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ABSTRACT OF THE DISSERTATION
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A standard insight of the AdS/CFT correspondence is that some aspects of the geometry

of a bulk state are encoded in the entanglement structure of its dual boundary state. As

entanglement is not a linear quantum observable, this means that geometry in a quantum

theory of gravity should likewise not be a linear observable.

This is seemingly in tension with an understanding of quantum gravity as a gravity path

integral summing over geometries, which inherently treats geometry as a linear observable.

The authors of [1] explore this tension in the context of a simple model of a gravity path

integral where it is resolved by the appearance of null states, or in other words geometries

that are equal to superpositions of other geometries. In Chapter 1 of this work, we extend this

2d topological gravity model of [1] to have as its bulk action any open/closed TQFT obeying

Atiyah’s axioms. We describe the Hilbert spaces of these more general theories that remain

after null states have been accounted for. The holographic duals of these topological gravity

models are ensembles of 1d topological theories with random dimension. These holographic

interpretations of our gravity models require projecting out negative-norm states from the

baby universe Hilbert space, which in [1] was achieved by adding a nonlocal boundary term

to the bulk action. We describe the analogous solution in the framework of a TQFT with

defects by coupling the boundaries of the gravity models to auxiliary 2d TQFTs in a non-
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gravitational (i.e. fixed topology) region. The gravity model is then holographically dual to

an ensemble of boundary conditions in an open/closed TQFT without gravity.

In Chapter 2 we explore linear dependencies between certain states with simple geometric

duals: states made up of n copies of a thermofield double state and the states obtained from

this one by permuting the n right hand sides. We derive expressions for the maximum fidelity

between one such state and a linear combination of the others, and see that this fidelity

approaches 1 as the number n of black holes increases. We also consider the possibility of

obtaining a single thermofield double state as the partial trace of linear combinations of

such states with topologies with no connection between the two untraced sides. We derive

lower bounds for the fidelity between the thermofield double state and such partial traces

and comment on the conceptual implications of the existence of such states.
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CHAPTER 1

2d TQFTs and baby universes

1.1 Chapter Introduction

Recent work has re-emphasized the role of the Euclidean path integral in quantum gravity.

Specifically we have seen the revitalization of the old idea that quantum gravity should be

described by a sum over spacetime topologies and an integration over all metrics within each

topology. Making sense of such a path integral is, of course, difficult or impossible in general,

so this course of action has mostly focused on two dimensions. Despite the notoriously hard

problem of classifying topological manifolds in 3d, some attempts at path integrating over a

subset of 3d manifolds (often Seifert manifolds) have also been made [4, 5, 6].

A helpful point of view into this sum over topologies of spacetimes is afforded by the old

ideas of baby universes [7, 8, 9], where one thinks of non-trivial topologies as the emission

and re-absorption of baby-universes. In Euclidean signature, this emission/re-absorption

process takes the form of a spacetime wormhole.1 Specifically, [7] considers a formalism in

which the Hamiltonian of the universe contains couplings between the fundamental fields and

“baby universe field” operators Ai which describe the creation and annihilation of different

types of baby universes. Because couplings between the Ai and other fields appear in the

Hamiltonian, tracing over the number and types of baby universes in existence (facts that are

presumably unknowable to an observer in the parent universe) produces an effective evolution

that is non-unitary. Crucially however, the baby universe operators Ai commute with each

1Spacetime wormholes differ from the usual Einstein-Rosen wormholes in that the latter are topologi-
cal connections between otherwise distant regions of space, whereas the former are additional topological
connections between regions of spacetime.
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other and with the Hamiltonian. This renders the non-unitarity relatively benign, as within

any eigenspace of Ai the evolution remains unitary. This means ignorance of the number

and types of baby universes does not, in fact, lead to observable decoherence. Rather, such

ignorance is just operationally equivalent to ignorance of some number of coupling constants

in the theory describing parent universe physics. In other words, the physics of the parent

universe is described by a statistical ensemble of unitary theories. The theories in this

ensemble are parametrized by the simultaneous eigenstates |α〉 of the Ai, which are called

alpha-states. The unknown coupling constants of parent universe physics are the eigenvalues

of Ai, also called alpha-parameters.

The baby universe idea and the appearance of ensembles has a counterpart in the con-

text of holography. In this context, where partition functions of a boundary theory are

dual to gravity in the bulk, there is a question of whether the calculation of a boundary

partition function with disconnected spacetime components should include bulk geometries

that connect those components [10]. However natural a sum including connected topologies

may otherwise be, it destroys the manifest factorization between spacetime components of

the boundary partition function. That is to say, a rule including contributions from con-

nected geometries cannot a priori be expected to give boundary partition functions satisfying

Z[M t N ] = Z[M ]Z[N ] for disconnected spacetimes M and N . One way to proceed is to

reinterpret the boundary partition functions appearing in this holographic context as en-

semble averages of partition functions, where bulk gravity is then interpreted as dual to a

statistical ensemble of boundary theories.2 This leads to what you could call a new entry in

the holographic dictionary:

ensemble of non-gravitational
boundary theories on

disconnected boundaries
⇔

Euclidean gravity path integral
with contributions connecting

disconnected boundary components
,

(1.1)

2Equally, we could turn around the logic and stipulate factorization as a criterion for any well-behaved
quantum theory of gravity, thus declaring most generic gravity path integrals to be in the so-called “swamp-
land” [11].
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which now has evidence from a number of lines of study, including the JT-gravity [12]

and SYK model [13] correspondence [14, 15], replica wormhole calculations of the Page

curve [16, 17], and recent work suggesting a possible correspondence between 3d gravity and

ensembles of 2d conformal field theories [18, 4, 5, 19].

All these different ideas merge in [1], wherein the authors demonstrate, via logic reminis-

cent of the older baby universe picture, how ensembles of boundary theories can naturally

emerge from gravity path integrals, and connect with the replica wormhole discussions of

the Page curve. Important to the present work, the authors of [1] introduce and analyze

a simple topological model of a gravity path integral as an explicit example of these ideas.

Their gravity model is a sum over 2d surfaces weighted by a topological action. Subsequently,

the authors of [20] extend this model to include surfaces with spin structures. The present

work picks up from where [1], and in a certain sense [20] left off, by considering more general

topological bulk theories.

The rest of the paper is organized as follows. In section 1.1.1, we review the simple topo-

logical model described in [1] which this work can be seen as generalizing. In section 1.2,

we consider a gravity path integral constructed from Dijkgraaf-Witten theory in two dimen-

sions. We find (not unexpectedly [21]) that the correlators of boundary insertion operators

factorize between sectors described by irreducible representations of G. What’s more, the

boundary dual theory can be interpreted as a 1d topological theory with global symmetry

group G whose Hilbert space is a random representation of G. Specifically, the number of

times a copy of an irreducible representation of G appears in the Hilbert space is given by a

random integer, with integers for different irreducible representations chosen independently.

In section 1.3, we consider a gravity path integral constructed from any 2d TQFT as defined

by Atiyah’s axioms [22]. We show that the Hilbert space of the boundary theory is the direct

sum of sectors labeled by the eigenstates of the TQFT handle operator with the number of

dimensions in each sector chosen independently from a different Poisson distribution. In

section 1.4 we generalize further by considering open/closed TQFTs, that is to say TQFTs
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with boundary. We describe a gravity path integral constructed from open/closed TQFTs,

again using Dijkgraaf-Witten as a first example. Similar to the closed case, for open/closed

TQFTs we find that correlation functions factorize between sectors labeled by eigenstates of

the handle operator. We discuss the interpretation of the gravity path integral in terms of a

boundary ensemble theory. We encounter the same difficulty encountered by [1] with defining

a theory without negative-norm baby universe states, a difficulty for which they proposed

the solution of adding a nonlocal boundary term to the bulk action. We discuss this difficulty

in section 1.5, reframing the solution in the language of 2d TQFTs with defects. Along the

way, we introduce generalized boundary observables representing non-gravitational regions

coupled to the gravity region with fluctuating topology. The gravity region then is dual to an

ensemble of boundary conditions for an open/closed TQFT. Besides motivating a solution

to the negative-norm states in terms of a defect line, this picture also motivates an under-

standing of the additional alpha-parameters associated with having end-of-the-world branes

(or more general boundary conditions). In section 1.6 we discuss directions for future work,

including the aim of studying more realistic models of gravity, as well as the possibility of

exploring aspects of holography such as bulk reconstruction in the simple setting of topo-

logical theories. In appendix A, we review a state sum formulation of 2d Dijkgraaf-Witten

theory with defects, which is sufficient to calculate all the Dijkgraaf-Witten theory results

used in the paper.

1.1.1 Review of a simple gravity model

The model of [1] describes a gravity path integral built from a sum over spacetime topology.

The authors consider 2d orientable spacetimes without metric or other geometric structure

and an action that is (nearly) just the Euler characteristic. It is, in fact the Euler character-

istic together with an additional term depending on the number of boundaries. Specifically,

for a 2d manifold with genus g and n boundaries they assign the action

S[Mg,n] = S0 χ(Mg,n) + nS∂ = S0(2− 2g) + n(S∂ − S0) , (1.2)
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where χ is the Euler characteristic 2− 2g − n and S0 and S∂ are parameters of the theory.

The gravity path integral for spacetime with fixed n number of circle boundary components

then becomes

ZQG[n boundaries] =
∑

M s.t. ∂M has
n components

µ(M)eS0χ(M)+S∂n . (1.3)

The measure µ(m) here is µ(M) = 1∏
gmg !

, where mg is the number of components with genus

g that are not connected to any boundary. This accounts for the residual gauge symmetries

permuting identical connected components of M .3 We point out here that for the particular

choice S∂ = S0, the number of boundaries n affects the combinatorics both in the sum over

topologies and in the measure µ, but it has no effect on the action.

We should now make two comments. First, by analogy with a correlation function being

computed as a sum over Feynman diagrams with fixed external legs, we notate the output

of the gravity path integral (a sum over spacetimes with fixed boundaries) as a correlation

function, where the fixed boundaries play the role of operator insertions. So for example the

gravity path integral over manifolds with n circle boundary components will be notated〈
Ẑn
〉
≡ ZQG[n boundaries] , (1.4)

so that the operator Ẑ simply denotes the insertion of an additional circle boundary com-

ponent. Second, we point out that the action (1.2), at least with S∂ set to zero, produces

the partition function of a (particularly simple) TQFT, so that the gravity path integral is

simply a sum over TQFT partition functions:

ZQG[n boundaries] =
∑

M s.t. ∂M has
n components

µ(M)ZTQFT[M ] . (1.5)

We mention this, as our aim in this paper is to allow ZTQFT to be a more general TQFT

partition function.

The values of the correlators
〈
Ẑn
〉

can be gathered in the generating function
〈
euẐ
〉

.

The generating function for the connected correlators is simply log
〈
euẐ
〉

, which evaluates

3Permutations that involve components with boundaries are of course not gauge redundancies.
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to

log
〈
eu Ẑ
〉

=
∞∑
n=0

un

n!

〈
Ẑn
〉

conn
= λeu e

S∂−S0 , (1.6)

where λ =
∑

g e
S0(2−2g) = e2S0/(1 − e−2S0) is the value of the connected vacuum correlator.

From the resulting expression for
〈
euẐ
〉

, the correlators
〈
Ẑn
〉

can be extracted〈
Ẑn
〉

= eλBn(λ)e(S∂−S0)n , (1.7)

where Bn here is the n-th Touchard (or Bell) polynomial. This can be written equivalently

as 〈
Ẑn
〉

=
∞∑
d=0

λd

d!
(d eS∂−S0)n . (1.8)

The normalized correlators are thus〈
Ẑn
〉
/ 〈1〉 = e−λ

∞∑
d=0

λd

d!
(d eS∂−S0)n =

∞∑
d=0

pd(λ)(d eS∂−S0)n , (1.9)

where pd(λ) = e−λ λ
d

d!
is the Poisson distribution with mean λ.

The gravitational path integral also gives a way to define the Hilbert space of quantum

gravity. The construction of the Hilbert space begins by picking the vacuum, often called

the Hartle-Hawking state |HH〉, to be the empty set thought of as a 1d manifold. This is the

state of no boundaries. The rest of the Hilbert space is constructed by application of the Ẑ

operators which insert boundaries, Ẑn |HH〉 =
∣∣∣Ẑn
〉

. The gravitational path integral then

provides the means to calculate inner products of any two such states, thereby defining the

Hilbert space.

The authors of [1] also consider the above model with the addition of so-called end-of-

the-world (EofW) branes. These are boundaries on which spacetime ends, but unlike the Ẑ

boundaries we have discussed above, they are taken to be dynamical, in that the gravity path

integral includes a sum over all configurations of such branes. By constrast the Ẑ boundaries

are fixed boundaries and can be considered observables of the gravity path integral. With

the presence of EofW branes, on which spacetime can end, we now have, in addition to the

Ẑ fixed boundaries, the possibility of another type of fixed boundary. This is an interval

6



that is bounded on both sides by EofW branes.4 These intervals bounded by branes are not

dynamical (only the EofW branes are taken to be dynamical). The gravity path integral

now includes manifolds whose boundary components are of three different types, fixed circles

(inserted by operators Ẑ), circles with EofW brane boundary conditions running completely

around the circle, and circles made from alternating fixed and EofW brane intervals. Given

some number of fixed circle and interval boundaries, the gravity path integral will only

include manifolds whose fixed boundaries match those given, but will include a sum over all

the different possible ways of consistently configuring the EofW branes.

Like the circle boundary components inserted by Ẑ, we can associate an operator with

the inclusion of an additional fixed interval boundary, which we will call Ŝ. The model of

[1] considers the possibility of having some number K of “flavors” of EofW branes, index by

a = 1, . . . , K. These different types of EofW brane differ only in their label a = 1, . . . , K,

with the rule that only EofW branes with the same label can be connected together. The

fixed intervals Ŝ now have their endpoints labeled by the flavor of EofW brane on which

they end, giving operators Ŝab. Correlation functions of the gravity model include insertions

of both Ẑ and Ŝab operators. For example:

〈HH| ẐnŜabŜbaŜcdŜdeŜec |HH〉 . (1.10)

The operators Ẑ and Ŝab all commute within these Euclidean path integral correlators.

Given a configuration of fixed boundaries, there are many ways we can partition them into

“future” and “past” boundaries, and reinterpret the gravity path integral correlator as an

inner product of states in the baby universe Hilbert space. For example we can write (1.10)

variously as
〈
ẐnŜabŜba

∣∣∣ŜcdŜdeŜec〉,
〈
Ẑn−mŜab

∣∣∣ẐmŜbaŜcdŜdeŜec

〉
,
〈
ẐnŜabŜbaŜcdŜde

∣∣∣Ŝec〉, etc.

The baby universe Hilbert space is spanned by states of the form∣∣∣∣∣Ẑn
∏
a,b

Ŝnabab

〉
≡ Ẑn

∏
a,b

Ŝnabab |HH〉 . (1.11)

4In this work, to match the language of open/closed TQFTs we will sometimes call these interval bound-

aries “open sector” boundaries, and we call circle boundary components like Ẑ “closed sector” boundaries.
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From AdS/CFT we recall that the non-normalizable asymptotic modes of fields in AdS

specify sources in the boundary CFT, and a bulk path integral with given boundaries ∂M is

dual to the appropriate CFT partition function on that boundary. Inspired by this, we might

expect that the boundary conditions for the 2d gravity path integral correspond to partition

functions of a 1d theory. Or, invoking the idea of (1.1), we might lower our expectations

only slightly to include the possibility that boundary conditions in this case are dual to an

average of partition functions in an ensemble of 1d theories. Indeed, the authors of [1] find

a dual description of this sort for the gravity path integral (1.3). From this point of view,

the correlator
〈
Ẑ
〉

is no longer a correlator, but the average value of a partition function Z

in a 1d topological theory. Each additional boundary component Ẑ is another copy of this

boundary partition function, so that the correlators
〈
Ẑn
〉

with multiple fixed boundaries

probe higher moments, 〈Zn〉, in the ensemble distribution.

The only parameter in topological quantum mechanics is the dimension d of the Hilbert

space, so an ensemble of 1d topological theories is a probability distribution for d. We

immediately run into a problem, though. For a single theory within the ensemble

Z = trH 1 = d , (1.12)

but (1.9) suggests that Ẑ takes the value deS∂−S0 for nonnegative integer d. Expecting a

dual boundary interpretation of Ẑ as a partition function in a 1d topological theory, thus

forces us to set S∂ = S0 in (1.9).

Alternatively (taking a perspective more in line with that taken in the rest of this paper)

we can forgo adding the term S∂ to the boundary and instead take the holographic map to

be rescaled by some factor eS∂ , so that

eS∂ Ẑ ↔ tr(1) = Zboundary . (1.13)

Then a choice of rescaling given by eS∂ = eS0 gives a sensible boundary dual, whose theories

all have integer dimensional Hilbert spaces. This perspective has the downside, of course,

of making the choice of notation Ẑ for the boundary insertion operators something of a

misnomer.
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The boundary interpretation just introduced motivates a conceptually useful basis for

our baby universe Hilbert space: the basis of eigenvectors of Ẑ,

Ẑ |α〉 = α |α〉 . (1.14)

The eigenstates |α〉, called alpha-states, are of course orthogonal: 〈α′|α〉 ∼ δα′,α. But they

have one very special property. The boundary theories in our ensemble are characterized by

the values they give to the observables Ẑ, so the set of alpha states is precisely the sample

space of boundary theories in our ensemble. The probability distribution over the theories

in our ensemble can be extracted from the overlap between a given alpha-state and the

Hartle-Hawking state:

p(α) =
〈HH|α〉 〈α|HH〉
〈α|α〉 〈HH|HH〉

. (1.15)

Whereas obtaining a sensible boundary interpretation for a theory without end-of-the-

world branes necessitated only a judicious choice of rescaling (1.13) for the Ẑ operators, a

potentially more serious problem manifests when we include end-of-the-world branes and

their attendant Ŝab operators. In the 1d dual theory, the interval boundary insertions Ŝab

have a natural interpretation as inner products of states induced by boundary conditions

a and b at the endpoints of the interval. So within a particular boundary theory in the

ensemble, the operators Ŝab should take as values the components of a K by K positive

semidefinite Hermitian matrix M . A boundary ensemble will be given by a joint probability

distribution over the dimension d and the matrix M . Viewing correlators of Ẑ and Ŝab

operators as averages in such an ensemble, they are moments of the ensemble probability

distribution. In particular, the generating function for normalized correlators, which [1]

calculate to be 〈
eiuẐ+

∑K
a,b itabŜab

〉
/ 〈1〉 = exp

(
λ

(
eiu

det(1− it)

)eS∂−S0
− λ

)
, (1.16)

should be the inverse Fourier transform of the probability density p(d,M) defining the en-

semble. As we have described above, the Ẑ operators take values deS∂−S0 with probability
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pλ(d) = e−λλd/d!, giving an expansion of (1.16) as〈
eiuẐ+

∑K
a,b itabŜab

〉
/ 〈1〉 =

∞∑
d=0

pλ(d)eiude
S∂−S0

〈
e
∑K
a,b itabŜab

〉
Z=d eS∂−S0

. (1.17)

For a given d, the residual probability distribution pd(M) over the matrices M will then be

the Fourier transform of the generating function〈
e
∑K
a,b itabŜab

〉
Z=d eS∂−S0

= det(1− it)−de
S∂−S0

. (1.18)

Unfortunately, only for certain values does the above generating function have an inverse

Fourier transform that can be interpreted as a valid probability distribution [23].5 Specifi-

cally, the exponent deS∂−S0 must lie in the set {0, 1, 2, . . . , K − 1} ∪ [K − 1,∞), where, as a

reminder, K is the number of flavors of end-of-the-world brane included in the theory. As d

runs over all nonnegative integers, the factor eS∂−S0 must lie in the set {0, 1, 2, . . . , K − 1} ∪

[K − 1,∞). A natural choice is to take S∂ = S0.

