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aSan Diego Supercomputer Center, University of California, San Diego, United States

bDepartment of Sociology, Duke University, United States

cKing Abdulaziz University, Saudi Arabia

dDepartment of Anthropology and Institute of Mathematical Behavioral Science, University of 
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Abstract

Structurally cohesive subgroups are a powerful and mathematically rigorous way to characterize 

network robustness. Their strength lies in the ability to detect strong connections among vertices 

that not only have no neighbors in common, but that may be distantly separated in the graph. 

Unfortunately, identifying cohesive subgroups is a computationally intensive problem, which has 

limited empirical assessments of cohesion to relatively small graphs of at most a few thousand 

vertices. We describe here an approach that exploits the properties of cliques, k-cores and vertex 

separators to iteratively reduce the complexity of the graph to the point where standard algorithms 

can be used to complete the analysis. As a proof of principle, we apply our method to the cohesion 

analysis of a 29,462-vertex biconnected component extracted from a 128,151-vertex co-authorship 

data set.
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1. Introduction

A graph G = (V, E) is a set of vertices V(G) together with a set of edges E(G) that connect 

pairs of vertices. Furthermore, the graph is simple if it contains no loops (e.g. edges that 

connect a vertex to itself), each pair of vertices is joined by at most one edge and the edges 

are undirected. In all discussions that follow, we restrict ourselves to simple graphs and note 

that graphs containing loops or multiple edges (multigraphs) can be converted to simple 

graphs without loss of generality.

Before describing k-components, which are the focus of this work, we first introduce several 

other concepts that we will use repeatedly. A clique is a subset of vertices from a graph with 

the property that all of the members are directly connected. A maximal clique has the 
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additional property that it is not wholly contained within a larger clique. Throughout the 

remainder of this discussion, we use clique to refer to maximal cliques. A k-core of a graph 

is an induced subgraph with the property that all of its vertices have at least degree k.

A structurally k-cohesive subgroup, also known as a k-component, is defined as a subset of 

vertices within a graph with the property that they remain connected subject to the removal 

of any k−1 vertices. Equivalently, Menger’s theorem implies that any pair of vertices within 

the k-cohesive subgroup is joined by at least k vertex disjoint paths [1,2], which have the 

property that they only have the start and end vertices in common. Whereas community 

detection merely separates subgroups into two based on their relative densities, k-cohesive 

groups form a nested structure. They are stacked successively from 1 to k with non-

increasing size and may share vertices with one another, a far more orderly complex 

structure [3]. An undirected connected graph is trivially 1-cohesive. By definition, the 

vertices within a biconnected component, or bicomponent, form a 2-cohesive subgroup that 

is necessarily contained within a 1-cohesive component.

While k-cohesion is a more powerful and rigorous concept than other measures of 

robustness, its primary drawback is that identifying cohesive subgroups is computationally 

intensive, there by making it impractical to use for the analysis of larger graphs. For 

example, recent work in this area addressed the development of heuristics for finding 

approximate solutions to the identification of k-components that is an order of magnitude 

faster than algorithms available at the time [4]. An efficient implementation of this algorithm 

in turn depends on fast approximations for finding the number of vertex disjoint paths 

between vertex pairs – the shortest path is calculated between a pair of vertices and all 

vertices lying on this path are labeled as having been visited. A new shortest path excluding 

previously visited vertices is calculated and the process is repeated until there are no more 

paths involving only unvisited vertices [5]. Although this is certainly an important advance, 

the inexactness of the results can limit their usefulness. False positives, vertices that are 

mistakenly included in the k-component, can be identified and removed, albeit at additional 

computational expense. False negatives, on the other hand, are impossible to detect without 

being able to compare to the exact results.

Here we describe an exact solution to the k-components problem that is considerably faster 

than the algorithm described above. The efficiency of our method is due to the application of 

graph reduction techniques that do not alter the final solution. At those stages where vertex 

disjoint path calculations are required, only exact algorithms are used. As a result, we find 

that the application of our method to a graph that is thirteen times larger than the biggest 

problem tackled so far using the approximate method (128,151 vs.9767 vertices) could be 

completed in less than one-sixth of the time.

