on different reviews.

As we assemble data items into batches, each worker has to judge the entire batch as a single

judgment. Given a batch bj, the judgment provided by a worker can be represented as

, where is the annotation of data item corresponding to xjl,

provided by the worker. Noting that the worker annotation can be different from the true

label yj. We refer to worker annotation as “annotation”, while the ground-truth label is

referred to as simply the “label”.

In CrowdFlower, as a judgment can only be made based on a unit, workers are not allowed

to submit partial results on a batch (as with Mechanical Turk). However, one can always add

an “unknown” option for every data item, so that the workers can provide partial results on a

batch. For simplicity, we consider no partial judgments in the rest of the paper.

Now, we are in a position to give a formal definition for a batch of data items:

Definition 1 (Batch): Given a data set (X, Y), a batch of data items with size k extracted

from the given data set can be represented as (bj, xj, yj,), where bj = (bj1, …, bjk) is a set

of indices for X and Y; xj = {xj1, …, xjk} is a set of all the data items, indexed by bj; yj =

{yj1, …, yjk} consists of the corresponding true labels of data items in xj;

is the worker annotation on the set of the batch.

Additionally, a set of batches can be defined as:

Definition 2: Given a data set (X, Y), a set of batches extracted from the given data set is

denoted as , where consists of the indices of each batch;

 is the set of data item batches, with their corresponding true labels

 and worker annotations .

Remarks—1) Notice that a data item xi ∈ X may certainly appear in multiple batches in .

That is, xjl and xj′l′ may refer to the same data item as long as bjl = bj′l′; 2) For the sake of

fully utilizing the workforce of crowds, without loss of generality, we focus on the scenario

when all batches have the identical size k. However, our model generalizes to the case when

batches have different sizes; 3) In some real world crowdsourcing platforms, a batch can

actually be judged by multiple workers, which means there could be multiple 's associated

to a single (bj, xj, yj)— for instance, this is referred to as multiple assignments on

Mechanical Turk. However, for the purposes of debiasing, it is equivalent to regard a single

batch as multiple batches with identical (bj, xj, yj) but associated with judgments made by

different workers .

Zhuang et al. Page 4

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.2 Problem Definition

Based on the concepts described thus far, we can formalize the problem of debiasing

crowdsourced batches as the following:

Problem 1 (Debiasing Crowdsourced Batches): Suppose we have a labeled data set (XL,

YL) with YL known, as well as its extracted batches and their crowdsourced annotation (BL,

XBL, YBL,). If we are then given another unlabeled data set XU, as well as its extracted

batches and crowdsourced annotation (BU, XBU,), the objective is to infer the true labels

YU associated with XU from the crowdsourced annotation.

Notice that our problem formulation as described above requires as input labeled and

annotated data items for training purposes. In practice, the labeled data for training can be

collected from the “test questions” with ground-truth labels, inserted by the crowdsourcing

platform for the purpose of quality control and monitoring of workers. The usage of test

questions is standard practice: As an example, in CrowdFlower, all workers have to attempt

a certain number of test questions with correct labels and need to achieve an accuracy over a

certain threshold (e.g. 70%) before they can proceed to work on the regular task(s). Also,

additional hidden data items with known labels can be inserted into the regular tasks to

monitor the accuracy of workers. In our setting, worker behavior on these test questions or

labeled data can additionally be used for training purposes.

Also notice that in this version of our problem formulation, we assume identical worker

behavior. This is a more standard setting in crowdsourcing practice as there is usually not

enough work done by each worker to ascertain individual behavior. Also, it is

straightforward to extend our model when different workers have different behavior when

working on tasks.

3. Crowdsourcing Worker Annotation Model on Batches

In this section, we first describe our model for workers' annotation behavior on a batch of

data items; then we introduce how to train the model based on a training data set.

Our key intuition is the follows: when a worker judges a batch of data items, she can either:

1) choose to judge data items independently as if they are presented alone; or 2) to rank all

the data items according to their relative inherent scores and annotate the top several items

as positive, leaving the rest in the batch as negative.

Plackett-Luce model

Before we delve into our model, we first recap a probability model for generating rankings

based on scores associated with items, namely the classical Plackett-Luce model [15, 21]

introduced in the 70s. Without loss of generality, suppose we are given a set of items x1, …,

xk. Each item xi is associated with a certain score s(xi) > 0. Here the score s(xi) models the

tendency of ranking xi higher in a randomly generated ranking and can be viewed as a

measure of the inherent “goodness” of the item. A ranking of these items can be represented

Zhuang et al. Page 5

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

as a bijection , that maps the i to the data item at the i-th position in the

ranking. The corresponding ranking list can be represented as π(1) ≻ … ≻ π(k). In Plackett-

Luce model, the probability of generating a ranking π is:

(1)

The equation above can be interpreted as the following process: Initially, we have a pool A

of all the data items. Each time one picks an item xi from a pool A of data items with a

probability proportional to its score, namely:

This item is then removed from the pool A and placed at the next position in the ranking.

Repeat this operation until A becomes empty. The probability of generating a ranking list

according to this process is equivalent to the probability described in the Plackett-Luce

model.

Worker model

We now introduce our worker model for annotating batches of data items. Again, without

loss of generality, suppose we are given a batch xj where xjl = xl, namely the given data item

batch can be denoted as xj = {x1, …, xk }. Also, recall that for each data item xi, we denote

P(yi = 1|xi) as its inherent score ηi, which is not explicitly known.