The above argument highlights an important point. It need not be the case that a

theory without factorization has a description as an ensemble. As in the situation where

S∂ = 0, the correlation functions of a non-factorizing theory are not necessarily the moments

of a probability distribution. Failure to have an ensemble description is linked with the

presence of negative-norm states in the baby universe Hilbert space. To see this, consider

a gravity theory with boundary insertion operators Ẑi. The theories in the ensemble will

be parametrized by values these operators Ẑi take. Assume for simplicity, these values are

continuous, real, and independent. Then we can formally construct the alpha-states as

|α〉 =

∫ ∏
i

(
dui
2π

)
ei

∑
i ui(Ẑi−αi) |HH〉 , (1.19)

where αi are the values which Zi takes in the theory described by |α〉. From this, the inner

5In which case, it is known as the Wishart distribution.
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product of two alpha states is

〈α′|α〉 =

∫ ∏
i

(
du′i
2π

dui
2π

)
e−i

∑
i u
′
i(αi−α′i)

〈
ei

∑
i ui(Ẑi−αi)

〉
= δ(α′ − α)

∫ ∏
i

(
dui
2π

)
e−i

∑
i uiαi

〈
ei

∑
i uiẐi

〉
= δ(α′ − α) 〈1〉 p(α) .

(1.20)

The last equality comes from viewing the correlators of Ẑi as moments of a putative prob-

ability distribution p(α). Viewed thus, the generating function
〈
ei

∑
i uiẐi

〉
is simply the

inverse Fourier transform of p(α). This equation (1.20) suggests something about theories

that fail to be ensembles. If the distribution p(α) takes negative values, this means both

that the theory does not have an ensemble description and that the baby universe Hilbert

space contains negative-norm states.

Returning again to the gravity model with end of the world branes, one could complain

that in order to cure the boundary interpretation we have ruined the locality of the bulk

TQFT theory. Indeed, the action for S∂ 6= 0 no longer depends only on the Euler character-

istic of the manifold, so it is no longer consistent with cuttings and gluings of the spacetime.

Alternatively, if we insist on locality, the S∂ term can be interpreted as the contribution

of local degrees of freedom associated to the boundaries, both brane and fixed. In that

case, however, a question arises of whether or not we should consider additional Ŝ opera-

tors corresponding to these additional degrees of freedom. Doing so would be equivalent

to considering the theory with S∂ = 0 just with more flavors of end-of-the-world brane, so

the problem would arise again. The problem seems to require that the degrees of freedom

propagate, unprobed, along the boundaries. We refer the reader to the discussion of this

boundary term and its meaning in [1]. We address the problem as it shows up in our case

in section 1.5, where we offer a somewhat different description for these degrees of freedom,

and some speculation on their meaning.

The topological action of the model described in this section is, in fact, that of a 2d

TQFT with a one-dimensional (closed sector) Hilbert space. In some sense it describes the

simplest possible 2d TQFT. In what follows, we will analyze gravity models built from more
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complicated 2d TQFTs. We will find that much of this analysis can be reduced to that of

the simpler one-dimensional TQFT.

1.2 2d Dijkgraaf-Witten theory

The simple model of a gravity path integral from [1] can be generalized to include any

topological action in the bulk. As a first example, we will examine 2d Dijkgraaf-Witten

theory, a topological gauge theory, as our bulk theory and construct a gravity path integral

from that. We will find a dual interpretation of the gravity path integral in terms of a one-

dimensional ensemble theory whose Hilbert space is a random representation of the gauge

group. We also find that the correlation functions of boundary insertion operators factorize

between the irreducible representations of the gauge group, similar to the results in [21]. In

section 1.3 we will see that analogous features hold in the case of more general 2d TQFTs.

Before describing the gravity path integral, however, we will first briefly review Dijkgraaf-

Witten theory and present the results of Dijkgraaf-Witten theory in two-dimensions that

will be relevant to our construction.

1.2.1 Review of Dijkgraaf-Witten theory

Dijkgraaf-Witten theory is a topological gauge theory with finite symmetry group G [24, 25].

The path integral is given as a sum over G-principal bundles on the spacetime manifold.

Given a connected, manifold without boundary M , let CM be the set of G-principal bun-

dles on M . A G-principal bundle on M can be identified with a homomorphism from the

fundamental group π1(M,x) to the group G, where x is some chosen basepoint in M . So

we will take CM to be the set Hom(π1(M,x), G). Identified this way, some of the principal

bundles can be related to each other via residual gauge symmetries. Specifically, a gauge

transformation g ∈ G with support over all of M will act on a bundle φ : π1(M,x) → G

via conjugation, like so: φ(·) 7→ g φ(·) g−1. The gauge invariant path integral must take

these gauge symmetries into account, and is thus over the space of G-principal bundles CM ,
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orbifolded by this action of G. We’ll denote this orbifolded space by CM .

The measure over CM induced by this orbifolding will weight bundles inversely to the

size of their stabilizer subgroup under the action of G. Without any further weighting of

the bundles beyond this, the sum over CM gives the “untwisted” version of Dijkgraaf-Witten

theory. In that case the partition function for M is [25]

ZDW[M ] =
∑
φ∈CM

1

|Stab(φ)|
=
|CM |
|G|

. (1.21)

The numerator |CM | is |Hom(π1(M,x), G)|, the number of homomorphisms from π1(M,x)

to G. When Mg is the connected, closed, oriented surface of genus g, this count is given by

a result known as Mednykh’s formula:

∣∣CMg

∣∣ = |G|
∑
q

(
dq
|G|

)2−2g

, (1.22)

where q labels the irreducible representations of G, and dq are the dimensions of each irre-

ducible representation. (See [26] and references therein.) This gives the Dijkgraaf-Witten

partition function of Mg as

ZDW[Mg] =

∣∣CMg

∣∣
|G|

=
∑
q

(
dq
|G|

)2−2g

. (1.23)

The above partition function is for a closed surface. If our manifold is a surface with

boundaries, the path integral is a sum over G-principal bundles that satisfy given boundary

conditions. Specifically each boundary component is a circle with boundary condition given

by a conjugacy class ofG, representing the holonomy around that circle. Let CMg,n(k1, . . . , kn)

denote the set of G-principal bundles on the genus g surface with n boundary compo-

nents having holonomy boundary conditions k1, . . . , kn respectively. The path integral is

again over the orbifolded space CMg,n(k1, . . . , kn), and comes out to vol(CMg,n(k1, . . . , kn)) =∣∣CMg,n(k1, . . . , kn)
∣∣ / |G|.

A G-principal bundle on a surface Mg,n with boundaries is still a choice of homomorphism

from π1(Mg,n, x) to G, but now with the restriction that it is compatible with the boundary

conditions on Mg,n in the following sense: if a path ai ∈ π1(Mg,n, x) is homologous to the i-th
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boundary, the bundle φ : π1(Mg,n, x)→ G must map ai to an element of ki. (Note this notion

of compatibility is well-defined, as all paths in π1 homologous ai will be conjugates of each

other and hence must map to the same conjugacy class in G.) The partition function will

be given by the count
∣∣CMg,n(k1, . . . , kn)

∣∣ of such compatible homomorphisms φ. Mednykh’s

formula can be generalized to the case of a connected surface with boundaries as

∣∣CMg,n(k1, . . . , kn)
∣∣ = |G|

∑
q

(
dq
|G|

)2−2g−n∏
i

|ki|
|G|

χq(ki), (1.24)

where g is the genus of the surface, k1, . . . , kn are the respective boundary conditions of

the n boundaries, and χq(k) is the irreducible character q evaluated on an element in k.

(See Proposition 1 in [27]. This can also be obtained by first obtaining the result for an

(n + 2g)-holed sphere M0,n+2g with given holonomies on the boundaries. This is done by

counting maps from π1(M0,n+2g), the free group on n+ 2g generators, to G that satisfy the

boundary constraints. Then one can glue 2g of the boundaries together in pairs by summing

over boundary conditions.) The path integral on Mg,n with boundary conditions k1, . . . , kn

is thus

ZDW [Mg,n ; k1, . . . , kn] =
∑
q

(
dq
|G|

)2−2g−n∏
i

|ki|
|G|

χq(ki). (1.25)

We can interpret this path integral on a manifold with boundaries as defining a multilinear

map, from the Hilbert space of n circles to C, that takes the state |k1〉 ⊗ · · · ⊗ |kn〉 to the

complex number ZDW [Mg,n ; k1, . . . , kn].

Note that the space of states on a circle is evidently spanned by states labeled by conju-

gacy classes. We can take the path integral ZDW[M0,2 ; k1, k2] as defining a bilinear pairing

on this Hilbert space. We get

(
|k1〉 , |k2〉

)
= ZDW[M0,2 ; k1, k2] =

∑
q

|k1|
|G|

χq(k1)
|k2|
|G|

χq(k2) =
|k1|
|G|

δk1,k−1
2
. (1.26)

Under this pairing the states |k〉 are evidently linearly independent, but they are not orthog-

onal. We can switch to a diagonal basis, |q〉 ≡
∑

k χq(k
−1) |k〉, where χq(k

−1) is the character

for irreducible representation q evaluated at an element whose inverse is in the conjugacy

class k. In this basis labeled by irreps of G, the pairing above is simply
(
|q1〉 , |q2〉

)
= δq1,q2 ,
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so the |q〉 are orthogonal.6 The partition function for a connected, genus g surface with

boundaries labeled (in this irrep basis) by q1, . . . , qn is simply

ZDW[Mg,n ; q1, . . . , qn] =
∑
q

(
dq
|G|

)2−2g−n

δqq1···qn . (1.27)

Note that this partition function for a connected manifold with boundaries evaluates to zero,

unless all boundaries are labeled by the same irreducible representation.

In addition to “untwisted” Dijkgraaf-Witten described above, one can also define a

“twisted” generalization of Dijkgraaf-Witten by further weighting each G-principal bundle

in the path integral by a U(1)-valued characteristic class α of the bundle. This is equivalent

to adding a term iSα to the action satisfying α[φ] = eiSα[φ]. So the twisted partition function

for a closed, connected manifold M is

ZDW,α[M ] =
∑
φ∈CM

1

|Stab(φ)|
α[φ] =

∑
φ∈CM

1

|Stab(φ)|
eiSα[φ]. (1.28)

In what follows, we will consider the untwisted case before discussing in section 1.2.4 how

the results are altered in the twisted case.

1.2.2 A Dijkgraaf-Witten gravity path integral

In preparation for defining a gravity path integral, we will include, in addition to the

Dijkgraaf-Witten action, the topological action term S0χ(M) of the simple theory described

in [1]. This will have the effect of suppressing higher genus manifolds in an eventual sum

over topology. With this addition to the action, the bulk theory partition function is given

by

Zbulk[Mg,n ; q1, . . . , qn] =
∑
q

(
eS0

dq
|G|

)2−2g−n

δqq1···qn . (1.29)

In the model of [1] the action includes an additional, nonlocal term nS∂ proportional to the

number of boundaries. This can be regarded as either the contribution to the action of some

6If we take the |q〉 basis as a real basis, then complex conjugation induces the antiunitary map |k〉 7→
∣∣k−1〉

with the interpretation of a reflection. This antiunitary composed with the pairing described above defines
an inner product on the Hilbert space, under which the states |k〉 are orthogonal and the states |q〉 are
orthonormal.
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additional degrees of freedom living on the boundary or as a rescaling of boundary insertion

operators in the gravity path integral. We won’t include this term here and will discuss its

meaning and inclusion in section 1.2.3. For now, we take our partition function to be that

described above, which is the partition function of a TQFT; in other words, it is local, in

the sense of being compatible with cutting and gluing.

A gravity path integral defined from (1.29) will take as input a boundary manifold (so,

for a 2d bulk, some number of circles) with specified boundary conditions, and will output

the partition function (1.29) summed over all manifolds with the given boundary conditions.

Following the notation of [1], we denote the inclusion of a circle with boundary condition k

by the operator Ẑ[k]. The gravity path integral is〈
Ẑ[k1] · · · Ẑ[kn]

〉
=

∑
M s.t. ∂M
is n circles

µ(M)Zbulk[M ; k1, . . . , kn]. (1.30)

Where µ(M) is the appropriate measure, with a factor of 1/m! whenever M has m identical

closed components.

The connected contribution to the vacuum correlator, λ ≡ 〈1〉conn. = log 〈1〉, is a sum

over connected surfaces with no boundary, so in effect a sum over genus:

λ =
∑
g

∑
q

(
eS0

dq
|G|

)2−2g

=
∑
q

(
eS0dq
|G|

)2

1−
(
eS0dq
|G|

)−2 =
∑
q

λq. (1.31)

Here we’ve denoted
∑

g

(
eS0dq/ |G|

)2−2g
by λq. The full vacuum correlator is correspondingly

〈1〉 = eλ =
∏

q e
λq .

Calculating the correlators of boundary insertion operators will be easier in the basis

labeled by irreducible representations. To that end, define operators Ẑq ≡
∑

k χq(k
−1)Ẑ[k],

corresponding to the TQFT states |q〉. We can define a generating function for the general

correlator, F (uq) =
〈
e
∑
q uqẐq

〉
with chemical potentials uq for the insertion of each operator

Ẑq. The logarithm of this generating function will simply be the corresponding generating

function for connected correlators

logF (uq) =
∑
··· ,nq ,···

∏
q

1

nq!
unqq

〈∏
q

Ẑnq
q

〉
conn.

. (1.32)
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Connected correlators are simple to calculate as the surfaces to be summed over in the

corresponding gravity path integral are parametrized by genus. For example,〈
Ẑq1 · · · Ẑqn

〉
conn.

=
∑
g

Zbulk[Mg,n ; q1, . . . , qn]

=
∑
g

∑
q

(
eS0

dq
|G|

)2−2g−n

δqq1···qn

= λq1

(
eS0

dq1
|G|

)−n
δq1···qn .

(1.33)

Note that this connected correlator evaluates to zero unless all boundaries are labeled by the

same irreducible representation. This fact simplifies the resulting expression for logF (uq).

The correlator with nq boundaries for each type q will be zero unless no more than one of

the nq is nonzero. So the sum over all possible numbers of boundary nq for each q reduces

to a sum over just one of the nq, followed by a sum over q. We obtain

logF (uq) =
∑
q

∑
nq

1

nq!
unqq λq

(
eS0

dq
|G|

)−nq
=
∑
q

λq exp

(
uq
|G|
eS0dq

)
. (1.34)

The final result of this simplification is that the full generating function F (uq) factorizes

between the different labels q:

F (. . . , uq, . . .) =
∏
q

eλq exp(uq |G|/eS0dq). (1.35)

From (1.35) the full correlators can be extracted. They are〈∏
q

Ẑnq
q

〉
=
∏
q

eλqBnq(λq)

(
|G|
eS0dq

)nq
, (1.36)

where Bm denotes the m-th Touchard, or Bell, polynomial. Note the normalized correlation

functions have the property of factorizing between boundaries labeled by different irreducible

representations: 〈∏
q

Ẑnq
q

〉
/ 〈1〉 =

∏
q

(〈
Ẑnq
q

〉
/ 〈1〉

)
, (1.37)

whereas no such factorization holds between boundaries label by the same irrep, e.g.
〈
Ẑn+m
q

〉
�〈

Ẑn
q

〉〈
Ẑm
q

〉
. The correlators for the operators Ẑ[k] can be gotten through the change of

basis back from the Ẑq operators to the Ẑ[k] operators, namely Ẑ[k] =
∑

q
|k|
|G|χq(k)Ẑq.
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1.2.3 Boundary interpretation

The above result (1.36) is analogous to having multiple copies of the model presented in

[1]. In fact, each factor labeled by q is equivalent to one copy of the model of [1], where

eS0 → eS0 dq
|G| . We will see that our gravity path integral with a Dijkgraaf-Witten bulk likewise

has a dual interpretation as a random theory living on the boundary. This will in fact be

equally true of any 2d TQFT satisfying Atiyah’s axioms, as we will demonstrate in section

1.3. We present Dijkgraaf-Witten theory here as a representative example.

In a standard holographic boundary interpretation the Ẑ operators would get reinter-

preted as the partition functions of a one-dimensional theory. In our case, however, this is

impossible because the correlators of the Ẑ operators do not factorize. Instead we will look for

an ensemble of one-dimensional theories and interpret the correlator
〈
Ẑ[k1] · · · Ẑ[kn]

〉
/ 〈1〉

as the average of the quantity Z[k1] · · ·Z[kn]. The boundary theories in our ensemble are

characterized by the value they assign to each operator Ẑ[k], so the ensemble will be a prob-

ability distribution over the space Cr, where r is the number of irreducible representations of

G and where each copy of C represents the values that one of the Ẑ[k] can take. This makes

the correlators
〈
Ẑ[k1] · · · Ẑ[kn]

〉
/ 〈1〉 interpretable as moments of the ensemble probability

distribution. The problem of finding the ensemble probability distribution from the corre-

lators (1.36) is thus an instance of the so-called moment problem, wherein one attempts to

find a probability distribution from its moments.

If we let ~α ∈ Cr index the theories in our ensemble, the probability distribution pα over

the theories should satisfy
〈
Ẑq1 · · · Ẑqn

〉
/ 〈1〉 =

∫
drα pαα1 · · ·αr. In terms of the generating

function F (u1, . . . , ur) for the correlators,

F (u1, . . . , ur)/ 〈1〉 = e
∑
q λq(exp(uq |G|/eS0dq)−1) =

∫
drα pαe

∑
q uqαq . (1.38)

We can extract the function pα by performing a Fourier transform with respect to the

variables iuq. The result is

pα =
∏
q

∞∑
Nq=0

λ
Nq
q

Nq!eλq
δ

(
αq −

|G|
eS0dq

Nq

)
. (1.39)
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In other words, each αq takes the values |G|
eS0dq

Nq where the Nq are random integers drawn

independently from Poisson distributions with respective means λq. Recall that the αq are

the values of Zq in the different theories in our ensemble, so

Zq =
|G|
eS0dq

Nq . (1.40)

Switching from the Zq to the Z[k] basis gives

Z[k] =
∑
q

|k|
eS0dq

χq(k)Nq . (1.41)

Our bulk theory is topological, so it’s boundary dual will likewise be topological. As the

Ẑ[k] operators represent the insertion of a boundary with holonomy k, we are tempted to

interpret Z[k] as a partition function in a one-dimensional topological quantum mechanics

theory, with an insertion of a G-symmetry operator with conjugacy class k. That is to say,

Z[k] = tr(U(g)), where U(g) is the representation on the Hilbert space of a group element

g ∈ k. In fact, this is only nearly so. Looking at (1.41) we see that Z[k] has the form of a

trace of an element of k in a representation that has |k|
eS0dq

Nq copies of the representation q,

for each q. Unfortunately for this interpretation, |k|
eS0dq

Nq is not necessarily an integer, which

it would have to be to avoid the absurdity of a theory with a fractional number of copies of

a representation. One immediate fix would appear to be picking a specific value for S0 such

that |G|
eS0dq

∈ Z. This is not possible though, as it would ruin the convergence of eq. (1.33)

and, what’s worse, would render λq negative, giving negative probabilities in our ensemble

distribution.