We developed an iterative approach to the problem that gradually reduces the size and 

complexity of the original graph. Our method builds on existing algorithms or concepts for 

finding cliques [6], articulation points, bicomponents [7] and k-cores [8,9],together with 

approximate and exhaustive searches for higher order vertex separators, sets of vertices 

whose removal results in a disjoint graph. Finally, we resort to the standard algorithms based 

on the solution to the maximum-flow problem [10] for identifying k-components only after 
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the problem has been reduced to a manageable size. The idea of searching for k-components 

within k-cores had been suggested by Seidman [11]. This was then formalized by White and 

Harary [12], relying on Whitney’s theorem [13], to address the hierarchical nesting of k-

components within k-edge-components, which are further contained within k-cores. We note 

that several of these steps, such as the reduction to bicomponents and k-cores, have been 

implemented previously to significantly improve the speed of the k-component search [4], 

but to the best of our knowledge the use of cliques and the implementation of new 

algorithms for finding either subsets or complete sets of vertex separators is novel.

The primary application of k-components is to social networks. These are generally 

composed of clusters of vertices that are more connected to each other than to the rest of the 

graph. The clustered nature of social networks has proved relevant for questions as widely 

varying as young adolescent delinquency [14], political polarization [15], and national 

economic performance [16], to name a few (for a general review, see: [17]). This structural 

het-erogeneity has sparked a rapidly growing literature on cohesive subgroups and 

modularity or community detection [18]. However, most techniques for identifying group 

structure turn on simple volume differences, rather than the patterns of relations. In the 

common view [19], a community is a collection of vertices that share some higher-than-

expected fraction of ties within the group than between – the “modularity” of the network. 

But volume-based community detection techniques miss the key structural feature of 

resilience to disconnection by vertex removal. Since the sociological roots of a community 

are its supra-individual character – that a group can remain even in the face of individuals 

leaving – com-munity detection techniques focusing on that crucial aspect and its twin 

property of multiple intraconnecting paths should be more common. We have previously 

identified vertex intraconnectivity and the groups implied by the nesting of vertex-

intraconnected sets as a key foundation for such groups [3,12]. We use intra to pre-fix 

connectivity as a reminder that the Menger theorem [2] proves that the limit of any maximal 

set of vertex pairs each with k or more independent paths between them also defines the 

boundaries of a k-cohesive group that cannot be separated by removal of fewer than k 
vertices.

In the following section, we describe the techniques that we use to first reduce the graph. We 

then discuss efficient approaches to finding both all 2- and 3-vertex separators and 

approximate techniques for finding a large fraction of the separators. We conclude with a 

description of the complete method, its application to a previously intractable problem and 

future improvements.

2. Graph reductions

Two inexpensive and easy-to-apply techniques can be used to identify and remove vertices 

that either cannot belong to a k-component or are members of cliques at the fringes of the 

graph. When combined with the algorithm for finding bicomponents and applied in an 

iterative manner to identify a kernel from which no more vertices can be deleted, they form a 

powerful tool for graph reduction.
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2.1. Exploiting the properties of cliques

Real-world graphs generally have cliques of varying sizes and many of these will contain 

both vertices that have neighbors residing outside of the clique and vertices that only have 

neighbors within the clique. We refer to the former as “worldly” vertices and the latter as 

“isolated” vertices (Fig. 1).

Consider a clique of size nt with nw worldly vertices and ni isolated vertices (nt = nw + ni). If 

nw is less than or equal to k, the isolated vertices cannot belong to a larger k-component 

containing vertices outside of the clique. The reason this is true is that all paths from the 

isolated vertices to vertices that lie outside of the clique must pass through the worldly 

vertices, thereby setting an upper limit on the number of vertex disjoint paths to nw. In other 

words, the worldly vertices serve as a choke point or bottleneck for paths originating at the 

isolated vertices. We can remove these isolated vertices from the graph and record that the 

clique forms a (nt − 1)-component of the graph.

It should be noted that the above procedure is simply identifying a subset of the (k − 1)-

separators within the graph. Hence, their application in this way is consistent with 

established techniques for splitting the graph using complete sets of vertex separators. Even 

though it cannot be used to find all of the separators, it can bed one extremely quickly for 

sparse graphs due to the efficiency of the clique-finding algorithm and can substantially 

reduce the size and complexity of the graph before further processing. Tomita et al. [20] 

point out that in the worst case generating all maximal cliques scales as O(3n/3), which can 

limit the applicability to dense graphs. We do not believe that this will be an issue for social 

networks, which tend to be sparse, but this should be kept in mind when extending to other 

types of graphs or networks. Finally, we note also that in general applying separators to split 

the original graph into smaller, higher-order components can introduce new separators, but 

this does not occur when using the cliques in this way.