When a worker starts to work on a certain batch of data items, they may choose to use one

of two strategies:

• Independent judging. If the worker is making judgments based on the absolute

value of ηi for each data item, we suppose the worker judges each data item xi ∈ xj

independently by drawing the annotation with probability ηi and with

probability (1 – ηi).

• Relative judging. If the worker is making judgments by comparing data items

within the same batch, we suppose the worker chooses to first rank all the data

items in the batch based on their inherent scores, then annotates several top-ranked

items as positive, leaving the other items annotated as negative. To be precise, the

worker generates a ranking π for k items in the batch according to the Plackett-

Luce model, with the scoring function defined as s(xi) = ηi. Then the worker draws

an integer 0 ≤ τ ≤ k from a certain distribution, where pτ denotes the probability of

drawing the integer τ. For data items ranked as top-τ in the ranking, denoted as xi ∈

{π(1), …, π(τ)} (could be empty if τ = 0), the worker annotates them as ,

while other data items not within the top-τ of the ranking π are annotated as .

Zhuang et al. Page 6

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To combine these two different scenarios, we suppose the worker chooses to make

independent judgments with a certain probability 0 < λ < 1, while with probability (1 – λ)

the worker makes relative judgments.

The intuition of this model is to capture two behavior patterns of workers. In the

independent judging scenario, workers can remain independent in judging different data

items in the same batch, with each data item being judged based on its inherent score ηi.

Nevertheless, sometimes workers might judge data items within a batch by comparison. In

the relative judging scenario, workers simply judge the relative relationships between data

items in the same batch, which is captured by the Plackett-Luce model for generating the

ranking. In order to determine the labels of data items, they have an expectation of label

distribution, which is reflected by the distribution of generating τ, as it characterizes the

probability of having τ positives within k data items. For instance, if workers expect there to

be few positive items, then the probability of τ being low is high, while if workers expect

the batches to be balanced, then the probability of τ being close to k/2 is high comparing to

other values of τ. However, this distribution does not necessarily reflect the correct label

distribution. When they try to apply their expectation of the label distribution on the batch,

bias might occur.

We summarize the process of generating annotation for a batch of data items in our

proposed model as below:

1. Toss a coin Z ∼ Bernoulli(λ). If Z = 1, go to Step 2; otherwise go to Step 3.

2. For each xi, generate . Output the results and exit.

3. Generate a ranking π based on Plackett-Luce model for data items xi in the batch.4.

Draw τ ∼ M ult(pτ).

4. For the top-τ items in ranking π, generate ; otherwise generate .

Output the results and exit.

Model learning

The parameters that need to be determined in this worker model include: the probability of

making independent judgments λ, and the distribution of the number of positive annotation

when making relative judgments, represented by p0, …, pk, where 0 ≤ pτ ≤ 1 and Σpτ = 1.

We assume these two parameters are fixed for each new application of our techniques.

However, for different applications, these parameters might be different — for instance,

these parameters for content moderation may be different from the same parameters for

spam identification or sentiment analysis.

Suppose we are given a set of nL items XL with their true labels YL, or more ideally, their

inherent scores {ηi}xi ∈ XL. If the inherent score of a data item ηi is not given, but only the

binary label yi is known, we can estimate ηi by ηi = (yi + ε)/(1 + 2ε) where ε is a small

constant, which is set to 10−3 in our experiments. Then, we form them into mL batches,

Zhuang et al. Page 7

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

represented by BL, send them to the crowds, and obtain their annotation from workers,

denoted as .

For each batch bj ∈ BL, we denote the set of items annotated by workers as positive as

, and the set of items annotated as negative as .

We train the model by maximum likelihood estimation. The likelihood of the obtained

annotation can be written as:

(2)

where is the number of positive annotation in batch denotes the

probability of generating any rankings π that rank items in higher than any items in ,

namely:

where R(X1, X0) = {π|π−1 (x0) > π−1 (x1), ∀x1 ∈ X1, x0 ∈ X0}; and P(π) is defined by the

Plackett-Luce model, as presented in (1). Notice that the calculation of the exact value of

) is hard when k is large. In our experiments, k is small enough to enumerate

entire set . If k is large, we can apply Monte Carlo method to estimate the value

of .

Applying an EM-algorithm, where at E-step, we can have

(3)

And at M-step, we update the parameters λ̂ and p̂τ by

(4)

where .

Zhuang et al. Page 8

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4. Debiasing Annotation

In this section, we introduce our method that debiases annotations collected for batches of

data given the trained worker model. More precisely, given a set of nU unlabeled data items

XU, assembled into mU batches represented by BU, as well as their annotations obtained

from the crowds , how do we infer their true labels YU?

The basic idea is, based on the given worker model, we infer ηi for each xi ∈ XU. Then, we

simply apply the Bayes classifier to determine the inferred label, which yields ŷi = 1 if ηi >

0.5, or ŷi = 0 if ηi ≤ 0.5.