On the other hand, going back to the Zq operators, in light of their definition Zq =∑
k χq(k

−1)Z[k] a natural interpretation would be for Zq to be the contribution to the par-

tition function of states with charge q. That is to say, Zq = tr(Pq), where Pq is a projection

onto states living in copies of irreducible representation q. Again, this is nearly so, but

unfortunately Zq = |G|
eS0dq

Nq is not an integer for all Nq. One possible solution is to identify

the size of the q-sector, tr(Pq), with a rescaled operator eSqZq rather than with Zq, where we

choose eSq so that eSqZq is an integer in every α-state. (We will discuss a possible motivation

for this rescaling in section 1.5.) For now, we can interpret this rescaling as a modification
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of the expected holographic map Zq ↔ tr{Pq} to be eSqZq = tr(Pq). Similarly, we can to

identify tr(U(g)), with an appropriately rescaled operator eSkZ[k], rather than with Z[k]

as is, in order to avoid the situation of having a fractional number of copies of a represen-

tation. A choice of rescalings for the Ẑq and the Ẑ[k] that avoids noninteger dimensions,

that avoids noninteger copies of irreducible representations, and that respects the identity

tr(U(g)) =
∑

q tr(Pq)χq(g)/dq is

Sk = S0 + log(|G| / |k|) (1.42)

Sq = S0 + log dq . (1.43)

These result in a consistent interpretation of the gravity model as a boundary theory with

|G|
dq
Nq ∈ Z copies of the irreducible representation q.7

1.2.4 Twisted Dijkgraaf-Witten

We now turn our attention to twisted Dijkgraaf-Witten theories. After a review of the

essential background, we use twisted Dijkgraaf-Witten in our gravity models, and describe

their boundary interpretation.

1.2.4.1 Background

The purpose of this subsection is to describe a practical way to compute the partition function

of “twisted” 2d Dijkgraaf-Witten. Here we follow the exposition in [21], and refer the reader

there for details. See also [28]. We will see that the partition functions of 2d twisted

Dijkgraaf-Witten are given as a sum similar to (1.25) but over projective representations of

G.

As was briefly mentioned above, the different twisted theories are labeled by characteristic

classes of G-principal bundles. The different characteristic classes that describe the possible

twisted action terms are classified by elements of H2(BG,U(1)), the second U(1)-valued

7This is an integer by the basic result from representation theory that |G|/dq ∈ Z for any irreducible
representation.
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cohomology classes of the classifying space BG [24, 25]. Specifically, given a class α in

H2(BG,U(1)), and viewing a G-principal bundle on a manifold M as a map φ from M

to BG, consider the pullback of φ∗α along this map. Evaluating φ∗α on M gives a phase

φ∗α(M) = α(φ(M)) ∈ U(1) for the bundle φ. The partition function on M is a sum over

inequivalent G-principal bundles φ weighted by these phases. See equation (1.28). For

simplicity, in what follows we will only consider the particular case where H2(BG,U(1)) =

ZN .

One simplification afforded by restricting to the case H2(BG,U(1)) = ZN is that all the

twisted Dijkgraaf-Witten actions can be described in terms of any characteristic class α0 ∈

H2(BG,U(1)) which generates the others, so H2(BG,U(1)) = ZN = {αk0 : k = 0, ..., N−1}.

The first part of this section is devoted to the construction of such a α0. Then, after eq.

(1.46) we consider αk0 with general k and show how the partition functions for general k

become sums over projective representations of G.

We will relate α0 to the failure of the bundle φ to lift to a G̃-principal bundle when G̃ is

a central extension of G by ZN . Consider a G-bundle on a surface M described in terms of

transition functions gij which satisfy the triple overlap condition

gijgjkgki = 1 . (1.44)

Picking a lift of each transition function gij 7→ g̃ij, we get

g̃ij g̃jkg̃ki = c̃ijk ∈ ZN , (1.45)

which for nontrivial cijk is a violation of the G̃S-bundle cocycle condition. Gauge transforma-

tions and changes of lift can change c̃ijk locally but in general there is a global obstruction to

removing all such violations. The assignment of an element of ZN to each triple intersection,

modulo gauge transformations and changes of lift, defines a 2-cocycle

[ωN ] ∈ H2(M,ZN) , (1.46)

which can be paired with the 2-cycle [M ] to give an element ω = 〈[ωN ], [M ]〉 ∈ ZN . Note that

the element ω ∈ ZN depends on the bundle φ. The characteristic class α0 ∈ H2(BG,U(1)) is
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then defined via α0(φ(M)) = e2πiω(φ)/N . In fact, these are the phases by which the Dijkgraaf-

Witten theory described by α0 weights each bundle.

The characteristic class α0 obtained this way depends on the choice of the central exten-

sion G̃. We would like to choose G̃ so that α0 is a generating element of H2(BG,U(1)) = ZN

so that any Dijkgraaf-Witten action can be obtained as αk0 for some k. We are also interested

in G̃ with the property that all irreducible representations of G, projective or linear, can be

lifted to linear representations of G̃. There is always a central extension of G that satisfies

these criteria, namely the Schur covering group of G. The Schur covering group G̃S is a

central extension

1→ H2(G,Z)
i→ G̃S

π→ G→ 1 . (1.47)

For finite groups G,

H2(BG,U(1)) = H2(G,U(1)) = H2(G,Z) . (1.48)

Because we are restricting to the case H2(BG,U(1)) = ZN , this means the kernel of the

quotient map π : G̃S → G is H2(G,Z) = ZN . So G̃S is indeed a central extension of G by

ZN .

For what follows it is convenient to classify the irreducible representations of G̃S by how

they represent the subgroup ker π = ZN . Notate the generator of ker π = ZN by e2πi/N . For

any irreducible representation q̃ of G̃S, the element e2πi/N must get represented as

U (q̃)(e2πi/N) = e2πik′(q̃)/N1 , (1.49)

for some k′(q̃) ∈ {0, 1, . . . , N − 1}. Refer to the value k′(q̃) for a given q̃ as the N -ality of

q̃. Notice that, of course, a choice of how to represent e2πi/N doesn’t completely specify q̃,

so that there are many q̃ of the same N -ality. We will see that the partition function of

Dijkgraaf-Witten theory with “twist” k′ can be written as a sum over representations with

N -ality k′.

Bringing everything together, let’s calculate the partition function of twisted Dijkgraaf-

Witten on a manifold with boundaries. First recall that in the untwisted case (section 1.2.2),
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we were simply counting isomorphism classes of G-bundles (without weighting them with

phases, i.e. k = 0) consistent with conjugacy classes specified on closed boundaries. A gauge

transformation keeps us in the same isomorphism class and changes the boundary holonomy

only up to conjugacy, so that the counting is well-defined. However, in the twisted case,

although the counting is still a well-defined problem, the weighting is not well-defined, when

there are boundaries of fixed conjugacy class.

On a closed manifold, a gauge transformation will not change the cohomology class ωN

defined in (1.46). This is not neccesarily the case, however on a manifold with boundaries.

A gauge transformation that is nonzero at the boundary can nontrivially transform ωN :

ωN → ωN + db (1.50)

where b is a 1-cocycle. Then on a manifold with boundaries

δω = 〈db, [M ]〉 = 〈b, ∂[M ]〉 (1.51)

is potentially nonzero, causing phase ambiguities in the partition function

e2πikω(φ)/N → e2πikω(φ)/Ne2πikδω(φ)/N . (1.52)

The presence of these phase ambiguities implies that twisted Dijkgraaf-Witten is not gauge

invariant on manifolds with boundary, so on the boundary there has to be a theory with an

’t Hooft anomaly. To have an unambiguously defined bulk partition function, we must make

an ad hoc choice for those phases. We can do this by picking a lift Ui → Ũi for the each

specified boundary holonomy Ui.

We are now equipped to calculate the partition function of twisted Dijkgraaf-Witten

theory on a manifold with boundaries. Remember that for a Riemann surface with genus g

and n boundary components, the holonomies have to be such that

V1W1V
−1

1 W−1
1 · · ·VgWgV

−1
g W−1

g U1 · · ·Un = 1G , (1.53)

where g is the genus and Ui are the holonomies on the n boundaries of M . Trying to uplift

in a straightforward way would give

u = Ṽ1W̃1Ṽ1

−1
W̃1

−1
· · · ṼgW̃gṼ

−1
g W̃−1

g Ũ1 · · · Ũn ∈ ZN , (1.54)
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which means that this G-bundle can’t be uplifted to a G̃S-bundle. In such a case u is in

fact u = e2πiω(φ)/N where ω is that defined earlier. Although this G-bundle doesn’t uplift,

we could excise a disk and impose the holonomy u−1 on this new boundary to create a

G̃S-bundle, albeit over a manifold with an extra boundary. This gives us a way to count

the number of G-bundles that are weighted by the same value ω. Specifically, we get the

number of G-bundles on Mg;U1,...,Un with weight ω by (correctly) counting the number of

G̃S-bundles on Mg;Ũ1,...,Ũn,u−1 . Counting correctly here means accounting for the fact that

when a G-bundle can be uplifted there are N2g+n possible upliftings. We have

Z
(k)
G

[
g ; Ũ1, . . . , Ũn

]
=
∑
φ

e2πikω(φ)/N

| Stab(φ)|
=

N−1∑
ω=0

e2πikω/N

∣∣G̃∣∣Z(0)

G̃S

[
g ; Ũ1, . . . , Ũn, e

−2πiω
]

N2g+n−1
(1.55)

where Z
(0)

G̃S

[
g ; Ũ1, . . . , Ũn, e

−2πiω
]

is the partition function of untwisted Dijkgraaf-Witten

theory for G̃S on Mg;Ũ1,...,Ũn,u−1 . Using our known expression for the partition function

of untwisted Dijkgraaf-Witten theory

Z
(0)

G̃S

[
g ; Ũ1, . . . , Ũn, u

−1
]

=
∑
q̃

(
dq̃∣∣G̃∣∣
)2−2g−n n∏

i=1

(∣∣Ũi∣∣∣∣G̃∣∣ χq̃(Ũi)
)
|u−1|∣∣G̃∣∣ χq̃(u−1) (1.56)

and substituting this in to (1.55) gives the result

Z
(k)
G

[
g ; Ũ1, . . . , Ũn

]
=
∑
q̃

δk,k′(q̃)

(
dq̃
|G|

)2−2g−n n∏
i=1

(∣∣Ũi∣∣∣∣G̃∣∣ χq̃(Ũi)
)

(1.57)

after expanding χq̃(u
−1) = dq̃ e

−2πik′(q̃)ω/N then simplifying via the identity
∑

ω e
2πiω(k−k′)/N =

Nδk,k′ .

1.2.4.2 The gravity path integral

Since the form of eq. (1.57) is very similar to the untwisted case, the calculations proceed

in the same fashion. We define boundary conditions labeled by projective representation q̃

by Ẑ
(k)
q̃ =

∑
k̃ χq̃

(
k̃−1
)
Ẑ(k)[k̃], where the sum goes over all conjugacy classes k̃ of G̃S. This

definition makes sense for any irreducible representation q̃ of G̃S, but the representations of

the wrong N -ality will give zero in correlators because

Z
(k)
G

[
Mg,n ; q̃1, . . . , q̃n

]
=
∑
q̃

δk,k′(q̃)

(
eS0

dq̃
|G|

)2−2g−n

δq̃q̃1···q̃n , (1.58)
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as can be readily worked out from (1.57). Thus the most general correlator, one with nq̃

insertions of each boundary with conditions q̃, is〈 ∏
q̃ with
N -ality k

Ẑ
nq̃
q̃

〉
=

∏
q̃ with
N -ality k

eλq̃Bnq̃(λq̃)

(
|G|
eS0dq̃

)nq̃
, (1.59)

with λq̃ defined analogously to λq in the untwisted case. From the similarity of these cor-

relators to those of the untwisted case, we immediately recognize the boundary dual of our

twisted Dijkgraaf-Witten bulk gravity model. Namely, (after making the rescalings described

in section 1.2.3) it is a 1d topological theory whose Hilbert space consists of random num-

bers of projective representations of G that have the correct N -ality. In other words, the

boundary dual is an ensemble of 1d topological theories with anomalous global symmetry

G.

1.3 General 2d TQFTs

In the previous section we constructed a simple gravity path integral with a bulk action of

Dijkgraaf-Witten theory and found a dual interpretation as an ensemble of 1d theories on its

boundary. We will now show that a general 2d TQFT bulk theory likewise leads to a model

gravity path integral with similar features. To be precise, we will consider here TQFTs as

defined by Atiyah’s axioms [22] and over the field C. Such TQFTs are fairly simple. They

have finite dimensional Hilbert spaces, and, as we will discuss, can be viewed as a direct sum

of theories all with Hilbert space dimension 1. Though they are simple, we speculate that

the important features of our analysis will extend appropriately to 2d TQFTs more broadly

defined, and perhaps even, in some form, to TQFTs in higher dimensions.

There are many excellent expositions of TQFTs;8 we present here only the most basic

sketch for those not familiar. In the language of category theory, a 2d TQFT can be defined

as a functor (with certain requirements) from the category of 2d cobordisms Cob(2) to the

category of complex vector spaces Vect(C). This definition, again, for those not familiar

8See, for example [29]; or for a more abstract and more general exposition see [30].
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A

Figure 1.1: The handle creation operator: HS1 → HS1 .

with this language, is a concise codification of the cutting and gluing properties that would

naturally be expected of a path integral. Like a path integral, a 2d TQFT assigns to each

closed 2d manifold a number, the partition function on that manifold. To a closed 1d

manifold it assigns a Hilbert space. To a 2d manifold M with boundary ∂M it assigns a

state in the Hilbert space associated to the boundary ∂M .9 These assignments are compatible

in the way expected of the output of a path integral. For example, gluing two boundary

components of a manifold together corresponds to a sum over matching states on the two

components. As another example, if a TQFT assigns to a circle the Hilbert space HS1 , then

it assigns to the “handle creation operator” (the manifold as seen in fig. 1.1) a unitary

map HS1 → HS1 . From this map and the state in HS1 assigned to a hemisphere, we can

construct any closed manifold by gluing. This handle creation map always has positive, real

eigenvalues [31]. We will denote these eigenvalues by µ−2
I where I = 1, . . . , dim(HS1). In

the eigenbasis, |I〉, of the handle creation operator, the calculation of partition functions

becomes a simple matter. In particular, the partition function of a connected manifold Mg,n

with genus g and n boundaries, and states |I1〉,. . . , |In〉 input on the boundaries respectively,

is

ZTQFT[Mg,n ; I1, I2, . . . , In] =
∑
I

µ2−2g−n
I δII1I2···In . (1.60)

Note this evaluates to zero if the boundary labels Ii are not all the same.

From the result (1.60), the generating function for connected correlation functions of the

9Or, alternatively, an object that takes as input a state and outputs a complex number.
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gravity path integral is

log
〈
e
∑
I uI ẐI

〉
=
∑
I

∑
n

unI
n!

∑
g

µ2−2g−n
I

=
∑
I

λIe
uI/µI ,

(1.61)

where λI ≡ µ2
I/(1−µ−2

I ). The full generating function of correlators is then
〈

exp
(∑

I uIẐI

)〉
=∏

I exp
(
λIe

uI/µI
)
, from which we can extract the result〈∏

I

ẐnI
I

〉
=
∏
I

eλIBnI (λI)µ
−nI
I . (1.62)

This can be written 〈∏
I

ẐnI
I

〉
/ 〈1〉 =

∏
I

∑
NI

pλI (NI)

(
NI

µI

)nI
(1.63)

where pλI here is the Poisson distribution with mean λI . The normalized correlators then

have an interpretation as an average, where ZI takes the value NI/µI , and the NI are inde-

pendently chosen Poisson random integers. As we saw for the case of Dijkgraaf-Witten, the

ZI don’t quite have the interpretation as partition functions of a one-dimensional topological

theory. If, however, we rescale each of them by a factor of, in this case, µI , we do find a nice

interpretation for them. Namely we have as our boundary theory a topological quantum

mechanics with sectors labeled by I and the number of dimensions in each sector I given by

the Poisson distribution with mean λI . Then µIZI = tr(PI) where PI is a projection onto

the sector I.

1.4 2d TQFTs with boundaries

In their simple model of a gravity path integral, [1] consider the addition of end-of-the-world

branes (EofW branes). These are boundaries on which bulk spacetime ends. Generalizing

this construction, we will consider general boundaries for general 2d TQFTs and the describe

the model gravity path integrals built out of them. As a first example we will again consider

Dijkgraaf-Witten theory, but this time with the addition of EofW branes. As we will explain,
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EofW branes are in some sense the simplest boundary conditions possible in the theory, but

we will nonetheless see features that will hold in the more general case. These include the

factorization between different sectors of the theory, as before, as well as a new difficulty with

interpreting the gravity path integral as a boundary ensemble theory without an additional

modification. We will discuss this difficulty and a solution to it in section 1.5.

1.4.1 End-of-the-world branes for Dijkgraaf-Witten

As a first example of an open/closed TQFT we consider Dijkgraaf-Witten theory with the

addition of end-of-the-world (EofW) brane boundaries. Following the constructions of [1, 20],

we allow for some number of “flavors” of otherwise identical EofW branes, which we will

label by a = 1, 2, . . . , K. Though these K differently labeled EofW branes have identical

dynamics, the number K of such branes will play an important role later. The path in-

tegral for Dijkgraaf-Witten theory with EofW branes is still defined as a sum over gauge

backgrounds, but now that our spacetime manifolds have boundaries, the specification of

a gauge background must include two kinds of data: the holonomies around loops (as be-

fore), as well as the parallel transports along paths that begin and end on EofW branes.

Cutting a manifold with brane boundaries will result in a new, non-brane boundary. These

resulting boundaries, which we will call variously “gluing” boundaries, “state” boundaries,

or “Hilbert space” boundaries, are not EofW brane boundaries, but rather, correspond to a

Hilbert space of states that represent the input of field configuration data on that bound-

ary. The “gluing” boundaries, in our case, will have fixed parallel transports along them

which serve as boundary conditions for the possible gauge backgrounds. More specifically,

a circle gluing boundary component will be labeled by the holonomy about that circle, and

an interval gluing boundary component will be labeled by an element of G representing the

parallel transport across that interval. Note, that the intervals, unlike the circles, are labeled

by elements of G, rather than conjugacy classes. This is similar to the construction of [20].

Though they consider boundary conditions for spin structures, these are analogous to our
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case with the choice of G = Z2.10

EofW branes, unlike gluing boundaries, do not get labeled by group elements or conjugacy

classes of G. We take the EofW branes to be “decoupled” from the bulk, in the sense that

inserted G-symmetry operators are not permitted to end on EofW branes, which is to say,

there is no parallel transport as one moves along an EofW brane boundary.