2.2. Exploiting properties of k-cores

The requirements for a k-core are less stringent that those for a k-component; all k-

components are k-cores, but the converse is not true. As a concrete example, consider a 

graph where all vertices have degree equal to at least three, meeting the requirement for a 3-

core, but that contains a 2-vertex separator.

Computationally, k-cores can be identified very easily by iteratively removing all vertices of 

degree less than k until only k-cores remain. The bookkeeping associated with the k-coring 

process is even simpler than that used in the clique analysis described earlier since the 

deleted vertices do not have to be tracked as possibly belonging to a distinct k-component.

The use of k-cores alone does not solve the problem of finding the k-components, but it can 

result in substantially simpler graphs and make the remaining problem more tractable.

2.3. Combined graph reductions

The full power of these two techniques becomes apparent when used iteratively and in 

combination with an algorithm for finding bicomponents. Given a k-component, our 

immediate goal is to generate a reduced graph that still contains the embedded (k + 1)-
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components. After identifying cliques with nk worldly vertices and removing the isolated 

vertices, the resultant graph may contain new cliques with this property and multiple cycles 

of isolated vertex removal may be necessary (Fig. 2).

The graph obtained from the clique analysis may in turn not be a k-core and vertices of 

degree less than k can be removed. The process of k-coring can lead to the introduction of 

new articulation points, which can then be removed by decomposing the graph into its 

bicomponents (Fig. 3).

The smaller bicomponents can be processed separately and are usually modest enough in 

size that they can be analyzed using standard cohesion algorithms. The new dominant 

bicomponent may contain cliques with nk worldly vertices and the process of isolated node 

removal, k-coring and decomposition into bicomponents can be repeated until no further 

progress is possible (Fig. 4).

It should be kept in mind that the new graph obtained from this iterative reduction procedure 

is only guaranteed to be a bicomponent, regardless of the degree of cohesion of the original 

graph, since new lower-order vertex separators may be introduced. This is not an issue when 

searching for tricomponents starting from an initial bicomponent since the reduced graph is 

also a bicomponent. When searching for higher-order components, we find in practice that it 

is relatively easy to recover the largest k-component during the search for the (k + 1)-

components due to the drastically smaller sizes of the reduced graphs.

3. Efficient identification of vertex separators

Our approach to finding the k-components depends critically on the identification of vertex 

separators. Once a (k−1)-vertex separator has been found, it can be used to partition the 

graph into two or more candidate k-components. In this section we describe our method for 

finding the 2- and 3-vertex separators. Although our primary case study (see Section 5.1) did 

not require that we find 4-vertex separators in the largest 4-component, one of the techniques 

described here (Section 3.3.2) was modified and adapted to higher order separators in our 

other two case studies.

3.1. Restricting search for vertex separators

We described earlier how we could use cliques to identify and remove vertices that could not 

be members of the dominant k-component. This was essentially a shortcut for rapidly 

finding a subset of the vertex separators where the number of worldly vertices in a clique 

was equal to the size of the separator being sought.

We can extend this idea to exclude vertices from consideration in the search for vertex 

separators. The isolated vertices within a clique, regardless of the number of worldly vertices 

or size of the clique, cannot be members of a separator since the removal of all or any of 

these vertices does not change the number of connected components. In addition, these 

isolated vertices do not contribute to the number of vertex disjoint paths between any pairs 

of vertices outside of the clique. This becomes obvious when we consider that any path 
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through an isolated vertex would have to first pass through one of the worldly vertices (Fig. 

5).

Before we begin the search for the vertex separators, we first construct a new graph in which 

all isolated vertices have been removed. In our case study, we find that this generally leads to 

a 50% reduction in the time required for these searches.