We again adopt a maximum likelihood estimation techique. The log-likelihood of the

obtained annotation is:

(5)

Notice that λ̂ and p̂τj. are parameters learned from Section 3, and is also a

function of ηi's. Similar to the previous section, we apply an EM-algorithm here by first

calculating λ̂
j for each batch at the E-step according to (3) but replacing λ and pτ by the

value we learned during the training step. Then we have:

(6)

where the second term includes , which is hard to optimize. We apply the idea

of the EM-algorithm again here. We use notation Rj to represent . For each π ∈

Rj, we can calculate its conditional probability given , denoted as q̂π by:

(7)

which is the E-step. According to Jensen's inequality we have:

(8)

where the last inequality yields the objective function we want to optimize. The correctness

of EM-algorithm guarantees the convergence of optimizing this function.

Zhuang et al. Page 9

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Furthermore, according to the minorization-maximization (MM) algorithm used in [11], we

obtain the lower bound for log P(π), which is defined by the Plackett-Luce model, by:

(9)

where η̂
i is the estimated parameter of last iteration.

By combining (6), (8) and (9), we obtain the objective function to optimize as:

(10)

Notice that Q(η) is actually a lower-bound of the original log-likelihood function (5).

Moreover, for two EM-step and one MM-step we apply in deriving Q(η), it is proven that by

improving Q(η) from this iteration Q(η̂), the improvement of the log-likelihood is no less

than the improvement we achieve on the Q(η). Therefore optimizing Q(η) can also optimize

the log-likelihood.

Take the derivative, we obtain

(11)

where M1(i) and M0(i) are defined as for y ∈ {0, 1}. The updating rule

can be obtained by solving ∂Q(η)/∂ηi = 0, namely

(12)

where

Zhuang et al. Page 10

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

By iteratively updating the scores to optimize the likelihood of the annotation on test data,

we can obtain the inferred η̂
i of each item. Based on this, we can determine the inferred

binary label for each data item by assigning if ηî > 0.5, or otherwise. Notice that

we do not further tune the threshold in this step, as the scores we learned here are expected

to be a reasonable estimate of the true ηi's. Therefore, if the inherent scores are known,

learning theory guarantees us that by using Bayes classifier (namely to take 0.5 as threshold)

is supposed to achieve the best expected performance in terms of square loss.

The entire process of training model and leveraging the model to debias the obtained

annotations are summarized in Algorithm 1.

5. Experimental Results

Algorithm 1: Debiasing crowdsourced annotation on batches of data items.

In this section, we conduct experiments on a synthetic data set and a real data set to verify

the effectiveness of our proposed worker model and debiasing technique.

5.1 Experimental Data Sets

We first introduce the data sets we used in this experiments. A summary of the data sets we

use in our experiments is provided in Table 2.

Synthetic data set—We construct synthetic data sets following the worker annotation

model we propose in Section 3. Suppose we have n items in X, we first generate their

inherent scores ηi for each xi ∈ X from a Beta distribution Beta(α, β), then generate the true

labels Y by drawing yi from a Bernoulli distribution parameterized by ηi for each i. In our

synthetic data set, we set α = 2 and β = 4 to simulate the case when negative data items

overwhelm positive data items.

Then, we generate m batches of size k by sampling without replacement for each batch.

Notice that by the phrase “without replacement” we mean there are no identical data items

within the same batch, while the same item can still appear in multiple batches as we do

Zhuang et al. Page 11

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

replace the items back into the pool after a batch is generated. Thereby we obtain the set of

batches B. For each bj in B, we generate the workers' annotation from our proposed batch

annotation model. The probability of making independent judgments λ is set as 0.5. The

distribution of determining number of positive annotations pτ is also assigned to be:

where ρ is positive constant, set as 2 in our experiments.

Comments data set—We utilize a real world crowdsourcing data set for annotating

comments, which is used in [36]. The original crowdsourcing task was to identify

inappropriate comments on LinkedIn posts published by companies or LinkedIn influencers.

Inappropriate comments are defined as comments containing promotional, profane, blatant

soliciting, random greeting comments, as well as comments with only web links and contact

information. In order to collect annotation of comments, for each post, k comments are

sampled and sent to CrowdFlower as a batch (unit). Workers are also provided with a

codebook (i.e., a sequence of instructions) explaining how to annotate the data items. Each

comment is regarded as a data item and can be annotated as positive (inappropriate

comment) or negative (acceptable comment). Each batch is annotated by 5 or more workers.

In order to provide test questions and track the performance of each worker, some of the

batches are annotated by 9 trained LinkedIn employees (experts) with the same codebook

and interface as used for crowd workers. The average Cohen's kappa for all expert pairs is

0.7881. For this experiments, we only adopt the batches with all of their data items

annotated by both crowds and experts as we can use the experts' annotation as ground truth

(aggregated by majority voting). Out of these batches, the 1,099 batches that are annotated

before a worker actually starts on the job are utilized as training data set BL. while the other

5,267 batches are utilized as the test data set BU to infer the 651 data items the 5,267 batches

covered.

5.2 Experimental Setup

Methods evaluated—We compare the performance of our proposed method with several

baselines:

• Majority Voting (MV). For each data item in the test data set, simply determine its

inferred label by its annotation given by the majority of workers. This aggregation

strategy is often used in practice (e.g. [28]).

• Majority Voting with Tuned Threshold (MVT). Instead of simply applying majority

voting, we calculate the ratio of positive annotation on each item as a score, and

tune the threshold for determining the binary inferred label. Based on a given

training set of annotation and true labels, we find the threshold yielding the best F1-

score on training data set, and apply the same threshold on the test data set.