When boundary conditions for gauge backgrounds are specified along circle and inter-

val gluing boundaries, the count of gauge backgrounds will only include those that match

the specified holonomies and parallel transports along those boundaries. Counting gauge

backgrounds can be done using a lattice description, as explained in appendix A.11 We list

some results, from which all partition functions can be calculated. First, consider a strip

with EofW branes on both sides and gluing boundaries at the ends, with boundary condi-

tions g1, g2 ∈ G respectively. There is one gauge background compatible with the boundary

conditions if g1 = g−1
2 and zero otherwise, giving the partition function

= δg1,g−1
2
. (1.64)

Taking the different boundary conditions g ∈ G as states in the Hilbert spaceHopen associated

to the interval, the above diagram gives a (nondegenerate) pairing on that Hilbert space,

(|g1〉 , |g2〉) = δg1,g−1
2

. Second, consider a disk with three gluing boundary intervals labeled

by g1, g2, g3 ∈ G, alternating with three EofW brane intervals. This path integral gives

δ(g3g2g1, 1G). We can likewise interpret this as a map from the Hilbert spaces of the intervals

to C, namely |g1〉 |g2〉 |g3〉 7→ δ(g3g2g1, 1G). This along with the pairing above induces a map

10Where Z2 = {id, a}, NS boundary conditions on a circle are analogous to a holonomy of id about the
circle, and R boundary conditions are analogous to a holonomy of a around the circle. Likewise, an interval
labeled by the identity (by the non-identity (−1)F ) is analogous to an interval with parallel transport id
(parallel transport a). Substituting Z2 for G in what follows will largely mirror much of their discussion,
where one keeps in mind that the irreps of an abelian group like Z2 are all one-dimensional.

11Alternatively, given a connected manifold M with end-of-the-world-brane boundary ∂braneM , a choice of
gauge background can be identified with a homomorphism from π1 (M/∂braneM,m) to G, where M/∂braneM
is the quotient manifold obtained by identifying all end-of-the-world brane boundaries to a single point m,
and where we take that point m as our basepoint.
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Figure 1.2: A cylinder with a mixture of end-of-the-world branes and gluing boundaries with

boundary conditions. With the above boundary conditions the path integral evaluates to

δ(k, [g−1]), where [g−1] is the conjugacy class of the element g−1 ∈ G.

Hopen ⊗Hopen → Hopen, represented in diagram form by

= |g2g1〉 . (1.65)

Finally, consider a cylinder where one boundary circle is a gluing boundary with fixed

holonomy k and where the other boundary circle is made up of an EofW brane interval

together with a gluing interval with fixed parallel transport g. (See figure 1.2.) The count

of gauge bundles on this manifold is δ(k, [g−1]), where [g−1] is the conjugacy class of the

element g−1 ∈ G. Via the pairing (1.26), this provides a map from the open sector Hilbert

space Hopen to the circle Hilbert space HS1 given by the diagram

=
|G|
|[g]|
|[g]〉 , (1.66)

where, again, [g] is the conjugacy class of g ∈ G.

These are all the diagrams necessary to compute any partition function. The compu-

tations proceed more easily in bases for the open and closed sectors that are labeled by
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irreducible representation. We define bases

|q〉 ≡
∑
k

χq(k
−1) |k〉 (1.67)

|q; i, j〉 ≡ dq
|G|

∑
g∈G

U
(q)
ij (g−1) |g〉 (1.68)

for the closed and open Hilbert spaces, respectively, where i, j = 1, . . . , dq. In these bases

the maps (1.64), (1.65), and (1.66) are

=
dq1
|G|

δq1q2δj1i2δj2i1 (1.69)

= δq1q2δj1i2 |q1; i1, j2〉 (1.70)

= δij |q〉 (1.71)
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In particular, these imply the following two diagrams:

=
∑
q

dq |q〉 (1.72)

=
∑
q

δqq1···qnδj1i2δj2i3 · · · δjni1 |q〉 (1.73)

with which, we can calculate any partition function.

A manifold can have boundary components of three different types: closed sector circles,

circles made up of a single EofW brane, and circles made up of alternating open sector

intervals and EofW brane intervals. The implications of the last two diagrams above, for the

partition functions of connected manifolds, include the following four facts:

• Any connected manifold that has boundaries, of any type, labeled by different irreps,

will evaluate to zero.

• Any connected manifold with a boundary made up of alternating open sector and

EofW interval boundaries, where the i,j indices on the open sector labels do not match

up appropriately, will also evaluate to zero. Matching appropriately means that the

second index of one open sector interval equals the first index of the next open sector

interval, and so on around the circle. In the case where we have more than one type

of EofW brane, we also require that any indices for the species of EofW brane match

similarly.

• A boundary made up of alternating open sector and EofW brane intervals, with all

open sector intervals labeled by q and all the i,j indices matching appropriately, will

simply contribute the same as a closed sector boundary labeled by q.
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• A circular boundary made up of a single EofW brane contributes a factor of |G| relative

to just filling in that boundary with a disk.

Let’s use these facts to obtain the partition function of a general manifold. We will

consider two cases: (1) manifolds with at least one “gluing” boundary and (2) manifolds

with no boundaries other than EofW brane boundaries. For the first case, let M be a

surface of genus g, with n closed sector boundaries, m circle EofW brane boundaries, and `

boundaries made up of alternating open sector and EofW brane intervals, where all closed

and open sector boundaries are labeled by q and all i, j indices are matched appropriately.

Note that in this first case at least one of n or ` must be greater than 0. The partition

function for such a manifold will be

ZDW[M ] =

(
dq
|G|

)2−2g−n−m−`

dmq . (1.74)

The additional m factors of dq come from the last fact above: filling in a boundary with a

disk will contribute a factor of dq/ |G|, and a circular EofW brane boundary will contribute

|G| times that, so it will contribute an overall factor of dq. Now consider the second case:

let M be a manifold with m circular EofW brane boundaries, but no closed or open sector

boundaries. Then the partition function of M is

ZDW[M ] =
∑
q

(
dq
|G|

)2−2g−m

dmq . (1.75)

1.4.2 The gravity path integral

We are now equipped to build a gravity path integral out of Dijkgraaf-Witten with EofW

branes. The gravity path integral will be a sum over all manifolds with compatible EofW

brane boundaries. Specifically, we take the EofW branes to be dynamical while we take the

open and closed sector “gluing” boundaries to be fixed. The open sector boundaries are

intervals with a fixed label at each end designating the type of EofW brane found there, and

in the gravity path integral we only allow configurations where an EofW brane of a given

type attaches only to interval endpoints labeled by that type.
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Operators inserting fixed circle boundaries will be denoted by Ẑ[k] or Ẑq, as before. The

operators inserting fixed interval boundaries will be denoted by Ŝgab where g specifies the

fixed gauge background boundary conditions (i.e. the parallel transport g ∈ G along the

interval) and where a and b are the just mentioned labels designating the type of EofW

brane allowed at the endpoints. Note that the boundary insertion operators are in one-to-

one correspondence with the states of the TQFT: the Ẑ operators correspond to states in

the closed sector, and the Ŝ operators labeled with a and b correspond to states in the open

sector with boundary conditions a and b. Using the change of basis (1.68) we can define the

more convenient interval operators Ŝqijab representing the insertion of an interval with the

state |q; i, j〉 fixed on it.

We will add a term S0χ proportional to the Euler characteristic to the Dijkgraaf-Witten

action, as we did before. This will have the effect of suppressing higher genus manifolds,

allowing the sum over topologies to converge. The gravity path integral is the sum of

the TQFT partition functions over every manifold that is compatible with the inserted

boundaries with a measure that takes into account possible residual diffeomorphisms.

We now describe the calculation of correlators of the boundary insertion operators. Let

ma denote the number of circular EofW brane boundaries of type a on a connected manifold,

so that m =
∑

ama. Then the connected vacuum correlator for Dijkgraaf-Witten with EofW

branes is

λ′ ≡ log 〈1〉 = 〈1〉connected

=
∑
g

∑
m1,...,mK

1

m1! · · ·mK !

∑
q

eS0(2−2g−
∑
ama)

(
dq
|G|

)2−2g−
∑
ama

d
∑
ama

q

=
∑
q

(
eS0

dq
|G|

)2
1

1−
(
eS0

dq
|G|

)−2

K∏
a=1

exp

((
eS0

|G|

)−1
)

=
∑
q

λqe
K|G|e−S0

= eK|G|e
−S0λ,

(1.76)

where we have used our previous definitions (1.31) of λq and λ. The connected manifolds
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without fixed boundary are entirely specified by their genus g and then by the number

ma of dynamical EofW brane circle boundaries they have for each type a, hence the sums

over g and each ma in the above expression. Also note the factor of 1/ma! for each brane

type. These are factors in the measure of the path integral and are due to the ma! large

diffeomorphisms that permute the EofW brane circles (which are dynamical and hence taken

to be indistinguishable). Comparing this expression for the connected vacuum correlator to

that of the theory without EofW branes (1.31), we see that the effect of the circle EofW

brane boundaries is simply to multiply λ by a factor.

Let’s now consider the generating function for all correlators

F (~u, T ) =

〈
exp

(∑
q

uqẐq +
K∑

a,b=1

∑
q

dq∑
i,j=1

tqijabŜqijab

)〉
. (1.77)

For convenience, we will collect the chemical potentials tqijab into an object T and the

chemical potentials uq into the object ~u. Also, note that the i, j indices within each q sector

play the same role as the EofW brane labels a, b, so to ease notation for the calculation of

the above generating function we will combine i and a into a single index A and similarly j

and b into B.

Following [1], and analogously to the procedure in section 1.2.2 for the theory without

EofW branes, we calculate the logarithm of the generating function,

logF (~u, T ) =
∑
n

∑
k

1

n!

1

k!

〈(∑
q

uqẐq

)n(∑
qAB

tqABŜqAB

)k〉
conn

=
∑
q

∑
n,k

1

n!
unq

1

k!

∑
A1B1···AkBk

tqA1B1 · · · tqAkBk
〈
Ẑn
q ŜqA1B1ŜqA2B2 · · · ŜqAkBk

〉
q,conn

(1.78)

where we have used the fact that a connected correlator with boundaries labeled by different

irreps is always zero.

Each correlator in the above will be a sum over genus, a sum over numbers of circle EofW

brane boundaries, and finally a sum over all the ways of connecting the Ŝ operators by EofW

branes. We can express this final sum as a sum over all permutations of k elements, where

k is the number of open sector interval boundaries. Say ŜqA1B1 , ŜqA2B2 , . . . , ŜqAkBk are the
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intervals in our correlator. For a given permutation π ∈ S(k) we attach the outgoing end

of ŜqAiBi to the ingoing end of ŜqAπ(i)Bπ(i) for every i. A particular way of connecting the

branes will only result in a nonzero partition function if all pairs of connected endpoints

have the same index. In other words, for any π the partition function will be proportional

to δB1,Aπ(1)δB2,Aπ(2) · · · δBk,Aπ(k) . For a permutation π, denote the number of 1-cycles in π

by a1(π), the number of 2-cycles by a2(π), and so on. The total number of cycles we will

denote by a(π) =
∑

i ai(π), and therefore the number of alternating-type boundaries will be

` = a(π) for any π.

We are now ready to calculate the general correlator of n closed sector boundaries and k

open sector interval boundaries. We get

〈Ẑn
q ŜqA1B1ŜqA2B2 · · · ŜqAkBk〉conn

=
∑

m1,...,mK

1

m1! · · ·mK !

∑
g

∑
π∈S(k)

δB1,Aπ(1) · · · δBk,Aπ(k)Z
bulk [Mg,n+m+` ; q,m]

= λ′q

(
eS0

dq
|G|

)−n ∑
π∈S(k)

δB1,Aπ(1) · · · δBk,Aπ(k)
(
eS0

dq
|G|

)−a(π)

, (1.79)

where we have used Zbulk [Mg,n+m+` ; q,m] to denote the partition function of a connected

manifold of genus g with n+m+` circular boundaries, n of which are closed sector boundaries

labeled by q, m =
∑

ama of which are EofW brane boundaries, and ` = a(π) of which are

alternating interval boundaries labeled by q.

We can now plug this in to our expansion (1.78) above. We get

logF (~u, T ) =
∑
q

λ′q exp

(
uq
|G|
dqeS0

)∑
k

1

k!

∑
π∈S(k)

(
eS0

dq
|G|

)−∑
j aj(π)∏

j

tr
(
T j(q)

)aj(π)

,

(1.80)

Note that the functions aj on the permutation group only depend on the cycle structure

of the permutation. So we can replace the sum over permutations with a sum over cycle

structures, using the fact that there are k!∏
j aj !j

aj permutations with aj cycles of length j for

each j. This results in

logF (~u, T ) =
∑
q

λ′q exp

(
uq
|G|
dqeS0

) ∞∏
j=0

∑
aj

1

aj!

(
|G|
dqeS0

1

j
tr
(
T j(q)

))aj
. (1.81)
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Recognizing the rightmost sum as an exponential and then using the identity exp
(∑

j
1
j

tr(T j)
)

=

det(1− T )−1, we get a final expression for the generating function:

F (~u, T ) =
∏
q

exp

λ′q
(

eu

det
(
1− T(q)

)) |G|
dqe

S0

 (1.82)

Compare to (1.16), the analogous result for the simple model of [1].

1.4.3 Boundary Interpretation

As explained in section 1.2.3, finding an interpretation of the gravity path integral in terms of

an ensemble of boundary theories reduces to an instance of the moment problem, the problem

of finding a distribution given its moments. In the case of Dijkgraaf-Witten with EofW

branes, the different boundary theories that could appear in our ensemble are characterized

by the values that the boundary partition functions Zq and Sqijab take in them. These are the

alpha-parameters and the (normalized) correlators of the Ẑ and Ŝ operators are moments

probing the probability distribution over the alpha-parameters. From this point of view we

obtain the following relation between the generating function (1.82) obtained above and the

probability distribution p(α) over the alpha-parameters:

∏
q

exp
(
λ′q
(
eu/ det

(
1− T(q)

))|G|/dqeS0 − λ′q) =

∫
dα p(α)e

∑
q uqαq+

∑
q tr(T(q)M(q)). (1.83)

Here the integral is over all α ∈ Cr+|G|K2
with α = (α1, . . . , αr;M(1), . . . ,M(r)) where the

αq are the values the Zq take in a particular theory and each M(q) is a Kdq by Kdq matrix

representing the value of the matrix S(q) in a particular theory. In principle we can extract

the probability distribution p(α) by taking the appropriate Fourier transform of both sides

of the above. In fact, we already know the probability distribution for the αq. These come

out nearly the same as in section 1.2.3. The result is that Zq takes the value Zq = |G|
eS0dq

Nq

where Nq is an integer drawn from the Poisson distribution with mean λ′q.

So we are left with the task of determining the probability distribution for the matrices

M(q). To see what that will be, we can consider the generating function for the Ŝ operators
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but conditioned on chosen values αq for the Ẑ operators. This can read off from the result

of taking the Fourier transform of both sides of 1.83 with respect to the variables iuq. We

get 〈
exp

(
K∑

a,b=1

∑
q

dq∑
i,j=1

tqijabŜqijab

)〉
Zq=αq

= det
(
1− T(q)

)−αq
, (1.84)

so we are left with

det
(
1− T(q)

)−αq
=

∫
dM p(~α;M)e

∑
q tr(T(q)M(q)), (1.85)

where dM represents an integral over all values for the matrices M(1), . . . ,M(r). The situation

is simply that of (1.18), encountered for the simple model of [1]. Namely, det
(
1− T(q)

)−αq
is a generating function of moments of a probability distribution only when the exponent αq

takes certain values [23], in this case values in the set {0, 1, 2, . . . , Kdq − 1} ∪ [Kdq − 1,∞).

Unfortunately, αq takes values |G|
eS0dq

Nq where Nq is a nonnegative integer. For αq to always

be in the set {0, 1, 2, . . . , Kdq − 1} ∪ [Kdq − 1,∞) would require that |G|
eS0dq

be an integer.

This is not possible as it would render λ′q negative, which is nonsensical as λ′q is the mean

of the Poisson distribution for Nq. So we are left with the problem that the gravitational

path integral correlators are not the moments of some probability distribution, meaning

it cannot be dual to an ensemble of boundary theories. This problem is worse than the

one encountered earlier which necessitated identifying the boundary partition functions with

rescaled Ẑ operators. Rescaling the Ẑ or Ŝ operators does not change the values that αq

takes.

One solution is to modify the theory by adding terms to the TQFT action proportional

to the number of boundary components. This would be for all three sorts of boundary

components: circular EofW branes, closed sector fixed boundaries, and alternating EofW

brane and open sector intervals. Specifically we can add a term Sq in the action for each

boundary component labeled by q. Retracing through the calculations of section 1.4.2 we

see how an additional factor of eSq for each boundary circle modifies the generating function

of correlators. First, considering the boundaries made up entirely of a single EofW brane

component, we see that the connected vacuum correlator gets modified: λ′q = λqe
K|G|e−S0 →
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λqe
K|G|eSq−S0 . Second, a factor of eSq for circle fixed boundaries gives uq → eSquq. And

finally, a factor of eSq for circles made of alternating brane and fixed boundaries changes the

factors tr
(
T j(q)

)
like tr

(
T j(q)

)
→ eSq tr

(
T j(q)

)
. Making these substitutions in 1.81 leads to a

modified generating function of

F (~u, T ) =
∏
q

exp

λ′q
(

eu

det
(
1− T(q)

)) eSq |G|
dqe

S0

 . (1.86)

Then with a the choice of Sq = S0+ln dq as in (1.43), for example, the values of αq are integers,

ensuring the generating functional (1.85) is indeed the generating function for moments of a

probability distribution.

The additional Sq terms in the action can be viewed as the contributions of degrees

of freedom that propagate along the boundaries. This picture is odd, however, in that

these degrees of freedom must propagate along both EofW brane and fixed boundaries. In

this solution the “fixed” boundary components are no longer fixed, but must include these

dynamical degrees of freedom that propagate across them. In some sense the solution requires

us to not allow the full set of Ŝ operators, which would otherwise allow us to completely

fix the interval boundary conditions in the gravity path integral. We discuss the problem in

these terms in section 1.5.

1.4.4 General open/closed TQFTs

In this section we will describe the gravity path integral obtained by choosing our bulk theory

to be a general open/closed TQFT (aka a general 2d TQFT with boundaries). We’ll see

that this has the same features that we found above for the specific case of Dijkgraaf-Witten

theory with end-of-the-world brane boundaries.

When discussing Dijkgraaf-Witten theory above, we considered only end-of-the-world

brane boundaries. These are, in the context of Dijkgraaf-Witten theory, the simplest sort of

boundary compatible with gauge symmetry. In general, we could consider more complicated

boundaries, and in particular for theories without gauge symmetry, there is no condition of
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(a) multiplication map (b) pairing (c) trace map

Figure 1.3: Three open/closed TQFT diagrams: (a) A map from Hab ⊗ Hbc to Hac. The

open sector states can be represented as matrices such that this map implements matrix

multiplication. (b) The pairing between Hilbert spaces Hab and Hba. (c) The trace map,

which maps Haa to HS1 . With the open sector states represented as matrices, this map

implements the trace of these matrices.

gauge symmetry that boundaries must be compatible with. The only conditions that we

need to require of our boundaries are that they be compatible with the possible ways of

cutting and gluing spacetimes with boundaries. For a review of open/closed TQFTs and the

axioms that define them we refer interested readers to [32]. Here we will simply state some

of the results that apply to our case.