3.2. Identification of 2-vertex separators

We employ two methods to find the 2-vertex separators. The first is a fast approximate 

algorithm that identifies a large fraction of the separators, namely those in which the two 

members are joined by an edge. The pairs of endpoints are then tested to determine whether 

or not they form a separator. The more comprehensive search takes advantage of the highly 

efficient algorithms for finding the articulation points of a graph. Rather than explicitly 

testing all pairs of vertices to determine whether or not they form a 2-vertex separator, we 

remove each vertex in turn and locate the articulation points in the resultant graph (Fig. 6). 

While this could potentially be more expensive than testing all pairs of vertices since 

Tarjan’s algorithm for articulation points has a worst case scaling of O(|V| + |E|) [21], we 

found in practice that this approach was much faster.

We are fully aware that other algorithms for finding 2-vertex separators and tricomponents 

exist that are more efficient than the approach described above [22–27]. We feel though that 

the ease of implementation, coupled with the fact that deploying this simple algorithm did 

not hamper our ability to rapidly solve a previously intractable problem (see Section 5), 

justified its use. In addition, the idea of dividing separators into those that are easy to find 

(members joined by edge) versus those that are hard to find (members not joined by edge) 

could be applied to higher order separators to drastically reduce the time to solution.

3.3. Identification of 3-vertex separators

Once the size of the graph, or more specifically the largest tricomponent, grows to be 

sufficiently large, a brute force search for the 3-vertex separators becomes impractical. To 

avoid this unfavorable O(|V|3) scaling behavior, we divide our search into two phases where 

we separately search for the easy- and hard-to-find separators (Fig. 7).

3.3.1. Identification of easy-to-find 3-vertex separators—In our case study, we 

noted that for the vast majority of the 3-vertex separators, at least two of the vertices within 

the separator are neighbors within the graph. To find these separators, we iterate over the 

edges of the graph, remove the endpoints of the edge and then identify the articulation points 

in the resultant graph (Fig. 8). In the worst case, this search will scale as O(|E| (|V| + |E|)).

3.3.2. Identification of hard-to-find 3-vertex separators—The remaining 3-vertex 

separators, for which none of the members are neighbors, are more difficult to identify. For 

this particular class of separators, we employ a different strategy (Fig. 9).

Consider a vertex v with N neighbors {n1, n2, ⋯, nN}. For any pair of neighbors {ni, nj}, 

precisely one of the vertex disjoint paths between the pair will contain v. If the number of 

vertex disjoint paths between ni and nj is exactly three, then v must be a member of a 3-
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vertex separator. This algorithm does not directly tell us the membership of the 3-vertex 

separators, but rather finds the set of all vertices that collectively belong to any 3-vertex 

separator. If the size of this set is small, then an exhaustive search over all combinations of 

three vertices from this list is trivial.

We can make the algorithm more efficient by noting that not all pairs of vertices neighboring 

the candidate vertex v need to be tested. For example, if two of the neighbors are themselves 

joined by an edge, then we only need to calculate the number of vertex disjoint paths 

between one member of the pair and the other neighbors (Fig. 10).

4. Finding k-components

In this section, we describe the iterative procedure that we use to identify the 3-, 4- and 5 

components. Although other algorithms exist that are specifically designed for this task [22–

25], our iterative approach is highly efficient for finding the 4- and 5- components and can 

serve as a template for identifying higher-order k-components.

4.1. Finding tricomponents

Beginning with the largest bicomponent, we reduce the graph using a slightly modified 

version of the process described earlier that includes just the reduction to k-cores and 

bicomponents. The clique processing is omitted since it provides little additional benefit, but 

at significant computational expense due to the large number of cliques that only contain 

three members (triangles). Once the graph is reduced to a kernel, we iteratively find and 

apply the easy-to-find 2-vertex separators, followed by k-coring and reduction to 

bicomponents. Finally, the process is repeated using a search for all 2-vertex separators (Fig. 

11).

4.2. Finding higher order k-components

The search for the 4-components begins with the same steps that are used during the search 

for the tricomponents. Starting with the largest tricomponent that was found earlier, we first 

reduce the graph by repeated application of the clique processing (nw = 3), k-coring (k = 4) 

and reduction to the largest bicomponent. Since the resulting graph at this point is not 

guaranteed to be a tricomponent, we still need to repeatedly identify and apply all 2-

separators to obtain a new tricomponent that is generally much smaller than the original 

graph.