• Plackett-Luce Model (PL). A strategy is to fit the Plackett-Luce model on the test

data by inferring the scores s(xi) associated with each data items. We apply a

Zhuang et al. Page 12

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bayesian regularization on the inferred scores to confine it to be 0 ≤ s(xi) ≤ 1. We

then infer a positive label to each data item with an inferred score s(xi) > 0.5 and a

negative label otherwise.

• Batch Annotation Model (BAM). The debiasing strategy proposed in Section 3 and

4.

Evaluation methodology—For baselines without training, we directly apply them on the

test data set; for our proposed method as well as MVT, we first train the worker model on

the training data set, then apply the debiasing strategy based on the trained worker model on

the test data set. We compare the inferred labels to the ground-truth and evaluate the

performance in terms of accuracy, precision, recall and F1-score.

Trials and setup—For our proposed model, in training phase, we randomly initialize λ

and pτ; in debiasing phase, we initialize the all the inferred scores as 0.1. For training the

worker model, we set a fixed number of iteration as 100. Our experimental results presented

later show the model converges within a number of iterations much fewer than 100. For

debiasing, we calculate the log-likelihood of the model and stop when the relative change of

log-likelihood is within 10−5.

5.3 Experimental Results

Now we present the experimental results. We first verify the learning algorithm of our

model on the synthetic data set, then present the learned model parameters on a real data set;

we also evaluate the effectiveness of our debiasing strategy on both synthetic data set and

real data set, which demonstrates an improvement in terms of F1-score; finally we conduct a

study on different configurations of experiments as a guideline for setting up a batched

crowdsourcing task.

Worker model learning—We first verify the effectiveness of learning our proposed

worker model. On our synthetic data set, the “true” value of probability of making

independent judgments λ is set to 0.5. We learn the model from the synthetic training data

and obtain the inferred λ̂ as 0.4998, which reasonably recovers the original value. We also

compare the original model parameters pτ's to the inferred parameters in Figure 2(a). The

black dashed line represents the original parameters used for generating synthetic annotation

data, while the red solid line shows the inferred parameters of worker model, which seems

as a precise fit of the original parameter. We also show the curve of log-likelihood of the

training data set, which seems to converge within 20 iterations.

To further confirm the robustness of our learning method, we modify the configuration of

synthetic data generation, and train the worker model on different data sets to check if they

can recover the original parameters. We still take the same configuration of nL = 1, 000 and

mL = 10, 000. The estimation error analysis is shown in Figure 3. Figure 3(a) shows the

difference between the inferred parameter λ̂ and the “true” parameter λ, given the annotation

data generated by λ varying from 0.1 to 0.9. It can be observed that the error is reasonable

small, basically within 0.1. Figure 3(b) shows the ℓ2 norm of the difference between the

estimated distribution p̂τ and the “true” distribution pτ, when pτ is generated with respect to

Zhuang et al. Page 13

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

different ρ varying from 1 to 3. In most of the settings, the error is below 2 × 10−3, which is

fairly low. Although we only instantiate pτ's using a power-law distribution, as the learning

method does not confine the learned distribution to be parametric, it can be directly applied

to any other type of distributions.

Learned model on real data set—Given the effectiveness of our learning method

verified, we apply the worker model trying to fit the data set of annotating inappropriate

comments. The learned probability of a worker making independent judgments λ̂ on

comments data set is 0.7877. The learned distribution for determining the number of positive

annotations in a batch is presented in Figure 4(a). It shows that a worker tends to annotate

the entire batch as negative (i.e. acceptable comment) with a probability over 0.6, while

picking only 1 of them as positive (i.e. inappropriate comment) also occurs with a relative

high probability around 0.25. The workers seem to be reluctant to annotate more than 1

comments in a size-5 batch. This is coherent with most people's intuition that inappropriate

comments are rare comparing to the entire set of comments.

The convergence analysis is shown in Figure 4(b). The model converges within 50

iterations.

Performance comparison—We proceed to evaluate the performance of different

aggregation strategies on both data sets. The overall performance results are shown in Table

3. In both data sets, our proposed debiasing strategy is a clear winner in terms of F1-score,

and also achieves the best accuracies.

In synthetic data set, majority voting, without tuning the threshold (default set to 0.5), fails

to identify most of the positive data items, and therefore achieves an extremely low recall.

Only after the threshold is tuned on a training data set can it achieve a reasonable F1-score

of 71%. PL-model, in contrast, achieves a relatively low precision of 52%. Our proposed

method is able to achieve the best overall performance in terms of F1-score and accuracy,

and the precision and recall achieved by our method are also relatively balanced. Notice that

we do not directly apply any threshold tuning for our method and simply takes the threshold

as 0.5.

In comments data set, the naïve majority voting strategy again obtains a poor recall below

80%. After tuning the threshold, its recall rises to around 85%, but still lower than our

proposed method. The scores learned by PL-model yield a comparable recall to majority

voting with tuned threshold, but fail to achieve a high precision. Our proposed method

achieves a comparable precision of 93% and a higher recall of 87%, and therefore beat all

the other baselines in terms of F1-score (90%).