We’ll use the index a to label the different types of boundaries present in the theory.

For any two types a and b we have a corresponding open sector Hilbert space Hab, which

is the Hilbert space associated with an interval with a boundary conditions on one end and

b boundary conditions on the other. In addition to these open sectors we have the closed

sector Hilbert space HS1 , which is the Hilbert space of states on a circle. The closed sector

makes, in its own right, a 2d TQFT. So, as described in section 1.3, the partition function

for the closed, connected manifold of genus g has the form
∑

I µ
2−2g
I , for some positive, real

numbers µI , and accordingly, the closed sector Hilbert space HS1 has an orthonormal basis

|I〉 labeled by the index I.

The interval Hilbert space Hab will have the form Hab
∼=
⊕

I

(
CdaI ⊗ CdbI

)
, where daI

are integers. In fact, we can think of the states |ψ〉 in Hab as being direct sums of matrices

|ψ〉 =
⊕

I ΨI where the “multiplication” diagrams as in figure 1.3a are computed via matrix
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multiplication of the matrices ΨI . (For example, the multiplication acting on states

|ψ〉 ∈ Hab and |φ〉 ∈ Hbc produces a state in Hac described by
⊕

I ΨIΦI .) We can take as

a basis for Hab the matrices with one entry 1 and the rest zero. Denote these basis states

by |I; i, j〉 where I labels the block and where indices i = 1, . . . , daI and j = 1, . . . , dbI

label the position of the nonzero entry. (To make connection to Dijkgraaf-Witten theory

with end-of-the-world branes, the label I is in that case the label q running over irreducible

representations, the values µI are eS0dq/ |G|, and the dimensions daI are simply dq for all

boundaries. The diagram 1.70 can be seen to be describing matrix multiplication.)

There are two additional facts we make use of. First, the partition function calculated

by a strip with boundary type a on one side and boundary type b on the other (see figure

1.3b) induces a pairing between the Hilbert spaces Hab and Hba. To be entirely consistent

with the cutting and gluing axioms defining an open/closed TQFT, this pairing must take

the form

(|ψ〉 , |φ〉) =
∑
I

µI tr(ΨIΦI) (1.87)

where |ψ〉 ∈ Hab and |φ〉 ∈ Hba. Second, we have the map : Haa → HS1 from any

diagonal open sector Haa to the closed sector HS1 . This map simply implements the trace

|ψ〉 7→
∑

I tr(ΨI) |I〉.

With the multiplication, pairing, and trace diagrams in hand we can calculate the parti-

tion function of any manifold with boundaries, and from there define a gravity path integral

as a subsequent sum over all compatible manifolds with boundaries. The observables in this

gravity theory are operators ẐI that insert a circle with state |I〉 ∈ HS1 , and ŜabIij which

insert the interval with state |I; i, j〉 ∈ Hab on it. The correlators are given by a sum over

manifolds where the boundary configurations are compatible with the boundary labels of

all the insertions ŜabIij. In our sum over manifolds M we include the appropriate measure

µ(M). In addition to the factors for having multiple identical components without fixed

boundaries, the measure µ(M) also includes a factor of 1/ma! whenever a component of M

has ma circle boundaries with boundary conditions a all around the circle. These are due to
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residual diffeomorphisms that permute the identical dynamical boundaries.

The calculation of correlators is analogous to the Dijkgraaf-Witten case in section 1.4.2.

We simply state the results. The connected vacuum correlator is

λ′ ≡ log 〈1〉 = 〈1〉connected =
∑
I

λIe
KI/µI =

∑
I

λ′I , (1.88)

where KI =
∑

a daI count the boundary degrees of freedom, and the λI = µ2
I/(1− µ−2

I ) are

as defined in section 1.3 for the corresponding closed TQFT. The generating function

F (uI , tabIij) =
〈
e
∑
I uI ẐI+

∑
ab

∑
I,i,j tabIij ŜabIij

〉
(1.89)

is given by

F (u, t) =
∏
I

eλ
′
I exp(µ−1

I uI+µ−1
I

∑∞
j=1

1
j

tr(T jI )) =
∏
I

exp
(
λ′Ie

uI/µI det(1− TI)−1/µI
)
, (1.90)

where we have collected the chemical potentials tabIij into KI by KI matrices TI . This is

of course the same form as (1.82). Similar to the special case of Dijkgraaf-Witten with

end-of-the-world branes, correlators will factorize between the I sectors, and will also fail to

correspond to the moments of an ensemble distribution without negative probabilities. We

discuss this failure and possible solutions in the next section.

1.5 Boundaries and the ensemble problem

In order to get a sensible holographic interpretation from a gravity path integral built from

a closed 2d TQFT, we were forced to introduce in a seemingly ad hoc fashion a rescaling

of the ẐI operators. What’s more, for an open/closed theory, we find that rescalings of the

operators Ẑ and Ŝ are no longer enough to land on a sensible boundary interpretation. The

solution discussed in [1] and reviewed here in section 1.1.1 is to add a nonlocal boundary

term S∂ = S0 to the action. The authors attempt to justify this in terms of a large number

of additional degrees of freedom that are allowed to propogate on the boundary. We discuss

the analogous solution in our case and attempt to paint a clearer picture of how these degrees

of freedom fit into a local framework.
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Figure 1.4: A gravitational region whose topology is summed over is holographically dual

to an ensemble of boundary conditions. The above figure is a schematic illustration of a

gravity correlator of nongravitational regions. The correlator is a sum over all manifolds

that are compatible with the boundaries of the nongravitational regions. Equivalently, it

is an average over different boundary conditions α (represented by dashed lines) that are

placed on the boundaries of the nongravitational regions.

The observables in our gravity theory are in one-to-one correspondence with states in

a TQFT. By definition, a TQFT is guaranteed to be compatible with cutting and gluing

spacetime manifolds. In particular, upon cutting a spacetime manifold the newly created

boundary is what we will call a “gluing boundary.” By this we mean this boundary corre-

sponds to a Hilbert space of states and hence can be glued to a similar gluing boundary by

appropriately summing over states on the two boundaries. So far, the operators describing

observables in the theory (the Ẑ and Ŝ operators) are operators that insert such gluing

boundaries in our gravitational spacetime. This is suggestive. Specifically, it suggests the

possibility of gluing the boundaries of our gravity spacetime to nongravitational TQFT path

integrals. That is to say, we can consider spacetimes with designated nongravitational re-

gions where topology is fixed, while the rest of the manifold has unspecified (i.e. summed

over) topology.

Holography on such hybrid gravitational/nongravitational spacetimes will reduce the

gravitational bulk region to a boundary condition on the nongravitational region. Or, more

generally, as in our case, the gravitational region will be dual to an ensemble of boundary
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conditions. Specifically, each alpha-state of the gravitational theory will correspond to a

distinct boundary condition. For each type of boundary α, there are corresponding open

sector Hilbert spaces for intervals that end on that boundary. For example, in a theory that

already has boundaries (for example, these could be end-of-the-world branes) labeled by the

index a, we will get additional open sector Hilbert spaces like Haα and Hαa. Even in a theory

without additional boundaries, such as those considered in sections 1.2 and 1.3, upon going

to the holographic dual we will have an open/closed TQFT with boundary α and the open

sector Hαα.

Taking gravity as a boundary condition provides a new perspective on the interpretational

problems that necessitated rescaling the Ẑ operators and that led to negative probabilities

when Ŝ operators are added. We can see how such problems arise in this framework. Consider

the correlator

〈
̂

〉
=
∑

I

〈
ẐIẐI

〉
, where I labels the closed sector states of the TQFT.

This is dual to the annulus where both boundaries are the gravity boundary. This diagram

is a trace that computes the dimension of the open sector Hilbert space Hαα. Consequently,

it ought be an integer. However, from the results of section 1.3,

∑
I

〈
ẐIẐI

〉
=
∑

...,NI ,...

∏
I

λNII
NI !eNI

∑
I

NI

µI

NI

µI
, (1.91)

meaning the annulus with gravity boundaries evaluates to
∑

I
N2
I

µ2I
where NI is a Poisson

random integer. This is not in general an integer. In fact, it cannot be an integer for all NI

if we restrict µI to the values that are compatible with a convergent gravity path integral

or with an ensemble without negative probabilities. Likewise, if we start with a TQFT

where boundary conditions are already present, similar problems arise for the “mixed” open

sectors Hαa and Haα, where a here labels the original, nongravity, boundary conditions in

the theory. An annulus with one boundary of type a and the other with gravity theory α

on it, will evaluate to
∑

I daI
NI
µI

, where daI are integers. This, again, is not in general an

integer. This implies the absurbity that the Hilbert spaces Hαα and Haα have noninteger

dimension. One can equally view this as a breakdown of locality, in that cutting a gravity

boundary α cannot be done consistently.
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Figure 1.5: A strip with a and b boundary conditions that enters a gravitational region is

dual to a strip that ends with gravity boundary conditions α interpolating between a and b.

At the junction between α and a boundary conditions there must be a boundary condition

changing operator, which we call ψαa. Likewise for the junction between b and α boundary

conditions.

The perspective of gravity as dual to a boundary condition on a nongravitational TQFT

also motivates an understanding of what the alpha-states for a theory with boundaries, like

end-of-the-world branes, are. Consider a state |I; i, j〉 in an open sector Hab that propogates

from a nongravitational region into the gravitational region. This is holographically dual to a

half-disk bounded by three segments: a segment with boundary conditions a, a segment with

gravity boundary conditions α, and a segment with boundary conditions b. (See figure 1.5.)

At the two points on the edge of the half-disk where the boundary conditions switch, there

are so-called boundary condition changing operators [33]. A boundary condition changing

operator between boundaries of two types, say from a to b, is a state in the open sector

Hilbert space Hab. (This can be seen from considering the slice surrounding the point where

the boundary conditions change. As this slice ends on the boundaries with conditions a

and b, the Hilbert space associated to it is Hab.) So in this case of a half-disk with three

different boundary types, there must be specified two states, in Hbα and Hαa respectively,

which represent the boundary condition changing operators. We take the specification of

these states, call them |ψbα〉 ∈ Hbα and |ψαa〉 ∈ Hαa, to be additional alpha parameters.

That is to say, fully specifying the alpha state, and hence the boundary theory, includes not
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just specifying the dimensions dαI , but also the boundary condition changing states |ψaα〉

that must appear when switching from the gravity path integral to its holographic dual.12

Recalling from section 1.4.4 that the states of an open sector Hab can be regarded as direct

sums of daI by dbI matrices, we can represent the states |ψαa〉 as
⊕

I Ψ(αaI). We see that the

probability distribution p(α) defining our ensemble should be over the nonnegative integers

dαI , for each I, and the dαI by daI complex matrices Ψ(αaI), for each choice of a and I.

We see an immediate problem, however. For the naive gravity path integral the dimen-

sions dαI are dαI = NI/µI , and hence, as explained above, not nonnegative integers for

every NI ∈ {0, 1, 2, . . .}. Defining the boundary theories in our ensemble then seems to

entail choosing the elements of a matrix with noninteger dimension. We saw that, for a

TQFT without additional boundaries, the holographic dual already has the problem that

the Hilbert space Hαα does not exist. (It would have noninteger dimension.) This can be

viewed as a violation of locality, insofar as it forbids us from making cuts in our manifolds

that intersect α boundaries. With that restriction on making cuts in place, perhaps it might

otherwise makes sense. In the presence of additional boundaries a, however, the problems

with the holographic dual theory become worse. The inability to make cuts intersecting

α boundaries prevents us from relating boundary condition changing operators to states

|ψαa〉 ∈ Hαa, as the Hilbert space Hαa does not exist. Instead, while such states |ψbα〉 and

|ψαa〉 don’t exist, we do have access to the state in Hba that would be their product under

open sector multiplication described in section 1.4.4 (see figure 1.3a). When represented as

a matrix, the entries of this state in Hba are simply the values that the operators ŜabIij take.

As we have explained, the generating function (1.90), by analogy with the arguments of [1],

does not lead to a nonnegative probability distribution for the values SabIij, for all values

of dαI = NI/µI . Thus, even with the locality-violating restriction of disallowing cuts that

intersect gravity boundaries, we are left without a consistent boundary ensemble theory.

So should we give up hope of consistently viewing the gravity path integral as dual to

12Reflection positivity ensures that the state |ψαa〉 switching α boundaries to a boundaries and the state
|ψaα〉 in the other direction, are determined by each other. Represented as matrices they are each other’s
Hermitian conjugates.
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an ensemble of boundary conditions? In the case of the simple model with end-of-the-world

branes considered in [1], they discuss, as a solution to the negative probabilities, adding

eS0 degrees of freedom that propagate along the end-of-the-world branes. These degrees of

freedom contribute to the existing bulk action a boundary term S∂ = S0 for every boundary

in the theory. This effectively rescales the boundary insertion operators Ẑ and likewise

ensures that d in eq. (1.16) is an integer. Then the Fourier transform of eq. (1.18) does,

indeed, give a valid probability distribution, namely the Wishart distribution.

This solution unavoidably has one of two problems, however. On the one hand, if the

degrees of freedom are taken to propagate only along the end-of-the-world branes, then the

open sectors Hab consequently have e2S0 times as many states as they did before, and we

have a corresponding e2S0 times as many interval insertion operators Ŝ. As the problem

of negative probabilities is, roughly speaking, the problem of having too many boundary

flavors, the additional interval insertion operators Ŝ reintroduce the problem that adding

the eS0 degrees of freedom might have solved. On the other hand, if we allow the additional

boundary degrees of freedom to propagate along not just the branes, but also the “gluing”

boundaries, these boundaries lose their interpretation as gluing boundaries. In other words,

the bulk action is now nonlocal.

The perspective of a gravitational region being dual to boundary conditions on a non-

gravitational region clarifies what the problem is. Adding, in our case, µI degrees of freedom

to each boundary type a, implements the change daI → d′aI = µIdaI . On its face, this seems

to solve the problem of dimHaα being a noninteger, as
∑

I d
′
aI
NI
µI

=
∑

I daINI ∈ Z, but the

new size of the open sector Hilbert space Hba is then inconsistent with a multiplication rule

Hbα⊗Hαa → Hba that involves matrices with dbINI and daINI number of entries.13 That is

to say, there are no sizes that two matrices could have such that

• the number of entries in each are dbINI and daINI respectively, and

• their matrix product has µIdbIµIdaI entries,

13It also does not solve the problem of noninteger dimHαα.
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other than their inner dimensions being NI/µI , which is not an integer for all NI . (This

makes precise the statement we made above that the problem is in some sense having too

many flavors of boundary.)

The difficulties with the boundary interpretation all ultimately stem from the fact that

the dαI = NI/µI are not integers for allNI . This suggests that a solution should be something

that adds µI additional degrees of freedom to the gravity boundary α, rather than merely

adding degrees of freedom to the original boundaries a. If we substitute dαI → d′αI =

µIdαI , the Hilbert spaces Hαα, Haα, etc. are all defined as well as the boundary condition

changing operators. With Haα well-defined, locality would then imply that the SabI matrices

factorize as SabI = Ψ†αaIΨαbI . Such a solution would presumably cure the problem of negative

probabilities for the values of SabIij.

One solution fitting these requirements involves adding a defect line separating the grav-

itational and nongravitational regions in our gravity path integral. We let this defect line,

call it ε, have
∑

I µI degrees of freedom, and we take it to be coupled to the 2d TQFT so

that there are µI degrees of freedom in each I sector. To explain what we mean by this,

consider that with the addition of such a defect line our TQFT has additional open sector

Hilbert spaces, namely those corresponding to intervals that cross the defect some number of

times. If the interval crosses the defect ε once, the corresponding Hilbert space, call it Haεb

will be Haεb
∼=
⊕

I

(
CdaI ⊗ CµI ⊗ CdbI

)
. In fact, each I sector of the Hilbert space will have

an additional tensor factor of CµI for each time the interval crosses a defect line ε. Likewise,

there are additional closed sector Hilbert spaces, for circles that intersect the defect line

some number of times. The simplest way to define a gravity path integral with the addition

of such a defect line is to consider surfaces where the defect line is placed surrounding the

gravity region, so that it runs along brane boundaries within the gravity region and along

the interface between the gravity and nongravity regions. To be precise, with the addition of

the defect, a boundary a within the gravity region gets replaced by the combined boundary

and defect a⊗ε, and at a triple junction of a, ε, and a⊗ε we contract the degrees of freedom

in the natural way. (See figure 1.6.) Calculating the resulting correlators of ẐI and ŜabIij is
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Figure 1.6: The gravitational and non-gravitational regions are separated by the defect. At

the junctions where, for example, a, ε, and a⊗ ε meet, we have the degrees of freedom of a

and the degrees of freedom of ε propagate in the obvious way.

straightforward. For every boundary component, whether made by the Ẑ, or a circle with

boundary conditions a, or made from a combination of boundaries a and interval operators

Ŝ, the TQFT action now has an additional factor of µI for each I sector. The result is that

(1.90) is modified to

F (u, t) =
∏
I

eλIe
KI exp(uI+

∑∞
j=1

1
j

tr(T jI )) =
∏
I

exp
(
λIe

KIeuI det(1− TI)−1) , (1.92)

This is not hard to see: each ẐI boundary component comes with an additional factor

µI , effectively giving uI → µIuI ; circles with boundary conditions a gets an additional

factor µI for each I sector, giving λIe
KI/µI → λIe

KI ; and finally, each boundary component

made of j connected ŜI intervals gets a factor of µI , giving tr(T j) → µI tr(T j). This

modified generating function for the correlators implies an ensemble of theories where ZI =

dαI = NI are random integers NI , independently chosen from Poisson distributions with

respective means λIe
KI . Within the space of theories with given ZI = NI , the remaining

probability distribution over the values of SabIij has the generating function det(1− TI)−NI

for its moments. This is the generating function for the moments of the Wishart distribution
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=

Figure 1.7: The gravity path integral where a defect line ε (green solid lines) separates the

gravitational and nongravitational regions, and the boundaries within the gravity region now

have boundary conditions a⊗ ε. This gravity region is holographically dual to an ensemble

of boundary conditions α (green lines with red dashed lines) that are enhanced with the µI

degrees of freedom from the defect, so that dαI = NI .