Our strategy at this point is similar to the search for the largest tricomponent in that we first 

take advantage of the easy-to-find 3-vertex separators (at least two members joined by an 

edge) before extending the search to include all separators. To further accelerate the search 

for 4-components, we again reduce to k-cores, largest bicomponent and largest tricomponent 

after applying the 3-vertex separators. (Fig. 12).

The search for higher order components (k > 4) uses the same general strategy of reducing 

the graph using clique processing (nw = k − 1), k-coring and reduction to the largest 

bicomponent. The resultant graph is then processed further to reduce to a more tractable (k 
− 1)-component. In the primary test problem used in this study, an explicit search for 4-

Sinkovits et al. Page 7

J Comput Sci. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



separators was not necessary since the graph obtained by applying the earlier steps was 

sufficiently small (|V| = 33) that existing algorithms could be used.

5. Case studies

5.1. Sociology co-authorship data set

To test our new approach, we chose Moody’s co-authorship dataset [28] for our primary case 

study. This collection spans 36-years of publications in sociology journals from 1963 to 

1999 and encompasses 128,151 authors. In a one-mode network representation of the data, 

the vertices correspond to authors and the edges indicate joint authorship. The graph is 

unweighted (i.e. the edges are not weighted to reflect the number of papers co-authored) and 

undirected. This problem is challenging enough to be intractable using earlier methods. 

Given that the data was obtained from a naturally emerging social network, it is expected to 

be representative of at least one class of real problems. Finally, this particular data set was 

selected since the original analysis left a number of important questions unanswered. Graph 

reduction and cohesive subgroup algorithms are implemented in R, with calls to the igraph 

software package [29].

The 128,151 vertices belong to 20,182 disjoint clusters, with the distribution dominated by a 

single large connected component of 68,285 vertices. All other connected components were 

at least three orders of magnitude smaller, ranging in size from 2 to 48 vertices. Within the 

largest connected graph, we identified 25,823 biconnected components, including one of 

size 29,462 plus other biconnected components ranging in size from 2 to 36. This large 

biconnected component is the starting point for our analysis, as was the case for Moody.

5.1.1. Identifying tricomponents

We applied the procedure described in Section 4 to identify the major tricomponent within 

the bicomponent. A summary of the progress made during the graph reduction steps and the 

application of the 2-vertex separators is given in the first two columns of Table 1.

The reduction procedure decreased the number of vertices in the graph by one-third, while 

applying the easy 2-vertex separators, k-coring and largest bicomponent identification 

further reduced the graph to 40% of its original size. The search for the largest tricomponent 

was completed with three more iterations using all 2-vertexseparators, plus a final iteration 

to confirm that no more separators remained in the graph.

While our primary focus is on the single dominant tricomponent, we also kept track of the 

smaller k-components that were trimmed from the graph. In this analysis, we did not 

consider nested components (e.g. 4-components that may reside within these small 

tricomponents) and limited ourselves to the lowest level of cohesion. Given their small size 

relative to the 10,177-vertex tricomponent, we did not feel that exploring the nested 

structures provided additional insights. Completing the analysis would be trivial using 

standard cohesion algorithms.

In total, 2911 k-components (3 ≤ k ≤ 18) ranging in size from 4 to 34 vertices were 

identified. More than half of these only contained four vertices and the vast majority (97%) 
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contained fewer than ten vertices. The small, high-cohesion components mostly arose from 

joint authorship within a research group and included a 19-member clique.

5.1.2. Identifying 4-components—Starting with the largest tricomponent, we first apply 

the graph reduction steps before beginning the search for 3-vertex separators. We also 

include the additional step of identifying and applying the 2-vertex separators since the 

iterative application of the clique processing, k-coring and largest bicomponent extraction 

can result in a new graph that is not necessarily a tricomponent. These steps only take 

several minutes to complete and result in a new tricomponent that is one-third the size of the 

starting tricomponent.

We next search for and apply the 3-vertex separators to finish the identification of the 4-

component. We begin by identifying and applying the easy-to-find 3-vertex separators (see 

Section 3). This involves iterating over the edges in the graph and determining the 

articulation points that result after removing both end points of the edge. We then continue 

with searches for all possible 3-vertex separators. To help accelerate convergence, we reduce 

the graph to 4-cores after each round and then recover the largest tricomponent (as noted 

earlier, k-coring can introduce new lower-order vertex separators) The results are shown in 

middle two columns of Table 3.