Batch number m vs. item number n—An interesting question to study is, for a certain

number of items, how many (random) batches of data items does one need to label to obtain

an aggregated result accurate enough. We study this question by generating synthetic data

sets with different settings of number of batches mL and mU while number of data items nL

and nU are fixed. In this experiments, we set nL = 1, 000 and nU = 5, 000, and generate

synthetic data sets with mL/nL = mU/nU = 2, 5, 10, and 20. We then apply all the strategies

Zhuang et al. Page 14

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

on these data sets. To minimize randomness, for each setting we repeat the data generation

and application of debiasing strategies for 10 times, then report the average performance.

Results are shown in Figure 5. As we can observe, under all the different settings, the

proposed method consistently outperforms other baselines, in terms of both accuracy and

F1-score. Majority voting with tuned threshold (MVT) is able to achieve comparable results

to our proposed method when m/n are large enough (e.g. m/n = 20). However, when m/n is

relatively small, our proposed method can achieve much better results than most of other

baselines. When m/n = 2, it achieves an accuracy approximately 9% higher than MVT, and

an F1-score around 5% more than MVT. An exception is the naïve majority voting strategy

that achieves the best accuracy when m/n = 2. This is due to the skewed distribution of data

labels, and by simply labeling all the data items as negative can get an accuracy of

approximately 80%. In comparison, the F1-score of MV is only around 30%.

Another observation that we can make about Figure 5(b) is that the performance of majority

voting drops as m/n increases. This result indicates when workers are biased and no

debiasing techniques are applied, increasing the quantity of annotations collected does not

help.

Size of training data set—As our method requires a small set of training data, there

might be some concerns about how large a training data set is sufficient. We test the

performance of two methods that rely on training data sets — MVT and our proposed

method — on synthetic data sets and the comments data set. For the synthetic data set, we

keep the size of test data set as nU = 5, 000 and mU = 50,000, and vary the size of training

data set by setting nL as 10, 20, 50, 100, 200, 500, and 1,000, while setting mL as 10nL. For

each configuration, we generate synthetic data sets 10 times and utilize the average

performance on these 10 data sets to evaluate the debiasing performance. For the comments

data set, we randomly sample mL batches from the training data set, where mL is set to 100,

200,…, 1000. Again, for each configuration of training data size, we repeat the random

sampling for 10 times and report the average performance.

The results of synthetic data set are shown in Figure 6. As observed, when training data set

is extremely small (e.g. nL = 10), the performance of MVT drops in terms of both accuracy

and F1-score (73% and 56% respectively). As the size of training data set increases, the

performance of MVT becomes comparable to our proposed method. However, the

performance of our proposed method is surprisingly stable, even when there are only 10

items and 100 batches as training data, which is as 1/500 large as the data set used for

testing. The results imply our proposed method can obtain very high performance with a

small cost of labeling ground-truth data for collecting training data.

The results for the comments data set are shown in Figure 7. Again, when training data size

is extremely small (e.g. mL = 100), the performance of MVT drops substantially (89% in

accuracy and 75% in F1-score), while its performance gets more and more comparable to

our method as the training data size increases. In contrast, our proposed method maintains a

fairly stable performance (96% in accuracy and 90% in F1-score) for different sizes of the

Zhuang et al. Page 15

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

training data set. This verifies again the ability of our proposed method to yield high-quality

results with a sufficiently small training data set.

6. Extensions

In this section, we discuss two straightforward extensions of our proposed worker model and

debiasing strategies, with respect to two useful applications other than binary classification:

rating estimation and multi-class classification.

Rating estimation

In rating estimation, each data item xi is no longer associated with a discrete label from a

finite set of labels, but instead, a real value yi ∈ ℝ. Although we do not explicitly formalize

our problem for a rating task, with some straightforward modifications, our techniques can

still be applied if the workers are asked to rate data items in batches.

Without loss of generality, we can assume 0 < yi < ∞. If the actual rating can be negative,

we can always apply a certain sigmoid function to normalize the scores to be positive

values. For independent judging, we can design a well-regularized distribution with

expectation of yi for a worker to draw a rating, e.g. Gaussian distribution centered at yi. For

relative judging, we can still assume the worker to generate a ranking from Plackett-Luce

model with parameters yi's, and introduce distributions for generating rating for each data

item from a distribution only depending on their ranking, which can be learned from the

training data. For example, workers may tend to generate a rating from Gaussian distribution

centered at μ1 = 5.0 for a top-ranked data item π(1), but generate a rating from another

Gaussian distribution centered at μ5 = 1.0 for a data item ranked as the fifth π(5). Once the

design of model is accomplished, it is straightforward to apply the same technique described

in this paper to derive the debiasing strategy by maximizing the likelihood of observed

annotations to estimate the underlying ratings for unrated data items.

Multi-class classification

In a multi-class classification problem, the label set may contain more than 2 possible

labels. Workers are usually requested to assign data items with different labels. This is a

natural extension from binary classification problem.

If the labels in are ordinal, for example, judging whether a review is “very helpful”,

“helpful” or “not helpful”, the problem reduces to a rating estimation problem, where the

possible value of rating are discrete values. We can simply apply the extended strategy

described above. If the labels in do not have an order, the problem can be reduces to

several binary classification problems, which is straightforward to apply our strategy for

debiasing workers' annotations.

7. Related Work

In this section, we first introduce existing studies on annotation bias of crowds, when data

items are presented either independently, or in a sequence or batches; we then introduce rank

aggregation techniques and their application on crowdsourced ranking or rating.