[23]. Recognizing this, we can write it suggestively as

det(1− TI)−NI = π−KINI
∫ ∏

a

(
dΨαaIdΨαaIe

− tr(Ψ†αaIΨαaI)
)
e
∑
a,b tr(TabIΨ†αbIΨαaI) , (1.93)

where by dΨαaIdΨαaI we mean integration over the 2daINI-dimensional space of complex NI

by daI matrices ΨαaI , and where TabI is the daI by dbI matrix with entries tabIij. We can see

immediately that the operator ŜabI takes the matrix value SabI = Ψ†αbIΨαaI in a given alpha-

state. This is precisely consistent with the holographic picture of gravity as a boundary

condition. In that case locality implies that the matrix Sab should indeed factorize into the

matrix multiplication of two boundary condition changing states, namely |ψbα〉 =
⊕

I Ψ†αbI

and |ψαa〉 =
⊕

I ΨαaI . Thus we can replace the gravity region’s fluctuating topology with

an ensemble of boundary conditions α, as illustrated in the example of figure 1.7. The α

boundary conditions are, as expected completely characterized by the dimensions dαI and the

boundary condition changing states |ψαa〉, where dαI are drawn from Poisson distributions

and the entries in the matrix representation of |ψαa〉 are independent complex Gaussian

random variables.
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There are many other ways we could choose to configure defect lines, and there may cer-

tainly be others that lead to a well-defined ensemble of boundary conditions. For example,

instead of the simple junctions pictured in figure 1.6, we could allow the degrees of freedom

to mix or to end at the junction. Such different setups would lead to the inclusion of addi-

tional operators in the traces tr
(
T jI
)

in the double exponent of (1.90). The setup considered

above is simply the most straightforward option, and it does, in fact, cure the problem of

negative ensemble probabilities. We speculate that in a TQFT that descends from a real-

istic gravity theory, a defect line separating gravitational and nongravitational regions may

descend from the data that specify how the geometries of the gravity and nongravity regions

are consistently glued together. For example, in the construction of [34] and subsequent

papers, wherein JT gravity with CFT matter has its boundary glued to a flat region with-

out gravity, the “boundary graviton” mode of JT gravity appears as a reparametrization of

the boundary, determining how the JT gravity region is glued to the non-gravitational flat

region.

The alpha-states |α〉, defined similarly to (1.19), satisfy 〈α′|α〉 ∼ δα′,αp(α). The failure

to obtain a well-defined ensemble with nonnegative probabilities is thus equivalent to the

presence of negative norm states in the baby universe Hilbert space. One possible solution,

then, to the problem discussed in this section would be to simply project out the negative

norm states. The baby universe Hilbert space can be constructed by acting on |HH〉 with the

single-boundary operators Ẑ and Ŝ. A projection on the space of single-boundary operators

would thus induce a projection on the baby universe Hilbert space. It is possible for the

states projected out by such an operation to include the offending negative-norm states. In

fact, the gravity model with defect separating gravity and nongravity regions is an example of

precisely this. The diagram pictured in figure 1.6, when viewed from right to left, constitutes

a projection.14 Namely the large Hilbert space Ha⊗ε,b⊗ε is mapped to the smaller Hilbert

spaceHab. The observables that non-gravitational observers have access to only include those

14The analogous map on the closed sector Hilbert space HS1 does not project out any states. It is simply
a rescaling, though, as explained above, a crucial one for the interpretation of Ẑ as a partition function in a
1d topological theory or as boundary conditions in a non-gravitational TQFT.
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built from the dimHab operators ŜabIij, rather than the much larger number of operators

that correspond to states in the Ha⊗ε,b⊗ε Hilbert space. Specifically, it is the defect degrees

of freedom that are inaccessible.

1.6 Future directions

In our work we extended the 2d topological gravity model of [1] to a broader class of topo-

logical actions. The holographic duals of these gravity models are ensembles of 1d topo-

logical theories with random dimension. This is, in retrospect, not terribly surprising, as

all 2d TQFTs are in a sense direct sums of the simplest TQFT, whose Hilbert space is

one-dimensional and whose action is proportional to the Euler characteristic, like in [1].

Perhaps the most obvious limitation of the present work, then, is our restriction to TQFTs

as defined by Atiyah’s axioms. In particular, TQFTs satisfying Atiyah’s axioms are always

finite dimensional, so this restriction rules out many TQFTs of physical interest. These

include, such TQFTs as the A- and B-models of topological string theory (both examples

of the broader class of “topological conformal field theories”). Likewise, JT gravity has a

description as a modified BF theory with gauge group SL(2,R) [35], an infinite dimensional

topological field theory.

Also in the spirit of working towards more realistic theories would be the extension to

higher dimensional spacetimes. Several recent works attempt to make connections between

a 3d bulk gravity and an ensemble of 2d CFTs on the boundary [18, 4, 5, 19]. Making sense

of gravity path integrals in three dimensions, however, runs up against the difficulty that

the equivalent of the genus expansion, for 3d manifolds, is not so well-behaved. Just as any

2d closed, connected, oriented manifold is the connected sum of some number of tori, any

3d closed, connected, oriented manifold can be uniquely written as the connected sum of

so-called “prime” manifolds. In contrast to the simplicity of the genus expansion in 2d, the

prime manifolds are infinite in number, and not completely and uniquely classified.

Besides the above extensions, there is, of course, always the possibility of considering
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models of surfaces with more complicated structures like defects, foliations, or (as in [20])

spin structures.

Finally, the coupling of gravitational regions to non-gravitational TQFT regions opens

other avenues for further study. We find especially interesting the question of whether a

version of the black hole information paradox can be phrased in this framework, perhaps

analogously to the construction in [36], or in some different way. Also of interest in this

framework is the question of bulk reconstruction. For example, one could consider TQFT

operators in the bulk gravity region that are appropriately “gravitationally dressed” so as to

be well-defined for spacetimes without fixed topology. (A simple example of “gravitational

dressing” would be to specify a fixed boundary component that the observable must remain

path connected to when we allow topology to fluctuate.) Then the question arises of whether

and how such bulk operators can be represented once we switch to the dual picture where

gravity is an ensemble of boundary conditions.
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CHAPTER 2

Null states from large superpositions of two-sided

black holes

2.1 Introduction

A standard insight from holography is that some aspects of the geometry of spacetime are

encoded in the entanglement of the dual holographic boundary state [37]. Entanglement is

nonlinear, i.e. the entanglement of a superposition can be different from the entanglement

of the terms in the superposition, so it is not a quantum observable. This leads to the

observation that there cannot be a general quantum observable corresponding to geometry

[38], except perhaps approximately [39]. This fact is made manifest in situations where a

geometric state is equal to the superposition of states with different geometries [40, 41].

Here we provide an elementary example of such a situation. The geometries in question

all consist of some number of disjoint copies of a two-sided black hole, and are distinguished

from each other only by how the several left and right black hole exteriors are joined together

by shared black hole interiors. With n copies of a two-sided black hole, there are n! states

obtained by permuting the exteriors on one side.1 We argue on general grounds that, for a

sufficiently large number n of copies, these states are not linearly independent, but can be

superposed to give a null state (or at least a state that is “approximately null” in a sense we

make precise). The existence of this linear dependency implies that we can write a geometry

of a number of copies of a two-sided black hole as a superposition of states with the exteriors

1Such a permutation includes a permutation of the boundaries and is thus, of course, a nontrivial diffeo-
morphism and not merely a gauge redundancy.
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(a) n thermofield double states (b) TFD states permuted by (1 3 2)

Figure 2.1: Two states: (a) A schematic diagram of the Euclidean path integral preparing n

copies of a thermofield double state. (b) Diagram of n thermofield double states permuted

by (1 3 2). We denote this state by |(1 3 2)〉.

joined up differently.

On its face, the possibility of writing a configuration of wormholes as a superposition

of wormholes connected up differently raises some conceptual questions. For example, if

observers jump into opposite sides of one of n AdS-Schwarzschild black holes, they could

in principle meet each other in the black hole interior. Yet our goal is to rewrite such a

state of n black holes as a superposition of different geometries in most of which meeting is

impossible because the observers’ black holes are distinct and disconnected.

We also explore another possibility that makes the conceptual question sharper. Is it

possible for a superposition of geometries, none of which connect the two observers, to be

equivalent to a connected two-sided black hole geometry? More precisely, can we write a

single two-sided black hole as a partial trace of a superposition of geometries that are all

disconnected? In this case, were the observers to jump in, they would meet in the middle,

even though this is impossible in any term in the superposition considered separately. This

would imply that there is no quantum observable corresponding to the question of whether

the two observers meet. We argue that such superpositions do exist approximately in the

limit of large number n of black holes.
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Figure 2.2: Left: Alice (red) and Bob (blue) jump into a black hole. Right: their trajectories

do not intersect in any term of an equivalent superposition.

2.2 Some illustrative examples

We illustrate the idea with a very simple example involving qubits shared between two

parties, Alice and Bob. Suppose Alice and Bob share 3 different Bell pairs of the form

|0〉 |0〉 + |1〉 |1〉. Suppose further that after Alice and Bob divvy up the qubits, Bob loses

track of which of his qubits are which. In other words, some unknown permutation of

Bob’s three qubits occurs. There are 6 possibilities for the state shared by Alice and Bob.

Explicitly, we have

|(1)〉 =
1√
8

∑
ijk

|i〉A |j〉A |k〉A ⊗ |i〉B |j〉B |k〉B ,

|(23)〉 =
1√
8

∑
ijk

|i〉A |j〉A |k〉A ⊗ |i〉B |k〉B |j〉B ,

|(12)〉 =
1√
8

∑
ijk

|i〉A |j〉A |k〉A ⊗ |j〉B |i〉B |k〉B ,

|(13)〉 =
1√
8

∑
ijk

|i〉A |j〉A |k〉A ⊗ |j〉B |k〉B |i〉B ,

|(123)〉 =
1√
8

∑
ijk

|i〉A |j〉A |k〉A ⊗ |k〉B |i〉B |j〉B ,

|(132)〉 =
1√
8

∑
ijk

|i〉A |j〉A |k〉A ⊗ |k〉B |j〉B |i〉B ,

labeled here by permutations. The situation is that they no longer know which of Alice’s

qubits are entangled with which of Bob’s. To what extent are Alice and Bob able to determine

which qubits are entangled with which? The task cannot be completed deterministically,
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as there are nontrivial overlaps between the six states. For example, 〈(1)|(12)〉 = 1
2

and

〈(1)|(123)〉 = 1
4
. An immediate consequence of this is that “which qubit is entangled with

which” is not a quantum observable.

The situation is improved if Alice and Bob share entangled qudit pairs
∑N

i=1
1√
N
|i〉A |i〉B

where N is large. Then the nontrivial overlaps between states are order O(N−1) or smaller,

making the different situations approximately distinguishable. Alice and Bob can engineer

joint measurements that will correctly determine which qudits are entangled with high prob-

ability. This is true even when Alice and Bob share large numbers of qudit pairs. In effect,

more entanglement between the qudits helps “keep track” of which are matched with which.

An interesting situation arises when Alice and Bob share sufficiently large numbers of

entangled pairs. Let n be the number of shared pairs. Then there are n! states labeled by

permutations, which live in a joint Hilbert space of size N2n. As n! grows faster than N2n,

for sufficiently large n the n! states labeled by permutations must be linearly dependent. In

fact, linear dependence happens much sooner than the above dimension-counting argument

suggests. We get a nontrivial linear dependence whenever n > N .

More generally, suppose Alice and Bob share n qudit pairs of the form
∑N

i=1 αi |i〉 |i〉.

There is still a linear dependence whenever n > N , no matter what the coefficients αi are.

Specifically, the superposition

|ψ〉 =
∑
π∈Sn

σ(π) |π〉 , (2.1)

where σ(π) is the sign of the permutation π, is null when n > N . As we will explain in more

detail later, 〈ψ|ψ〉 is proportional to the sum∑
i1<i2<···<in

α2
i1
α2
i2
· · ·α2

in (2.2)

which contains no terms when n > N .

In summary, for sufficiently large n there is a nontrivial null state made up of super-

positions of different permutation states. By symmetry under Sn, the existence of such a

null state implies that the unpermuted state |(1)〉 is equivalent to some superposition of

permuted states.
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2.3 Shared thermofield double states

In the context of the AdS/CFT correspondence, the thermofield double state |TFD〉 =∑
i e
−β/2Ei |Ei〉 |Ei〉 is dual to a two-sided Schwarzschild black hole with inverse temperature

β. The density matrix for one side of the thermofield double (TFD) state describes the

exterior on one side of the black hole, whereas the full state including the entanglement

information between the two sides describes the full geometry including the interior of the

black hole [37].

Suppose Alice and Bob share n such thermofield double states, but neither knows which

of their n systems is entangled with which of the other’s. This is analogous to the situation

described in the previous section but now with an additional interpretation in terms of

bulk geometries: Alice and Bob each have access to n black hole exteriors. Each of Alice’s

exteriors is connected to one of Bob’s via a black hole interior, but they do not know which

is connected to which. Alice and Bob are unable to perfectly determine which of the n!

geometries they have. What’s more, as we will argue, a linear dependency emerges as n

grows larger, so that any one situation can be approximately written as a linear combination

of the others.

To be more precise, consider a boundary theory on a spatial manifold Σ. Let |TFD(β)〉 ∈

HL ⊗ HR be the thermofield double state in this theory with inverse temperature β. Now

consider n copies of this thermofield double, i.e. the state |TFD(β)〉 |TFD(β)〉 · · · |TFD(β)〉 =

|TFD(β)〉⊗n in the Hilbert space H⊗nL ⊗ H⊗nR . We can act on this state |TFD(β)〉⊗n by

permuting the right boundaries, in other words by permuting the n copies of the Hilbert

space HR. There are n! possible such boundary permutations, described by the symmetric

group Sn. Denote the state resulting from a permutation π ∈ Sn as |π〉 ≡ π ◦ |TFD(β)〉⊗n.

First, note that the inner product between two states, |π〉 and |π̃〉, is 〈π̃|π〉 = 〈id|π̃−1π〉 =

〈π̃−1π〉, where for notational simplicity we denote inner products 〈id|π〉 by 〈π〉. Let Z(β) be

the partition function on Σ×S1 where the circle has length β. Then we can evaluate 〈π〉 as

〈π〉 =
∏

cycles i of π

Z(niβ) (2.4)
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Figure 2.3: The state |pi〉

〈id|(1 2)〉 = (2.3)

Figure 2.4: The inner product 〈id|(1 2)〉 = 〈(1 2)〉. Normalized, this is Z(2β)/Z(β)2.

where ni are the sizes of the cycles. E.g.
∑

i ni = n. Note for later that 〈π〉 = 〈π−1〉.

The overlaps between these states will tend to be small. The largest overlap, 〈id|(1 2)〉,

will be smaller than the norms 〈id|id〉 = Z(β)n by a factor Z(2β)/Z(β)2, which will be

small on the order of the typical relative spacing (e−βEi − e−βEi+1)/e−βEi ≈ β(Ei+1 − Ei).

The smallness of the overlaps implies that the question of which sides of the TFD states

are connected to which is approximately a quantum observable, and that this could break

down for large superpositions of such permutation states.2 In section 2.2 we saw that for

finite dimensional systems a counting argument implies linear dependence between the n!

permutation states for sufficiently large n. In the more general case of infinite dimensional

Hilbert spaces, the counting argument no longer holds. To the extent that we can approxi-

mate a TFD state (and its dual black hole state) by truncating energies above a threshold,

2In the special case where there is a Hagedorn temperature 1/β∗, exact orthogonality is achieved in the
limit β → β∗, as Z(2β)/Z(β)2 will become zero.
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we can again obtain a null state by having sufficiently large n. This suggests the possibility

of obtaining a null state in the limit of large n, or a state whose difference from the null

state (in a way we will make precise) goes to 0 as n goes to infinity. One goal of this work

is to get a handle on such “approximate null states.”

A general superposition of n permuted thermofield doubles is |A〉 =
∑

π απ |π〉 and has

norm

〈A|A〉 =
∑
π

∑
π̃

απ̃απ 〈π̃|π〉 =
∑
π

∑
π̃

απ̃απMπ̃π (2.5)

where M is the matrix with entries Mπ̃π = 〈π̃|π〉 = 〈π̃−1π〉. Null states made up of the

states |π〉 will correspond to eigenvectors of M with eigenvalue 0.

It isn’t hard to find the eigenvalues of M , given its particular structure in terms of the

group Sn. Let U (q)(π) be be the irreps of Sn, labeled by q. The eigenstates of M are then

the states of the form

|q; ij〉 ≡
∑
π

U
(q)
ij (π) |π〉 , (2.6)

where U
(q)
ij (π) is the ij entry of the matrix U (q)(π). This is simple to check using Schur

orthogonality. First note that 〈π〉 is a class function, so it can be uniquely expanded as a

sum of characters χq of Sn:

〈π〉 =
∑
q

cqχ
q(π). (2.7)

Then

〈p; kl|q; ij〉 =
∑
π

∑
π̃

U
(p)
kl (π̃)U

(q)
ij (π)

〈
π̃−1π

〉
=
∑
r

cr
∑
π

∑
π̃

U
(p)
kl (π̃)U

(q)
ij (π)

∑
m

U (r)
mm(π−1π̃)

=
∑
r

cr
∑
π

∑
π̃

U
(p)
kl (π̃)U

(q)
ij (π)

∑
m

∑
h

U
(r)
mh(π

−1)U
(r)
hm(π̃)

=
∑
m

∑
h

∑
r

cr
∑
π̃

U
(p)
kl (π̃)U

(r)
hm(π̃)

∑
π

U
(q)
ij (π)U

(r)
hm(π)

=
∑
m

∑
h

∑
r

cr
n!

dp
δprδkhδlm

n!

dq
δqrδihδjm

= δpqδkiδlj
n!2

d2
q

cq,

(2.8)
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where dq is the dimension of the irrep q. We used Schur orthogonality between the fourth

and fifth lines, and the fact 〈π〉 = 〈π−1〉 between the first and second lines. So the states

|q; ij〉 are orthogonal, with norm-squared n!2

d2q
cq. They give an orthogonal basis for the space

spanned by the |π〉 states.

This means that any null states will be precisely those |q; ij〉 for which cq is 0. By their

definition, the coefficients cq are

cq =
1

n!

∑
π

χq(π) 〈π〉 . (2.9)

In general, for q other than the trivial representation, the values χq(π) can be either positive

negative. So we can’t rule out null states a priori, even if we do not expect them exactly

for finite n in an infinite dimensional Hilbert space. We will tend to assume that the cq are

nonzero.

It is worth pointing out, that the coefficients cq are the Schur polynomials [42] (for finite

dimensional systems, Schur functions more generally) in the variables e−βE1 , e−βE2 , . . . .

Specifically, the Schur function sλ(e
−βE1 , e−βE2 , . . .) for a partition λ of n is the coefficient

cq for the Sn irrep corresponding to λ. In Section 2.2 we have already used the fact that

cσ = c(1,1,...,1), the coefficient corresponding to the sign irrep σ of Sn, is the Schur polynomial

s(1,1,...,1) corresponding to the partition 1 + . . .+ 1 = n, together with the fact that the Schur

polynomial s(1,1,...,1)(x1, x2, . . .) equals the n-th elementary polynomial

en(x1, x2, . . .) ≡
∑

i1<···<in

xi1 · · ·xin . (2.10)

For simplicity and clarity we will sometimes notate partitions with “exponential notation”,

so that e.g. c(1,1,...,1) is written c(1n). We will find the fact

c(1n) =
∑

i1<···<in

e−β(Ei1+···+Ein ) (2.11)

to be of importance later. One additional fact about Schur polynomials we will use is that(∑
i

xi

)
sλ(x1, x2, . . .) =

∑
µ

sµ(x1, x2, . . .), (2.12)

where the sum on the RHS is over partitions µ obtainable by adding a single box to the

young diagram of λ.
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2.3.1 Nearly null states

On it’s face it does not make much sense to refer to a state as “almost” null, as any state

whose norm is not zero can be normalized to have norm 1. To define a sense of “nearly

null” states, or even a sequence of states whose limit is the null state we must have some

additional criterion that determines a preferred normalization. A nearly null state is then

one whose preferred normalization, in this sense, is small.