Although our focus continues to be on the largest 4-component, we again kept track of the 

smaller k-components that were found along the way. In total, 876 k-components (4 ≤ k ≤ 

17) ranging in size from 5 to 36 vertices were found. Nearly half of these contained five 

vertices and most (90%) contained fewer than ten vertices. As we had seen during the search 

for the tricomponents, the high-cohesion components were mostly formed from cliques or 

near-cliques.

5.1.3. Identifying higher order (k > 4) components—Starting with the largest 4-

component, we first apply the graph reduction steps. Since the reduced graph may contain 

new lower-order separators, we then find and apply the 2-vertex separators to recover the 

largest tricomponent, followed by the identification and application of the 3-vertex 

separators to recover the largest 4-component. The final result was a 33-vertex graph that 

could easily be handled using standard cohesion algorithms and an explicit search for 4-

vertex separators was not necessary (see last two columns of Table 1).

An analysis of the results shows that there is not a single dominant 5-component, but rather 

a near continuum of 86 small 5-components ranging in size from 6 to 33 vertices. Note that 

the final graph listed in Table 1 is not a 5-component. Rather the largest 5-component was 

split off from the main graph at an earlier stage of the processing. We also found 61 higher-

order (k > 5) components including cliques of up to 14 vertices and a 6-component 

containing 19 vertices. No additional processing was performed at this point since all 

remaining components are sufficiently small that the computational effort is trivial.

5.2. Collaboration networks

To demonstrate that our method could be generalized to other problems, we tested it on two 

other data sets that are made avail-able online by Batagelj and Mrvar [30]: Collaboration 
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network in computational geometry [31,32] and Erdös collaboration network [30]. While 

these are both considerably smaller than the sociology dataset, they present a different set of 

challenges. Specifically, the 5-components for these graphs are much larger and required 

extra processing to explicitly find the 4-vertex separators using an extension of the technique 

described in Section 3.3.2.

5.3. Timings

The run times for the application of our method to the three datasets are given in Table 2. 

Since the geometry and Erdös networks, together with their corresponding bicomponents, 

are much smaller than the sociology data set, the times required to identify the largest 

tricomponents are considerably lower. The 4-components for these data sets were also more 

resistant to our reduction techniques and the time required to find the largest 5-components 

turned out to be much longer. This places an extra burden on the standard maximum-flow 

based algorithms to find the higher order components: 1221 and 1359 s for processing the 

geometry and Erdös5-components, respectively. Nonetheless, being able to quickly reduce 

the original graphs to kernels of a few hundred vertices makes the cohesion analysis of these 

networks tractable.

6. Discussion

The primary advantage of our approach to identifying higher order k-components is that it 

can be applied to larger problems that were not previously solvable in a reasonable amount 

of time. In particular, we demonstrated that the sociology co-authorship graph described 

earlier could be fully decomposed into nested k-components in just over 14 min (Table 2). 

While we did not attempt to solve the entire problem from scratch using the standard 

maximum-flow based algorithm, applying it just to the 1850-vertex graph that contained no 

easy-to-find 3-vertex separators required nearly 24 h to complete. Using the igraph 

implementation of Kanevsky’s general purpose algorithm for finding all minimum size 

vertex separators [33] in this same graph took just over three hours to identify the few 

remaining 3-vertex separators. Given that multiple iterations of vertex identification are 

necessary, simply dropping Kanevsky’s algorithm into our framework would have resulted 

in an estimated time to solution for finding the largest 4-component starting from the largest 

tricomponent of more than 30 h.

Since the application of preexisting exact algorithms to a problem of this size are not 

practical, we compared the performance of our approach to the approximate algorithm 

referenced earlier [4] and as implemented in the NetworkX Python package [34] (Table 3).

In addition to providing an exact result, the method described here is significantly faster than 

the approximate algorithm. We were unable to complete the analysis when using the 

approximate algorithm and starting from the largest bicomponent, but estimate a run time of 

nearly nine days assuming quadratic scaling with graph size. Even if this assumption is 

incorrect (i.e. scaling is better than quadratic), the time to solution for the approximate 

method applied to the largest tricomponent is already 100× longer than for the exact method. 