Zhuang et al. Page 16

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Annotation bias in independent judgments

A number of studies have been conducted on verifying and quantifying annotation bias of

crowd workers. Snow et al. [29] explore the performance of annotations by non-expert

workers for several NLP tasks. Demeester et al. [8] discuss the disagreement between

different users on assessment of web search results.

There are also extensive studies on modeling worker behaviors. Raykar et al. [23, 24, 25]

study how to learn a model with noisy labeling. Specifically, they employ a logistic

regression classifier, and insert hidden variables indicating whether a worker tells the truth.

Karger et al. [12] propose an iterative algorithm to infer workers' reliability and aggregating

their answers. Whitehill et al. [35] model the annotator ability, data item difficulty, and infer

the true label from the crowds in a unified model. Most of these work also proposes various

generative model to capture worker behavior. However, they assume judgments on different

data items are independent, which is not necessarily true when data items are grouped into

batches.

Venanzi et al. [33] propose a community-based label aggregation model to identify different

types of workers, and correct their labels correspondingly. Das et al. [7] address the

interactions of opinions between people connected by networks. They focus on another

aspect of dependencies, which is the dependencies between workers, while in our studies,

we are more concerned about dependencies between data items and their judgments.

Annotation bias in sequential and batch judgments

A few researchers also notice the correlation between judgments on different data items, but

their work are mainly developed in the setting when data items are reviewed in a sequence.

Scholer et al. [26, 27] study the annotation disagreements in a relevance assessment data set.

They discover correlations between annotations of similar data items. They also explore

“threshold priming” in annotation, where the annotators tend to make similar judgments or

apply similar standard on consecutive data items they review. However, their work focuses

on the scenario when data items are organized in a long sequence. It confines the

dependencies to exist only between consecutive data items. Also, they focus more on

qualitative conclusions, without a quantitative model to characterize and measure the

discovered factors. Carterette et al. [4] provide several assessor models for the TREC data

set. Mozer et al. [18] study the similar “relativity of judgments” phenomenon on sequential

tasks instead of batches. Again, their focus is more on data items presented as a long

sequence, while we focus more on data items presented in batches simultaneously.

Our recent work [36] also considers a similar setting when data items are organized in

batches; we verify the existence of annotation bias caused by batching data items. Our focus

in that paper was to design an active learning algorithm to smartly assemble batches, aiming

to improve the performance of the classifier trained on this annotation batches. Our focus

was not on improving the quality of labels collected, and we still used majority voting to

obtain labels for data items. In this paper, we focus on debiasing the obtained labels, which

can trigger a broader range of application including both training and evaluating classifiers.

Zhuang et al. Page 17

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Crowdsourced ranking and rating

In our model, we employ the Plackett-Luce model to capture worker behavior, and

aggregate worker annotations on batches as rankings in order to infer true labels. There is a

related thread of work on rank aggregation; however, to the best of our knowledge, we are

the first to model crowds' annotating behavior on batches by ranking, and propose a

debiasing strategy.

Studies on aggregating multiple rankings into a consistent ranking can be dated back to the

seminal work of Arrow [2]. Negahban et al. [19] study how to aggregate pairwise

comparisons into a ranking by utilizing the Bradley-Terry model [3], which is a simplified

version of Plackett-Luce model utilized in this paper. Hunter et al. [11] propose the

minorization-maximization (MM) algorithm to infer Plackett-Luce model from multiple

partial orderings. Soufani et al. [30] generalize Negahban et al.'s work and proposed a class

of generalized method-of-moments (GMM) algorithm to infer parameters of Plackett-Luce

model from multiple orderings, and compare the performance against MM-algorithm. They

then further extend their algorithm to be applied to a more general class of ranking models

called random utility models (RUMs) [31]. In addition, the technique for rank aggregation

has also been studied in context of information retrieval [9, 13, 14, 22, 34]. These studies do

not explicitly address the crowdsourcing settings to actually model the worker behavior.

Directly applying their techniques (e.g. [11]) may not lead to better performance, as shown

in our experiments.

There is related research on aggregating multiple rankings or leveraging crowds' power to

obtain ranking of data items. Chen et al. [6] study aggregating crowdsourced annotation on

pairwise comparison to obtain a ranking on data items. Mao et al. [16] show how aggregated

results of noisy voting obtained from crowdsourcng platform may differ by using different

aggregating strategies. However, their objective is just to obtain a ranking, while our model

incorporates a ranking model but the ultimate goal is still to collect labels for data items.

Several papers also consider crowdsourced rating. Parameswaran et al. [20] focused on

crowdsourced rating on items, and applied their system on a peer evaluation data set of a

MOOC course. Crowdsourcing has also been utilized for rating multimedia content quality

[5] and relevance assessment [1]. However, they do not explicitly study the scenario when

data items are grouped into batches.

8. Conclusion

In this work we study a specific type of annotation bias in crowdsourcing, which occurs

when data items are grouped into batches and submitted to workers to be judged

simultaneously. We propose a novel worker model designed to capture this type of bias, and

show how to train the worker model on annotation data. We also present how to debias the

label obtained from crowds given a trained worker model. We conduct experiments on both

synthetic data and real world data to verify the effectiveness of our methods.