One outcome of having a null state, say |a〉− |b〉 = 0, is that we can substitute |b〉 for |a〉

in expressions and get the same result. We can take an “approximate null state” |a〉−|b〉 ≈ 0

to include the criterion that replacing |a〉 with |b〉 gives us approximately the same result.

For example, we could require that the fidelity between |a〉 and |b〉 be close to one. This is

equivalent to the norm of |a〉 − λ |b〉 being small relative to the norm of |a〉 for some choice

of λ.

We are interested in states of the form |geometry〉 +
∑

i αi |other geometry i〉 and the

possibility |geometry〉 ≈ −
∑

i αi |other geometry i〉. So the notion of “nearly null” we will

be interested in is states with norm that is small compared to the norm of a distinguished

term |geometry〉 or states |φ〉 such that the fidelity between |geometry〉 and |φ〉− |geometry〉

is close to 1. This definition of course only makes sense relative to some distinguished vector

or vectors. In our context we have the distinguished vector |id〉 = |TFD〉⊗n and the states

obtained by permutations acting on this.

First we consider the possibility of writing the state of n unpermuted two-sided black

holes, |id〉, as a superposition |ψ〉 =
∑

π 6=id απ |π〉 of permuted states. We wish to find the

maximum fidelity between |id〉 and |ψ〉:

Fmax(n) = max
|ψ〉

|〈id|ψ〉|2

〈id|id〉 〈ψ|ψ〉
(2.13)

where the maximization is over states |ψ〉 that are linear combinations only of |π〉 where

π 6= id. We can evaluate (2.13) by expanding in the |q; ij〉 basis. First we expand |ψ〉 as

|ψ〉 =
∑
π 6=id

απ |π〉 =
∑
q

dq∑
i,j=1

γqij |q; ij〉 (2.14)
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where γqij are coefficients satisfying

απ =
∑
q

dq∑
i,j=1

γqijU
(q)
ij (π). (2.15)

In terms of the γqij coefficients, the condition that αid be zero is given by

∑
q

dq∑
i=1

γqii = 0. (2.16)

Now note that

〈id|q; ij〉 =
∑
π

U
(q)
ij (π) 〈π〉

=
∑
π

U
(q)
ij (π)

(∑
p

cpχp(π)

)

=
∑
k

∑
p

cp
∑
π

U
(q)
ij (π)U

(p)
kk (π)

=
∑
k

∑
p

cpδi,kδj,kδq,p
n!

dp

= δij
n!

dq
cq

(2.17)

where we have used Schur orthogonality as well as the fact that the cq are real. This fact

now gives us

〈id|ψ〉 =
∑
q

dq∑
i=1

γqii
n!

dq
cq (2.18)

as well as

〈ψ|ψ〉 =
∑
q

dq∑
i,j=1

γqijγqij
n!2

d2
q

cq. (2.19)

Plugging these expressions into (2.13), we get

Fmax = max
γ

∣∣∣∑q
n!
dq
cq tr γq

∣∣∣2
Zn
∑

q
n!2

d2q
cq tr

(
γ†qγq

) . (2.20)

where the maximization is subject to the constraint that
∑

q

∑dq
i=1 γqii = 0, and γq denotes

the dq-by-dq matrix whose entries are γqij. Splitting the matrix γq up into its trace and

traceless parts, γq = tr γq
dq

1 + X we see that tr
(
γ†qγq

)
= 1

dq
tr(γq)

2 + tr
(
X†X

)
. The traceless
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degrees of freedom of γq do not participate in either the constraint, or the numerator of

(2.20). They do add a nonnegative contribution to the denominator of (2.20), however,

which can only decrease F . So, because they don’t participate in the constraint, they will

be 0 when F is maximized. Define

λq =

√
Zn

n!2cq
d3
q

tr γq. (2.21)

With the traceless part of γq set to zero the max fidelity is now

Fmax = max
λ

∣∣∣∣∑q

√
dqcq
Zn
λq

∣∣∣∣2∑
q |λq|

2 (2.22)

where the maximization is over the λq and the constraint can be written

∑
q

√
d3
q

Znn!2cq
λq = 0. (2.23)

Written this way, Fmax is simply the maximum (normalized) overlap between the vectors

~u =

(
. . . ,

√
dqcq
Zn
, . . .

)
and ~λ = (. . . , λq, . . .) with the constraint that ~λ is orthogonal to

the vector ~v =

(
. . . ,

√
d3q

Znn!2cq
, . . .

)
. You can then see that the maximum is obtained by

choosing ~λ in the plane defined by ~u and ~v and orthogonal to ~λ. Where θ is the angle

between ~u and ~v, the angle between the optimal ~λ and ~v is π
2
− θ, making the maximum

fidelity Fmax =
(
cos
(
π
2
− θ
))2

= 1− (cos θ)2. To easily get θ:

cos θ =
~u · ~v
‖u‖ ‖v‖

=

∑
q

d2q
Znn!√∑

q
dqcq
Zn

√∑
q

d3q
Znn!2cq

. (2.24)

After simplifications from the facts
∑

q d
2
q = n! and

∑
q dqcq = Z(β)n,3this gives the maxi-

mum fidelity

Fmax = 1− n!2

Z(β)n
∑

q

d3q
cq

. (2.25)

We remind the reader that the sum is over irreps q of Sn so that the sum, the dimensions dq

and the coefficients cq all have a dependence on n.

3The second fact here can be seen by expanding the definitions of the cq then noting that the LHS is
1
n!

∑
π χreg(π) 〈π〉, where χreg(π) = n!δid,π is the regular representation.
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This result gives us a criterion for having an approximate null state: is n!2/
(
Zn
∑

q d
3
q/cq

)
small? Of course determining the coefficients cq or even getting a bound on them may be

difficult in general. If any of cq(n)/Zn go to zero as n gets large, the fidelity goes to 1. This

is also consistent with the fact already seen that there is an exact null state whenever one

of the cq is zero. Further note that in the above derivation of Fmax we have not used any

assumptions about the partition function, in particular we have not assumed either finite

dimensions or a discrete spectrum.

We can go further and obtain an actual state that instantiates the above maximum

fidelity. This will be the projection of ~u to the subspace orthogonal to ~v. So

~λmax ∼ ~u−
~v · ~u
‖v‖2~v. (2.26)

Unpacking our definition of λq in terms of tr(γq) we get

tr(γq) ∼
d2
q

Znn!
−

d3
q/cq

Zn
∑

p d
3
p/cp

(2.27)

after some simplification. This gives the coefficients

γqij ∼ δij

(
dq
Znn!

−
d2
q/cq

Zn
∑

p d
3
p/cp

)
. (2.28)

This result, in terms of the original coefficients απ, is

απ ∼
∑
q

dq∑
i,j=1

δij

(
dq
Znn!

−
d2
q/cq

Zn
∑

p d
3
p/cp

)
U

(q)
ij (π)

=
χreg(π)

Znn!
− 1

Zn

∑
q d

2
qχ

q(π)/cq∑
p d

3
p/cp

∼ δπ,id −
∑

q d
2
q χ

q(π)/cq∑
q d

2
q χ

q(id)/cq
.

(2.29)

Written this way, we can see that αid is indeed 0, consistent with the constraint on the

optimization.

We have determined the optimal |ψ〉 up to an overall constant. To fix the constant,

remember that we are interested in interpreting the state |id〉 − |ψ〉 as a “nearly null” state.
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We choose the phase of |ψ〉 so that 〈id|ψ〉 is real and positive, and we choose the norm to

be close to the norm of |id〉. Taking απ to be equal to the last line of (2.29) gives

〈id|ψ〉 = ZnFmax, (2.30)

which is positive. And likewise

〈ψ|ψ〉 = ZnFmax (2.31)

which for Fmax close to 1 as desired will be approximately Zn = 〈id|id〉. Thus, granted Fmax

is close to 1, we get a suitable “nearly null” state in

|id〉 − |ψ〉 = |id〉+
∑
π

∑q

d2q
cq
χq(π)∑

q

d2q
cq
χq(id)

− δπ,id

 |π〉 (2.32)

or, written more simply,

|nearly null〉 ∼
∑
π∈Sn

(∑
q

d2
q

cq
χq(π)

)
|π〉 . (2.33)

2.3.2 Meeting in a black hole interior

In the previous Section 2.3.1 we found a candidate state |id〉−
∑

π 6=id απ |π〉 for the property

|id〉 ≈
∑

π 6=id απ |π〉. Suppose this were an equality. Then by combining on one side the

terms |π〉 where π(1) = 1, we could write this in the form

|TFD〉 ⊗
∑

π̃∈Sn−1

απ̃ |π̃〉 = −
∑
π∈Sn
π(1)6=1

απ |π〉 . (2.34)

In a holographic context, the RHS would be a superposition of geometries, none of which

connect the first black hole exterior on each side, but whose partial trace down to the first

black hole is a connected black hole geometry.4 Two observers jumping into the first black

hole could in principle meet in the middle, this is despite the fact in no term in the RHS of

(2.34) has a geometry that connects the observers.

4There is also the possibility that
∑
π̃∈Sn−1

απ̃ |π̃〉 is itself null. If this is the case, we apply the same

consideration to it, extracting terms that have |TFD〉 on the second black hole, and so on. This process will
bottom out eventually, as we have fixed the coefficient of |id〉 to be 1.
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We extend our search to superpositions of states |π〉 with π(1) 6= 1 whose partial trace

down to the first copy of HL ⊗ HR is approximately the thermofield double state. This

previous paragraph shows that this is a weaker condition than that considered in Section

2.3.1, and it will turn out to be easier to get good bounds on the fidelity for this case. So

consider a superposition |ψ〉 =
∑

π,π(1)6=1 απ |π〉 and its partial trace ρ1 = tr2...n

(
|ψ〉〈ψ|

)
. We

want to maximize the fidelity

F =
〈TFD| ρ1 |TFD〉
〈TFD|TFD〉 tr(ρ1)

=
〈ψ|
(
|TFD〉〈TFD| ⊗ 12...n

)
|ψ〉

〈TFD|TFD〉 〈ψ|ψ〉
(2.35)

Like before, we will expand this in the irrep basis |q; ij〉, though this time we will consider

both the basis |q; ij〉1···n =
∑

π∈Sn U
(q)
ij (π) |π〉1···n for n copies of HL ⊗ HR and the basis

|p; k`〉2···n =
∑

π∈Sn−1
U

(p)
k` (π) |π〉2···n for only the the last n − 1 copies of HL ⊗HR. We will

allow ourselves to drop the subscripts when there is no ambiguity and will tend to use q for

irreps of Sn and p for irreps of Sn−1 in what follows.

Let P =
∑

p,k,` |p; k`〉〈p; k`| / 〈p; k`|p; k`〉 be the projector onto the subspace spanned by

the states |π〉2···n with π ∈ Sn−1. Replacing the identity with P in the expression for fidelity

gives a lower bound

F ≥
〈ψ|
(
|TFD〉〈TFD| ⊗ P

)
|ψ〉

〈TFD|TFD〉 〈ψ|ψ〉
. (2.36)

The norms 〈p; k`|p; k`〉 are n!2cp/d
2
p. Expanding |ψ〉 =

∑
q,i,j γqij |q; ij〉 and P , we get an

expression involving inner products
(
〈TFD| 〈p; k`|

)
|q; ij〉. These can be worked out. An

irrep q of Sn will split when restricted to Sn−1 into those irreps whose young diagrams are

obtained by removing a single corner block from the young diagram of q. Assume we chose

our bases such that the matrices U
(q)
ij (π) for Sn irrep q are block diagonal when restricted to

π ∈ Sn1 and so that the indices k and ` match an appropriate subset of the indices i and j,

when p is a block in the restriction of q. We have(
〈TFD| ⊗ 〈p; k`|

)
|q; ij〉 =

∑
π̃∈Sn−1

∑
π∈Sn

U
(p)
k` (π̃)U

(q)
ij (π) 〈π̃|π〉

=
∑
m

∑
π̃∈Sn−1

∑
π∈Sn

U
(p)
k` (π̃)U

(q)
im (π̃)U

(q)
mj (π) 〈π〉 .

(2.37)
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Expanding U
(q)
im (π̃) into blocks and using Schur orthogonality we obtain

(
〈TFD| ⊗ 〈p; k`|

)
|q; ij〉 =

(n− 1)!

dp
δp⊂qδki

∑
π∈Sn

U
(q)
`j (π) 〈π〉 , (2.38)

where by δp⊂q we mean 1 when p is in the restriction of q and 0 if it is not, and δki is meant

to be understood as enforcing that the k-th index of the copy of p in q matches the i-th

index of q. The remaining sum here evaluates to δ`jn!cq/dq, which can be seen by expanding

〈π〉 into characters of Sn then using Schur orthogonality. So in all we have

(
〈TFD| ⊗ 〈p; k`|

)
|q; ij〉 = δp⊂qδkiδ`j

(n− 1)!

dp

n!

dq
cq. (2.39)

After expanding |ψ〉 and P into the |q; ij〉 and |p; k`〉 bases respectively, our bound (2.36)

becomes

F ≥

∑
p,k,`

∑
q⊃p
∑

q̃⊃p γq̃k`γqk`
cq̃
dq̃

cq
dq

1
cp

Z(β)
∑

p,k,`

∑
q⊃p |γqk`|

2 cq
d2q

. (2.40)

The constraint on |ψ〉 that απ be zero for all π such that π(1) = 1 becomes

0 =
∑
qij

γqijU
(q)
ij (π) for π ∈ Sn−1. (2.41)

Split into p blocks this is

0 =
∑
pk`

∑
q⊃p

γqk`U
(p)
k` (π) for π ∈ Sn−1. (2.42)

Together, these conditions are equivalent to

0 =
∑
q⊃p

γqk` for all p, k, and `, (2.43)

the constraint that the sum of all blocks in γqij corresponding to an Sn−1 irrep must be the

zero matrix. Define λpk`q =
√
cq
dq
γqk` where, for a given p, q ranges over irreps of Sn that

include the Sn−1 irrep p in their restriction. Then (2.40) becomes

F ≥
∑

p,k,`
1
cp

∑
q̃⊃p
√
cq̃λpk`q̃

∑
q⊃p
√
cqλpk`q

Z(β)~λ · ~λ
. (2.44)

Given fixed contribution a2
pk` =

∑
q⊃p |λpk`q|

2 to the norm-squared from a given p, k, ` block,

maximizing within that block is the problem of maximizing ~u ·~v given ~w ·~v = 0 where ~v has
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fixed norm apk`, where vq = λpk`q, uq =
√
cq, and wq = dq/

√
cq. The maximizing ~v will be

proportional the projection of the ~u to the subspace orthogonal to ~w. The result is

Fmax ≥ max
apk`

∑
p,k,` a

2
pk`

1
cp

(∑
q⊃p cq −

(
∑
q⊃p dq)

2∑
q⊃p d

2
q/cq

)
Z(β)

∑
p,k,` a

2
pk`

. (2.45)

Maximizing over the apk` simply results in

Fmax ≥ max
p

1

Z(β)cp

∑
q⊃p

cq −

(∑
q⊃p dq

)2∑
q⊃p d

2
q/cq

 . (2.46)

Using an aforementioned fact about Schur functions, Z(β)cp =
∑

q⊃p cq, this simplifies to

Fmax ≥ 1−min
p

(∑
q⊃p dq

)2∑
q⊃p cq

∑
q⊃p d

2
q/cq

. (2.47)

Numerical experimentation suggests that the optimal irrep p of Sn−1 is often the sign irrep.

This is not always the case however. We will encounter a counterexample in Section 2.7.

In any case, choosing the sign irrep does give a lower bound on Fmax. There are two irreps

q of Sn whose reduction to Sn−1 includes the sign irrep, namely the irreps corresponding to

the partition 2 + 1 + · · ·+ 1 = n and to the sign irrep of Sn (whose corresponding partition

is 1 + 1 + · · ·+ 1 = n). The dimensions dq of these irreps are n− 1 and 1 respectively. This

leads to our final expression

Fmax ≥ 1− n2

1 + (n− 1)2 +
c(2,1n−2)

c(1n)
+ (n− 1)2 c(1n)

c(2,1n−2)

(2.48)

In examples, the coefficient c(1,...,1) can be easier to calculate than other coefficients cq. It is

thus sometimes useful to use Z(β)c(1n−1) = c(1n) + c(2,1n−2) to write c(2,1n−2) in terms of the

potentially easier to calculate c(1n) and c(1n−1). Similarly, c(n) and c(n−1,1) may be easier to

calculate in examples than other coefficients.

2.4 Harmonic oscillator

To illustrate the application of the results of Section 2.3 we consider the simple (though

non-holographic) example of a harmonic oscillator. In this case, the coefficients c(1n) can be
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Figure 2.5: Lower bound on the maximum fidelity as a function of n, for harmonic oscillator

TFD states with different values of βω

calculated using the recursion relation between elementary polynomials of different degree:

en(x1, x2, . . .) = en(x2, x3, . . .) + x1en−1(x2, x3, . . .). (2.49)

For a harmonic oscillator with spacing ω between energy levels, this gives

c(1n) = en(e−βω
1
2 , e−βω

3
2 , . . .)

= en(e−βω
3
2 , e−βω

5
2 , . . .) + e−βω

1
2 en−1(e−βω

3
2 , e−βω

5
2 , . . .)

= e−βωnen(e−βω
1
2 , e−βω

3
2 , . . .) + e−βω

1
2 e−βω(n−1)en−1(e−βω

1
2 , e−βω

3
2 , . . .)

= e−βωnc(1n) + e−βω(n− 1
2

)c(1n−1).

(2.50)

So the ratio c(1n−1)/c(1n) is

c(1n−1)

c(1n)

=
1− e−βωn

e−βω(n− 1
2

)
= eβω(n− 1

2
) − e−βω

1
2 . (2.51)

With this we can calculate c(2,1n−2) = Z(β)
c(1n−1)

c(1n)
− 1 and apply (2.48). The lower bound on

the maximum fidelity is

Fmax ≥ 1− n2

eβωn−1
eβω−1

+ (n− 1)2 eβωn−1
eβωn−eβω

. (2.52)

This approaches 1 as n gets large, as the first term in the denominator dominates for large

n. How quickly the fidelity approaches 1 as n increases depends on βω for the system, with

smaller βω giving a slower increase to 1. This is general feature of other examples, that

smaller spacing between energies or larger temperature both make it harder to achieve high

fidelity.
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2.5 The Marolf and Maxfield toy model

We now turn to a holographic example. In [1] the authors Marolf and Maxfield explore

a simple toy model of a gravity path integral in 2 dimensions. Interestingly, they show

that this simple bulk path integral is holographically dual to an ensemble of 1 dimensional

boundary theories, namely an ensemble of topological quantum mechanics theories where

the dimension of the Hilbert space is randomly taken from a Poisson distribution. In other

words, a given theory in the ensemble has the N by N zero matrix as its Hamiltonian, and

the ensemble is formed by choosing N from a Poisson distribution. The only parameter of

the theory is the mean λ of the Poisson distribution from which we choose N .