While the absolute performance of software certainly depends on the implementation details 
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of the algorithms, we do not believe that implementation differences alone between igraph 

and NetworkX can account for the orders of magnitude variance in run time.

Of course, we are also interested in the differences between the results generated by the 

exact and approximate algorithms. For example, we find that the approximate algorithm 

does not recognize what we identified as the largest 4-component (independently confirmed 

using the NetworkX node connectivity function) as in fact being 4-connected. Instead, it 

predicts that this 1832-vertex graph contains a 1642-vertex 3-component.

Nonetheless, we feel that both the exact and approximate algorithms can play an important 

role in the analysis of large graphs. Our exact algorithm may not be able to handle 

substantially larger graphs and approximate methods will still be needed. While the current 

implementation of the approximate algorithm is slower than our exact algorithm, it can 

likely be modified to run considerably faster by incorporating some of the additional graph 

reduction operations that we introduced, particularly those that exploit the properties of 

cliques.

Given that our approach is a collection of established and novel techniques rather than a 

single algorithm, it is difficult to assess the overall computational complexity. The efficiency 

will depend strongly on properties of the graph such as the fraction of vertices that can be 

classified as isolated at each level of cohesion. For our sociology case study, the bottleneck 

was locating all of the hard-to-find 3-vertex separators for which no members of the set are 

neighbors with each other, but for the other two networks finding the 4-vertex separators 

accounted for a significant fraction of the time.

Since the preexisting algorithms that we leverage for finding articulation points, performing 

vertex disjoint path calculations or identifying cliques scale at least linearly with the number 

of edges or vertices, all graph reductions lead to better performance. For example, in Section 

3.1 we described how we could create an auxiliary graph with fewer vertices and edges than 

the original graph. This reduces both the number of vertices that need to be considered in the 

search for separators and the cost of an individual vertex disjoint path calculation, which 

scales as O(|V||E|).

None of the individual steps described in this paper are conceptually difficult to understand 

or implement and, with the possible exception of the algorithms for finding the two classes 

of 3-separators (Section 3.3), are fairly intuitive. Nonetheless, this is the first instance of 

which we are aware that they have been applied to the problem of finding k-components.

Another strength of our approach is its modularity. Earlier in the development of our 

software, we employed a brute force search for the 3-vertex separators that was analogous to 

our method for finding 2-vertex separators – remove pairs of vertices and identify the 

articulation points in the resulting graph. While we were able to eventually find all of the k-

components in this way, each cycle of 3-vertex separator identification took nearly two 

hours. Replacing with the more sophisticated search for tricomponents (Section 3.3) reduced 

the run time by two orders of magnitude. In a similar manner, researchers can independently 

develop their own algorithms for finding vertex separators and integrate into our framework. 

For example, replacing what we admit to be an inefficient algorithm for finding 2-vertex 
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separators with a better method can certainly reduce the time to solution. Others may simply 

want to restrict themselves to using our pre-processing steps to make the problem more 

tractable before applying alternative methods for finishing the problem.

Our focus throughout this work was on the development of efficient serial algorithms. It 

would certainly be straightforward to parallelize the more time-consuming steps, especially 

the searches for the higher order separators. We find it likely that the time to solution for the 

co-authorship problem highlighted here could be reduced by another factor of 3–5, with 

even greater savings for larger graphs. Another potential source of performance 

improvement would be to re-implement our software using a compiled language. We chose 

the R language for this work since it is widely used in the social sciences and enabled very 

rapid prototyping of new ideas. Finally, we would like to consider the application of k-edge-

components for graph reduction in future versions of our software. Recent advances in the 

development of fast algorithms in this area [35,36] make them an appealing addition to our 

toolkit.

As a consequence of its modularity, our framework also makes it possible to incrementally 

approach the final result. While we were ultimately able to complete the case studies 

described above in a modest amount of time, larger and more complex problems will 

certainly benefit from the ability to save intermediate results along the way. This makes it 

easier to both test individual components of the software and to restart in the event of a 

hardware crash.

In summary, this work describes three novel contributions that make it much easier to 

identify cohesive subgroups in large graphs:

1. The use of a new graph reduction technique based on cliques. This is in addition 

to the k-core and bicomponent based techniques that had been used earlier [4].

2. An exploitation of the property of cliques to reduce the set of vertices that need 

to be considered during a search for minimum size vertex separators.