The observation of batch annotation bias might exist in many scenarios other than

crowdsourcing, and therefore the debiasing strategy can trigger a broad range of

Zhuang et al. Page 18

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

applications. For example, the conference paper review system where each reviewer is

assigned a batch of papers can also be regarded as a batch annotation.

There are several interesting directions to extend this work. For example, one can extend the

model to further incorporate the different behavior of each individual worker and adjust the

debiasing strategy accordingly. Also, it would be interesting to see if it is possible to

improve the efficiency of debiasing by actively assemble a batch of data items to collect the

desired labels, instead of sending randomly formed batches to the crowds.

Acknowledgments

Research was sponsored in part by the U.S. Army Research Lab. under Cooperative Agreement No.
W911NF-09-2-0053 (NSCTA), National Science Foundation IIS-1017362, IIS-1320617, IIS-1354329, and
IIS-1513407, HDTRA1-10-1-0120, and grant 1U54GM114838 awarded by NIGMS through funds provided by the
trans-NIH Big Data to Knowledge (BD2K) initiative (www.bd2k.nih.gov), the Faculty Research Award provided
by Google, and MIAS, a DHS-IDS Center for Multimodal Information Access and Synthesis at UIUC.

References

1. Alonso, O.; Rose, DE.; Stewart, B. SIGIR Forum. Vol. 42. ACM; 2008. Crowdsourcing for
relevance evaluation; p. 9-15.

2. Arrow, KJ. Social choice and individual values. Yale university press; 1963.

3. Bradley RA, Terry ME. Rank analysis of incomplete block designs: I. the method of paired
comparisons. Biometrika. 1952:324–345.

4. Carterette, B.; Soboroff, I. SIGIR. ACM; 2010. The effect of assessor error on ir system evaluation;
p. 539-546.

5. Chen, KT.; Wu, CC.; Chang, YC.; Lei, CL. Multimedia. ACM; 2009. A crowdsourceable qoe
evaluation framework for multimedia content; p. 491-500.

6. Chen, X.; Bennett, PN.; Collins-Thompson, K.; Horvitz, E. WSDM. ACM; 2013. Pairwise ranking
aggregation in a crowdsourced setting; p. 193-202.

7. Das, A.; Gollapudi, S.; Panigrahy, R.; Salek, M. KDD. ACM; 2013. Debiasing social wisdom; p.
500-508.

8. Demeester, T.; Aly, R.; Hiemstra, D.; Nguyen, D.; Trieschnigg, D.; Develder, C. WSDM. ACM;
2014. Exploiting user disagreement for web search evaluation: an experimental approach; p. 33-42.

9. Dwork, C.; Kumar, R.; Naor, M.; Sivakumar, D. WWW. ACM; 2001. Rank aggregation methods
for the web; p. 613-622.

10. Gomes RG, Welinder P, Krause A, Perona P. Crowdclustering. NIPS. 2011:558–566.

11. Hunter DR. Mm algorithms for generalized bradley-terry models. Annals of Statistics. 2004:384–
406.

12. Karger DR, Oh S, Shah D. Iterative learning for reliable crowdsourcing systems. NIPS.
2011:1953–1961.

13. Klementiev, A.; Roth, D.; Small, K. ICML. ACM; 2008. Unsupervised rank aggregation with
distance-based models; p. 472-479.

14. Liu, YT.; Liu, TY.; Qin, T.; Ma, ZM.; Li, H. WWW. ACM; 2007. Supervised rank aggregation; p.
481-490.

15. Luce, RD. Individual choice behavior: A theoretical analysis. Wiley; 1959.

16. Mao A, Procaccia AD, Chen Y. Better human computation through principled voting. AAAI. 2013

17. Marcus A, Wu E, Karger D, Madden S, Miller R. Human-powered sorts and joins. Proceedings of
the VLDB Endowment. 2011; 5(1):13–24.

18. Mozer MC, Pashler H, Wilder M, Lindsey RV, Jones MC, Jones MN. Decontaminating human
judgments by removing sequential dependencies. NIPS. 2010; 23

19. Negahban S, Oh S, Shah D. Iterative ranking from pair-wise comparisons. NIPS. 2012:2474–2482.

Zhuang et al. Page 19

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.bd2k.nih.gov

20. Parameswaran A, Boyd S, Garcia-Molina H, Gupta A, Polyzotis N, Widom J. Optimal crowd-
powered rating and filtering algorithms. VLDB. 2014

21. Plackett RL. The analysis of permutations. Applied Statistics. 1975:193–202.

22. Qin T, Geng X, Liu TY. A new probabilistic model for rank aggregation. NIPS. 2010:1948–1956.

23. Raykar VC, Yu S. Ranking annotators for crowdsourced labeling tasks. NIPS. 2011:1809–1817.

24. Raykar, VC.; Yu, S.; Zhao, LH.; Jerebko, A.; Florin, C.; Valadez, GH.; Bogoni, L.; Moy, L.
ICML. ACM; 2009. Supervised learning from multiple experts: whom to trust when everyone lies
a bit; p. 889-896.

25. Raykar VC, Yu S, Zhao LH, Valadez GH, Florin C, Bogoni L, Moy L. Learning from crowds.
JMLR. 2010; 11:1297–1322.

26. Scholer, F.; Kelly, D.; Wu, WC.; Lee, HS.; Webber, W. SIGIR. ACM; 2013. The effect of
threshold priming and need for cognition on relevance calibration and assessment; p. 623-632.