This model is simple enough that we can calculate averages of some quantities of inter-

est. The cq are Schur polynomials in N variables all taking the value 1. In particular the

elementary polynomial c(1n) = en of degree n is simply
(
N
n

)
. Using Zc(1n−1) = c(2,1n−2) + c(1n)

(the relation (2.12)) we get

c(2,1n−2) = Zen−1 − en = N

(
N

n− 1

)
−
(
N

n

)
(2.53)

In particular the ratios c(2,1n−2)/c(1n) are

c(2,1n−2)

c(1n)

= N
n!(N − n)!

(n− 1)!(N − n+ 1)!
− 1 =

Nn

N − n+ 1
− 1 =

(N + 1)(n− 1)

N − n+ 1
(2.54)

Plugging this in to (2.48), we see the fidelity with which we can imitate a TFD state by

states not connected between Alice and Bob is bounded by

Fmax ≥ 1− n2

1 + (n− 1)2 + (N+1)(n−1)
N−n+1

+ (n− 1)2 N−n+1
(N+1)(n−1)

=
n− 1

N(N − n− 2)
.

(2.55)

This expression is valid for n ≤ N . The case n > N can be obtained by a limit by considering

Schur polynomials in n variables N of which take the value 1 and n − N of which take a

value ε which we take to zero. The result is a lower bound of 1, so for n > N we obtain

F = 1. In other words, in a topological quantum mechanics theory with Hilbert space of
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Figure 2.6: Lower bound on the maximum fidelity as a function of n, for the case λ = 100

in the Marolf-Maxfield model.

dimension N , Alice and Bob can meet using superpositions with N + 1 black holes. In all

we get the bound

Fmax ≥


n−1

N(N−n−2)
N ≥ n

1 N < n

(2.56)

The Poisson average of this expression,

〈Fmax〉 ≥ e−λ

(
n−1∑
N=0

λN

N !
+

∞∑
N=n

λN

N !

n− 1

N(N − n+ 2)

)
, (2.57)

where λ is the mean of the Poisson distribution, has a complicated closed form. We can

obtain a simpler bound by dropping the N ≥ n terms

〈Fmax〉 >
n−1∑
N=0

e−λ
λN

N !
=

Γ(n, λ)

Γ(n)
, (2.58)

where Γ(n, λ) is the incomplete gamma function. This partial sum is close to 1 when n is

significantly larger than the Poisson mean λ. In fact, not only is the average fidelity bounded

close to 1, the probability that the boundary theory has Hilbert space dimension less than

n, and hence allows fidelity equal to 1, becomes high. To be more precise, the function

Γ(n, λ)/Γ(n) of n starts at 0 then grows to 1 as n passes λ. The case λ = 100 is plotted in

figure 2.6
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The path integral in the Marolf-Maxfield model is a weighted sum over 2d spacetime

topologies. The model has a single parameter S0, which determines the factor e−2S0 by which

we weight each additional handle on a spacetime. This is related to the mean dimension λ

by λ = e2S0/(1 − e−2S0). The name S0 was chosen by analogy with JT gravity where the

same weighting by number of handles occurs. JT gravity can be understood as a dimensional

reduction of gravitational dynamics of near-extremal black holes in higher dimensions [43, 44].

In this context S0 has the interpretation as the area of the black hole horizon and thus the

entropy of the black hole. The S0 parameter is thus the conceptual stand-in for the black hole

entropy in the much simpler Marolf-Maxfield model. The S0 parameter also has meaning in

the matrix integral dual of JT gravity, where the eS0 controls the density of energy levels

[14]. In this sense the dependence on S0 that we see is consistent with the general principle

that closer energy spacing and higher temperature make achieving fidelity close to 1 harder.

2.6 Random Hamiltonians

As our third example we consider a system with random Hamiltonian. Much work over the

past few years has explored bulk gravity theories dual to statistical ensembles of boundary

theories. For example, JT has been shown to be dual to a double-scaled random matrix

integral [14]. Here, however, we simply consider a theory with Hamiltonian taken from

a Gaussian unitary ensemble, the goal being merely to ascertain typical behavior of the

maximum fidelity (2.35).

We numerically calculated the bound (2.48) for various choices of β and Hilbert space

dimension N . Elementary symmetric polynomials were calculated numerically using the

recursion relation described in Section 2.4. (In fact, other desired Schur polynomials can be

calculated accurately and efficiently from the elementary symmetric polynomials using the

dual Jacobi-Trudi formula [45].) Some results are plotted in figures 2.7a and 2.7b. The n

required for Fmax to be bounded near 1 depends on both β and N . For small β, n must be

nearly N . For a given β, the required n as a fraction of N increases with N , but seems to

converge as N gets large.
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2.7 Black holes with THP < T < 2THP

Now take as our system a holographic CFT on the spatial sphere Sd−1. If we consider

just the semiclassical approximation of the gravity contributions to the path integral, for

low temperatures the partition function will be dominated by the saddlepoint corresponding

to thermal AdS while for high enough temperatures the dominant saddlepoint will be a

Euclidean AdS-Schwarzschild black hole [46, 47]. Taking just the background contributions

of these saddlepoints we get an approximation for the partition function

Z(β) ≈


e−I[Schwarzschild] β < 1/THP

e−I[AdS] β > 1/THP

, (2.59)

where I is the classical gravitational action of the background and THP is the Hawking-Page

transition temperature.

Recall that the inner products 〈π〉 equal products of factors of the form Z(kβ) where k

is a positive integer. Given a fixed β0, the coefficients cq thus only depend on the partition

function evaluated at the points kβ0. Choose β0 such that β0 < 1/THP and 2β0 > 1/THP .

Note that I[AdS] is of the form ecβ where c is constant in β [47]. Rescaling Z(β) by a

factor ecβ does not change the maximum fidelities; it is merely a change in normalization

corresponding shifting the energies by a constant c. After fixing β0 and rescaling we get the
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form

Z(kβ0) ≈


z k = 1

1 k > 1, k ∈N

, (2.60)

where z = exp(I[AdS]− I[Schwarzschild])|β=β0 is a value greater than 1 that depends on the

choice of β0. This form for the values Z(kβ0) simplifies the expressions for the inner products

and allows us to calculate the coefficients c(1n) and c(n) corresponding to the sign and trivial

irreps respectively. From the expressions (2.4) for the inner products, it is straightforward

to calculate generating functions

∞∑
n=0

c(1n)t
n = (1 + t)e(z−1)t (2.61)

and
∞∑
n=0

c(n)t
n =

1

1− t
e(z−1)t, (2.62)

from which we extract the coefficients c(1n) = (z− 1)n−1(z− 1 + n)/n! and c(n) =
∑n

m=0(z−

1)m/m!. Using these values for c(1n) in (2.48) gives a bound on fidelity that decreases as

n gets large. The true maximum fidelity cannot, of course, decrease as n increases. This

signifies either a deficiency in the bound (2.48) or a deficiency in our approximate form

(2.60). Using the above values for c(n) in (2.47) also fails to give a bound that increases

to 1; In this case, as n increases the bound approaches 1 − 1
z
. Again, we either require a

better bound on fidelity or a better estimate for the values Z(kβ0) in order to see the fidelity

increase to 1. We will see a bound that accomplishes this in the next section.

2.8 Bounds on fidelity from subgroups

Using expression (2.25) for the fidelity of writing one geometry as a superposition of the

others requires knowing the coefficients cq for the given system and temperature. This is in

general difficult. In particular, considering limits in large n requires knowing the cq for the

groups Sn for arbitrary n, not likely to be simple in general. One option to proceed is to

consider a subgroup of Sn in the hopes that the coefficients cq for irreps of the subgroup are
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easier to find. Let G be a subgroup of Sn, and let FG be the maximum fidelity between |id〉

and a superposition of states {|π〉 |π ∈ G, π 6= id}. Then FG ≤ Fmax, as we are maximizing

over a smaller subspace of states. Following the procedure in Section 2.3.1, but for an

arbitrary subgroup G of Sn, we find

FG = 1− |G|2

Zn
∑

q d
3
q/cq

, (2.63)

where the sum is over irreps q of G.

We’d like to choose a subgroup G that is large enough to potentially give an approximate

null state, but that has an easily understandable representation structure. Consider the

choice

G =
{

(1 2)a1(3 4)a2 · · · (n−1 n)an/2 | ai ∈ {0, 1}
}
. (2.64)

For ease of notation we can refer to an element of G by the (n/2)-tuple ~b =
(
b1, b2, . . . , bn/2

)
with entries either 0 or 1. The group G is abelian so its irreps are very simple. Like elements

of G they are labeled by (n/2)-tuples with entries either 0 or 1, notated ~γ =
(
γ1, γ2, . . . , γn/2

)
.

They are given by

χ~γ(~b) = χ(γ1,...,γn/2)(b1, . . . , bn/2) = (−1)
∑
i γibi . (2.65)

The coefficients c~γ are

c~γ =
1

2n/2

∑
~b

~γ(~b)
〈
~b
〉

=
1

2n/2

∑
~b

(−1)
∑
i γibiZ(β)n

n/2∏
i=1

(
Z(2β)/Z(β)2

)bi
=

Zn

2n/2

n/2∏
i=1

(
1 + (−1)γi

Z(2β)

Z(β)2

)
.

(2.66)

As G is abelian the dimension of every irrep is 1. Applying (2.63) results in

FG = 1−
(

1− Z(2β)2

Z(β)4

)n/2
(2.67)

Note that Z(2β)/Z(β)2 is less than 1. So as n gets large FG, and hence Fmax approaches 1.

Given a value of β, we can ensure FG > 1− ε and hence Fmax > 1− ε, for any small ε > 0

by choosing

n >
2 log ε

log
(

1− Z(2β)2

Z(β)4

) . (2.68)
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2.8.1 Dependence on Newton’s constant GN

In cases where the partition function takes the form Z(β) ∼ ef(β)/GN+O(GN ), the requirement

(2.68) implies that log n must grow like 1/GN for small GN . Achieving the fidelity bound

FG thus requires a superposition with ee
O(1/GN )

terms in it, so doubly exponential in 1/GN .

That an approximate null state would require the superposition of a large number of states

is consistent with the results of [39]. They found that the entropy is linear to leading order

on superpositions of much fewer than eO(1/GN ) geometric states, and that this linearity can

break down for superpositions of on order eO(1/GN ) states. Our null state resulting in fidelity

FG, on the other hand, requires a much larger superposition.

This suggests the possibility that a much better bound is achievable. In the Marolf-

Maxfield model, for example, Z(2β)/Z(β)2 is 1/N where N is Poisson random with mean λ.

This leads to a bound FG(N) = 1− (1− 1/N)n/2, whereas we know that the true maximum

fidelity is 1 as soon as n > N . Thus Fmax will be close to 1 when n is significantly greater

than the average dimension λ. Taking S0 ∼ 1/GN then suggests a superposition with merely

e
O( 1

GN
log 1

GN
)

terms.

2.9 Additional discussion

As explained in the introduction, the possibility of rewriting the TFD state as a partial trace

of a superposition
∑

π(1)6=1 απ |π〉 leads to a situation where Alice and Bob could meet despite

the fact that they do not meet in any term of the superposition. Can a superposition of

worlds where Alice does not meet Bob really equal a world where she does? This is of course

possible if there is not in fact a “meeting” quantum observable. This in turn is reasonable if

geometry is itself not a quantum observable.

One thing to point out is that, while the fidelity between two states being close to 1

bounds correlators of the states to be close to each other, this bound on correlators is not

uniform. That is to say, depending on the quantity one desires to measure, one may need

a larger or smaller number n to get outcomes within a desired error. It’s possible that a
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putative “meeting” operator might have an especially stringent requirement on n.

The question of what Alice observes must start with an identification of “Alice” within

the system. It’s possible that there is more than one way to do this or that this identification

isn’t linear. Perhaps the concept of an observer “Alice” is state-dependent. This might neatly

solve the paradox. The paradox arises from the fact that Alice, by recording whether or not

she meets Bob, seems to be recording a fact about the entanglement of the state. For an

observer as usually understood, this cannot be the case, as entanglement is not linear on the

space of states. But perhaps there’s nothing wrong with a state-dependent sense of “Alice”

being able to measure a nonlinear observable.

Throughout this work we have assumed the duality between two-sided eternal black

holes and TFD states. Two TFD states with different temperatures will have a nonzero

inner product even though they correspond to different geometries: two black holes with

different horizon area. If there is not a geometry quantum observable, this is not troubling.

If, however, we are set on the existence of a quantum operator for geometry, we can make

sense of the nonzero overlap by interpreting the TFD state as dual to a wave function over

different, orthogonal (by supposition) geometries where the peak amplitude is at the black

hole geometry with the appropriate temperature. Then the nonzero inner product measures

fluctuations away from the peak geometry, and the smallness of

| 〈TFD(β1)|TFD(β2)〉 |2

〈TFD(β1)|TFD(β1)〉 〈TFD(β2)|TFD(β2)〉
=
Z
(
(β1 + β2)/2

)2

Z(β1)Z(β2)
(2.69)

for β1, β2 very different simply signifies that in the wavefunction dual to |TFD(β1)〉 the

amplitude of the black hole geometry with β2 is small. This point of view is less able to

explain the nonzero overlaps between the |π〉 states, however. By locality, the only geometries

that should appear in the wave function dual to |TFD〉⊗|TFD〉 should be geometries made of

two disjoint components each of which appears in the wavefunction for |TFD〉. In particular,

no geometries connecting the boundary of the first factor with the boundary of the second

should ever appear. but the wave function for (1 2) ◦ |TFD〉 ⊗ |TFD〉, two copies of the

TFD state with their right sides swapped, will only have support over such geometries,

again, by locality of the boundary theory. Why then the nonzero overlap 〈id|(1 2)〉 =
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Z(2β)/Z(β)2? If we are to understand these states as wavefunctions over orthogonal states

labeled by geometries then the wavefunction of |TFD〉 ⊗ |TFD〉 is not simply two copies of

the wavefunction for |TFD〉.5 One natural conclusion is that there simply is no geometry

operator and corresponding complete set of states labeled by geometry. Another natural

conclusion is that different geometry states are related by null states, which amounts to the

same thing.

The rewriting of a thermofield double state described in this work may be interesting in

the context of traversable wormholes as described in [48] and [49]. In these cases information

can travel from one side to the other via an interaction that is introduced between the

boundaries. From the bulk point of view, this interaction changes the geometry to include

a shockwave that makes the wormhole traversable. This bulk point of view no longer holds

once we have rewritten the TFD state to be a superposition of states where the two sides are

not connected. Is there a bulk explanation as to how information can traverse that makes

sense within each term of the superposition?

5This is reminiscent of the factorization problem that generically appears in gravity path integrals that
sum over geometries [10], though it is not quite the same, as the nonzero overlap 〈id|(1 2)〉 in question has
a single boundary spacetime component. Instead, this is a nonfactorization at the level of Hilbert spaces
(codimension 1) rather than partition functions (codimension 0).
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APPENDIX A

State sum formulation of Dijkgraaf-Witten theory

Dijkgraaf-Witten theory can be equivalently formulated as a lattice gauge theory on a tri-

angulated manifold. The outputs of the theory formulated this way are so-called state-sum

expressions for the partition function. In [50], this approach was generalized to DW theory

with defects. Their methods can be straightforwardly generalized to provide an independent

method of obtaining our open/closed DW rules (1.69)-(1.73), and at the same time provide

directions for future work.

A.1 Review of state sum for DW with defects

Given a surface-curve pair Σ ⊃ C, we can define a refine notion of triangulation as follows.

Definition A.1.1. A triangulation T of a surface with curve Σ ⊃ C is flag-like if C is a

subcomplex, and if, for every 2-simplex σ ∈ T , the intersection of σ and C is either a face

(i.e. one vertex or one edge) or is empty.

In other words a flag-like trangulation has to have the curve lie along faces, and only use

triangles like the ones in figure A.1.

In DW theory without defects, the construction proceeds by choosing appropriate an

appropriate group G whose elements will label the edges of the triangles in the triangulation.

In the presence of defects, we need to pick two finite groups G, H and a space X with a right

G-action and a left H-action. Physically G specifies the degrees of freedom in the bulk, H

the degres of freedom on the defect and X is a way of coupling (or not) the two together.

Then we assign elements of G, H and X on edges of the triangles from figure A.1, in a
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Figure A.1: Basic building blocks of a flag-like traingulation.

consistent way as shown in fig A.2.

Now we can define the partition function of DW theory.

Definition A.1.2. Let G, H be finite groups and X a set equipped with commuting group

action of G on the right and H on the left. Then, for any flag -like triangulation T of a

surface-curve pair Σ ⊃ C, the partition function of untwisted DW theory is defined to be

Z(H,X,G)(Σ ⊃ C) := |G|−σ|H|−cκ(H,X,G)(T ) (A.1)

where κ(H,X,G)(T ) is the number of admissible colorings of the triangulation, σ is the number

of bulk vertices, and c is the number of vertices lying on the defect.

The method of [50] for defining the partition function of 2d DW with 1d defects on a

closed manifold Σ begins by choosing two groups G, H and a space X on which G has a

right action and H has a left action. The physical interpretation of these choices are as the

dofs of the DW, the dofs on the defects, and a coupling between these dofs, respectively.

Then they introduce a triangulation of Σ, that is made out of three basic triangles, see figure

A.1. A triangulation obtained from these triangles they call flag-like, and then the partition

function of untwisted DW is essentially the counting of possible group element assignments

on each edge of the triangulation, which is the lattice equivalent of counting isomorphism

classes of bundles,

Z(H,X,G)(Σ ⊃ C) := |G|−|T 0
0 ||H|−|T 1

0 |κ(H,X,G)(T ) (A.2)

where T kn denote the set of n-simplices of T with k vertices on the curve, and κ(H,X,G)(T ) is

the number of admissible (H,X,G)-colorings of T. Then they show that this is independent
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Figure A.2: Admissible colorings of a flag-like triangulation. Here f, g, h ∈ G, x, y ∈ X and

η ∈ H.

of the flag-like triangulation chosen, and hence a topological invariant of the surface-curve

pair Σ ⊃ C.

A.2 Generalization and importance for our methods

Although, in [50] they restrict attention to closed manifolds Σ, their methods can be straight-

forwardly generalized to manifolds with fixed holonomies and/or parallel transports on their

boundaries. So using (A.2), we can reproduce all of the DW TQFT rules (1.69)-(1.73). The

simplest choice for X is the direct product X = G×H. With this choice, we label the brane

boundaries by parallel transports (h, 1) ∈ X, and since the brane boundaries are dynamical

we will sum over all those h. Each non-dynamical, open boundary has to be made up by at

least two different edges, since there is no 2-simplex with two defect vertices and no defect

edge. Let g ∈ G be the parallel transport specified along a non-dynamical, open boundary,

then we will model this boundary by allowing a non zero H parallel transport along it, so

that the total transport is (h, g) ∈ X for some h ∈ H. Other than reproducing (1.69)-(1.73),

the lattice perspective helps visualize how a (small) gauge G transformation wouldn’t act on

the boundary, since the brane boundaries are fixed to have parallel transport (h, 1).
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