3. An efficient approach to identifying the easy- and hard-to-find 3-vertex 

separators within a 4-component.

Software used for the construction of the structurally cohesive subgroups is available at 

https://github.com/sinkovit/k-components.
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Fig. 1. 
Graph (A) with a maximal clique of size five containing two “worldly” vertices (black) and 

three “isolated” vertices (gray). The cloud represents the remainder of the graph and 

contains all vertices that are not a member of the clique. The worldly vertices in the graph 

form a 2-vertex separator, which can be used to partition the graph into two cohesive 

subgroups (B).
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Fig. 2. 
Example illustrating how removal of isolated vertices from a clique can change the 

worldliness of the remaining vertices. Isolated and worldly vertices are shown in gray and 

black, respectively, for clique at edge of the graph; cloud rep-resents remainder of the graph. 

After deletion of isolated vertices in graph A, the formerly worldly vertices are now isolated 

in graph B and become candidates for removal in next round of clique processing, resulting 

in graph C.
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Fig. 3. 
Example showing how the process of k-coring can result in a graph with new articulation 

points. Reducing the bicomponent (A) to a 3-core (B) removes two vertices (gray) in the top 

graph, with the outcome that the black vertex becomes an articulation point in the new 

graph.
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Fig. 4. 
Pseudocode for graph simplification procedure. Starting with (k−1)-component, the 

algorithm generates a new bicomponent that excludes many of the vertices that cannot 

possibly belong to the dominant k-component.
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Fig. 5. 
Example showing how isolated vertices, regardless of the size or the number of worldly 

vertices in the clique, can be removed from the graph without altering the number of 

connected components. As a result, these vertices cannot be members of a vertex separator. 

In addition, the removal of these isolated vertices does not change the number of vertex 

disjoint paths between any pair of vertices not belonging to the same clique.
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Fig. 6. 
Pseudocode illustrating search for 2-vertex separators. First code block finds only those 

separators where the pair of vertices is joined by an edge; second code block finds all 

separators. The graphs demonstrate how 2-vertex separators can be identified by removing a 

test vertex and searching for the articulation points in the new graph. In this example, the 

lower gray vertex becomes an articulation point after the removal of the upper gray vertex.
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Fig. 7. 
3-vertex separators with different level of connectedness. In graphs A-–C, at least two of the 

three vertices forming the separator are joined by edges (shown with heavier lines for 

clarity). These separators can be found easily by iterating over edges and looking for 

articulation points that result from the removal of the edge endpoints. In graph D, none of 

the three vertices forming the separator are joined by an edge and an alternative search 

strategy is required.
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Fig. 8. 
Pseudocode for identifying the easy to find 3-vertex separators where at least two of the 

members are neighbors.

Sinkovits et al. Page 23

J Comput Sci. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Pseudocode for identifying the hard-to-find 3-vertex separators where none of the members 

are neighbors.
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Fig. 10. 
3-vertex separator with no edges between the member vertices. In order for a vertex to be a 

member of a 3-vertex separator, at least one pair of the neighbours must be joined by exactly 

three vertex disjoint paths. Note that not all pairs of vertices neighboring the candidate 

vertex (shown in black) need to be tested. If two of the neighbors are themselves neighbors, 

then we only need to calculate the number of vertex disjoint paths between one member of 

the pair and the other neighbors. In this case, calculations can be limited to the pair of gray 

vertices.
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Fig. 11. 
Pseudocode for identifying the largest tricomponent. This procedure would normally be 

applied to the simplified graph obtained by k-coring and reduction to largest bicomponent.
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Fig. 12. 
Pseudocode for identifying the largest 4-component. This procedure would normally be 

applied to the simplified graph obtained by clique processing, k-coring and reduction to 

largest tricomponent.
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Table 3

Comparison of performance for the exact algorithm (described here) and the approximate algorithm (Torrents 

and Ferraro). Run times correspond to time needed to extract largest k-components from (k − 1)-components 

(exact) or complete analysis from (k − 1)-component (approx). The starred entry was an estimate based on 

quadratic scaling with graph size.

k size texact (s) tapprox (s)

2 29,462 <1 <1

3 10,177 411 768,090*

4 1832 420 91,649

5 33 18 2939

*
Indicates that the time was an estimate based on extrapolation.
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