27. Scholer, F.; Turpin, A.; Sanderson, M. SIGIR. ACM; 2011. Quantifying test collection quality
based on the consistency of relevance judgements; p. 1063-1072.

28. Sheng, VS.; Provost, F.; Ipeirotis, PG. KDD. ACM; 2008. Get another label? improving data
quality and data mining using multiple, noisy labelers; p. 614-622.

29. Snow R, O'Connor B, Jurafsky D, Ng AY. Cheap and fast—but is it good?: evaluating non-expert
annotations for natural language tasks. EMNLP. 2008:254–263.

30. Soufiani HA, Chen W, Parkes DC, Xia L. Generalized method-of-moments for rank aggregation.
NIPS. 2013:2706–2714.

31. Soufiani HA, Parkes D, Xia L. Computing parametric ranking models via rank-breaking. ICML.
2014:360–368.

32. Su H, Deng J, Fei-Fei L. Crowdsourcing annotations for visual object detection. Human
Computation Workshops at AAAI. 2012

33. Venanzi M, Guiver J, Kazai G, Kohli P, Shokouhi M. Community-based bayesian aggregation
models for crowdsourcing. WWW. 2014:155–164.

34. Volkovs, MN.; Zemel, RS. WWW. ACM; 2012. A flexible generative model for preference
aggregation; p. 479-488.

35. Whitehill J, Wu Tf, Bergsma J, Movellan JR, Ruvolo PL. Whose vote should count more: Optimal
integration of labels from labelers of unknown expertise. NIPS. 2009:2035–2043.

36. Zhuang, H.; Young, J. WSDM. ACM; 2015. Leveraging in-batch annotation bias for crowdsourced
active learning; p. 243-252.

Zhuang et al. Page 20

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Example of correlation between annotations on data items in the same batch. Workers are

asked to label whether a review on the movie “The Imitation Game” crawled from IMDb is

positive. Assign each review-movie pair to different workers separately can be costly, while

assigning a batch of reviews together with a movie to workers might affect workers'

judgments.

Zhuang et al. Page 21

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Learning worker model from the synthetic training data set.

Zhuang et al. Page 22

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Analysis of estimation error of parameters in the worker model under different

configurations.

Zhuang et al. Page 23

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Learning worker model from the comments training data set.

Zhuang et al. Page 24

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Performance of debiasing strategies on synthetic data sets generated by setting both mL/nL

and mU/nU as 2, 5, 10, 20 respectively.

Zhuang et al. Page 25

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Performance of debiasing strategies on synthetic data sets generated by different size of

training data set nL (mL = 10nL), while the size of testing data set remains nU = 5,000 and

mU = 50, 000.

Zhuang et al. Page 26

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Performance of debiasing strategies on comments data set where the training data set is

randomly sampled from the original training set with different size of mL, while the testing

data set remains the same.

Zhuang et al. Page 27

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhuang et al. Page 28

Table 1

Notation description.

Notation Description

X
Set of all the data items

Y Set of all true labels associated with data items in X

bj
A set of data item indices

xj
A data item batch where where xjl is extracted from the data item in X with index specified by bjl

yj
A label batch consists of true labels associated with data items in xj

Worker annotation collected from a crowdsourcing platform for data items in xj

B
Set of all the batches

XB Set of all the data item batches

YB Set of all the true labels associated with data item batches in XB

Set of all the worker annotation from crowds on data item batches in XB

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhuang et al. Page 29

T
ab

le
 2

D
at

a
se

t s
ta

tis
tic

s.

D
at

a
se

t
k

n L
m

L
n U

m
U

Sy
nt

he
tic

5
1,

00
0

10
,0

00
5,

00
0

50
,0

00

C
om

m
en

ts
5

11
0

1,
09

9
65

1
5,

26
7

KDD. Author manuscript; available in PMC 2015 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhuang et al. Page 30

T
ab

le
 3

Pe
rf

or
m

an
ce

 c
om

pa
ri

so
n

of
 M

aj
or

ity
 V

ot
in

g
(M

V
),

 P
la

ck
et

t-
L

uc
e

M
od

el
 (

PL
)

an
d

B
at

ch
 A

nn
ot

at
io

n
M

od
el

 (
B

A
M

).
 A

ll
re

su
lts

 a
re

 s
ho

w
n

as
 p

er
ce

nt
s.

D
at

a
se

t
M

et
ho

d
A

cc
.

P
rc

.
R

cl
.

F
1

Sy
nt

he
tic

M
V

83
.0

4
98

.9
1

00
.1

0
17

.6
7

M
V

T
88

.0
6

64
.6

9
80

.0
6

71
.5

6

PL
82

.7
4

52
.2

5
92

.7
5

66
.8

5

B
A

M
89

.8
8

70
.9

3
78

.0
4

74
.3

1

C
om

m
en

ts

M
V

95
.5

5
93

.7
5

79
.6

5
86

.1
2

M
V

T
96

.1
6

92
.3

1
84

.9
6

88
.4

8

PL
94

.6
2

85
.4

5
83

.1
9

84
.3

0

B
A

M
96

.7
7

93
.4

0
87

.6
1

90
.4

1

KDD. Author manuscript; available in PMC 2015 December 26.

